[go: up one dir, main page]

CN117656059A - Adaptive variable impedance control method and device, electronic equipment and storage medium - Google Patents

Adaptive variable impedance control method and device, electronic equipment and storage medium Download PDF

Info

Publication number
CN117656059A
CN117656059A CN202311543862.4A CN202311543862A CN117656059A CN 117656059 A CN117656059 A CN 117656059A CN 202311543862 A CN202311543862 A CN 202311543862A CN 117656059 A CN117656059 A CN 117656059A
Authority
CN
China
Prior art keywords
target object
adaptive
force
formula
impedance control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311543862.4A
Other languages
Chinese (zh)
Inventor
王宏民
蒋孟
吴龙华
林蔚
黄俊霖
邢博宸
宋莹莹
江励
潘增喜
黄辉
梁艳阳
廖洁玲
李志宏
杨颖怡
张海杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuyi University Fujian
Original Assignee
Wuyi University Fujian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuyi University Fujian filed Critical Wuyi University Fujian
Priority to CN202311543862.4A priority Critical patent/CN117656059A/en
Publication of CN117656059A publication Critical patent/CN117656059A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1605Simulation of manipulator lay-out, design, modelling of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

The embodiment of the invention provides a self-adaptive variable impedance control method and device, electronic equipment and a storage medium. In the process of cooperatively grabbing the target object by the double mechanical arms, decoupling the internal force and the external force borne by the target object, and analyzing the internal force and the external force step by step to obtain a stress analysis result of the target object; the reference model generates an expected motion track of the mechanical arm according to a stress analysis result, and the self-adaptive controller adjusts impedance parameters by comparing error signals between the actual motion track and the expected motion track of the mechanical arm; in the operation process of the double mechanical arms, updating impedance parameters according to error signals output by the self-adaptive impedance control model; and adjusting the self-adaptive impedance control strategy according to the updated impedance parameters so that the double mechanical arms grasp the target object according to the self-adaptive impedance control strategy. Based on the above, the embodiment of the invention can enable the impedance parameters of the double mechanical arms to be flexibly adjusted when the double mechanical arms interact with the environment so as to better complete the grabbing task.

Description

自适应变阻抗控制方法和装置、电子设备及存储介质Adaptive variable impedance control method and device, electronic equipment and storage medium

技术领域Technical field

本发明实施例涉及机器人控制技术领域,尤其涉及一种自适应变阻抗控制方法和装置、电子设备及存储介质。Embodiments of the present invention relate to the field of robot control technology, and in particular, to an adaptive variable impedance control method and device, electronic equipment and storage media.

背景技术Background technique

面对现代生产任务不断的复杂化和生成过程的柔性化,现代生产对智能化,功能性和多样化的要求越来越高,传统的固定工位的单机械臂的工作模式已经不适用于现代智能制造的环境中。在协作装配、焊接和搬运大型或重型有效载荷等特定的工序任务中,双机械臂拥有更强的负载能力、更广泛的工作空间、多样性的工作方式,相比于单机械臂,多机械臂在制造环节当中具有很高的完成度和灵活的操作度,具有更广泛的应用前景。在对双臂控制的研究当中,主要涉及到的控制层面需要解决关键性问题,双机械臂协同下的位置和力控制。当双机械臂进行工作时,双机械臂需要满足一定的约束关系来保持高度的协调一致性,同时控制机械臂末端的运动轨迹和作用在物体上的机械臂的应力和外部干扰力。否则,因为存在误差,被作用的目标物体将会产生很大的内应力破坏目标物体本身,当目标物体刚度过大时,将会损坏机械臂。因此,如何在考虑外部力和环境因素的情形下,完成双机械臂对目标物体的抓取任务成为亟待解决的技术问题。Faced with the continuous complexity of modern production tasks and the flexibility of the production process, modern production has increasingly higher requirements for intelligence, functionality and diversification. The traditional working mode of a single robot arm with a fixed station is no longer suitable. In the environment of modern intelligent manufacturing. In specific process tasks such as collaborative assembly, welding, and handling of large or heavy payloads, dual robotic arms have stronger load capacity, wider work space, and diverse working methods. Compared with single robotic arms, multiple robotic arms The arm has a high degree of completion and flexible operation in the manufacturing process, and has wider application prospects. In the research on dual-arm control, the main control level involved needs to solve key issues, such as position and force control under the coordination of dual-arm robots. When the dual robotic arms work, the dual robotic arms need to meet certain constraints to maintain a high degree of coordination and consistency, while controlling the movement trajectory of the end of the robotic arm and the stress and external interference force of the robotic arm acting on the object. Otherwise, due to the presence of errors, the acted target object will generate large internal stress and destroy the target object itself. When the stiffness of the target object is too large, the robotic arm will be damaged. Therefore, how to complete the task of grabbing target objects with dual robotic arms while taking into account external forces and environmental factors has become an urgent technical problem to be solved.

发明内容Contents of the invention

本发明实施例提供了一种自适应变阻抗控制方法和装置、电子设备及存储介质,能够使得双机械臂在与环境交互时能够灵活地调整其阻抗参数,以更好地完成对目标物体的抓取任务。Embodiments of the present invention provide an adaptive variable impedance control method and device, electronic equipment and storage media, which can enable dual robotic arms to flexibly adjust their impedance parameters when interacting with the environment to better complete target object control. Fetch tasks.

第一方面,本发明实施例提供了一种自适应变阻抗控制方法,包括:In a first aspect, embodiments of the present invention provide an adaptive variable impedance control method, including:

在双机械臂协作抓取目标物体的过程中,将所述目标物体受到的内力和外力进行解耦,并对所述内力与所述外力进行分步分析,得到目标物体的受力分析结果;In the process of the dual robot arms cooperatively grabbing the target object, the internal force and the external force on the target object are decoupled, and the internal force and the external force are analyzed step by step to obtain the force analysis result of the target object;

加载自适应阻抗控制模型,所述自适应阻抗控制模型包括参考模型和自适应控制器,所述参考模型用于根据所述受力分析结果生成机械臂的期望运动轨迹,所述自适应控制器用于通过比较机械臂实际运动轨迹和所述期望运行轨迹之间的误差信号来调整阻抗参数;Load an adaptive impedance control model. The adaptive impedance control model includes a reference model and an adaptive controller. The reference model is used to generate the desired motion trajectory of the mechanical arm based on the force analysis results. The adaptive controller is used Adjusting the impedance parameter by comparing the error signal between the actual movement trajectory of the robotic arm and the desired movement trajectory;

在双机械臂运行过程中,根据所述自适应阻抗控制模型输出的所述误差信号更新阻抗参数;During the operation of the dual robotic arms, update the impedance parameters according to the error signal output by the adaptive impedance control model;

根据更新的所述阻抗参数调整自适应阻抗控制策略,以使所述双机械臂根据所述自适应阻抗控制策略对所述目标物体进行抓取。The adaptive impedance control strategy is adjusted according to the updated impedance parameter, so that the dual robotic arms grasp the target object according to the adaptive impedance control strategy.

在一些实施例中,所述方法还包括:In some embodiments, the method further includes:

建立双机械臂协同系统坐标系,目标物体对于参考坐标系的位置和姿态用下式进行求解:Establish the coordinate system of the dual manipulator collaborative system. The position and attitude of the target object with respect to the reference coordinate system are solved using the following formula:

式中,为目标物体相对于质心坐标系的转化矩阵;/>为物体相对于质心处坐标系的3X3的旋转矩阵;/>为目标物体相对于质心处坐标系的3X1的位置矩阵;In the formula, is the transformation matrix of the target object relative to the center of mass coordinate system;/> It is the 3X3 rotation matrix of the object relative to the coordinate system at the center of mass;/> is the 3X1 position matrix of the target object relative to the coordinate system at the center of mass;

目标物体通过质心处坐标系与世界坐标系之间的转化为目标物体与机械臂之间的约束条件,由下式进行表达:The target object is converted into a constraint between the target object and the robotic arm through the transformation between the coordinate system at the center of mass and the world coordinate system, which is expressed by the following formula:

式中,为质心处坐标系0相对于世界坐标系W的齐次坐标转换;/>表示双机械臂的基坐标系相对于世界坐标系的齐次坐标转换;/>表示双机械臂的末端坐标系相对于双机械臂的基坐标的其次转换;/>表示目标物体质心坐标系相对于机械臂末端的齐次转换;In the formula, It is the homogeneous coordinate transformation of the coordinate system 0 at the center of mass relative to the world coordinate system W;/> Represents the homogeneous coordinate transformation of the base coordinate system of the dual robot arms relative to the world coordinate system;/> Represents the secondary transformation of the end coordinate system of the dual robotic arms relative to the base coordinates of the dual robotic arms;/> Represents the homogeneous transformation of the coordinate system of the center of mass of the target object relative to the end of the robotic arm;

通过下式对速度约束关系进行分析,使得双臂在运动的过程中保持位置和速度的一致性;The speed constraint relationship is analyzed through the following formula, so that the position and speed of the arms are consistent during the movement;

式中,表示机械臂末端相对于世界坐标系的速度;/>表示物体相对于世界坐标系的速度,角速度;/>表示机械臂末端相对于世界位置变换矩阵;Pi O表示机械臂末端相对于目标物体质心的位置变换矩阵;/>表示目标物体质心相对于世界下的方向旋转矩阵。In the formula, Represents the speed of the end of the robotic arm relative to the world coordinate system;/> Represents the object’s velocity relative to the world coordinate system, angular velocity;/> Represents the position transformation matrix of the end of the manipulator arm relative to the world; P i O represents the position transformation matrix of the end of the manipulator arm relative to the center of mass of the target object;/> Represents the direction rotation matrix of the center of mass of the target object relative to the world.

在一些实施例中,所述将所述目标物体受到的内力和外力进行解耦,包括:In some embodiments, decoupling the internal and external forces on the target object includes:

根据牛顿第二定律和欧拉方程建立双机械臂抓取目标物体的状态,建立以下目标物体的动力学方程:According to Newton's second law and Euler's equation, the state of the dual manipulator grabbing the target object is established, and the following dynamic equation of the target object is established:

式中IO表示目标物体质心处的惯性矩阵;FO∈R6表示双机械臂作用于目标物体上的矢量力;MO∈R6表示目标物体的质量惯性矩阵;/>表示目标物体运动过程中的线加速度和角加速度;CO∈R6表示为目标物体的科氏力、重力和离心力的合力矢量;Fext∈R6表示外部干扰力作用于目标物体上的适量力;将上式转化为下式:in the formula I O represents the inertia matrix at the center of mass of the target object; F O ∈R 6 represents the vector force of the dual robotic arms acting on the target object; M O ∈R 6 represents the mass inertia matrix of the target object;/> represents the linear acceleration and angular acceleration during the movement of the target object; C O ∈R 6 represents the resultant force vector of the Coriolis force, gravity and centrifugal force of the target object; F ext ∈R 6 represents the appropriate amount of external interference force acting on the target object Force; convert the above formula into the following formula:

式中k=l,r表示为双机械臂的左臂和右臂,Sk T∈R6表示抓取矩阵;Fk表示机械臂作用于目标物体上的力;将抓取矩阵分解得到外力式FI和得到内力式FEIn the formula, k=l, r represents the left arm and right arm of the double robotic arm, S k T ∈ R6 represents the grasping matrix; F k represents the force of the robotic arm acting on the target object; decompose the grasping matrix to obtain the external force formula F I and get the internal force formula F E :

式中是/>矩阵的广义逆矩阵。in the formula Yes/> The generalized inverse of a matrix.

