CN117611974A - 基于多种群交替进化神经结构搜索的图像识别方法及系统 - Google Patents
基于多种群交替进化神经结构搜索的图像识别方法及系统 Download PDFInfo
- Publication number
- CN117611974A CN117611974A CN202410095592.3A CN202410095592A CN117611974A CN 117611974 A CN117611974 A CN 117611974A CN 202410095592 A CN202410095592 A CN 202410095592A CN 117611974 A CN117611974 A CN 117611974A
- Authority
- CN
- China
- Prior art keywords
- population
- network
- individuals
- search
- super
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/776—Validation; Performance evaluation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/086—Learning methods using evolutionary algorithms, e.g. genetic algorithms or genetic programming
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/87—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using selection of the recognition techniques, e.g. of a classifier in a multiple classifier system
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Physiology (AREA)
- Image Analysis (AREA)
Abstract
Description
| Network | Path | Derma | OCT | O-A | O-C | O-S |
| ResNet18 | 86 | 75 | 75.8 | 92.1 | 88.9 | 76.2 |
| ResNet50 | 84.6 | 72.7 | 74.5 | 91.6 | 89.3 | 74.6 |
| Auto-sklearn | 18.6 | 73.4 | 59.5 | 56.3 | 67.6 | 60.1 |
| AutoKeras | 86.4 | 75.6 | 73.6 | 92.9 | 91.5 | 80.3 |
| Google AutoML Vision | 81.2 | 76.1 | 73.2 | 81.6 | 86.2 | 70.7 |
| SI-EvoNAS | 90.58 | 76.66 | 78.14 | 92.98 | 91.8 | 80.14 |
| MPAE | 91.88 | 78.56 | 80.2 | 94.24 | 92.58 | 81.02 |
Claims (8)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410095592.3A CN117611974B (zh) | 2024-01-24 | 2024-01-24 | 基于多种群交替进化神经结构搜索的图像识别方法及系统 |
| US19/009,930 US20250139960A1 (en) | 2024-01-24 | 2025-01-04 | Image recognition method and system based on multi-population alternate evolution neural architecture search |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410095592.3A CN117611974B (zh) | 2024-01-24 | 2024-01-24 | 基于多种群交替进化神经结构搜索的图像识别方法及系统 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN117611974A true CN117611974A (zh) | 2024-02-27 |
| CN117611974B CN117611974B (zh) | 2024-04-16 |
Family
ID=89958383
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202410095592.3A Active CN117611974B (zh) | 2024-01-24 | 2024-01-24 | 基于多种群交替进化神经结构搜索的图像识别方法及系统 |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US20250139960A1 (zh) |
| CN (1) | CN117611974B (zh) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118014010A (zh) * | 2024-04-09 | 2024-05-10 | 南京信息工程大学 | 基于多种群机制及代理模型的多目标演化神经架构搜索方法 |
| CN119180305A (zh) * | 2024-11-26 | 2024-12-24 | 南京信息工程大学 | 基于梯度相似性超网的多目标神经架构搜索方法和系统 |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20200104687A1 (en) * | 2018-09-27 | 2020-04-02 | Google Llc | Hybrid neural architecture search |
| CN112465120A (zh) * | 2020-12-08 | 2021-03-09 | 上海悠络客电子科技股份有限公司 | 一种基于进化方法的快速注意力神经网络架构搜索方法 |
| WO2021043193A1 (zh) * | 2019-09-04 | 2021-03-11 | 华为技术有限公司 | 神经网络结构的搜索方法、图像处理方法和装置 |
| CN112508104A (zh) * | 2020-12-08 | 2021-03-16 | 浙江工业大学 | 一种基于快速网络架构搜索的跨任务图像分类方法 |
| CN112784949A (zh) * | 2021-01-28 | 2021-05-11 | 华东计算技术研究所(中国电子科技集团公司第三十二研究所) | 一种基于进化计算的神经网络架构搜索方法和系统 |
| WO2022065771A1 (en) * | 2020-09-25 | 2022-03-31 | Samsung Electronics Co., Ltd. | Method and apparatus for neural architecture search |
| CN114373101A (zh) * | 2022-01-14 | 2022-04-19 | 东北大学 | 基于进化策略的神经网络架构搜索的图像分类方法 |
| WO2022126448A1 (zh) * | 2020-12-16 | 2022-06-23 | 华为技术有限公司 | 一种基于演化学习的神经网络结构搜索方法和系统 |
| CN114997360A (zh) * | 2022-05-18 | 2022-09-02 | 四川大学 | 神经架构搜索算法的演化参数优化方法、系统及存储介质 |
| CN115393632A (zh) * | 2022-08-04 | 2022-11-25 | 广东工业大学 | 一种基于进化多目标神经网络架构构造的图像分类方法 |
| WO2023124386A1 (zh) * | 2021-12-29 | 2023-07-06 | 华为云计算技术有限公司 | 神经网络架构搜索的方法、装置、设备和存储介质 |
-
2024
- 2024-01-24 CN CN202410095592.3A patent/CN117611974B/zh active Active
-
2025
- 2025-01-04 US US19/009,930 patent/US20250139960A1/en active Pending
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20200104687A1 (en) * | 2018-09-27 | 2020-04-02 | Google Llc | Hybrid neural architecture search |
| WO2021043193A1 (zh) * | 2019-09-04 | 2021-03-11 | 华为技术有限公司 | 神经网络结构的搜索方法、图像处理方法和装置 |