在一些实施例中,所述目标物体的受力分析结果包括:In some embodiments, the force analysis results of the target object include:

式中,xe、xa分别代表期望轨迹和实际轨迹;Fe、Fa分别代表期望受力和实际受力,其中Fk=Fa;Md代表惯性矩阵;Bd代表阻尼矩阵;Kd代表刚度矩阵;ΔF代表力的误差值;In the formula, x e and x a represent the expected trajectory and the actual trajectory respectively; F e and F a represent the expected force and the actual force respectively, where F k =F a ; M d represents the inertia matrix; B d represents the damping matrix; K d represents the stiffness matrix; ΔF represents the error value of the force;

将外力式FI和得到内力式FE代入到上式中,得到下式:Substituting the external force formula F I and the internal force formula F E into the above formula, we get the following formula:

其中,Fa表示为:Among them, F a is expressed as:

Fk=Fa=Kr(xe-xa)F k =F a =K r (x e -x a )

式中,Kr代表目标物体刚度。In the formula, K r represents the stiffness of the target object.

在一些实施例中,所述误差信号的求解过程如下:In some embodiments, the solution process of the error signal is as follows:

e=xf+Δx-xa e=x f +Δx-x a

式中,xf为传统阻抗生成的位置误差,xa为实际轨迹,Δx为轨迹调整值;In the formula, x f is the position error generated by traditional impedance, x a is the actual trajectory, and Δx is the trajectory adjustment value;

式中,p(t)和v(t)分别为自适应控制中的力误差的比例参数和微分反馈增益参数;a(t)为自适应控制中的调整值;根据下式:In the formula, p(t) and v(t) are the proportional parameters and differential feedback gain parameters of the force error in adaptive control respectively; a(t) is the adjustment value in adaptive control; according to the following formula:

xe=Kr -1(Fe-ΔF)+xa x e =K r -1 (F e -ΔF)+x a

式中, In the formula,

其中,理想参考模型的二阶系统如下式:Among them, the second-order system of the ideal reference model is as follows:

得到实际模型与理想参考模型之间的误差信号为:The error signal between the actual model and the ideal reference model is obtained:

在状态空间中的表达为:The expression in state space is:

其中, in,

在一些实施例中,所述根据所述自适应阻抗控制模型输出的所述误差信号更新阻抗参数,包括:In some embodiments, updating impedance parameters based on the error signal output by the adaptive impedance control model includes:

基于李亚普诺方程的稳定性定理建立如下方程:Based on the stability theorem of Lyapuno equation, the following equation is established:

V=ΔFe TPΔFe1(Bm-Bl)22(Am-Al)2+μ3(Yl)2 V=ΔF e T PΔF e1 (B m -B l ) 22 (A m -A l ) 2 + μ3 (Y l ) 2

式中,根据李雅普诺夫的第二定理,Q=αTPa;μ1、μ2和μ3为正数;P为非奇异矩阵;通过对上式进行微分,得到:In the formula, According to Lyapunov's second theorem, Q=α T Pa; μ 1 , μ 2 and μ 3 are positive numbers; P is a non-singular matrix; by differentiating the above formula, we get:

式中,根据李雅普诺夫的第二定理,确保/>恒小于0,则除了-ΔFe TQΔFe不为0之外,其他所有项都为0,得到:In the formula, According to Lyapunov’s second theorem, ensure/> is always less than 0, then except -ΔF e T QΔF e is not 0, all other terms are 0, and we get:

因此,得到自适应阻抗控制策略的控制定律:Therefore, the control law of the adaptive impedance control strategy is obtained:

其中,in,

式中,K0、K1、K2、βp和βv都为正积分适应增益系数;a0、p0、v0为自适应控制系统选择的初始值。In the formula, K 0 , K 1 , K 2 , β p and β v are all positive integral adaptive gain coefficients; a 0 , p 0 , v 0 are the initial values selected by the adaptive control system.

在一些实施例中,所述根据更新的所述阻抗参数调整自适应阻抗控制策略,包括:In some embodiments, adjusting the adaptive impedance control strategy according to the updated impedance parameter includes:

通过更新a(t)、p(t)、v(t)以及η(t),使得自适应阻抗控制策略进行更新。By updating a(t), p(t), v(t) and eta(t), the adaptive impedance control strategy is updated.

第二方面,本发明实施例还提供了一种自适应变阻抗控制装置,所述装置包括:In a second aspect, embodiments of the present invention also provide an adaptive variable impedance control device, which includes:

分析模块,用于在双机械臂协作抓取目标物体的过程中,将所述目标物体受到的内力和外力进行解耦,并对所述内力与所述外力进行分步分析,得到目标物体的受力分析结果;The analysis module is used to decouple the internal and external forces on the target object during the collaborative grabbing of the target object by the dual manipulators, and conduct a step-by-step analysis of the internal force and the external force to obtain the target object. Force analysis results;

加载模块,用于加载自适应阻抗控制模型,所述自适应阻抗控制模型包括参考模型和自适应控制器,所述参考模型用于根据所述受力分析结果生成机械臂的期望运动轨迹,所述自适应控制器用于通过比较机械臂实际运动轨迹和所述期望运行轨迹之间的误差信号来调整阻抗参数;A loading module is used to load an adaptive impedance control model. The adaptive impedance control model includes a reference model and an adaptive controller. The reference model is used to generate the desired motion trajectory of the mechanical arm based on the force analysis results, so The adaptive controller is used to adjust the impedance parameters by comparing the error signal between the actual movement trajectory of the robotic arm and the desired movement trajectory;

更新模块,用于在双机械臂运行过程中,根据所述自适应阻抗控制模型输出的所述误差信号更新阻抗参数;An update module, configured to update impedance parameters according to the error signal output by the adaptive impedance control model during the operation of the dual manipulator;

执行模块,用于根据更新的所述阻抗参数调整自适应阻抗控制策略,以使所述双机械臂根据所述自适应阻抗控制策略对所述目标物体进行抓取。An execution module, configured to adjust an adaptive impedance control strategy according to the updated impedance parameter, so that the dual robotic arms grasp the target object according to the adaptive impedance control strategy.

第三方面,本发明实施例还提供了一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如第一方面所述的自适应变阻抗控制方法。In a third aspect, embodiments of the present invention also provide an electronic device, including: a memory, a processor, and a computer program stored in the memory and executable on the processor, characterized in that the processor executes the computer program The program implements the adaptive variable impedance control method as described in the first aspect.

第四方面,本发明实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如第一方面所述的自适应变阻抗控制方法。In a fourth aspect, embodiments of the present invention also provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the adaptive variable impedance control method as described in the first aspect.

根据本发明实施例提供的自适应变阻抗控制方法和装置、电子设备及存储介质,其中,自适应变阻抗控制方法包括:在双机械臂协作抓取目标物体的过程中,将目标物体受到的内力和外力进行解耦,并对内力与外力进行分步分析,得到目标物体的受力分析结果;加载自适应阻抗控制模型,自适应阻抗控制模型包括参考模型和自适应控制器,参考模型用于根据受力分析结果生成机械臂的期望运动轨迹,自适应控制器用于通过比较机械臂实际运动轨迹和期望运行轨迹之间的误差信号来调整阻抗参数;在双机械臂运行过程中,根据自适应阻抗控制模型输出的误差信号更新阻抗参数;根据更新的阻抗参数调整自适应阻抗控制策略,以使双机械臂根据自适应阻抗控制策略对目标物体进行抓取。基于此,通过对双臂协作夹取目标物体的过程中进行目标物体的受力分析与力的解耦,解耦为内力与外力,通过对内力与外力进行分步分析,使用自适应阻抗控制算法优化双臂协作抓取目标物体系统,使得系统更加稳定,且动作精准。本发明建立的自适应阻抗控制模型包括参考模型和自适应控制器,参考模型负责生成期望的机械臂运动轨迹,同时考虑目标物体的特性。而自适应控制器通过比较实际运动和期望轨迹的误差信号,实时地调整阻抗参数,以适应环境的变化。采用自适应阻抗控制模型使得双机械臂能够在动态和不确定的环境中表现出更强的自适应性。在运行过程中,通过使用误差信号,即实际运动与期望轨迹之间的差异,自适应控制器利用自适应算法来更新阻抗参数。这一过程的不断迭代使得机械臂能够不断地优化自身的性能。在实时控制和执行阶段,机械臂根据更新后的阻抗参数执行调整后的控制策略。基于此,本发明实施例能够使得双机械臂在与环境交互时能够灵活地调整其阻抗参数,以更好地完成对目标物体的抓取任务,并且提高了双机械臂的鲁棒性和性能。According to the adaptive variable impedance control method and device, electronic equipment and storage medium provided by embodiments of the present invention, the adaptive variable impedance control method includes: during the process of dual robot arms cooperatively grabbing the target object, the target object is subjected to Decouple the internal force and the external force, and conduct a step-by-step analysis of the internal force and the external force to obtain the force analysis results of the target object; load the adaptive impedance control model. The adaptive impedance control model includes a reference model and an adaptive controller. The reference model is used In order to generate the desired motion trajectory of the robotic arm based on the force analysis results, the adaptive controller is used to adjust the impedance parameters by comparing the error signal between the actual motion trajectory of the robotic arm and the desired operating trajectory; during the operation of the dual robotic arms, the adaptive controller is used to adjust the impedance parameters according to the automatic movement trajectory of the robotic arm. The error signal output by the adaptive impedance control model is updated to update the impedance parameters; the adaptive impedance control strategy is adjusted according to the updated impedance parameters, so that the dual robotic arms can grasp the target object according to the adaptive impedance control strategy. Based on this, through the force analysis and decoupling of the target object during the process of grasping the target object with both arms, the force is decoupled into internal force and external force. Through step-by-step analysis of internal force and external force, adaptive impedance control is used. The algorithm optimizes the dual-arm cooperative grasping target object system, making the system more stable and precise in movement. The adaptive impedance control model established by the present invention includes a reference model and an adaptive controller. The reference model is responsible for generating the desired movement trajectory of the robotic arm while taking into account the characteristics of the target object. The adaptive controller adjusts the impedance parameters in real time to adapt to changes in the environment by comparing the error signals of the actual movement and the desired trajectory. The adoption of the adaptive impedance control model enables the dual manipulator to show stronger adaptability in dynamic and uncertain environments. During operation, the adaptive controller uses an adaptive algorithm to update the impedance parameters by using the error signal, which is the difference between the actual motion and the desired trajectory. Continuous iteration of this process allows the robotic arm to continuously optimize its performance. In the real-time control and execution phase, the manipulator executes the adjusted control strategy based on the updated impedance parameters. Based on this, embodiments of the present invention can enable the dual robotic arms to flexibly adjust their impedance parameters when interacting with the environment to better complete the task of grasping the target object, and improve the robustness and performance of the dual robotic arms. .

附图说明Description of drawings

图1A是本发明一个实施例提供的自适应变阻抗控制方法的流程图;Figure 1A is a flow chart of an adaptive variable impedance control method provided by an embodiment of the present invention;

图1B是本发明一个实施例提供的双臂协同系统坐标系示意图;Figure 1B is a schematic diagram of the coordinate system of the two-arm collaboration system provided by an embodiment of the present invention;

图2是本发明一个实施例提供的目标物体的受力分析图;Figure 2 is a force analysis diagram of a target object provided by an embodiment of the present invention;

图3是本发明一个实施例提供的参考模型自适应阻抗控制策略结构图;Figure 3 is a structural diagram of a reference model adaptive impedance control strategy provided by an embodiment of the present invention;

图4是本发明一个实施例提供的双机械臂控制框图;Figure 4 is a control block diagram of dual robotic arms provided by an embodiment of the present invention;

图5是本发明一个实施例提供的参考模型自适应阻抗控制策略流程图;Figure 5 is a flow chart of a reference model adaptive impedance control strategy provided by an embodiment of the present invention;

图6是本发明一个实施例提供的实验平台硬件连接结构图;Figure 6 is a hardware connection structure diagram of the experimental platform provided by one embodiment of the present invention;

图7A是本发明一个实施例提供的参考模型自适应阻抗控制下的恒力跟踪图;Figure 7A is a constant force tracking diagram under adaptive impedance control of the reference model provided by an embodiment of the present invention;

图7B是本发明一个实施例提供的参考模型自适应阻抗控制下的恒轨迹跟踪图;Figure 7B is a constant trajectory tracking diagram under adaptive impedance control of the reference model provided by an embodiment of the present invention;

图8A是本发明一个实施例提供的参考模型自适应阻抗控制下的恒力跟踪图;Figure 8A is a constant force tracking diagram under adaptive impedance control of the reference model provided by an embodiment of the present invention;

图8B是本发明一个实施例提供的参考模型自适应阻抗控制下的斜轨迹跟踪图;Figure 8B is an oblique trajectory tracking diagram under adaptive impedance control of the reference model provided by an embodiment of the present invention;

图9A是本发明一个实施例提供的参考模型自适应阻抗控制下的恒力跟踪图;Figure 9A is a constant force tracking diagram under adaptive impedance control of the reference model provided by an embodiment of the present invention;

图9B是本发明一个实施例提供的参考模型自适应阻抗控制下的动态轨迹跟踪图;Figure 9B is a dynamic trajectory tracking diagram under adaptive impedance control of the reference model provided by an embodiment of the present invention;

图10是本发明一个实施例提供的自适应变阻抗控制装置的示意图;Figure 10 is a schematic diagram of an adaptive variable impedance control device provided by an embodiment of the present invention;

图11是本发明一个实施例提供的电子设备的示意图。Figure 11 is a schematic diagram of an electronic device provided by an embodiment of the present invention.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the purpose, technical solutions and advantages of the present invention more clear, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention and are not intended to limit the present invention.

需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及下述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。It should be noted that although the functional modules are divided in the device schematic diagram and the logical sequence is shown in the flow chart, in some cases, the modules can be divided into different modules in the device or the order in the flow chart can be executed. The steps shown or described. The terms "first", "second", etc. in the description, claims, and following drawings are used to distinguish similar objects and are not necessarily used to describe a specific order or sequence.

本发明实施例中,“进一步地”、“示例性地”或者“可选地”等词用于表示作为例子、例证或说明,不应被解释为比其它实施例或设计方案更优选或更具有优势。使用“进一步地”、“示例性地”或者“可选地”等词旨在以具体方式呈现相关概念。In the embodiments of the present invention, words such as "further", "exemplarily" or "optionally" are used as examples, illustrations or illustrations, and should not be interpreted as being more preferable or better than other embodiments or designs. Advantages. The use of the words "further," "exemplarily," or "optionally" is intended to present the relevant concepts in a specific manner.

首先,对本发明中涉及的若干术语进行解析:First, some terms involved in this invention are analyzed:

双机械臂协作控制:是指两个或更多机械臂系统通过协同控制算法和环境感知,共同执行任务的过程。这涉及到轨迹规划、末端执行器操作、通信和协同控制,以确保机械臂之间的安全性和协调性,以提高生产效率和精确性,同时降低潜在的风险。Dual robot arm collaborative control: refers to the process in which two or more robot arm systems jointly perform tasks through collaborative control algorithms and environmental perception. This involves trajectory planning, end-effector operation, communication and collaborative control to ensure safety and coordination between robotic arms to improve production efficiency and accuracy while reducing potential risks.

参考模型自适应阻抗控制:是一种用于机器人和自动化系统的控制方法,它基于系统的数学模型,通过自适应地调整阻抗参数,使系统的实际行为与模型行为匹配,以应对外部力和环境变化,以实现期望的性能。这允许系统在不同工作环境和任务中灵活适应,提高性能和稳定性。Reference model adaptive impedance control: It is a control method for robots and automation systems. It is based on the mathematical model of the system and adaptively adjusts the impedance parameters to match the actual behavior of the system with the model behavior in response to external forces and The environment changes to achieve the desired performance. This allows the system to adapt flexibly in different work environments and tasks, improving performance and stability.

为了后续更方便地描述本发明实施例的工作原理,以下先给出相关技术场景的介绍。In order to more conveniently describe the working principles of the embodiments of the present invention later, an introduction to relevant technical scenarios will be given below.

面对现代生产任务不断的复杂化和生成过程的柔性化,现代生产对智能化,功能性和多样化的要求越来越高,传统的固定工位的单机械臂的工作模式已经不适用于现代智能制造的环境中。在协作装配、焊接和搬运大型或重型有效载荷等特定的工序任务中,双机械臂拥有更强的负载能力、更广泛的工作空间、多样性的工作方式,相比于单机械臂,多机械臂在制造环节当中具有很高的完成度和灵活的操作度,具有更广泛的应用前景。在对双臂控制的研究当中,主要涉及到的控制层面需要解决关键性问题,双机械臂协同下的位置和力控制。当双机械臂进行工作时,双机械臂需要满足一定的约束关系来保持高度的协调一致性,同时控制机械臂末端的运动轨迹和作用在物体上的机械臂的应力和外部干扰力。否则,因为存在误差,被作用的目标物体将会产生很大的内应力破坏目标物体本身,当目标物体刚度过大时,将会损坏机械臂。因此,如何在考虑外部力和环境因素的情形下,完成双机械臂对目标物体的抓取任务成为亟待解决的技术问题。Faced with the continuous complexity of modern production tasks and the flexibility of the production process, modern production has increasingly higher requirements for intelligence, functionality and diversification. The traditional working mode of a single robot arm with a fixed station is no longer suitable. In the environment of modern intelligent manufacturing. In specific process tasks such as collaborative assembly, welding, and handling of large or heavy payloads, dual robotic arms have stronger load capacity, wider work space, and diverse working methods. Compared with single robotic arms, multiple robotic arms The arm has a high degree of completion and flexible operation in the manufacturing process, and has wider application prospects. In the research on dual-arm control, the main control level involved needs to solve key issues, such as position and force control under the coordination of dual-arm manipulators. When the dual robotic arms work, the dual robotic arms need to meet certain constraints to maintain a high degree of coordination and consistency, while controlling the movement trajectory of the end of the robotic arm and the stress and external interference force of the robotic arm acting on the object. Otherwise, due to the presence of errors, the acted target object will generate large internal stress and destroy the target object itself. When the stiffness of the target object is too large, the robotic arm will be damaged. Therefore, how to complete the task of grabbing target objects with dual robotic arms while taking into account external forces and environmental factors has become an urgent technical problem to be solved.

基于此,本发明提供了一种自适应变阻抗控制方法和装置、电子设备及存储介质。其中,自适应变阻抗控制方法包括:在双机械臂协作抓取目标物体的过程中,将目标物体受到的内力和外力进行解耦,并对内力与外力进行分步分析,得到目标物体的受力分析结果;加载自适应阻抗控制模型,自适应阻抗控制模型包括参考模型和自适应控制器,参考模型用于根据受力分析结果生成机械臂的期望运动轨迹,自适应控制器用于通过比较机械臂实际运动轨迹和期望运行轨迹之间的误差信号来调整阻抗参数;在双机械臂运行过程中,根据自适应阻抗控制模型输出的误差信号更新阻抗参数;根据更新的阻抗参数调整自适应阻抗控制策略,以使双机械臂根据自适应阻抗控制策略对目标物体进行抓取。基于此,通过对双臂协作夹取目标物体的过程中进行目标物体的受力分析与力的解耦,解耦为内力与外力,通过对内力与外力进行分步分析,使用自适应阻抗控制算法优化双臂协作抓取目标物体系统,使得系统更加稳定,且动作精准。本发明建立的自适应阻抗控制模型包括参考模型和自适应控制器,参考模型负责生成期望的机械臂运动轨迹,同时考虑目标物体的特性。而自适应控制器通过比较实际运动和期望轨迹的误差信号,实时地调整阻抗参数,以适应环境的变化。采用自适应阻抗控制模型使得双机械臂能够在动态和不确定的环境中表现出更强的自适应性。在运行过程中,通过使用误差信号,即实际运动与期望轨迹之间的差异,自适应控制器利用自适应算法来更新阻抗参数。这一过程的不断迭代使得机械臂能够不断地优化自身的性能。在实时控制和执行阶段,机械臂根据更新后的阻抗参数执行调整后的控制策略。基于此,本发明实施例能够使得双机械臂在与环境交互时能够灵活地调整其阻抗参数,以更好地完成对目标物体的抓取任务,并且提高了双机械臂的鲁棒性和性能。Based on this, the present invention provides an adaptive variable impedance control method and device, electronic equipment and storage media. Among them, the adaptive variable impedance control method includes: during the process of dual robot arms cooperatively grabbing the target object, decoupling the internal and external forces on the target object, and performing step-by-step analysis of the internal and external forces to obtain the stress on the target object. Force analysis results; load the adaptive impedance control model. The adaptive impedance control model includes a reference model and an adaptive controller. The reference model is used to generate the desired motion trajectory of the robotic arm based on the force analysis results. The adaptive controller is used to compare mechanical The impedance parameters are adjusted based on the error signal between the actual movement trajectory of the arm and the expected movement trajectory; during the operation of the dual manipulators, the impedance parameters are updated based on the error signal output by the adaptive impedance control model; the adaptive impedance control is adjusted based on the updated impedance parameters. strategy to enable the dual manipulator arms to grasp the target object according to the adaptive impedance control strategy. Based on this, through the force analysis and decoupling of the target object during the process of grasping the target object with both arms, the force is decoupled into internal force and external force. Through step-by-step analysis of internal force and external force, adaptive impedance control is used. The algorithm optimizes the dual-arm cooperative grasping target object system, making the system more stable and precise in movement. The adaptive impedance control model established by the present invention includes a reference model and an adaptive controller. The reference model is responsible for generating the desired movement trajectory of the robotic arm while taking into account the characteristics of the target object. The adaptive controller adjusts the impedance parameters in real time to adapt to changes in the environment by comparing the error signals of the actual movement and the desired trajectory. The adoption of the adaptive impedance control model enables the dual manipulator to show stronger adaptability in dynamic and uncertain environments. During operation, the adaptive controller uses an adaptive algorithm to update the impedance parameters by using the error signal, which is the difference between the actual motion and the desired trajectory. Continuous iteration of this process allows the robotic arm to continuously optimize its performance. In the real-time control and execution phase, the manipulator executes the adjusted control strategy based on the updated impedance parameters. Based on this, embodiments of the present invention can enable the dual robotic arms to flexibly adjust their impedance parameters when interacting with the environment to better complete the task of grasping the target object, and improve the robustness and performance of the dual robotic arms. .