| WO2022065771A1 (en) * | 2020-09-25 | 2022-03-31 | Samsung Electronics Co., Ltd. | Method and apparatus for neural architecture search |
| CN112465120A (zh) * | 2020-12-08 | 2021-03-09 | 上海悠络客电子科技股份有限公司 | 一种基于进化方法的快速注意力神经网络架构搜索方法 |
| CN112508104A (zh) * | 2020-12-08 | 2021-03-16 | 浙江工业大学 | 一种基于快速网络架构搜索的跨任务图像分类方法 |
| WO2022126448A1 (zh) * | 2020-12-16 | 2022-06-23 | 华为技术有限公司 | 一种基于演化学习的神经网络结构搜索方法和系统 |
| CN112784949A (zh) * | 2021-01-28 | 2021-05-11 | 华东计算技术研究所(中国电子科技集团公司第三十二研究所) | 一种基于进化计算的神经网络架构搜索方法和系统 |
| WO2023124386A1 (zh) * | 2021-12-29 | 2023-07-06 | 华为云计算技术有限公司 | 神经网络架构搜索的方法、装置、设备和存储介质 |
| CN114373101A (zh) * | 2022-01-14 | 2022-04-19 | 东北大学 | 基于进化策略的神经网络架构搜索的图像分类方法 |
| CN114997360A (zh) * | 2022-05-18 | 2022-09-02 | 四川大学 | 神经架构搜索算法的演化参数优化方法、系统及存储介质 |
| CN115393632A (zh) * | 2022-08-04 | 2022-11-25 | 广东工业大学 | 一种基于进化多目标神经网络架构构造的图像分类方法 |
Non-Patent Citations (2)
| Title |
|---|
| YANG Z等: "Cars: Continuous evolution for efficient neural architecture search", 《PROCEEDINGS OF THE IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION》, 31 December 2020 (2020-12-31), pages 1829 - 1838 * |
| 张世文;李智勇;林亚平;: "基于生态种群捕获竞争模型的多目标Memetic优化算法", 电子学报, no. 08, 31 August 2015 (2015-08-31), pages 26 - 36 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118014010A (zh) * | 2024-04-09 | 2024-05-10 | 南京信息工程大学 | 基于多种群机制及代理模型的多目标演化神经架构搜索方法 |
| CN119180305A (zh) * | 2024-11-26 | 2024-12-24 | 南京信息工程大学 | 基于梯度相似性超网的多目标神经架构搜索方法和系统 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN117611974B (zh) | 2024-04-16 |
| US20250139960A1 (en) | 2025-05-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111210871B (zh) | 基于深度森林的蛋白质-蛋白质相互作用预测方法 | |
| CN106570873B (zh) | 一种医学图像分割方法 | |
| CN113393911B (zh) | 一种基于深度学习的配体化合物快速预筛选方法 | |
| CN112508104B (zh) | 一种基于快速网络架构搜索的跨任务图像分类方法 | |
| CN116386729A (zh) | 一种基于图神经网络的scRNA-seq数据降维方法 | |
| JP2024524795A (ja) | グラフニューラルネットワークに基づく遺伝子表現型予測 | |
| CN117611974A (zh) | 基于多种群交替进化神经结构搜索的图像识别方法及系统 | |
| CN117152568B (zh) | 深度集成模型的生成方法、装置和计算机设备 | |
| CN113571125A (zh) | 基于多层网络与图编码的药物靶点相互作用预测方法 | |
| WO2023124342A1 (zh) | 一种针对图像分类的神经网络结构低成本自动搜索方法 | |
| CN116629352A (zh) | 一种亿级参数寻优平台 | |
| Montecino et al. | Two-level genetic algorithm for evolving convolutional neural networks for pattern recognition | |
| CN113362900A (zh) | 一种预测n4-乙酰胞苷的混合模型 | |
| Babu et al. | A simplex method-based bacterial colony optimization algorithm for data clustering analysis | |
| Elghazi et al. | Enhancing CNN structure and learning through NSGA-II-based multi-objective optimization | |
| CN114512188B (zh) | 基于改进蛋白质序列位置特异性矩阵的dna结合蛋白识别方法 | |
| CN108388769B (zh) | 基于边驱动的标签传播算法的蛋白质功能模块识别方法 | |
| CN119993269A (zh) | 基于图神经网络的癌症驱动基因预测方法及系统 | |
| CN114202669B (zh) | 一种用于医疗图像分割的神经网络搜索方法 | |
| CN117976047B (zh) | 基于深度学习的关键蛋白质预测方法 | |
| Liu et al. | High-performance medical data processing technology based on distributed parallel machine learning algorithm | |
| CN117252238A (zh) | 医学图像分类神经网络架构搜索方法、系统、设备、介质 | |
| CN114741528B (zh) | 一种高效构建人类蛋白质复合物图谱的方法与系统 | |
| CN118116600A (zh) | 一种基于多组学和临床检验数据的结直肠癌预后方法 | |
| CN117637035A (zh) | 一种基于图神经网络的多组学可信整合的分类模型及方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20240227 Assignee: Hunan Longgu Intelligent Technology Co.,Ltd. Assignor: XIANGTAN University Contract record no.: X2024980005157 Denomination of invention: Image recognition method and system based on multi group alternating evolutionary neural structure search Granted publication date: 20240416 License type: Common License Record date: 20240509 |
|
| EE01 | Entry into force of recordation of patent licensing contract | ||
| EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20240227 Assignee: Hunan Jiuzhang Zhiyun Technology Co.,Ltd. Assignor: XIANGTAN University Contract record no.: X2024980028006 Denomination of invention: Image recognition method and system based on multi population alternating evolution neural structure search Granted publication date: 20240416 License type: Common License Record date: 20241126 |
|
| EE01 | Entry into force of recordation of patent licensing contract |