下面结合附图,对本发明实施例作进一步阐述。The embodiments of the present invention will be further described below with reference to the accompanying drawings.

如图1A所示,图1A是本发明一个实施例提供的自适应变阻抗控制方法的流程图,该自适应变阻抗控制方法可以包括但不限于步骤S101至S104。As shown in FIG. 1A , FIG. 1A is a flow chart of an adaptive variable impedance control method provided by an embodiment of the present invention. The adaptive variable impedance control method may include but is not limited to steps S101 to S104.

步骤S101:在双机械臂协作抓取目标物体的过程中,将目标物体受到的内力和外力进行解耦,并对内力与外力进行分步分析,得到目标物体的受力分析结果;Step S101: During the process of the dual manipulators cooperatively grabbing the target object, decouple the internal force and the external force on the target object, conduct a step-by-step analysis of the internal force and the external force, and obtain the force analysis results of the target object;

步骤S102:加载自适应阻抗控制模型,自适应阻抗控制模型包括参考模型和自适应控制器,参考模型用于根据受力分析结果生成机械臂的期望运动轨迹,自适应控制器用于通过比较机械臂实际运动轨迹和期望运行轨迹之间的误差信号来调整阻抗参数;Step S102: Load the adaptive impedance control model. The adaptive impedance control model includes a reference model and an adaptive controller. The reference model is used to generate the desired motion trajectory of the mechanical arm based on the force analysis results. The adaptive controller is used to compare the mechanical arm with The error signal between the actual movement trajectory and the desired movement trajectory is used to adjust the impedance parameters;

步骤S103:在双机械臂运行过程中,根据自适应阻抗控制模型输出的误差信号更新阻抗参数;Step S103: During the operation of the dual robotic arms, update the impedance parameters according to the error signal output by the adaptive impedance control model;

步骤S104:根据更新的阻抗参数调整自适应阻抗控制策略,以使双机械臂根据自适应阻抗控制策略对目标物体进行抓取。Step S104: Adjust the adaptive impedance control strategy according to the updated impedance parameters, so that the dual robotic arms grasp the target object according to the adaptive impedance control strategy.

在一实施例中,单机械臂的运动轨迹规划是基于被操作目标的估计通过坐标系的运动学转换而来的。因此建立的双臂协同系统坐标系如图1B所示,在图1B中{WX,WY,WZ},{OX,OY,OZ}分别表示为世界坐标系和目标物体坐标系;{ORX,ORY,ORZ},{OLX,OLY,OLZ}分别表示为右侧机械臂基座坐标系和左侧机械臂基座坐标系;{RX,RY,RZ},{LX,LY,LZ}分别表示为右侧机械臂末端坐标系和左侧机械臂末端坐标系,基于上述坐标系,提出面对对象的双机械臂运动规划的转化公式1。In one embodiment, the motion trajectory planning of a single manipulator is based on the estimation of the operated target through kinematic transformation of the coordinate system. Therefore, the coordinate system of the dual-arm collaborative system established is shown in Figure 1B. In Figure 1B, {W X , W Y , W Z }, { O system ; { OR X , OR Y , OR Z }, { OL , R Z } , { L Conversion formula 1.

对于被操作的目标物体来说,目标物体对于参考坐标系的位置和姿态用式子1进行求解For the target object being operated, the position and attitude of the target object relative to the reference coordinate system are solved using Equation 1

式中,为目标物体相对于质心坐标系的转化矩阵;/>为目标物体相对于质心处坐标系的3X3的旋转矩阵;/>为目标物体相对于质心处坐标系的3X1的位置矩阵。In the formula, is the transformation matrix of the target object relative to the center of mass coordinate system;/> It is the 3X3 rotation matrix of the target object relative to the coordinate system at the center of mass;/> is the 3X1 position matrix of the target object relative to the coordinate system at the center of mass.

目标物体通过质心处坐标系与世界坐标系之间的转化为目标物体与机械臂之间的约束条件,由以下式子2进行表达:The target object is converted into a constraint between the target object and the robotic arm through the transformation between the coordinate system at the center of mass and the world coordinate system, which is expressed by the following equation 2:

式中,为质心处坐标系0相对于世界坐标系W的齐次坐标转换;/>表示双机械臂的基坐标系相对于世界坐标系的齐次坐标转换;/>表示双机械臂的末端坐标系相对于双机械臂的基坐标的其次转换;/>表示目标物体质心坐标系相对于机械臂末端的齐次转换。In the formula, It is the homogeneous coordinate transformation of the coordinate system 0 at the center of mass relative to the world coordinate system W;/> Represents the homogeneous coordinate transformation of the base coordinate system of the dual robot arms relative to the world coordinate system;/> Represents the secondary transformation of the end coordinate system of the dual robotic arms relative to the base coordinates of the dual robotic arms;/> Represents the homogeneous transformation of the coordinate system of the center of mass of the target object relative to the end of the manipulator arm.

通过以上的双臂的位置约束后,为了实现正真意义上的实时协同操作,除了位置约束之外,还需要保证双臂在运动的过程当中的速度一致性,因此需要通过式子3对速度约束关系进行分析,使得双臂在运动的过程中保持位置和速度的一致性,实现协同操作。After passing the above position constraints of the arms, in order to achieve real-time collaborative operation in the true sense, in addition to the position constraints, it is also necessary to ensure the speed consistency of the arms during the movement. Therefore, it is necessary to pair the speed with Equation 3. The constraint relationship is analyzed to maintain the consistency of position and speed of the arms during movement and achieve coordinated operation.

式中,表示机械臂末端相对于世界坐标系的速度;/>表示目标物体相对于世界坐标系的速度和角速度;/>表示机械臂末端相对于世界位置变换矩阵;Pi O表示机械臂末端相对于目标物体质心的位置变换矩阵;/>表示目标物体质心相对于世界下的方向旋转矩阵。In the formula, Represents the speed of the end of the robotic arm relative to the world coordinate system;/> Indicates the speed and angular velocity of the target object relative to the world coordinate system;/> Represents the position transformation matrix of the end of the manipulator arm relative to the world; P i O represents the position transformation matrix of the end of the manipulator arm relative to the center of mass of the target object;/> Represents the direction rotation matrix of the center of mass of the target object relative to the world.

目标物体的受力分析如图2所示,在图2中,FL,FR,Fext,τL,τR,τext分别表示为双机械臂和外力作用于目标物体的表面所产生的作用力和力矩,根据牛顿第二定律和欧拉方程建立双机械臂抓取物体的状态建立以下目标物体的动力学方程:The force analysis of the target object is shown in Figure 2. In Figure 2, F L , F R , F ext , τ L , τ R , and τ ext are respectively expressed as the dual mechanical arms and external forces acting on the surface of the target object. According to Newton's second law and Euler's equation, the state of the dual manipulator grasping the object is established to establish the following dynamic equation of the target object:

简化为式(5):Simplified to equation (5):

式中IO表示目标物体质心处的惯性矩阵;FO∈R6表示双机械臂作用于物体上的矢量力;MO∈R6表示目标物体的质量惯性矩阵;/>表示目标物体运动过程中的线加速度和角加速度;CO∈R6表示为目标物体的科氏力、重力和离心力的合力矢量;Fext∈R6表示外部干扰力作用于目标物体上的适量力将式(5)转化为式(6)。in the formula IO represents the inertia matrix at the center of mass of the target object; F O ∈R 6 represents the vector force of the dual robotic arms acting on the object; M O ∈R 6 represents the mass inertia matrix of the target object;/> represents the linear acceleration and angular acceleration during the movement of the target object; C O ∈R 6 represents the resultant force vector of the Coriolis force, gravity and centrifugal force of the target object; F ext ∈R 6 represents the appropriate amount of external interference force acting on the target object Force transforms equation (5) into equation (6).

式中k=l,r表示为双机械臂的左臂和右臂,Sk T∈R6表示抓取矩阵;Fk表示机械臂作用于目标物体上的力,通过六维力传感器可以直接采集数据。将抓取矩阵可以分解得到外力式(7)和得到内力式(8):In the formula, k=l, r represents the left arm and right arm of the double robotic arm, S k T ∈ R 6 represents the grasping matrix; F k represents the force of the robotic arm acting on the target object. The six-dimensional force sensor can directly Data collection. The grasping matrix can be decomposed to obtain the external force formula (7) and the internal force formula (8):

式中是/>矩阵的广义逆矩阵。in the formula Yes/> The generalized inverse of a matrix.

在一实施例中,传统阻抗控制实现基于位置误差调整力的控制策略,导纳控制实现基于力误差调整位置的控制策略,因此基于位置的阻抗控制也称之为导纳控制。阻抗/导纳控制策略依赖于“质量-阻抗-弹簧”的二阶系统,将目标物体的动力学用“质量-阻抗-弹簧”的二阶系统建立。本发明将双机械臂协作目标物体任务分解为内环和外环,内环主要控制内力FI避免机械臂损坏目标物体,外环控制外力FE确保目标物体完成协作任务。通过式(7),(8)可以得知双机械臂作用于目标物体上的力可以分为内力和外力,因此式(9)可以转化为式(10)。In one embodiment, traditional impedance control implements a control strategy of adjusting force based on position error, and admittance control implements a control strategy of adjusting position based on force error. Therefore, position-based impedance control is also called admittance control. The impedance/admittance control strategy relies on the second-order system of "mass-impedance-spring", and the dynamics of the target object is established using the second-order system of "mass-impedance-spring". The present invention decomposes the dual-manipulator cooperation target object task into an inner ring and an outer ring. The inner ring mainly controls the internal force F I to prevent the robot arm from damaging the target object, and the outer ring controls the external force F E to ensure that the target object completes the cooperation task. From equations (7) and (8), we can know that the force acting on the target object by the double manipulator can be divided into internal force and external force, so equation (9) can be transformed into equation (10).

式中xe,xa分别代表期望轨迹和实际轨迹;Fe,Fa分别代表期望受力和实际受力,其中Fk=Fa;Md代表惯性矩阵;Bd代表阻尼矩阵;Kd代表刚度矩阵;ΔF代表力的误差值。In the formula, x e and x a represent the expected trajectory and the actual trajectory respectively; F e and F a represent the expected force and the actual force respectively, where F k = F a ; M d represents the inertia matrix; B d represents the damping matrix; K d represents the stiffness matrix; ΔF represents the error value of the force.

将式(7),(8)代入到式(9)中:Substitute equations (7) and (8) into equation (9):

根据式(10)可以表示FaAccording to formula (10), F a can be expressed:

Fk=Fa=Kr(xe-xa) (11)F k =F a =K r (x e -x a ) (11)

其中,在进行数学建模的过程中,对于函数中的实际受力Fa在模拟仿真阶段没有真正的受力传感器实时采集到的数据,于是经过式(11)对实际受力经过函数建模替代实际六维传感器所测得的力,将建模过后的函数应用在模拟仿真中实现控制策略的效果。式中Kr代表目标物体刚度。Among them, in the process of mathematical modeling, there is no real real-time data collected by the force sensor in the simulation stage for the actual force F a in the function, so the actual force F a is modeled through the function through Equation (11) Instead of the force measured by the actual six-dimensional sensor, the modeled function is applied in the simulation to achieve the effect of the control strategy. In the formula, K r represents the stiffness of the target object.

因为对目标物体的刚度不确定,以及对于抓取环境的不确定性。使得传统的阻抗控制和参考模型自适应导纳控制分别在力跟踪和位置跟踪的性能上并没有良好的预期,本文通过传统阻抗控制与改进后的自适应阻抗控制相结合,并且赋予位置控制算法,使得参考模型自适应阻抗控制在力和位置跟踪的性能上由良好的表现。Because of the uncertainty about the stiffness of the target object and the uncertainty about the grasping environment. As a result, traditional impedance control and reference model adaptive admittance control do not have good expectations in terms of force tracking and position tracking performance respectively. This article combines traditional impedance control with improved adaptive impedance control, and gives the position control algorithm , making the reference model adaptive impedance control perform well in terms of force and position tracking performance.

在上述控制策略中通过将实际轨迹xa添加轨迹调整值Δx改变其形式,得到式(12)。Δx为式(13),其满足对于未知环境下的自适应调整策略,因此对于整体的误差赋予自适应调整功能。将参考模型自适应阻抗控制与阻抗控制相结合,增加位置控制器对机械臂的实际位置与位置误差进行拟合。实现控制系统对力和位置跟踪的良好效果。In the above control strategy, by adding the trajectory adjustment value Δx to the actual trajectory x a to change its form, equation (12) is obtained. Δx is formula (13), which satisfies the adaptive adjustment strategy for unknown environments, so the overall error is given an adaptive adjustment function. The reference model adaptive impedance control is combined with impedance control, and a position controller is added to fit the actual position and position error of the robotic arm. Achieve good effects on force and position tracking of the control system.

e=xf+Δx-xa (12)e=x f +Δx-x a (12)

式中,xf为传统阻抗生成的位置误差;xa为实际轨迹;Δx为轨迹调整值。In the formula, x f is the position error generated by traditional impedance; x a is the actual trajectory; Δx is the trajectory adjustment value.

式中,p(t)和v(t)分别为自适应控制中的力误差的比例参数和微分反馈增益参数;a(t)为自适应控制中的调整值。In the formula, p(t) and v(t) are the proportional parameters and differential feedback gain parameters of the force error in adaptive control respectively; a(t) is the adjustment value in adaptive control.

根据式(9)与式(11)可以得到式(13):According to formula (9) and formula (11), formula (13) can be obtained:

xe=Kr -1(Fe-ΔF)+xa (14)x e =K r -1 (F e -ΔF)+x a (14)

将式(14)与式(13)带入(9)中,得到式(15):Putting formula (14) and formula (13) into (9), we get formula (15):

式中, In the formula,

其中理想参考模型的二阶系统为式(16):The second-order system of the ideal reference model is equation (16):

将式(15)减去式(16),可以得到实际模型与理想参考模型之间的误差为:Subtracting equation (16) from equation (15), we can get the error between the actual model and the ideal reference model:

在状态空间中的表达为:The expression in state space is:

其中,为了证明参考模型自适应导纳控制的稳定性,本发明基于李亚普诺方程的稳定性定理建立如下方程:in, In order to prove the stability of the reference model adaptive admittance control, the present invention establishes the following equation based on the stability theorem of the Lyapuno equation:

V=ΔFe TPΔFe1(Bm-Bl)22(Am-Al)23(Yl)2 (19)V=ΔF e T PΔF e1 (B m -B l ) 22 (A m -A l ) 23 (Y l ) 2 (19)

式中根据李雅普诺夫的第二定理,Q=αTPα;μ1、μ2和μ3为正数;P为非奇异矩阵;通过对式(19)进行微分,得到:in the formula According to Lyapunov's second theorem, Q=α T Pα; μ 1 , μ 2 and μ 3 are positive numbers; P is a non-singular matrix; by differentiating equation (19), we get:

式中通过李雅普诺夫第二定理,确保/>恒小于0,则除了-ΔFe TQΔFe不为0之外,其他所有项都为0,于是:in the formula Through Lyapunov’s second theorem, ensure/> is always less than 0, then except -ΔF e T QΔF e is not 0, all other terms are 0, so:

因此,得到自适应阻抗控制策略的控制定律:Therefore, the control law of the adaptive impedance control strategy is obtained:

其中,in,

式中,K0、K1、K2、βp和βv都为正积分适应增益系数;a0、p0、v0为自适应控制系统选择的初始值;通过适用合适的系数值,就可以满足实际接触力的自适应控制的要求。参考模型自适应阻抗控制策略如图3所示。In the formula, K 0 , K 1 , K 2 , β p and β v are all positive integral adaptive gain coefficients; a 0 , p 0 , v 0 are the initial values selected by the adaptive control system; by applying appropriate coefficient values, This can meet the requirements of adaptive control of actual contact force. The reference model adaptive impedance control strategy is shown in Figure 3.

在一实施例中,双臂协同夹持一个与环相互作用的共同目标物体时,目标物体会受到内力与外力的共同作用。本文基于以上的参考模型自适应阻抗控制策略,设计了双机械臂参考模型自适应阻抗控制策略,主要控制框图如图4所示。图4显示了双机械臂的对称控制策略以及双机械臂控制系统的外阻抗控制与内阻抗控制策略。In one embodiment, when the two arms cooperate to hold a common target object that interacts with the ring, the target object will be acted upon by internal and external forces. Based on the above reference model adaptive impedance control strategy, this paper designs a dual manipulator reference model adaptive impedance control strategy. The main control block diagram is shown in Figure 4. Figure 4 shows the symmetrical control strategy of dual manipulators and the external impedance control and internal impedance control strategies of the dual manipulator control system.

在图4中,FEa,FEe分别表示为实际外力与期望外力。FIa,FIe分别表示实际内力与期望内力。σFE,σFI分别表示为实际外力和期望外力的误差与实际内力和期望外力的误差。σXE,σXI分别表示为外部参考模型自适应阻抗控制器和内力参考模型自适应阻抗控制器生成的位置补偿。Xc,Xe分别表示目标物体的实际轨迹与目标物体的期望轨迹。Xa,Xal,Xar分别表示为双机械臂的末端执行器的实际运动轨迹,通过双臂闭链约束条件将其分解为左右两个机械臂的末端执行器的实际运动轨迹。θl,θr分别表示为通过左右机械臂的末端执行器的实际运动轨迹通过逆运动学生成左右机械臂关节的实际运动角度。In Figure 4, F Ea and F Ee are represented as the actual external force and the expected external force respectively. F Ia and F Ie respectively represent the actual internal force and the expected internal force. σF E and σF I respectively represent the error of the actual external force and the expected external force and the error of the actual internal force and the expected external force. σX E , σX I represent the position compensation generated by the external reference model adaptive impedance controller and the internal force reference model adaptive impedance controller respectively. X c and X e respectively represent the actual trajectory of the target object and the expected trajectory of the target object. X a , X al , and θ l and θ r respectively represent the actual motion angles of the left and right robot arm joints generated through inverse kinematics through the actual motion trajectories of the end effectors of the left and right robot arms.

在一实施例中,构建双机械臂在抓取目标物体下的自适应阻抗模型;In one embodiment, an adaptive impedance model is constructed for dual manipulators grasping target objects;

基于模型参考自适应控制的阻抗算法是一种旨在使机械系统在与环境交互时能够灵活调整其阻抗以适应不确定性和变化的先进控制方法。首先,该算法着眼于对机械系统进行精确的建模,包括对双机械臂结构和动力学特性的建模,以及设计刚度、阻尼等参数的阻抗模型,以描述机械臂在与环境相互作用时的动态响应。The impedance algorithm based on model reference adaptive control is an advanced control method designed to enable mechanical systems to flexibly adjust their impedance to adapt to uncertainties and changes when interacting with the environment. First, the algorithm focuses on accurately modeling the mechanical system, including modeling the structural and dynamic characteristics of the dual robotic arms, and designing an impedance model of parameters such as stiffness and damping to describe the mechanical arm when it interacts with the environment. dynamic response.

在实际运行中,为了获取全面的状态信息,算法通过传感器采集机械臂的位置、速度、加速度等状态数据,并融合力和扭矩传感器的数据,以获取与环境交互的更全面信息。这一步骤为后续控制决策提供了实时且丰富的反馈。In actual operation, in order to obtain comprehensive status information, the algorithm collects status data such as the position, speed, and acceleration of the robotic arm through sensors, and fuses data from force and torque sensors to obtain more comprehensive information about the interaction with the environment. This step provides real-time and rich feedback for subsequent control decisions.

接着,算法建立了一个模型参考自适应控制框架。该框架包括参考模型和自适应控制器。参考模型负责生成期望的机械臂运动轨迹,同时考虑目标物体的特性。而自适应控制器通过比较实际运动和期望轨迹的误差信号,实时地调整阻抗参数,以适应环境的变化。这种框架使得机械系统能够在动态和不确定的环境中表现出更强的自适应性。Next, the algorithm establishes a model-referenced adaptive control framework. The framework includes a reference model and an adaptive controller. The reference model is responsible for generating the desired robot arm motion trajectory while taking into account the characteristics of the target object. The adaptive controller adjusts the impedance parameters in real time to adapt to changes in the environment by comparing the error signals of the actual movement and the desired trajectory. This framework enables mechanical systems to exhibit greater adaptability in dynamic and uncertain environments.

在运行过程中,通过使用误差信号,即实际运动与期望轨迹之间的差异,自适应控制器利用自适应算法来更新阻抗参数。这一过程的不断迭代使得系统能够不断地优化自身的性能。During operation, the adaptive controller uses an adaptive algorithm to update the impedance parameters by using the error signal, which is the difference between the actual motion and the desired trajectory. Continuous iteration of this process enables the system to continuously optimize its performance.

在实时控制和执行阶段,机械臂根据更新后的阻抗参数执行调整后的控制策略。这使得机械臂在与环境交互时能够灵活地调整其阻抗,以更好地完成抓取任务。In the real-time control and execution phase, the manipulator executes the adjusted control strategy based on the updated impedance parameters. This allows the robotic arm to flexibly adjust its impedance when interacting with the environment to better complete the grasping task.

为了确保系统的稳定性和优越性能,算法定期评估系统,包括抓取的成功率、运动速度、稳定性等方面。通过根据实际操作中的表现调整和优化阻抗模型和自适应控制器的参数,该算法可以在工业自动化和服务机器人等具体应用领域中发挥出色的效果。这种基于模型参考自适应控制的阻抗算法为机械系统提供了一种灵活、智能且适应性强的控制方式,提高了系统的鲁棒性和性能。In order to ensure the stability and superior performance of the system, the algorithm regularly evaluates the system, including the success rate of grabbing, movement speed, stability, etc. By adjusting and optimizing the parameters of the impedance model and adaptive controller based on performance in actual operations, the algorithm can work well in specific application areas such as industrial automation and service robotics. This impedance algorithm based on model reference adaptive control provides a flexible, intelligent and adaptable control method for mechanical systems, improving the robustness and performance of the system.

在一实施例中,本发明通过模型参考算法解决连续动作空间中双臂机器人夹取目标物体自适应阻抗控制。整个算法流程如图5所示,首先通过初始化双臂协作抓取目标物体的参数与状态,对双臂协作夹取目标物体的过程中进行目标物体的受力分析与力的解耦,解耦为内力与外力,通过对内力与外力进行分步分析,使用自适应阻抗控制算法优化双臂协作抓取目标物体系统,使得系统更加稳定,且动作精准。定义参数Δ轨迹调整值,K0、K1、K2、βp和βv正积分适应增益系数;a0、p0、v0自适应控制系统选择的初始值通过李雅普诺夫方程证明系统的稳定性,对传统阻抗控制器进行分析与参考,在证明稳定性的过程中得到自适应控制器,通过自适应控制器对系统参数进行自适应调整,自适应控制器通过比较实际运动和期望轨迹的误差信号,实时地调整阻抗参数,以适应环境的变化。这种框架使得机械系统能够在动态和不确定的环境中表现出更强的自适应性,通过更新a(t),p(t),v(t)以及η(t),使得自适应阻抗控制策略进行更新,判断x的逆解q值是否时奇异点,判断轨迹跟踪误差ex与力跟踪误差是否在合理范围内以及判断实际调整力是否大于安全值来确保参考模型自适应阻抗控制算法的有效性与鲁棒性。In one embodiment, the present invention uses a model reference algorithm to solve the adaptive impedance control of a two-arm robot grasping a target object in a continuous action space. The entire algorithm process is shown in Figure 5. First, by initializing the parameters and status of the two-arm cooperative grasping target object, the target object's force analysis and force decoupling are performed during the two-arm cooperative grasping process. For internal and external forces, through step-by-step analysis of internal and external forces, an adaptive impedance control algorithm is used to optimize the dual-arm cooperative grasping target object system, making the system more stable and accurate in action. Define the parameters Δ trajectory adjustment value, K 0 , K 1 , K 2 , β p and β v positive integral adaptive gain coefficients; the initial values of a 0 , p 0 , v 0 adaptive control system selection are proved through the Lyapunov equation. The stability of the traditional impedance controller is analyzed and referenced. In the process of proving the stability, an adaptive controller is obtained. The system parameters are adaptively adjusted through the adaptive controller. The adaptive controller compares the actual motion with the expected The error signal of the trajectory adjusts the impedance parameters in real time to adapt to changes in the environment. This framework enables mechanical systems to show stronger adaptability in dynamic and uncertain environments by updating a(t), p(t), v(t) and eta(t), making the adaptive impedance The control strategy is updated to determine whether the inverse solution q value of Effectiveness and Robustness.

在一实施例中,为了验证自适应控制算法的实用性,本发明将在如图6所示的实验平台中进行实验的进行。实验平台其中包含了两台UR5机械臂,UR5机械臂控制柜,UR5机械臂示教器,PC电脑,六维力传感器,交换机。其中两台UR5机械臂通过其自身控制柜进行通讯,本发明将UR5机械臂通过Ethernet通信协议进行通信,六维力传感器通过TCP通信协议进行通信。两台UR5机械臂与六维力传感器接入交换机内,交换机通过TCP/IP通信协议与PC机进行通信传输数据。实现PC端可以直接控制机械臂的运动并且实时读取六维力传感器的数据。In one embodiment, in order to verify the practicability of the adaptive control algorithm, the present invention will conduct experiments in the experimental platform shown in Figure 6. The experimental platform includes two UR5 robotic arms, a UR5 robotic arm control cabinet, a UR5 robotic arm teaching pendant, a PC, a six-dimensional force sensor, and a switch. Two of the UR5 robotic arms communicate through their own control cabinets. In the present invention, the UR5 robotic arms communicate through the Ethernet communication protocol, and the six-dimensional force sensor communicates through the TCP communication protocol. Two UR5 robotic arms and six-dimensional force sensors are connected to the switch, and the switch communicates and transmits data with the PC through the TCP/IP communication protocol. The PC can directly control the movement of the robotic arm and read the data of the six-dimensional force sensor in real time.

在仿真实验中,设定标准力信号作为机械手末端力跟踪目标,设在机械手末端操作空间z轴方向设定跟踪力,其它轴方向不设定跟踪目标力值。设定z轴方向上目标力值Fe=8,仿真时间设定为3s,观察力位移跟踪效果。如图7A和图7B所示,对于参考模型自适应阻抗控制来说,增加自适应调整误差模块可以看到在整个过程中,对期望力和期望轨迹的跟踪没有超调量,并且在对期望力跟踪的过程中期望误差减小。通过上述实验结果,可以得到参考模型自适应阻抗控制通过误差调整避免了存在超调量以及期望误差过大等缺点。In the simulation experiment, the standard force signal is set as the manipulator end force tracking target, the tracking force is set in the z-axis direction of the manipulator end operating space, and no tracking target force values are set in other axis directions. Set the target force value F e =8 in the z-axis direction, set the simulation time to 3 s, and observe the force displacement tracking effect. As shown in Figure 7A and Figure 7B, for the reference model adaptive impedance control, adding the adaptive adjustment error module can see that during the entire process, there is no overshoot in tracking the desired force and desired trajectory, and the desired force and trajectory are tracked without overshoot. The expected error is reduced during force tracking. Through the above experimental results, it can be concluded that the reference model adaptive impedance control avoids shortcomings such as overshoot and excessive expected error through error adjustment.

在仿真实验中,设定标准力信号作为机械手末端力跟踪目标,设在机械手末端操作空间z轴方向设定跟踪力,其它轴方向不设定跟踪目标力值。设定z轴方向上目标力值Fe=8,仿真时间设定为3s,观察力位移跟踪效果。如图8A和图8B所示,可知参考模型自适应阻抗控制在斜轨迹下的期望力和期望轨迹跟踪的仿真结果。由图8A和图8B可知,对于期望力Fe=8N,在参考模型自适应阻抗控制中,经过误差调整控制,参数与上述仿真相同,其仿真结果如图8A和图8B所示,在对于期望力的跟踪下,其期望误差小,并且不存在超调量。在参考模型自适应阻抗控制中对于期望斜轨迹跟踪的效果良好。通过上述仿真结果可知,参考模型自适应阻抗控制可以使得其到达期望力和期望轨迹。In the simulation experiment, the standard force signal is set as the manipulator end force tracking target, the tracking force is set in the z-axis direction of the manipulator end operating space, and no tracking target force values are set in other axis directions. Set the target force value F e =8 in the z-axis direction, set the simulation time to 3 s, and observe the force displacement tracking effect. As shown in Figure 8A and Figure 8B, it can be seen that the simulation results of the expected force and expected trajectory tracking of the reference model adaptive impedance control under the inclined trajectory are known. It can be seen from Figure 8A and Figure 8B that for the desired force Fe = 8N, in the reference model adaptive impedance control, after error adjustment control, the parameters are the same as the above simulation. The simulation results are shown in Figure 8A and Figure 8B. For Under the tracking of the expected force, the expected error is small and there is no overshoot. The effect of tracking the desired inclined trajectory in the reference model adaptive impedance control is good. It can be seen from the above simulation results that the reference model adaptive impedance control can achieve the desired force and desired trajectory.

在仿真实验中,设定标准力信号作为机械手末端力跟踪目标,设在机械手末端操作空间z轴方向设定跟踪力,其它轴方向不设定跟踪目标力值。设定z轴方向上目标力值Fe=8,轨迹值设定为Xe=0.1+0.1sin(3π)仿真时间设定为3s,观察力位移跟踪效果。如图9A和图9B所示为参考模型自适应阻抗控制在正弦轨迹下的期望力和期望轨迹跟踪的仿真结果。在参考模型自适应阻抗控制中,经过误差调整控制,参考模型自适应阻抗控制在正弦动态轨迹下的期望力跟踪由图9A可知,稳定力在0.7s过后稳定在8N附近,并且不存在周期性震荡。通过上述仿真结果可知,通过参考模型自适应阻抗控制可以将动态轨迹下的力趋于稳定,同时力的期望误差小。In the simulation experiment, the standard force signal is set as the manipulator end force tracking target, the tracking force is set in the z-axis direction of the manipulator end operating space, and no tracking target force values are set in other axis directions. Set the target force value in the z-axis direction F e = 8, set the trajectory value to Xe = 0.1 + 0.1 sin (3π), set the simulation time to 3 s, and observe the force displacement tracking effect. Figure 9A and Figure 9B show the simulation results of the desired force and desired trajectory tracking of the reference model adaptive impedance control under the sinusoidal trajectory. In the reference model adaptive impedance control, after error adjustment control, the expected force tracking of the reference model adaptive impedance control under the sinusoidal dynamic trajectory can be seen from Figure 9A. The stable force stabilizes at around 8N after 0.7s, and there is no periodicity. Shock. It can be seen from the above simulation results that the force under the dynamic trajectory can be stabilized through the reference model adaptive impedance control, while the expected error of the force is small.

与现有技术相比,本发明不用以大量的机械臂参数数据为基础进行学习,同时现有技术在进行深度学习进行参数寻优的过程中需要用到不同的寻优算法进行比较,但是不同的寻优算法的权重以及损失函数都不相同,进行实验的过程中寻优函数容易陷入局部最优或者有过拟合的现象。本文避免了以大量数据学习的过程,通过反馈的数据与期望数据的误差值通过自适应算法进行实时变化以适配期望动作,减少繁琐过程,同时不会有陷入局部最优以及过拟合的情况。Compared with the existing technology, the present invention does not need to learn based on a large amount of robot arm parameter data. At the same time, the existing technology needs to use different optimization algorithms for comparison in the process of performing deep learning for parameter optimization. However, different The weights and loss functions of the optimization algorithms are different. During the experiment, the optimization function is prone to fall into local optimality or overfitting. This article avoids the process of learning with a large amount of data. The error value between the feedback data and the expected data changes in real time through the adaptive algorithm to adapt to the desired action, reducing the cumbersome process. At the same time, there will be no chance of falling into local optimality and over-fitting. Condition.

另外,如图10所示,本发明的一个实施例还公开了一种自适应变阻抗控制装置,该装置包括:In addition, as shown in Figure 10, one embodiment of the present invention also discloses an adaptive variable impedance control device, which includes:

分析模块110,用于在双机械臂协作抓取目标物体的过程中,将目标物体受到的内力和外力进行解耦,并对内力与外力进行分步分析,得到目标物体的受力分析结果;The analysis module 110 is used to decouple the internal and external forces on the target object during the cooperative grasping of the target object by the two manipulators, and conduct a step-by-step analysis of the internal and external forces to obtain the force analysis results of the target object;

加载模块120,用于加载自适应阻抗控制模型,自适应阻抗控制模型包括参考模型和自适应控制器,参考模型用于根据受力分析结果生成机械臂的期望运动轨迹,自适应控制器用于通过比较机械臂实际运动轨迹和期望运行轨迹之间的误差信号来调整阻抗参数;The loading module 120 is used to load the adaptive impedance control model. The adaptive impedance control model includes a reference model and an adaptive controller. The reference model is used to generate the desired motion trajectory of the mechanical arm according to the force analysis results. The adaptive controller is used to pass Compare the error signal between the actual movement trajectory of the robot arm and the expected movement trajectory to adjust the impedance parameters;

更新模块130,用于在双机械臂运行过程中,根据自适应阻抗控制模型输出的误差信号更新阻抗参数;The update module 130 is used to update the impedance parameters according to the error signal output by the adaptive impedance control model during the operation of the dual manipulator;

执行模块140,用于根据更新的阻抗参数调整自适应阻抗控制策略,以使双机械臂根据自适应阻抗控制策略对目标物体进行抓取。The execution module 140 is used to adjust the adaptive impedance control strategy according to the updated impedance parameters, so that the dual robotic arms grasp the target object according to the adaptive impedance control strategy.

本发明实施例的自适应变阻抗控制装置用于执行上述实施例中的自适应变阻抗控制方法,其具体处理过程与上述实施例中的自适应变阻抗控制方法相同,此处不再一一赘述。The adaptive variable impedance control device in the embodiment of the present invention is used to execute the adaptive variable impedance control method in the above embodiment. The specific processing process is the same as the adaptive variable impedance control method in the above embodiment, and will not be repeated here. Repeat.

另外,如图11所示,本发明的一个实施例还公开了一种电子设备,包括:至少一个处理器210;至少一个存储器220,用于存储至少一个程序;当至少一个程序被至少一个处理器210执行时实现如前面任意实施例中的自适应变阻抗控制方法。In addition, as shown in Figure 11, one embodiment of the present invention also discloses an electronic device, including: at least one processor 210; at least one memory 220, used to store at least one program; when at least one program is processed by at least one When the controller 210 is executed, the adaptive variable impedance control method as in any previous embodiment is implemented.

另外,本发明的一个实施例还公开了一种计算机可读存储介质,其中存储有计算机可执行指令,计算机可执行指令用于执行如前面任意实施例中的自适应变阻抗控制方法。In addition, an embodiment of the present invention also discloses a computer-readable storage medium in which computer-executable instructions are stored, and the computer-executable instructions are used to execute the adaptive variable impedance control method as in any of the previous embodiments.

本发明实施例描述的系统架构以及应用场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域技术人员可知,随着系统架构的演变和新应用场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。The system architecture and application scenarios described in the embodiments of the present invention are to more clearly explain the technical solutions of the embodiments of the present invention, and do not constitute a limitation on the technical solutions provided by the embodiments of the present invention. Those skilled in the art will know that with the system architecture With the evolution of technology and the emergence of new application scenarios, the technical solutions provided by the embodiments of the present invention are also applicable to similar technical problems.

本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。Those of ordinary skill in the art can understand that all or some steps, systems, and functional modules/units in the devices disclosed above can be implemented as software, firmware, hardware, and appropriate combinations thereof.

在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。In hardware implementations, the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may consist of several physical components. Components execute cooperatively. Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, a digital signal processor, or a microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit . Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media). As is known to those of ordinary skill in the art, the term computer storage media includes volatile and nonvolatile media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. removable, removable and non-removable media. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer. Additionally, it is known to those of ordinary skill in the art that communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程或执行线程中,部件可位于一个计算机上或分布在二个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自于自与本地系统、分布式系统或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地或远程进程来通信。The terms "component", "module", "system", etc. used in this specification are used to refer to computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to, a process, processor, object, executable file, thread of execution, program or computer running on a processor. Through the illustrations, both applications running on the computing device and the computing device may be components. One or more components can reside in a process or thread of execution, and the component can be localized on one computer or distributed between two or more computers. Additionally, these components can execute from various computer-readable media having various data structures stored thereon. A component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component, such as a local system, a distributed system, or a network, such as the Internet, which interacts with other systems via signals) Communicate through local or remote processes.

Claims (10)

1.一种自适应变阻抗控制方法,包括:1. An adaptive variable impedance control method, including: 在双机械臂协作抓取目标物体的过程中,将所述目标物体受到的内力和外力进行解耦,并对所述内力与所述外力进行分步分析,得到目标物体的受力分析结果;In the process of the dual robot arms cooperatively grabbing the target object, the internal force and the external force on the target object are decoupled, and the internal force and the external force are analyzed step by step to obtain the force analysis result of the target object; 加载自适应阻抗控制模型,所述自适应阻抗控制模型包括参考模型和自适应控制器,所述参考模型用于根据所述受力分析结果生成机械臂的期望运动轨迹,所述自适应控制器用于通过比较机械臂实际运动轨迹和所述期望运行轨迹之间的误差信号来调整阻抗参数;Load an adaptive impedance control model. The adaptive impedance control model includes a reference model and an adaptive controller. The reference model is used to generate the desired motion trajectory of the mechanical arm based on the force analysis results. The adaptive controller is used Adjusting the impedance parameter by comparing the error signal between the actual movement trajectory of the robotic arm and the desired movement trajectory; 在双机械臂运行过程中,根据所述自适应阻抗控制模型输出的所述误差信号更新阻抗参数;During the operation of the dual robotic arms, update the impedance parameters according to the error signal output by the adaptive impedance control model; 根据更新的所述阻抗参数调整自适应阻抗控制策略,以使所述双机械臂根据所述自适应阻抗控制策略对所述目标物体进行抓取。The adaptive impedance control strategy is adjusted according to the updated impedance parameter, so that the dual robotic arms grasp the target object according to the adaptive impedance control strategy. 2.根据权利要求1所述的方法,其特征在于,所述方法还包括:2. The method according to claim 1, characterized in that, the method further comprises: 建立双机械臂协同系统坐标系,目标物体对于参考坐标系的位置和姿态用下式进行求解:Establish the coordinate system of the dual manipulator collaborative system. The position and attitude of the target object with respect to the reference coordinate system are solved using the following formula: 式中,为目标物体相对于质心坐标系的转化矩阵;/>为物体相对于质心处坐标系的3X3的旋转矩阵;/>为目标物体相对于质心处坐标系的3X1的位置矩阵;In the formula, is the transformation matrix of the target object relative to the center of mass coordinate system;/> It is the 3X3 rotation matrix of the object relative to the coordinate system at the center of mass;/> is the 3X1 position matrix of the target object relative to the coordinate system at the center of mass; 目标物体通过质心处坐标系与世界坐标系之间的转化为目标物体与机械臂之间的约束条件,由下式进行表达:The target object is converted into a constraint between the target object and the robotic arm through the transformation between the coordinate system at the center of mass and the world coordinate system, which is expressed by the following formula: 式中,为质心处坐标系O相对于世界坐标系W的齐次坐标转换;/>表示双机械臂的基坐标系相对于世界坐标系的齐次坐标转换;/>表示双机械臂的末端坐标系相对于双机械臂的基坐标的其次转换;/>表示目标物体质心坐标系相对于机械臂末端的齐次转换;In the formula, It is the homogeneous coordinate transformation of the coordinate system O at the center of mass relative to the world coordinate system W;/> Represents the homogeneous coordinate transformation of the base coordinate system of the dual robot arms relative to the world coordinate system;/> Represents the secondary transformation of the end coordinate system of the dual robotic arms relative to the base coordinates of the dual robotic arms;/> Represents the homogeneous transformation of the coordinate system of the center of mass of the target object relative to the end of the robotic arm; 通过下式对速度约束关系进行分析,使得双臂在运动的过程中保持位置和速度的一致性;The speed constraint relationship is analyzed through the following formula, so that the position and speed of the arms are consistent during the movement; 式中,表示机械臂末端相对于世界坐标系的速度;/>表示物体相对于世界坐标系的速度,角速度;/>表示机械臂末端相对于世界位置变换矩阵;/>表示机械臂末端相对于目标物体质心的位置变换矩阵;/>表示目标物体质心相对于世界下的方向旋转矩阵。In the formula, Represents the speed of the end of the robotic arm relative to the world coordinate system;/> Represents the object’s velocity relative to the world coordinate system, angular velocity;/> Represents the transformation matrix of the position of the end of the robotic arm relative to the world;/> Represents the position transformation matrix of the end of the robotic arm relative to the center of mass of the target object;/> Represents the direction rotation matrix of the center of mass of the target object relative to the world. 3.根据权利要求1所述的方法,其特征在于,所述将所述目标物体受到的内力和外力进行解耦,包括:3. The method according to claim 1, characterized in that decoupling the internal force and external force on the target object includes: 根据牛顿第二定律和欧拉方程建立双机械臂抓取目标物体的状态,建立以下目标物体的动力学方程:According to Newton's second law and Euler's equation, the state of the dual manipulator grabbing the target object is established, and the following dynamic equation of the target object is established: 式中IO表示目标物体质心处的惯性矩阵;FO∈R6表示双机械臂作用于目标物体上的矢量力;MO∈R6表示目标物体的质量惯性矩阵;/>表示目标物体运动过程中的线加速度和角加速度;CO∈R6表示为目标物体的科氏力、重力和离心力的合力矢量;Fext∈R6表示外部干扰力作用于目标物体上的适量力;将上式转化为下式:in the formula I O represents the inertia matrix at the center of mass of the target object; F O ∈R 6 represents the vector force of the dual robotic arms acting on the target object; M O ∈R 6 represents the mass inertia matrix of the target object;/> represents the linear acceleration and angular acceleration during the movement of the target object; C O ∈R 6 represents the resultant force vector of the Coriolis force, gravity and centrifugal force of the target object; F ext ∈R 6 represents the appropriate amount of external interference force acting on the target object Force; convert the above formula into the following formula: 式中k=l,r表示为双机械臂的左臂和右臂,Sk T∈R6表示抓取矩阵;Fk表示机械臂作用于目标物体上的力;将抓取矩阵分解得到外力式FI和得到内力式FE:In the formula, k=l, r represents the left arm and right arm of the double robotic arm, S k T ∈ R 6 represents the grasping matrix; F k represents the force of the robotic arm acting on the target object; decompose the grasping matrix to obtain the external force Formula F I and the internal force formula F E are obtained: 式中是/>矩阵的广义逆矩阵。in the formula Yes/> The generalized inverse of a matrix. 4.根据权利要求3所述的方法,其特征在于,所述目标物体的受力分析结果包括:4. The method according to claim 3, characterized in that the force analysis results of the target object include: 式中,xe、xa分别代表期望轨迹和实际轨迹;Fe、Fa分别代表期望受力和实际受力,其中Fk=Fa;Md代表惯性矩阵;Bd代表阻尼矩阵;Kd代表刚度矩阵;ΔF代表力的误差值;In the formula, x e and x a represent the expected trajectory and the actual trajectory respectively; F e and F a represent the expected force and the actual force respectively, where F k =F a ; M d represents the inertia matrix; B d represents the damping matrix; K d represents the stiffness matrix; ΔF represents the error value of the force; 将外力式FI和得到内力式FE代入到上式中,得到下式:Substituting the external force formula F I and the internal force formula F E into the above formula, we get the following formula: 其中,Fa表示为:Among them, F a is expressed as: Fk=Fa=Kr(xe-xa)F k =F a =K r (x e -x a ) 式中,Kr代表目标物体刚度。In the formula, K r represents the stiffness of the target object. 5.根据权利要求1所述的方法,其特征在于,所述误差信号的求解过程如下:5. The method according to claim 1, characterized in that the solution process of the error signal is as follows: e=xf+Δx-xa e=x f +Δx-x a 式中,xf为传统阻抗生成的位置误差,xa为实际轨迹,Δx为轨迹调整值;In the formula, x f is the position error generated by traditional impedance, x a is the actual trajectory, and Δx is the trajectory adjustment value; 式中,p(t)和v(t)分别为自适应控制中的力误差的比例参数和微分反馈增益参数;a(t)为自适应控制中的调整值;根据下式:In the formula, p(t) and v(t) are the proportional parameters and differential feedback gain parameters of the force error in adaptive control respectively; a(t) is the adjustment value in adaptive control; according to the following formula: xe=Kr -1(Fe-ΔF)+xa x e =K r -1 (F e -ΔF)+x a 式中, In the formula, 其中,理想参考模型的二阶系统如下式:Among them, the second-order system of the ideal reference model is as follows: 得到实际模型与理想参考模型之间的误差信号为:The error signal between the actual model and the ideal reference model is obtained: 在状态空间中的表达为:The expression in state space is: 其中, in, 6.根据权利要求5所述的方法,其特征在于,所述根据所述自适应阻抗控制模型输出的所述误差信号更新阻抗参数,包括:6. The method of claim 5, wherein updating impedance parameters according to the error signal output by the adaptive impedance control model includes: 基于李亚普诺方程的稳定性定理建立如下方程:Based on the stability theorem of Lyapuno equation, the following equation is established: V=ΔFe TPΔFe1(Bm-Bl)22(Am-Al)23(Yl)2 V=ΔF e T PΔF e1 (B m -B l ) 22 (A m -A l ) 23 (Y l ) 2 式中,根据李雅普诺夫的第二定理,Q=αTPα;μ1、μ2和μ3为正数;P为非奇异矩阵;通过对上式进行微分,得到:In the formula, According to Lyapunov's second theorem, Q=α T Pα; μ 1 , μ 2 and μ 3 are positive numbers; P is a non-singular matrix; by differentiating the above formula, we get: 式中,根据李雅普诺夫的第二定理,确保/>恒小于0,则除了-ΔFe TQΔFe不为0之外,其他所有项都为0,得到:In the formula, According to Lyapunov’s second theorem, ensure/> is always less than 0, then except -ΔF e T QΔF e is not 0, all other terms are 0, and we get: 因此,得到自适应阻抗控制策略的控制定律:Therefore, the control law of the adaptive impedance control strategy is obtained: 其中,in, 式中,κ0、κ1、κ2、βp和βv都为正积分适应增益系数;a0、p0、v0为自适应控制系统选择的初始值。In the formula, κ 0 , κ 1 , κ 2 , β p and β v are all positive integral adaptive gain coefficients; a 0 , p 0 , v 0 are the initial values selected by the adaptive control system. 7.根据权利要求6所述的方法,其特征在于,所述根据更新的所述阻抗参数调整自适应阻抗控制策略,包括:7. The method according to claim 6, wherein the adjusting an adaptive impedance control strategy according to the updated impedance parameters includes: 通过更新a(t)、p(t)、v(t)以及η(t),使得自适应阻抗控制策略进行更新。By updating a(t), p(t), v(t) and eta(t), the adaptive impedance control strategy is updated. 8.一种自适应变阻抗控制装置,其特征在于,所述装置包括:8. An adaptive variable impedance control device, characterized in that the device includes: 分析模块,用于在双机械臂协作抓取目标物体的过程中,将所述目标物体受到的内力和外力进行解耦,并对所述内力与所述外力进行分步分析,得到目标物体的受力分析结果;The analysis module is used to decouple the internal force and the external force on the target object during the process of the dual robot arms cooperating to grab the target object, and conduct a step-by-step analysis of the internal force and the external force to obtain the target object's Force analysis results; 加载模块,用于加载自适应阻抗控制模型,所述自适应阻抗控制模型包括参考模型和自适应控制器,所述参考模型用于根据所述受力分析结果生成机械臂的期望运动轨迹,所述自适应控制器用于通过比较机械臂实际运动轨迹和所述期望运行轨迹之间的误差信号来调整阻抗参数;A loading module is used to load an adaptive impedance control model. The adaptive impedance control model includes a reference model and an adaptive controller. The reference model is used to generate the desired motion trajectory of the mechanical arm based on the force analysis results, so The adaptive controller is used to adjust the impedance parameters by comparing the error signal between the actual movement trajectory of the robotic arm and the desired movement trajectory; 更新模块,用于在双机械臂运行过程中,根据所述自适应阻抗控制模型输出的所述误差信号更新阻抗参数;An update module, configured to update impedance parameters according to the error signal output by the adaptive impedance control model during the operation of the dual manipulator; 执行模块,用于根据更新的所述阻抗参数调整自适应阻抗控制策略,以使所述双机械臂根据所述自适应阻抗控制策略对所述目标物体进行抓取。An execution module, configured to adjust an adaptive impedance control strategy according to the updated impedance parameter, so that the dual robotic arms grasp the target object according to the adaptive impedance control strategy. 9.一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7任意一项所述的自适应变阻抗控制方法。9. An electronic device, comprising: a memory, a processor, and a computer program stored in the memory and executable on the processor, characterized in that when the processor executes the computer program, it implements claims 1 to 7 The adaptive variable impedance control method described in any one of the above. 10.一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如权利要求1至7任意一项所述的自适应变阻抗控制方法。10. A computer-readable storage medium storing computer-executable instructions, the computer-executable instructions being used to execute the adaptive variable impedance control method according to any one of claims 1 to 7.
CN202311543862.4A 2023-11-17 2023-11-17 Adaptive variable impedance control method and device, electronic equipment and storage medium Pending CN117656059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311543862.4A CN117656059A (en) 2023-11-17 2023-11-17 Adaptive variable impedance control method and device, electronic equipment and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311543862.4A CN117656059A (en) 2023-11-17 2023-11-17 Adaptive variable impedance control method and device, electronic equipment and storage medium

Publications (1)

Publication Number Publication Date
CN117656059A true CN117656059A (en) 2024-03-08

Family

ID=90065320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311543862.4A Pending CN117656059A (en) 2023-11-17 2023-11-17 Adaptive variable impedance control method and device, electronic equipment and storage medium

Country Status (1)

Country Link
CN (1) CN117656059A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119871467A (en) * 2025-03-31 2025-04-25 中国工程物理研究院计算机应用研究所 Active compliance interaction control method and system for collaborative robot without force sensor
CN119973991A (en) * 2025-02-21 2025-05-13 青岛海发环保产业控股有限公司 A multi-modal embodied intelligent robot control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119973991A (en) * 2025-02-21 2025-05-13 青岛海发环保产业控股有限公司 A multi-modal embodied intelligent robot control device
CN119871467A (en) * 2025-03-31 2025-04-25 中国工程物理研究院计算机应用研究所 Active compliance interaction control method and system for collaborative robot without force sensor

Similar Documents

Publication Publication Date Title
Abu-Dakka et al. Adaptation of manipulation skills in physical contact with the environment to reference force profiles
CN115625711B (en) A collaborative control method for dual-arm robots considering end force
CN105772917B (en) A kind of three joint spot welding robot's Trajectory Tracking Control methods
CN109782601B (en) Design method of self-adaptive neural network synchronous robust controller of coordinated mechanical arm
Cheah et al. Adaptive vision and force tracking control for robots with constraint uncertainty
CN117656059A (en) Adaptive variable impedance control method and device, electronic equipment and storage medium
WO2022241806A1 (en) Dual-robot force/position multielement data driving method based on reinforcement learning
CN115890735B (en) Robotic arm system, robotic arm and control method thereof, controller and storage medium
CN113199477B (en) A Reinforcement Learning-Based Trajectory Tracking Control Method for Baxter Manipulator
CN117182929A (en) Flexible control method and device for on-orbit assembly of double-arm robot
CN116069044B (en) Multi-robot cooperative transportation capacity hybrid control method
Widmann et al. Human motion prediction in human-robot handovers based on dynamic movement primitives
CN111515928A (en) Mechanical arm motion control system
CN115338871B (en) A constrained adaptive robust control method and system for a two-degree-of-freedom robotic arm
CN118605135B (en) Robot pose control method for nut feeding sleeve
CN118596155A (en) A mobile redundant mechanical arm trajectory tracking control method and system
Ivanov et al. Calculation and Optimization of Industrial Robots Motion
Ha Adaptive fractional-order integral fast terminal sliding mode and fault-tolerant control of dual-arm robots
CN117733860A (en) Sliding mode control method of tail end track of double-arm robot based on position dynamics
Lei et al. Dual-arm object transportation via model predictive control and external disturbance estimation
CN118544363B (en) A collaborative handling control method for multiple mobile robots based on adaptive impedance
CN118181292A (en) Multi-target force position control method for serial mechanical arm
Djelal et al. LSTM-Based Visual Control for Complex Robot Interactions.
Shijun et al. Distributed Collaboration and Obstacle Avoidance Control of Multiple Omnidirectional Mobile Manipulator Assisted with Neural Networks
Frau-Alfaro et al. Robotic approach trajectory using reinforcement learning with dual quaternions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination