[go: up one dir, main page]

CN117368817A - Image reconstruction method, magnetic resonance imaging method and computer device - Google Patents

Image reconstruction method, magnetic resonance imaging method and computer device Download PDF

Info

Publication number
CN117368817A
CN117368817A CN202210778498.9A CN202210778498A CN117368817A CN 117368817 A CN117368817 A CN 117368817A CN 202210778498 A CN202210778498 A CN 202210778498A CN 117368817 A CN117368817 A CN 117368817A
Authority
CN
China
Prior art keywords
space
data set
data
sampled
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210778498.9A
Other languages
Chinese (zh)
Inventor
谢军
蒋国豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai United Imaging Healthcare Co Ltd
Original Assignee
Shanghai United Imaging Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai United Imaging Healthcare Co Ltd filed Critical Shanghai United Imaging Healthcare Co Ltd
Priority to CN202210778498.9A priority Critical patent/CN117368817A/en
Publication of CN117368817A publication Critical patent/CN117368817A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4818MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本申请涉及一种图像重建方法、磁共振成像方法和计算机设备,该方法包括:获取目标部位对应的K空间校准数据集,K空间校准数据集在K空间的中心区域全采样;获取目标部位对应的多个欠采样K空间数据集,每个欠采样K空间数据集为目标部位在一次激发中采集的数据;基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集;对多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集;重建多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。如此,根据目标K空间数据集生成的目标部位的磁共振图像质量更好。

This application relates to an image reconstruction method, a magnetic resonance imaging method and a computer device. The method includes: obtaining a K-space calibration data set corresponding to a target part, and the K-space calibration data set is fully sampled in the central area of K-space; obtaining a corresponding K-space calibration data set corresponding to the target part. Multiple under-sampled K-space data sets, each under-sampled K-space data set is the data collected from the target part in one excitation; based on the K-space calibration data set, each under-sampled K-space data set in K-space is The unsampled points in the central area are subjected to the first fitting recovery to obtain multiple intermediate K-space data sets; the unsampled points of the multiple intermediate K-space data sets in the non-central area of the K space are subjected to the second fitting recovery to obtain Multiple target K-space data sets; reconstruct multiple target K-space data sets to obtain magnetic resonance images corresponding to multiple excitations of the target part. In this way, the quality of the magnetic resonance image of the target part generated based on the target K-space data set is better.

Description

图像重建方法、磁共振成像方法和计算机设备Image reconstruction methods, magnetic resonance imaging methods and computer equipment

技术领域Technical field

本申请涉及磁共振成像技术领域,特别是涉及一种图像重建方法、磁共振成像方法和计算机设备。The present application relates to the field of magnetic resonance imaging technology, and in particular to an image reconstruction method, a magnetic resonance imaging method and computer equipment.

背景技术Background technique

并行磁共振成像技术采用多元线圈阵列同时采集K空间数据,允许对K空间进行欠采样以减少相位编码步数,从而在保持图像空间分辨率不变的情况下,大幅度缩短磁共振扫描时间,提高成像速度。Parallel magnetic resonance imaging technology uses multi-element coil arrays to simultaneously collect K-space data, allowing K-space to be undersampled to reduce the number of phase encoding steps, thus greatly shortening the magnetic resonance scanning time while maintaining the same spatial resolution of the image. Improve imaging speed.

相关技术中,基于K空间数据的图像重建过程中会利用采集到的K空间中心区域的小范围全采样的校准数据(calibration lines),作为未采样数据的恢复基准,进而合成完整的K空间数据。为了加速采集过程或者受到序列设计等因素的限制,往往在重建多个磁共振图像时共用一个校准数据。In related technologies, during the image reconstruction process based on K-space data, the collected small-scale fully sampled calibration lines (calibration lines) of the central area of K-space are used as a restoration benchmark for unsampled data, and then the complete K-space data is synthesized. . In order to speed up the acquisition process or due to constraints such as sequence design, one calibration data is often shared when reconstructing multiple magnetic resonance images.

然而,上述方法在图像重建时会导致重建图像中存在伪影,重建后的图像质量较差。However, the above method will cause artifacts in the reconstructed image during image reconstruction, and the reconstructed image quality is poor.

发明内容Contents of the invention

基于此,有必要针对上述技术问题,提供一种能够在并行磁共振成像中提高重建图像质量的图像重建方法、磁共振成像方法和计算机设备。Based on this, it is necessary to address the above technical problems and provide an image reconstruction method, a magnetic resonance imaging method and a computer device that can improve the quality of reconstructed images in parallel magnetic resonance imaging.

第一方面,本申请提供了一种图像重建方法,该方法包括:In a first aspect, this application provides an image reconstruction method, which method includes:

获取目标部位对应的K空间校准数据集,K空间校准数据集在K空间的中心区域全采样;Obtain the K-space calibration data set corresponding to the target part. The K-space calibration data set is fully sampled in the central area of K-space;

获取目标部位对应的多个欠采样K空间数据集,每个欠采样K空间数据集分别为目标部位在一次激发中采集的数据;Obtain multiple under-sampled K-space data sets corresponding to the target part. Each under-sampled K-space data set is the data collected by the target part in one excitation;

基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集;Based on the K-space calibration data set, perform first fitting recovery on the unsampled points of each under-sampled K-space data set in the central area of K-space to obtain multiple intermediate K-space data sets;

对多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集;Perform second fitting recovery on the unsampled points of multiple intermediate K-space data sets in the non-center area of K-space to obtain multiple target K-space data sets;

重建多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。Reconstruct multiple target K-space data sets and obtain magnetic resonance images corresponding to multiple excitations of the target site.

在其中一个实施例中,基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,包括:In one embodiment, based on the K-space calibration data set, the first fitting recovery is performed on the unsampled points in the central area of the K-space of each under-sampled K-space data set, including:

针对任一欠采样K空间数据集,根据K空间校准数据集和欠采样K空间数据集,构建数据恢复矩阵;For any undersampled K-space data set, construct a data recovery matrix based on the K-space calibration data set and the under-sampled K-space data set;

基于各欠采样K空间数据集对应的数据恢复矩阵,对各采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复。Based on the data recovery matrix corresponding to each undersampled K-space data set, a first fitting recovery is performed on the unsampled points of each sampled K-space data set in the central area of K-space.

在其中一个实施例中,根据K空间校准数据集和欠采样K空间数据集,构建数据恢复矩阵,包括:In one embodiment, a data recovery matrix is constructed based on the K-space calibration data set and the undersampled K-space data set, including:

基于K空间校准数据集,采用预设的低秩矩阵构建方式构建第一低秩矩阵;Based on the K-space calibration data set, the first low-rank matrix is constructed using the preset low-rank matrix construction method;

基于欠采样K空间数据集,采用低秩矩阵构建方式构建第二低秩矩阵;Based on the undersampled K-space data set, the second low-rank matrix is constructed using the low-rank matrix construction method;

根据第一低秩矩阵和第二低秩矩阵,生成数据恢复矩阵。A data recovery matrix is generated based on the first low-rank matrix and the second low-rank matrix.

在其中一个实施例中,构建低秩矩阵的过程,包括:In one embodiment, the process of constructing a low-rank matrix includes:

从目标数据集中提取预设数量个不同的第一数据点,并获取各第一数据点的坐标信息;目标数据集为K空间校准数据集或欠采样K空间数据集;Extract a preset number of different first data points from the target data set, and obtain the coordinate information of each first data point; the target data set is a K-space calibration data set or an undersampled K-space data set;

针对任一个第一数据点,获取与第一数据点距离小于预设长度的多个第二数据点,得到第一数据点对应的数据点集合;For any first data point, obtain a plurality of second data points whose distance from the first data point is less than a preset length, and obtain a set of data points corresponding to the first data point;

获取各数据点集合中多个第二数据点的信号值;Obtain the signal values of multiple second data points in each data point set;

根据各第一数据点的坐标信息,以及各第一数据点对应的数据点集合中多个第二数据点的信号值,构建低秩矩阵。A low-rank matrix is constructed based on the coordinate information of each first data point and the signal values of multiple second data points in the data point set corresponding to each first data point.

在其中一个实施例中,对多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,包括:In one embodiment, performing a second fitting recovery on unsampled points of multiple intermediate K-space data sets in non-central areas of K-space includes:

以各中间K空间数据集在K空间中心区域的拟合全采样数据为基准,计算各中间K空间数据集在K空间的非中心区域的未采样点的权重核;Based on the fitted fully sampled data of each intermediate K-space data set in the central area of K-space, calculate the weight kernel of the unsampled points of each intermediate K-space data set in the non-central area of K-space;

针对任一中间K空间数据集,根据未采样点的权重核,对非中心区域的未采样点进行第二拟合恢复。For any intermediate K-space data set, the unsampled points in the non-center area are restored by second fitting according to the weight kernel of the unsampled points.

第二方面,本申请还提供了一种磁共振成像方法,该方法包括:In a second aspect, this application also provides a magnetic resonance imaging method, which method includes:

采用部分采样技术对K空间的中心区域进行填充,获取目标部位对应的K空间校准数据集;Use partial sampling technology to fill the central area of K-space to obtain the K-space calibration data set corresponding to the target part;

对目标部位进行多次激发,并采集每次激发对应的欠采样K空间数据集;Excite the target part multiple times, and collect the undersampled K-space data set corresponding to each excitation;

基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集;Based on the K-space calibration data set, perform first fitting recovery on the unsampled points of each under-sampled K-space data set in the central area of K-space to obtain multiple intermediate K-space data sets;

对多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集Perform second fitting recovery on the unsampled points of multiple intermediate K-space data sets in the non-center area of K-space to obtain multiple target K-space data sets

重建多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。Reconstruct multiple target K-space data sets and obtain magnetic resonance images corresponding to multiple excitations of the target site.

在其中一个实施例中,多次激发中每次激发施加的弥散梯度方向不同。In one embodiment, the direction of the diffusion gradient applied in each of the multiple excitations is different.

在其中一个实施例中,多次激发中每次激发所对应的目标部位的生理期相不同。In one embodiment, the physiological period of the target site corresponding to each of the multiple excitations is different.

在其中一个实施例中,多次激发中每次激发向目标部位施加标记脉冲,且在标记脉冲施加后的不同延迟时间采集欠采样K空间数据集。In one embodiment, a labeling pulse is applied to the target site for each of multiple excitations, and undersampled K-space data sets are collected at different delay times after the labeling pulse is applied.

第三方面,本申请还提供了一种图像重建装置,该装置包括:In a third aspect, this application also provides an image reconstruction device, which includes:

校准数据获取模块,用于获取目标部位对应的K空间校准数据集,K空间校准数据集在K空间的中心区域全采样;The calibration data acquisition module is used to obtain the K-space calibration data set corresponding to the target part. The K-space calibration data set is fully sampled in the central area of K-space;

欠采样数据获取模块,用于获取目标部位对应的多个欠采样K空间数据集,每个欠采样K空间数据集分别为目标部位在一次激发中采集的数据;The undersampled data acquisition module is used to obtain multiple undersampled K-space data sets corresponding to the target part. Each undersampled K-space data set is the data collected by the target part in one excitation;

第一数据恢复模块,用于基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集;The first data recovery module is used to perform first fitting recovery on the unsampled points of each undersampled K-space data set in the central area of K-space based on the K-space calibration data set, so as to obtain multiple intermediate K-space data. set;

第二数据恢复模块,用于对多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集;The second data recovery module is used to perform a second fitting recovery on the unsampled points of multiple intermediate K-space data sets in the non-center area of K-space, and obtain multiple target K-space data sets;

图像重建模块,用于重建多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。The image reconstruction module is used to reconstruct multiple target K-space data sets and obtain magnetic resonance images corresponding to multiple excitations of the target part.

第四方面,本申请还提供了一种磁共振成像装置,该装置包括:In a fourth aspect, this application also provides a magnetic resonance imaging device, which includes:

数据获取模块,用于采用部分采样技术对K空间的中心区域进行填充,获取目标部位对应的K空间校准数据集;The data acquisition module is used to fill the central area of K-space using partial sampling technology and obtain the K-space calibration data set corresponding to the target part;

扫描模块,用于对目标部位进行多次激发,并采集每次激发对应的欠采样K空间数据集;The scanning module is used to excite the target part multiple times and collect the undersampled K-space data set corresponding to each excitation;

第一数据恢复模块,用于基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集;The first data recovery module is used to perform first fitting recovery on the unsampled points of each undersampled K-space data set in the central area of K-space based on the K-space calibration data set, so as to obtain multiple intermediate K-space data. set;

第二数据恢复模块,用于对多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集The second data recovery module is used to perform a second fitting recovery on the unsampled points of multiple intermediate K-space data sets in the non-center area of K-space, and obtain multiple target K-space data sets.

成像模块,用于重建多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。The imaging module is used to reconstruct multiple target K-space data sets and obtain magnetic resonance images corresponding to multiple excitations of the target site.

第五方面,本申请还提供了一种计算机设备,该计算机设备包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时实现上述第一方面和第二方面中任一方法实施例的步骤。In a fifth aspect, the application also provides a computer device. The computer device includes a memory and a processor. The memory stores a computer program. When the processor executes the computer program, any one of the method embodiments of the first aspect and the second aspect is implemented. A step of.

第六方面,本申请还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述第一方面和第二方面中任一方法实施例的步骤。In a sixth aspect, the present application also provides a computer-readable storage medium. The computer-readable storage medium stores a computer program. When the computer program is executed by a processor, any one of the methods of the first aspect and the second aspect can be implemented. Example steps.

第七方面,本申请还提供了一种计算机程序产品,该计算机程序产品包括计算机程序,计算机程序被处理器执行时实现上述第一方面和第二方面中任一方法实施例的步骤。In a seventh aspect, the present application also provides a computer program product. The computer program product includes a computer program. When the computer program is executed by a processor, the steps of any one of the method embodiments of the first and second aspects are implemented.

在上述图像重建方法、磁共振成像方法和计算机设备中,首先,获取目标部位对应的K空间校准数据集,以及目标部位对应的多个欠采样K空间数据集。其中,K空间校准数据集在K空间的中心区域全采样,每个欠采样K空间数据集为目标部位在一次激发中采集的数据。然后,基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集。进一步地,对多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集。最后,重建多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。也即是,本申请并不是直接采用K空间校准数据集作为基准,对欠采样K空间数据集中的未采样数据进行拟合恢复。而是根据K空间校准数据集,先对每个欠采样K空间数据集中心区域的未采样点进行第一拟合恢复,通过第一拟合恢复即可得到中心区域的全采样数据。进一步地,以第一拟合恢复即可得到中心区域的全采样数据作为基准,对非中心区域的未采样数据点进行第二拟合恢复,得到目标K空间数据集。如此,以K空间的中心区域的未采样点进行第一拟合恢复后得到的中间K空间数据集作为基准,可以保证中间K空间数据集在K空间的中心区域的全采样数据,与欠采样K空间数据集在K空间的非中心区域的未采样点,属于同一次激发获取的数据,数据匹配度高,第二拟合恢复后的目标K空间数据集也更符合实际全采样获取的数据情况,进而基于目标K空间数据集生成的目标部位的磁共振图像质量也更好。In the above image reconstruction method, magnetic resonance imaging method and computer equipment, first, a K-space calibration data set corresponding to the target part and multiple undersampled K-space data sets corresponding to the target part are obtained. Among them, the K-space calibration data set is fully sampled in the central area of K-space, and each under-sampled K-space data set is the data collected from the target part in one excitation. Then, based on the K-space calibration data set, the first fitting recovery is performed on the unsampled points in the central area of the K-space of each under-sampled K-space data set to obtain multiple intermediate K-space data sets. Further, a second fitting recovery is performed on the unsampled points of the multiple intermediate K-space data sets in the non-center area of the K-space to obtain multiple target K-space data sets. Finally, multiple target K-space data sets are reconstructed to obtain magnetic resonance images corresponding to multiple excitations of the target part. That is to say, this application does not directly use the K-space calibration data set as the benchmark to fit and restore the unsampled data in the under-sampled K-space data set. Instead, based on the K-space calibration data set, the first fitting recovery is performed on the unsampled points in the center area of each undersampled K-space data set. Through the first fitting recovery, the fully sampled data in the center area can be obtained. Further, using the first fitting recovery to obtain the fully sampled data in the central area as a benchmark, the second fitting recovery is performed on the unsampled data points in the non-central area to obtain the target K-space data set. In this way, using the intermediate K-space data set obtained after the first fitting recovery of the unsampled points in the central area of K-space as the benchmark can ensure that the fully-sampled data of the intermediate K-space data set in the central area of K-space is the same as the under-sampled data. The unsampled points of the K-space data set in the non-center area of K-space belong to the data obtained by the same excitation, and the data matching degree is high. The target K-space data set after the second fitting recovery is also more consistent with the actual data obtained by full sampling. situation, and the quality of the magnetic resonance image of the target part generated based on the target K-space data set is also better.

附图说明Description of the drawings

图1为一个实施例中图像重建方法的流程示意图;Figure 1 is a schematic flowchart of an image reconstruction method in one embodiment;

图2为一个实施例中K空间标准数据集的示意图;Figure 2 is a schematic diagram of a K-space standard data set in one embodiment;

图3为一个实施例中欠采样K空间数据集的中心区域数据拟合恢复示意图;Figure 3 is a schematic diagram of data fitting and restoration of the central area of the undersampled K-space data set in one embodiment;

图4为一个实施例中第一拟合恢复操作的流程示意图;Figure 4 is a schematic flow chart of the first fitting recovery operation in one embodiment;

图5为一个实施例中构建数据恢复矩阵的示意图;Figure 5 is a schematic diagram of constructing a data recovery matrix in one embodiment;

图6为一个实施例中第二拟合恢复操作的流程示意图;Figure 6 is a schematic flowchart of the second fitting recovery operation in one embodiment;

图7为一个实施例中磁共振成像方法的流程示意图;Figure 7 is a schematic flow chart of a magnetic resonance imaging method in one embodiment;

图8为一个实施例中图像重建装置的结构框图;Figure 8 is a structural block diagram of an image reconstruction device in one embodiment;

图9为一个实施例中磁共振成像装置的结构框图;Figure 9 is a structural block diagram of a magnetic resonance imaging device in one embodiment;

图10为一个实施例中计算机设备的内部结构图。Figure 10 is an internal structure diagram of a computer device in one embodiment.

具体实施方式Detailed ways

为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application more clear, the present application will be further described in detail below with reference to the drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present application and are not used to limit the present application.

磁共振成像(magnetic resonance imaging,MRI)是一种利用核磁共振原理进行人体断层成像的技术。它可以提供人体软组织的各种图像,已迅速发展成为生物医学中的一种重要的应用技术。在其成像过程中完全没有放射性污染,分辨率高,可任意层面成像。而且,不同于现有各种影像学成像技术,参与磁共振成像的因素较多,得到的图像信息量大,在医疗诊断中有很大的优越性和应用潜力。Magnetic resonance imaging (MRI) is a technology that uses the principle of nuclear magnetic resonance to perform tomographic imaging of the human body. It can provide various images of human soft tissues and has rapidly developed into an important application technology in biomedicine. There is no radioactive contamination during the imaging process, the resolution is high, and imaging can be performed at any level. Moreover, unlike various existing imaging technologies, magnetic resonance imaging involves many factors and the resulting image information is large, which has great advantages and application potential in medical diagnosis.

但在临床的有些应用领域中,除了要求高的图像空间分辨率外,还需要减少成像时间,以减少运动伪影。例如,对心血管系统的实时成像和脑功能成像等领域,就必须考虑心脏运动、呼吸以及血液流动等因素的影响。磁共振成像通过梯度场编码傅立叶图像的空间信息,获取一幅完整图像需要连续的梯度空间编码,成像速度极大地依赖于磁共振设备梯度系统的性能,如梯度场的强度和切换率。为满足快速成像的需要,梯度场的性能已经得到极大的增强,与此同时也产生了新的问题,梯度硬件系统的成本越来越高。另外,过高的梯度场切换率会引起神经肌肉电磁刺激。依赖于梯度场性能的成像速度的提高达到了极限,临床上期待给出更有效的方法以提高成像速度。However, in some clinical application fields, in addition to requiring high image spatial resolution, it is also necessary to reduce imaging time to reduce motion artifacts. For example, in areas such as real-time imaging of the cardiovascular system and functional brain imaging, the influence of factors such as heart movement, respiration, and blood flow must be considered. Magnetic resonance imaging encodes the spatial information of Fourier images through gradient fields. Obtaining a complete image requires continuous gradient spatial encoding. The imaging speed greatly depends on the performance of the gradient system of the magnetic resonance equipment, such as the strength and switching rate of the gradient field. In order to meet the needs of fast imaging, the performance of gradient fields has been greatly enhanced. At the same time, new problems have also arisen. The cost of gradient hardware systems is getting higher and higher. In addition, too high gradient field switching rate can cause neuromuscular electromagnetic stimulation. The improvement of imaging speed that relies on gradient field performance has reached its limit, and more effective methods are expected to be provided clinically to improve imaging speed.

为提高成像速度,磁共振并行成像(Parallel MRI)采用多个相控阵线圈同时接收感应信号,这样可以减少梯度编码的次数,从而大幅度缩短扫描时间,提高成像速度。In order to improve the imaging speed, magnetic resonance parallel imaging (Parallel MRI) uses multiple phased array coils to receive induction signals at the same time, which can reduce the number of gradient encodings, thereby greatly shortening the scanning time and increasing the imaging speed.

具体地,并行磁共振成像利用采集到K空间中心区域的小范围全采样校准数据(calibration lines),作为未采集数据恢复的基准,计算出能够拟合得到未采样数据的权重核(weighting kernel),并在下一步数据合成过程中将该权重核应用到待重建的欠采样数据上,以合成完整的K空间数据。Specifically, parallel magnetic resonance imaging uses small-scale full sampling calibration data (calibration lines) collected in the central area of K space as a benchmark for unsampled data recovery, and calculates a weighting kernel that can fit the unsampled data. , and in the next step of data synthesis, the weight kernel is applied to the undersampled data to be reconstructed to synthesize complete K-space data.

在此过程中,准确的全采样校准数据对成像质量至关重要。如果采集全采样校准数据与待重建的欠采样数据不匹配,或者,全采样校准数据的质量不佳,都会导致计算出的权重核发生误差,并将误差引入到后续的数据合成阶段,使得重建的图像出现伪影或模糊等图像质量降低现象。During this process, accurate full-sample calibration data is critical to imaging quality. If the collected full-sampling calibration data does not match the under-sampled data to be reconstructed, or the quality of the full-sampling calibration data is poor, errors will occur in the calculated weight kernel and the errors will be introduced into the subsequent data synthesis stage, making the reconstruction The image may suffer from image quality degradation such as artifacts or blur.

而在一些序列扫描的应用中,为了加速数据采集速度或者受到序列设计等因素的限制,往往在重建多个磁共振图像时需要共用一个全采样校准数据。而由于扫描对象在扫描过程中的运动或是受其它因素的影响,会导致上述全采样校准数据与扫描得到的欠采样数据之间产生偏差,从而影响重建后的图像质量。In some sequence scanning applications, in order to speed up the data collection or due to constraints such as sequence design, it is often necessary to share a full sampling calibration data when reconstructing multiple magnetic resonance images. Due to the movement of the scanned object during the scanning process or the influence of other factors, there will be a deviation between the above-mentioned full-sampled calibration data and the scanned under-sampled data, thus affecting the quality of the reconstructed image.

基于此,本申请提供了一种图像重建方法,基于扫描前获取的全采用校准数据,为每次对扫描对象的目标部位进行扫描采集的欠采样K空间数据集,构建对应的目标校准数据,使用各欠采样K空间数据集对应的目标校准数据,恢补足未采样数据,得到完整的K空间数据,以使重建图像的质量更佳。Based on this, this application provides an image reconstruction method. Based on the full calibration data obtained before scanning, the corresponding target calibration data is constructed for the under-sampled K-space data set collected by scanning the target part of the scanning object each time. Use the target calibration data corresponding to each undersampled K-space data set to restore the unsampled data to obtain complete K-space data, so that the quality of the reconstructed image is better.

本申请提供的图像重建方法,可以应用于图像重建装置中,该图像重建装置可以采用软件和/或硬件的方式实现,该装置可以集成在具有医学影像处理功能的计算机设备中,例如:磁共振系统中的成像设备,或者,磁共振系统外的任一计算机设备。The image reconstruction method provided by this application can be applied to an image reconstruction device. The image reconstruction device can be implemented in the form of software and/or hardware. The device can be integrated in a computer device with medical image processing functions, such as magnetic resonance imaging. The imaging equipment in the system, or any computer equipment outside the magnetic resonance system.

其中,磁共振系统中的成像设备用于将磁共振信号填充至K空间中,并根据K空间数据进行图像重建,得到目标磁共振图像。磁共振系统外的计算机设备可以为任一终端或服务器,其中,终端可以包括但不限于为运行于实体设备中的软件,例如安装在设备上的应用程序或客户端等,也可以包括但不限于为安装有应用的个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备。服务器可以包括但不限于为至少一个独立服务器、分布式服务器、云服务器和服务器集群。Among them, the imaging equipment in the magnetic resonance system is used to fill the magnetic resonance signals into K space, and perform image reconstruction based on the K space data to obtain the target magnetic resonance image. The computer equipment outside the magnetic resonance system can be any terminal or server, where the terminal can include but is not limited to software running in the physical device, such as an application or client installed on the device, and can also include but not Restricted to PCs, laptops, smartphones, tablets and portable wearable devices with the app installed. Servers may include, but are not limited to, at least one independent server, distributed server, cloud server and server cluster.

下面将通过实施例并结合附图,具体地对本申请实施例的技术方案以及本申请实施例的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。需要说明的是,本申请实施例提供的一种图像重建方法,其执行主体可以为磁共振成像设备,也可以为计算机设备,还可以为本申请提供的图像重建装置。显然,所描述的实施例是本申请实施例一部分实施例,而不是全部的实施例。The technical solutions of the embodiments of the present application and how the technical solutions of the embodiments of the present application solve the above technical problems will be described in detail below through the embodiments and in conjunction with the accompanying drawings. The following specific embodiments can be combined with each other, and the same or similar concepts or processes may not be described again in some embodiments. It should be noted that, for the image reconstruction method provided by the embodiments of the present application, the execution subject may be a magnetic resonance imaging device, a computer device, or the image reconstruction device provided by the present application. Obviously, the described embodiments are part of the embodiments of the present application, rather than all the embodiments.

在一个实施例中,如图1所示,提供了一种图像重建方法,以该方法应用于计算机设备为例进行说明,包括以下步骤:In one embodiment, as shown in Figure 1, an image reconstruction method is provided. Taking the method as applied to a computer device as an example, the method includes the following steps:

步骤110:获取目标部位对应的K空间校准数据集,K空间校准数据集在K空间的中心区域全采样。Step 110: Obtain the K-space calibration data set corresponding to the target part. The K-space calibration data set is fully sampled in the central area of K-space.

其中,目标部位可以是扫描对象的任一待检测部位,若扫描对象为人体,则目标部位可以为头部、胸部、腹部等。当然,扫描对象也可以为其他生物体,本实施例对此不做限制。The target part can be any part of the scanning object to be detected. If the scanning object is a human body, the target part can be the head, chest, abdomen, etc. Of course, the scanning object can also be other living organisms, which is not limited in this embodiment.

需要说明的是,K空间校准数据集可以是在预扫描过程中获取的,也可以是在定位过程中获取,还可以是在序列扫描过程中获取的,本实施例对获取时机不做限制。It should be noted that the K-space calibration data set can be obtained during the pre-scanning process, during the positioning process, or during the sequence scanning process. This embodiment does not limit the acquisition timing.

进一步地,对于图像重建而言,减少扫描时间通常是通过减少采用点的数量来实现的,因此,本申请实施例在获取K空间校准数据集时,可以通过部分采样技术来实现,只对决定图像的对比的K空间的中心区域进行全采样。而对于K空间的非中心区域,即周边区域,可以欠采样,如图2中(a)所示;也可以不进行采样,如图2中(b)所示。Furthermore, for image reconstruction, reducing the scanning time is usually achieved by reducing the number of adopted points. Therefore, when obtaining the K-space calibration data set in the embodiment of the present application, it can be achieved through partial sampling technology, and only for decision-making The central region of the contrasting K-space of the image is fully sampled. For the non-central area of K-space, that is, the peripheral area, it can be under-sampled, as shown in (a) in Figure 2; or it can not be sampled, as shown in (b) in Figure 2.

应该理解的是,图2中的(b)只是一种在K空间的非中心区域,通过隔行的方式进行欠采样得到的数据集,欠采样间隔还是可以多行,对此不做限制。It should be understood that (b) in Figure 2 is only a data set obtained by undersampling in an interlaced manner in a non-central area of K-space. The undersampling interval can still be multiple lines, and there is no restriction on this.

步骤120:获取目标部位对应的多个欠采样K空间数据集,每个欠采样K空间数据集分别为目标部位在一次激发中采集的数据。Step 120: Obtain multiple under-sampled K-space data sets corresponding to the target part. Each under-sampled K-space data set is data collected from the target part in one excitation.

其中,多个欠采样K空间数据集是在动态或多期相的扫描中获取的。比如,在血氧水平依赖功能成像(BOLD fMRI)应用中,由于受数据采集时间限制以及平面回波成像(EchoPlanar Imaging,EPI)相位编码的要求,在并行成像时会预先采集K空间校准数据集,然后采集多个欠采样K空间数据集。Among them, multiple undersampled K-space data sets are acquired in dynamic or multi-phase scans. For example, in blood oxygen level dependent functional imaging (BOLD fMRI) applications, due to data acquisition time constraints and echo planar imaging (EchoPlanar Imaging, EPI) phase encoding requirements, K-space calibration data sets are pre-collected during parallel imaging , and then collect multiple undersampled K-space data sets.

步骤130:基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集。Step 130: Based on the K-space calibration data set, perform first fitting recovery on the unsampled points of each under-sampled K-space data set in the central area of the K-space, to obtain multiple intermediate K-space data sets.

其中,第一拟合恢复后的中间K空间数据集较欠采样K空间数据集而言,其在K空间中心区域相当于全采样。Among them, compared with the undersampled K-space data set, the intermediate K-space data set restored by the first fitting is equivalent to full sampling in the central region of K-space.

也即是,通过K空间校准数据集在K空间的中心区域的全采样数据,对欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,拟合出未采样点的数据值,以得到欠采样K空间数据集在K空间的中心区域的完整采样数据。That is, through the fully sampled data of the K-space calibration data set in the central area of K-space, the first fitting recovery is performed on the unsampled points of the under-sampled K-space data set in the central area of K-space, and the unsampled point data values to obtain the complete sampled data of the undersampled K-space data set in the central area of K-space.

在一种可能的实现方式中,第一拟合恢复可以利用低秩(Low Rank)性,通过构建低秩矩阵,并求取零空间矩阵的方式来实现,以确定每个欠采样K空间数据集对应的中间K空间数据集。该中间K空间数据集即作为恢复欠采样K空间数据集中未采样数据点的基准。In a possible implementation, the first fitting recovery can take advantage of the low rank property by constructing a low rank matrix and obtaining the zero space matrix to determine each undersampled K-space data The intermediate K-space data set corresponding to the set. This intermediate K-space data set serves as the benchmark for recovering unsampled data points in the under-sampled K-space data set.

需要说明的是,K空间标准数据集和各欠采样K空间数据集的中心区域位置/大小相同。换言之,基于K空间校准数据集中全采样的K空间中心区域位置,在各采样K空间数据集中对相同位置的未采样点进行第一拟合恢复。It should be noted that the central region position/size of the K-space standard data set and each undersampled K-space data set is the same. In other words, based on the position of the K-space center area of the fully sampled K-space calibration data set, the first fitting recovery is performed on the unsampled points at the same position in each sampled K-space data set.

作为一个示例,参见图3,K空间标准数据集在K空间的中心区域大小为3*3,则在欠采样K空间数据集中执行第一拟合恢复的数据范围也为K空间的中心区域中3*3范围的未采样点。As an example, see Figure 3. The size of the central area of the K-space standard data set in K-space is 3*3. Then the data range of the first fitting recovery performed on the under-sampled K-space data set is also in the central area of K-space. Unsampled points in the 3*3 range.

步骤140:对多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集。Step 140: Perform a second fitting recovery on the unsampled points of the multiple intermediate K-space data sets in the non-center area of the K-space, and obtain multiple target K-space data sets.

应该理解的是,填充K空间的中央区域的相位编码线主要决定图像的对比,而周边区域的相位编码线主要决定图像的解剖细节,零傅里叶线两边的相位编码线是镜像对称的。也即是,K空间相位编码方向上和在频率编码方向上都呈现镜像对称的特性。It should be understood that the phase encoding lines filling the central area of K-space mainly determine the contrast of the image, while the phase encoding lines in the peripheral area mainly determine the anatomical details of the image. The phase encoding lines on both sides of the zero Fourier line are mirror symmetrical. That is to say, the K-space phase encoding direction and the frequency encoding direction exhibit mirror symmetry characteristics.

基于此,在通过第一拟合恢复出欠采样K空间数据集在K空间的中心区域的全部数据后,即可基于K空间填充数据的镜像对称的特性,通过第二拟合恢复,得到全采样情况下的目标K空间数据集。Based on this, after recovering all the data of the under-sampled K-space data set in the central area of K-space through the first fitting, the full sampling can be obtained through the second fitting recovery based on the mirror symmetry characteristics of the K-space filling data. case of target K-space dataset.

在一种可能的实现方式中,基于K空间域进行图像重建时,第一拟合恢复可以采用空间谐波同步采集(Simultaneous Acquisition of Spatial Harmonics,SMASH)重建方法或全局自动校准部分并行采集(Generalized Auto-calibrating Partially ParallelAcquisition,GRAPPA)重建方法、灵敏度编码(Sensitivity Encoding,SENSE)重建方法来实现。In a possible implementation, when performing image reconstruction based on the K-space domain, the first fitting recovery can use the Simultaneous Acquisition of Spatial Harmonics (SMASH) reconstruction method or the global automatic calibration partial parallel acquisition (Generalized Auto-calibrating Partially ParallelAcquisition, GRAPPA) reconstruction method, Sensitivity Encoding (Sensitivity Encoding, SENSE) reconstruction method to achieve.

具体地,SMASH重建方法的基本思想是通过接收线圈灵感度的线性组合,恢复因欠采样而丢失的K空间相位编码行数据。而GRAPPA不再将各个阵列线圈的数据拟合到组合信号,而是拟合到单个线圈的ACS行,从而得到一系列的线性权重来重建各个阵列线圈缺失K空间数据行。Specifically, the basic idea of the SMASH reconstruction method is to recover the K-space phase-encoded line data lost due to undersampling through a linear combination of the receiving coil sensitivity. GRAPPA no longer fits the data of each array coil to the combined signal, but to the ACS row of a single coil, thereby obtaining a series of linear weights to reconstruct the missing K-space data rows of each array coil.

步骤150:重建多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。Step 150: Reconstruct multiple target K-space data sets and obtain magnetic resonance images corresponding to multiple excitations of the target part.

在该步骤中,对每个目标K空间数据集进行图像重建,得到对应的磁共振图像。具体地,图像重建是对目标K空间数据集进行傅里叶变换,生成重建图像。多个目标K空间数据集的重建图像,即为扫描部位多次扫描后得到的磁共振图像。In this step, image reconstruction is performed on each target K-space data set to obtain the corresponding magnetic resonance image. Specifically, image reconstruction is to perform Fourier transform on the target K-space data set to generate a reconstructed image. The reconstructed image of multiple target K-space data sets is the magnetic resonance image obtained after multiple scans of the scanned part.

在上述图像重建方法中,根据K空间校准数据集,先对每个欠采样K空间数据集中心区域的未采样点进行第一拟合恢复,通过第一拟合恢复即可得到中心区域的全采样数据。进一步地,以第一拟合恢复即可得到中心区域的全采样数据作为基准,对非中心区域的未采样数据点进行第二拟合恢复,得到目标K空间数据集。如此,以K空间的中心区域的未采样点进行第一拟合恢复后得到的中间K空间数据集作为基准,可以保证中间K空间数据集在K空间的中心区域的全采样数据,与欠采样K空间数据集在K空间的非中心区域的未采样点,属于同一次激发获取的数据,数据匹配度高,第二拟合恢复后的目标K空间数据集也更符合实际全采样获取的数据情况,进而基于目标K空间数据集生成的目标部位的磁共振图像质量也更好。In the above image reconstruction method, according to the K-space calibration data set, the unsampled points in the central area of each under-sampled K-space data set are first fitted and restored. Through the first fitting and restoration, the full range of the central area can be obtained. Sample data. Further, using the first fitting recovery to obtain the fully sampled data in the central area as a benchmark, the second fitting recovery is performed on the unsampled data points in the non-central area to obtain the target K-space data set. In this way, using the intermediate K-space data set obtained after the first fitting recovery of the unsampled points in the central area of K-space as the benchmark can ensure that the fully-sampled data of the intermediate K-space data set in the central area of K-space is the same as the under-sampled data. The unsampled points of the K-space data set in the non-center area of K-space belong to the data obtained by the same excitation, and the data matching degree is high. The target K-space data set after the second fitting recovery is also more consistent with the actual data obtained by full sampling. situation, and the quality of the magnetic resonance image of the target part generated based on the target K-space data set is also better.

在一个实施例中,如图4所示,上述步骤130中基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,包括以下步骤:In one embodiment, as shown in Figure 4, in the above step 130, based on the K-space calibration data set, the first fitting recovery is performed on the unsampled points in the central area of the K-space of each under-sampled K-space data set, Includes the following steps:

步骤410:针对任一欠采样K空间数据集,根据K空间校准数据集和欠采样K空间数据集,构建数据恢复矩阵。Step 410: For any undersampled K-space data set, construct a data recovery matrix based on the K-space calibration data set and the under-sampled K-space data set.

在一种可能的实现方式中,步骤410的实现过程可以为:基于K空间校准数据集,采用预设的低秩矩阵构建方式构建第一低秩矩阵;基于欠采样K空间数据集,采用低秩矩阵构建方式构建第二低秩矩阵;根据第一低秩矩阵和第二低秩矩阵,生成数据恢复矩阵。In a possible implementation, the implementation process of step 410 may be: based on the K-space calibration data set, using a preset low-rank matrix construction method to construct the first low-rank matrix; based on the under-sampled K-space data set, using a low-rank matrix The rank matrix construction method constructs the second low-rank matrix; based on the first low-rank matrix and the second low-rank matrix, a data recovery matrix is generated.

其中,构建低秩矩阵的过程为:从目标数据集中提取预设数量个不同的第一数据点,并获取各第一数据点的坐标信息;针对任一个第一数据点,获取与第一数据点距离小于预设长度的多个第二数据点,得到第一数据点对应的数据点集合;获取各数据点集合中多个第二数据点的信号值;根据各第一数据点的坐标信息,以及各第一数据点对应的数据点集合中多个第二数据点的信号值,构建低秩矩阵。Among them, the process of constructing the low-rank matrix is: extract a preset number of different first data points from the target data set, and obtain the coordinate information of each first data point; for any first data point, obtain the same data as the first data point For multiple second data points whose point distance is less than the preset length, obtain the data point set corresponding to the first data point; obtain the signal values of multiple second data points in each data point set; according to the coordinate information of each first data point , and the signal values of multiple second data points in the data point set corresponding to each first data point, to construct a low-rank matrix.

也即是,第一低秩矩阵和第二低秩矩阵是基于同一低秩矩阵构建方式构建的,上述目标数据集为K空间校准数据集或欠采样K空间数据集。That is, the first low-rank matrix and the second low-rank matrix are constructed based on the same low-rank matrix construction method, and the above target data set is a K-space calibration data set or an undersampled K-space data set.

作为一个示例,低秩矩阵的构建操作记为Pc(·),构建步骤为:As an example, the construction operation of a low-rank matrix is denoted as P c (·), and the construction steps are:

(1)从目标数据集的K空间中心区域中任取L个不同的第一数据点,k表示所选取的第一数据点的编码索引,1≤k≤L,nx、ny分别表示某个第一数据点的横坐标、纵坐标,则这些第一数据点的信号值大小可以表示为 (1) Randomly select L different first data points from the K-space center area of the target data set, k represents the coding index of the selected first data point, 1≤k≤L, n x , n y represent respectively The abscissa and ordinate of a certain first data point, then the signal values of these first data points can be expressed as

进一步地,对于目标数据集中选出来的每一个第一数据点,选取与第一数据点之间距离在半径R以内的其他NR个第二数据点的集合。这NR个第二数据点的坐标索引用/>表示。Further, for each first data point selected in the target data set, select the A set of other N R second data points that are within a radius R. The coordinate index of these N R second data points is /> express.

其中,m=1,2,…,NR。其对应的信号值为通常L≥NRAmong them, m=1, 2,..., N R . The corresponding signal value is Usually L≥NR .

(2)按以下公式(1)排列组成低秩C矩阵:(2) Arrange according to the following formula (1) to form a low-rank C matrix:

式中,k=1,2,…,L,m=1,2,…,NR表示第k个点近邻的第m个点的横坐标,/>表示第k个点近邻的第m个点的纵坐标。则C(k,m)矩阵的大小为L×NRIn the formula, k=1, 2,..., L, m=1, 2,..., N R , Represents the abscissa coordinate of the m-th point nearest neighbor of the k-th point,/> Represents the ordinate of the m-th point that is the nearest neighbor of the k-th point. Then the size of the C(k,m) matrix is L× NR .

参见图5,步骤410中生成数据恢复矩阵的过程可以为:从K空间校准数据集在K空间的中心区域的部分数据kacs,通过上述低秩矩阵构建方式构建第一低秩矩阵Pc(kacs);同时,从欠采样K空间数据集Qi中取对应位置的数据ki,通过上述低秩矩阵构建方式构建第二低秩矩阵Pc(ki);进而根据第一低秩矩阵和第二低秩矩阵,生成数据恢复矩阵[Pc(kacs)Pc(ki)]。Referring to Figure 5, the process of generating the data recovery matrix in step 410 can be: from the partial data k acs of the K-space calibration data set in the central area of K-space, construct the first low-rank matrix P c ( k acs ); at the same time, the data k i of the corresponding position is taken from the undersampled K-space data set Q i , and the second low-rank matrix P c (k i ) is constructed through the above-mentioned low-rank matrix construction method; and then according to the first low-rank matrix matrix and the second low-rank matrix, generating the data recovery matrix [P c (k acs )P c (k i )].

其中,欠采样K空间数据集Qi为多个欠采样K空间数据集中的任一个。Among them, the under-sampled K-space data set Q i is any one of multiple under-sampled K-space data sets.

步骤420:基于各欠采样K空间数据集对应的数据恢复矩阵,对各采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复。Step 420: Based on the data recovery matrix corresponding to each undersampled K-space data set, perform first fitting recovery on the unsampled points of each sampled K-space data set in the central area of K-space.

在一种可能的实现方式中,步骤420的实现过程可以为:求数据恢复矩阵的零空间矩阵N,且NHN=I,这表示将采集到的K空间校准数据集在K空间的中心区域的全采样数据和第Qi个欠采样K空间数据对应的数据结合在一起,估算各欠采样K空间数据集在K空间的中心区域的未采样点的数据。In a possible implementation, the implementation process of step 420 can be: finding the zero space matrix N of the data recovery matrix, and N H N=I, which means that the collected K-space calibration data set is placed at the center of K-space The fully sampled data of the region and the data corresponding to the Qi -th under-sampled K-space data are combined to estimate the data of the unsampled points in the central area of K-space for each under-sampled K-space data set.

具体地,公式化需求解的问题为:Specifically, the problem that needs to be solved is:

其中,η代表K空间校准数据集中全采样数据的比重,η越大就表示拟合恢复出来的欠采样K空间数据集在K空间的中心区域的全采样数据,与K空间校准数据集中全采样数据越相似。Among them, η represents the proportion of full-sampled data in the K-space calibration data set. The larger η means, the fully-sampled data in the center area of K-space of the under-sampled K-space data set recovered by fitting is different from the full-sampled data in the K-space calibration data set. The more similar the data is.

在本实施例中,通过K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集。如此,可以避免K空间校准数据集与欠采样K空间数据集不匹配的问题,通过确定每个欠采样K空间数据集在K空间的中心区域全采样情况下对应的中间K空间数据集,可以减轻可能产生的伪影或重建图像质量降低问题。In this embodiment, through the K-space calibration data set, the first fitting recovery is performed on the unsampled points of each under-sampled K-space data set in the central area of the K-space, so as to obtain multiple intermediate K-space data sets. In this way, the problem of mismatch between the K-space calibration data set and the under-sampled K-space data set can be avoided. By determining the intermediate K-space data set corresponding to each under-sampled K-space data set when the central region of K-space is fully sampled, it is possible to Alleviating possible artifacts or degradation of reconstructed image quality.

基于上述各方法实施例,通过K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,得到多个中间K空间数据集。其中,中间K空间数据集为对应的欠采样K空间数据集在K空间的中心区域补充未采样点的数据后得到的,实现了中间K空间数据集在K空间的中心区域全采样。Based on the above method embodiments, through the K-space calibration data set, the first fitting recovery is performed on the unsampled points of each under-sampled K-space data set in the central area of the K-space, and multiple intermediate K-space data sets are obtained. Among them, the intermediate K-space data set is obtained by supplementing the data of unsampled points in the central area of K-space with the corresponding under-sampled K-space data set, achieving full sampling of the intermediate K-space data set in the central area of K-space.

进一步地,针对每个中间K空间数据集,以其K空间中心区域的完整数据为基准,可以对K空间的非中心区域的未采样点进行拟合恢复。Furthermore, for each intermediate K-space data set, based on the complete data in the central area of K-space, the unsampled points in the non-central area of K-space can be fitted and restored.

在一个实施例中,如图6所示,上述步骤140中对所述多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,包括以下步骤:In one embodiment, as shown in Figure 6, performing a second fitting recovery on the unsampled points of the multiple intermediate K-space data sets in the non-center area of K-space in the above step 140 includes the following steps:

步骤610:以各中间K空间数据集在K空间中心区域的拟合全采样数据为基准,计算各中间K空间数据集在K空间的非中心区域的未采样点的权重核。Step 610: Based on the fitted fully sampled data of each intermediate K-space data set in the central area of K-space, calculate the weight kernel of the unsampled points of each intermediate K-space data set in the non-central area of K-space.

其中,对于K空间的非中心区域的未采样点,可以根据中心区域的全采样数据,计算恢复非中心区域的未采样点时,中心区域中各采样点的权重。换言之,需要计算K空间的中心区域的每个全采样数据对恢复非中心区域的未采样点时的贡献值。Among them, for the unsampled points in the non-central area of K-space, the weight of each sampling point in the central area can be calculated based on the full sampling data of the central area when restoring the unsampled points in the non-central area. In other words, it is necessary to calculate the contribution value of each fully sampled data in the central area of K-space to the recovery of unsampled points in the non-central area.

作为一个示例,权重核可以采用GRAPPA重建方式计算,在此不再赘述。As an example, the weight kernel can be calculated using the GRAPPA reconstruction method, which will not be described again here.

步骤620:针对任一中间K空间数据集,根据未采样点的权重核,对非中心区域的未采样点进行第二拟合恢复。Step 620: For any intermediate K-space data set, perform a second fitting recovery on the unsampled points in the non-center area according to the weight kernel of the unsampled points.

也即是,将根据各中间K空间数据集在K空间中心区域的拟合全采样数据计算出来的权重核,应用非中心区域的未采样点上,通过GRAPPA重建方式即可得到完整的K空间数据,提高了第二拟合恢复后得到目标K空间数据集的数据质量,更好地抑制了图像中可能存在的伪影。That is to say, the weight kernel calculated based on the fitted fully sampled data of each intermediate K-space data set in the central area of K-space is applied to the unsampled points in the non-central area, and the complete K-space can be obtained through the GRAPPA reconstruction method. data, which improves the data quality of the target K-space data set obtained after the second fitting recovery, and better suppresses possible artifacts in the image.

基于同样的发明构思,本申请还提供了一种磁共振成像方法,如图7所示,以该方法应用于计算机设备为例进行说明,该计算机设备可以具体为磁共振成像系统中的一种或多种设备,包括以下步骤:Based on the same inventive concept, this application also provides a magnetic resonance imaging method, as shown in Figure 7. This method is explained by taking the application of this method to a computer device as an example. The computer device can be specifically one of the magnetic resonance imaging systems. or multiple devices, including the following steps:

步骤710:采用部分采样技术对K空间的中心区域进行填充,获取目标部位对应的K空间校准数据集。Step 710: Use partial sampling technology to fill the central area of K-space to obtain the K-space calibration data set corresponding to the target part.

也即是,在采用设定的激发次数对目标部位进行多次扫描前,在预扫描或定位过程中获取K空间校准数据集。That is, before using the set number of excitations to scan the target site multiple times, the K-space calibration data set is obtained during the pre-scan or positioning process.

应该理解的是,在预扫描过程中采集的每一个磁共振信号中都含有全层的信息,因此,需要对磁共振信号进行空间定位编码,即频率编码和相位编码。磁共振扫描设备中的收线圈采集到的磁共振信号实际是带有空间编码信息的无线电波,属于模拟信号而非数字信息,需要经过模数转换(ADC)变成数字信息,后者被填充到K空间,得到K空间数字点阵。It should be understood that each magnetic resonance signal collected during the pre-scan process contains full-layer information. Therefore, the magnetic resonance signal needs to be spatially positioned and encoded, that is, frequency encoding and phase encoding. The magnetic resonance signals collected by the receiving coil in the magnetic resonance scanning equipment are actually radio waves with spatially encoded information. They are analog signals rather than digital information. They need to be converted into digital information through analog-to-digital conversion (ADC), and the latter is filled in. to K space, and obtain the K space digital lattice.

在该步骤中,通过欠采样方式获取K空间校准数据集是指K空间中心区域全采样,非中心区域欠采样的数据。In this step, obtaining the K-space calibration data set through under-sampling means fully sampling the central area of K-space and under-sampling the non-central area.

步骤720:对目标部位进行多次激发,并采集每次激发对应的欠采样K空间数据集。Step 720: Excite the target part multiple times, and collect an undersampled K-space data set corresponding to each excitation.

其中,激发次数由预先设定的序列数决定,本实施例对激发次数不做限制。每次激发均可以得到可用于生成一幅磁共振图像的一个欠采样K空间数据集。The number of excitations is determined by a preset number of sequences, and this embodiment does not limit the number of excitations. Each excitation results in an undersampled K-space data set that can be used to generate an MRI image.

步骤730:基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集。Step 730: Based on the K-space calibration data set, perform first fitting recovery on the unsampled points of each under-sampled K-space data set in the central area of the K-space to obtain multiple intermediate K-space data sets.

步骤740:对多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集。Step 740: Perform a second fitting recovery on the unsampled points of the multiple intermediate K-space data sets in the non-center area of the K-space, and obtain multiple target K-space data sets.

步骤750:重建多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。Step 750: Reconstruct multiple target K-space data sets and obtain magnetic resonance images corresponding to multiple excitations of the target part.

基于上述磁共振成像方法,在对目标部位进行多次激发,可以包括以下任一种设置:Based on the above magnetic resonance imaging method, multiple excitations of the target site can include any of the following settings:

(1)多次激发中每次激发施加的弥散梯度方向不同。(1) The direction of the diffusion gradient applied to each excitation in multiple excitations is different.

此设置可以用于磁共振成像设备对目标部位进行弥散张量成像(DiffusionTensor Imaging,DTI)和扩散加权成像(Diffusion-Weighted Imaging,DWI)。This setting can be used for magnetic resonance imaging equipment to perform diffusion tensor imaging (DiffusionTensor Imaging, DTI) and diffusion-weighted imaging (Diffusion-Weighted Imaging, DWI) of the target site.

(2)多次激发中每次激发所对应的目标部位的生理期相不同。(2) The physiological period of the target part corresponding to each of the multiple excitations is different.

(3)多次激发中每次激发向目标部位施加标记脉冲,且在标记脉冲施加后的不同延迟时间采集欠采样K空间数据集。(3) Apply a labeling pulse to the target site for each of multiple excitations, and collect undersampled K-space data sets at different delay times after the labeling pulse is applied.

此设置可以用于磁共振成像设备对目标部位进行动脉自旋标记(Arterial SpinLabeling,ASL)。This setting can be used by magnetic resonance imaging equipment to perform Arterial Spin Labeling (ASL) on the target site.

需要说明的是,本实施例提供的磁共振成像方法中图像重建步骤的实现原理和技术效果与前面各图像重建方法实施例相类似,具体的限定和解释可参见前面各方法实施例,在此不再赘述。It should be noted that the implementation principles and technical effects of the image reconstruction step in the magnetic resonance imaging method provided by this embodiment are similar to the previous image reconstruction method embodiments. For specific limitations and explanations, please refer to the previous method embodiments. Here No longer.

应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that although the steps in the flowcharts involved in the above-mentioned embodiments are shown in sequence as indicated by the arrows, these steps are not necessarily executed in the order indicated by the arrows. Unless explicitly stated in this article, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in the flowcharts involved in the above embodiments may include multiple steps or stages. These steps or stages are not necessarily executed at the same time, but may be completed at different times. The execution order of these steps or stages is not necessarily sequential, but may be performed in turn or alternately with other steps or at least part of the steps or stages in other steps.

基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的图像重建方法的图像重建装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个图像重建装置实施例中的具体限定可以参见上文中对于图像重建方法的限定,在此不再赘述。Based on the same inventive concept, embodiments of the present application also provide an image reconstruction device for implementing the above-mentioned image reconstruction method. The solution to the problem provided by this device is similar to the solution described in the above method. Therefore, for the specific limitations in one or more image reconstruction device embodiments provided below, please refer to the above limitations on the image reconstruction method. I won’t go into details here.

在一个实施例中,如图8所示,提供了一种图像重建装置,该装置800包括:校准数据获取模块810、欠采样数据获取模块820、第一数据恢复模块830、第二数据恢复模块840和图像重建模块850,其中:In one embodiment, as shown in Figure 8, an image reconstruction device is provided. The device 800 includes: a calibration data acquisition module 810, an undersampling data acquisition module 820, a first data recovery module 830, and a second data recovery module. 840 and image reconstruction module 850, wherein:

校准数据获取模块810,用于获取目标部位对应的K空间校准数据集,K空间校准数据集在K空间的中心区域全采样;The calibration data acquisition module 810 is used to acquire the K-space calibration data set corresponding to the target part. The K-space calibration data set is fully sampled in the central area of K-space;

欠采样数据获取模块820,用于获取目标部位对应的多个欠采样K空间数据集,每个欠采样K空间数据集分别为目标部位在一次激发中采集的数据;The under-sampled data acquisition module 820 is used to acquire multiple under-sampled K-space data sets corresponding to the target part. Each under-sampled K-space data set is the data collected by the target part in one excitation;

第一数据恢复模块830,用于基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集;The first data recovery module 830 is configured to perform first fitting recovery on the unsampled points of each undersampled K-space data set in the central area of the K-space based on the K-space calibration data set, so as to obtain multiple intermediate K-spaces. data set;

第二数据恢复模块840,用于对多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集;The second data recovery module 840 is used to perform a second fitting recovery on the unsampled points of multiple intermediate K-space data sets in the non-center area of K-space, and obtain multiple target K-space data sets;

图像重建模块850,用于重建多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。The image reconstruction module 850 is used to reconstruct multiple target K-space data sets and obtain magnetic resonance images corresponding to multiple excitations of the target part.

在其中一个实施例中,第一数据恢复模块830,包括:In one embodiment, the first data recovery module 830 includes:

矩阵构建单元,用于针对任一欠采样K空间数据集,根据K空间校准数据集和欠采样K空间数据集,构建数据恢复矩阵;A matrix construction unit used to construct a data recovery matrix for any undersampled K-space data set based on the K-space calibration data set and the under-sampled K-space data set;

第一恢复单元,用于基于各欠采样K空间数据集对应的数据恢复矩阵,对各采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复。The first recovery unit is used to perform first fitting recovery on the unsampled points of each sampled K-space data set in the central area of K-space based on the data recovery matrix corresponding to each under-sampled K-space data set.

在其中一个实施例中,矩阵构建单元,包括:In one embodiment, the matrix building unit includes:

第一构建子单元,用于基于K空间校准数据集,采用预设的低秩矩阵构建方式构建第一低秩矩阵;The first construction subunit is used to construct the first low-rank matrix based on the K-space calibration data set using a preset low-rank matrix construction method;

第二构建子单元,用于基于欠采样K空间数据集,采用低秩矩阵构建方式构建第二低秩矩阵;The second construction subunit is used to construct a second low-rank matrix based on the under-sampled K-space data set using a low-rank matrix construction method;

矩阵构建子单元,用于根据第一低秩矩阵和第二低秩矩阵,生成数据恢复矩阵。The matrix construction subunit is used to generate a data recovery matrix based on the first low-rank matrix and the second low-rank matrix.

在其中一个实施例中,构建低秩矩阵的过程,包括:In one embodiment, the process of constructing a low-rank matrix includes:

从目标数据集中提取预设数量个不同的第一数据点,并获取各第一数据点的坐标信息;目标数据集为K空间校准数据集或欠采样K空间数据集;Extract a preset number of different first data points from the target data set, and obtain the coordinate information of each first data point; the target data set is a K-space calibration data set or an undersampled K-space data set;

针对任一个第一数据点,获取与第一数据点距离小于预设长度的多个第二数据点,得到第一数据点对应的数据点集合;For any first data point, obtain a plurality of second data points whose distance from the first data point is less than a preset length, and obtain a set of data points corresponding to the first data point;

获取各数据点集合中多个第二数据点的信号值;Obtain the signal values of multiple second data points in each data point set;

根据各第一数据点的坐标信息,以及各第一数据点对应的数据点集合中多个第二数据点的信号值,构建低秩矩阵。A low-rank matrix is constructed based on the coordinate information of each first data point and the signal values of multiple second data points in the data point set corresponding to each first data point.

在其中一个实施例中,第二数据恢复模块840,包括:In one embodiment, the second data recovery module 840 includes:

权重计算单元,用于以各中间K空间数据集在K空间中心区域的拟合全采样数据为基准,计算各中间K空间数据集在K空间的非中心区域的未采样点的权重核;The weight calculation unit is used to calculate the weight kernel of the unsampled points of each intermediate K-space data set in the non-center area of K-space based on the fitted fully sampled data of each intermediate K-space data set in the central area of K-space;

第二恢复单元,用于针对任一中间K空间数据集,根据未采样点的权重核,对非中心区域的未采样点进行第二拟合恢复。The second recovery unit is used for performing a second fitting recovery on the unsampled points in the non-center area according to the weight kernel of the unsampled points for any intermediate K-space data set.

上述图像重建装置800中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。Each module in the above-mentioned image reconstruction device 800 can be implemented in whole or in part by software, hardware, and combinations thereof. Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.

基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的磁共振成像方法的磁共振成像装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个磁共振成像装置实施例中的具体限定可以参见上文中对于磁共振成像方法的限定,在此不再赘述。Based on the same inventive concept, embodiments of the present application also provide a magnetic resonance imaging device for implementing the above-mentioned magnetic resonance imaging method. The solution to the problem provided by this device is similar to the solution described in the above method. Therefore, for specific limitations in one or more embodiments of the magnetic resonance imaging device provided below, please refer to the above description of the magnetic resonance imaging method. Limitations will not be repeated here.

在一个实施例中,如图9所示,提供了一种磁共振成像装置,该装置900包括:数据获取模块910、扫描模块920、第一数据恢复模块930、第二数据恢复模块940和成像模块950,其中:In one embodiment, as shown in Figure 9, a magnetic resonance imaging device is provided. The device 900 includes: a data acquisition module 910, a scanning module 920, a first data recovery module 930, a second data recovery module 940 and an imaging device. Module 950, which:

数据获取模块910,用于采用部分采样技术对K空间的中心区域进行填充,获取目标部位对应的K空间校准数据集;The data acquisition module 910 is used to fill the central area of K-space using partial sampling technology and obtain the K-space calibration data set corresponding to the target part;

扫描模块920,用于对目标部位进行多次激发,并采集每次激发对应的欠采样K空间数据集;The scanning module 920 is used to excite the target part multiple times and collect the undersampled K-space data set corresponding to each excitation;

第一数据恢复模块930,用于基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集;The first data recovery module 930 is configured to perform first fitting recovery on the unsampled points of each undersampled K-space data set in the central area of the K-space based on the K-space calibration data set, so as to obtain multiple intermediate K-spaces. data set;

第二数据恢复模块940,用于对多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集The second data recovery module 940 is used to perform a second fitting recovery on the unsampled points of multiple intermediate K-space data sets in the non-center area of K-space, and obtain multiple target K-space data sets.

成像模块950,用于重建多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。The imaging module 950 is used to reconstruct multiple target K-space data sets and obtain magnetic resonance images corresponding to multiple excitations of the target site.

在其中一个实施例中,多次激发中每次激发施加的弥散梯度方向不同。In one embodiment, the direction of the diffusion gradient applied in each of the multiple excitations is different.

在其中一个实施例中,多次激发中每次激发所对应的目标部位的生理期相不同。In one embodiment, the physiological period of the target site corresponding to each of the multiple excitations is different.

在其中一个实施例中,多次激发中每次激发向目标部位施加标记脉冲,且在标记脉冲施加后的不同延迟时间采集欠采样K空间数据集。In one embodiment, a labeling pulse is applied to the target site for each of multiple excitations, and undersampled K-space data sets are collected at different delay times after the labeling pulse is applied.

上述磁共振成像装置900中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。Each module in the above-mentioned magnetic resonance imaging apparatus 900 can be implemented in whole or in part by software, hardware, and combinations thereof. Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.

在一个实施例中,提供了一种计算机设备,该计算机设备可以是图像重建设备,也可以是磁共振成像设备,还可以是其他用于实现生成磁共振图像的终端,其内部结构图可以如图10所示。该计算机设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、运营商网络、NFC(近场通信)或其他技术实现。该计算机程序被处理器执行时以实现本申请提供的图像重建方法和/或磁共振成像方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。In one embodiment, a computer device is provided. The computer device may be an image reconstruction device, a magnetic resonance imaging device, or other terminal for generating magnetic resonance images. Its internal structure diagram may be as follows: As shown in Figure 10. The computer device includes a processor, memory, communication interface, display screen and input device connected through a system bus. Wherein, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes non-volatile storage media and internal memory. The non-volatile storage medium stores operating systems and computer programs. This internal memory provides an environment for the execution of operating systems and computer programs in non-volatile storage media. The communication interface of the computer device is used for wired or wireless communication with external terminals. The wireless mode can be implemented through WIFI, operator network, NFC (Near Field Communication) or other technologies. When the computer program is executed by the processor, it implements the image reconstruction method and/or the magnetic resonance imaging method provided by this application. The display screen of the computer device may be a liquid crystal display or an electronic ink display. The input device of the computer device may be a touch layer covered on the display screen, or may be a button, trackball or touch pad provided on the computer device shell. , it can also be an external keyboard, trackpad or mouse, etc.

本领域技术人员可以理解,图10中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Those skilled in the art can understand that the structure shown in Figure 10 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied. Specific computer equipment can May include more or fewer parts than shown, or combine certain parts, or have a different arrangement of parts.

在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:In one embodiment, a computer device is provided, including a memory and a processor. A computer program is stored in the memory. When the processor executes the computer program, it implements the following steps:

获取目标部位对应的K空间校准数据集,K空间校准数据集在K空间的中心区域全采样;Obtain the K-space calibration data set corresponding to the target part. The K-space calibration data set is fully sampled in the central area of K-space;

获取目标部位对应的多个欠采样K空间数据集,每个欠采样K空间数据集分别为目标部位在一次激发中采集的数据;Obtain multiple under-sampled K-space data sets corresponding to the target part. Each under-sampled K-space data set is the data collected by the target part in one excitation;

基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集;Based on the K-space calibration data set, perform first fitting recovery on the unsampled points of each under-sampled K-space data set in the central area of K-space to obtain multiple intermediate K-space data sets;

对多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集;Perform second fitting recovery on the unsampled points of multiple intermediate K-space data sets in the non-center area of K-space to obtain multiple target K-space data sets;

重建多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。Reconstruct multiple target K-space data sets and obtain magnetic resonance images corresponding to multiple excitations of the target site.

在另一个实施例中,该处理器执行计算机程序时还实现以下步骤:In another embodiment, the processor also performs the following steps when executing the computer program:

采用部分采样技术对K空间的中心区域进行填充,获取目标部位对应的K空间校准数据集;Use partial sampling technology to fill the central area of K-space to obtain the K-space calibration data set corresponding to the target part;

对目标部位进行多次激发,并采集每次激发对应的欠采样K空间数据集;Excite the target part multiple times, and collect the undersampled K-space data set corresponding to each excitation;

基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集;Based on the K-space calibration data set, perform first fitting recovery on the unsampled points of each under-sampled K-space data set in the central area of K-space to obtain multiple intermediate K-space data sets;

对多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集Perform second fitting recovery on the unsampled points of multiple intermediate K-space data sets in the non-center area of K-space to obtain multiple target K-space data sets

重建多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。Reconstruct multiple target K-space data sets and obtain magnetic resonance images corresponding to multiple excitations of the target site.

上述实施例提供的一种计算机设备,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。The implementation principles and technical effects of the computer device provided by the above embodiment are similar to those of the above method embodiment, and will not be described again here.

在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:In one embodiment, a computer-readable storage medium is provided with a computer program stored thereon. When the computer program is executed by a processor, the following steps are implemented:

获取目标部位对应的K空间校准数据集,K空间校准数据集在K空间的中心区域全采样;Obtain the K-space calibration data set corresponding to the target part. The K-space calibration data set is fully sampled in the central area of K-space;

获取目标部位对应的多个欠采样K空间数据集,每个欠采样K空间数据集分别为目标部位在一次激发中采集的数据;Obtain multiple under-sampled K-space data sets corresponding to the target part. Each under-sampled K-space data set is the data collected by the target part in one excitation;

基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集;Based on the K-space calibration data set, perform first fitting recovery on the unsampled points of each under-sampled K-space data set in the central area of K-space to obtain multiple intermediate K-space data sets;

对多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集;Perform second fitting recovery on the unsampled points of multiple intermediate K-space data sets in the non-center area of K-space to obtain multiple target K-space data sets;

重建多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。Reconstruct multiple target K-space data sets and obtain magnetic resonance images corresponding to multiple excitations of the target site.

在另一个实施例中,该处理器执行计算机程序时还实现以下步骤:In another embodiment, the processor also performs the following steps when executing the computer program:

采用部分采样技术对K空间的中心区域进行填充,获取目标部位对应的K空间校准数据集;Use partial sampling technology to fill the central area of K-space to obtain the K-space calibration data set corresponding to the target part;

对目标部位进行多次激发,并采集每次激发对应的欠采样K空间数据集;Excite the target part multiple times, and collect the undersampled K-space data set corresponding to each excitation;

基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集;Based on the K-space calibration data set, perform first fitting recovery on the unsampled points of each under-sampled K-space data set in the central area of K-space to obtain multiple intermediate K-space data sets;

对多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集Perform second fitting recovery on the unsampled points of multiple intermediate K-space data sets in the non-center area of K-space to obtain multiple target K-space data sets

重建多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。Reconstruct multiple target K-space data sets and obtain magnetic resonance images corresponding to multiple excitations of the target site.

上述实施例提供的一种计算机可读存储介质,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。The implementation principles and technical effects of the computer-readable storage medium provided by the above embodiments are similar to those of the above method embodiments, and will not be described again here.

在一个实施例中,提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现以下步骤:In one embodiment, a computer program product is provided, comprising a computer program that when executed by a processor implements the following steps:

获取目标部位对应的K空间校准数据集,K空间校准数据集在K空间的中心区域全采样;Obtain the K-space calibration data set corresponding to the target part. The K-space calibration data set is fully sampled in the central area of K-space;

获取目标部位对应的多个欠采样K空间数据集,每个欠采样K空间数据集分别为目标部位在一次激发中采集的数据;Obtain multiple under-sampled K-space data sets corresponding to the target part. Each under-sampled K-space data set is the data collected by the target part in one excitation;

基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集;Based on the K-space calibration data set, perform first fitting recovery on the unsampled points of each under-sampled K-space data set in the central area of K-space to obtain multiple intermediate K-space data sets;

对多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集;Perform second fitting recovery on the unsampled points of multiple intermediate K-space data sets in the non-center area of K-space to obtain multiple target K-space data sets;

重建多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。Reconstruct multiple target K-space data sets and obtain magnetic resonance images corresponding to multiple excitations of the target site.

在另一个实施例中,该处理器执行计算机程序时还实现以下步骤:In another embodiment, the processor also performs the following steps when executing the computer program:

采用部分采样技术对K空间的中心区域进行填充,获取目标部位对应的K空间校准数据集;Use partial sampling technology to fill the central area of K-space to obtain the K-space calibration data set corresponding to the target part;

对目标部位进行多次激发,并采集每次激发对应的欠采样K空间数据集;Excite the target part multiple times, and collect the undersampled K-space data set corresponding to each excitation;

基于K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集;Based on the K-space calibration data set, perform first fitting recovery on the unsampled points of each under-sampled K-space data set in the central area of K-space to obtain multiple intermediate K-space data sets;

对多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集Perform second fitting recovery on the unsampled points of multiple intermediate K-space data sets in the non-center area of K-space to obtain multiple target K-space data sets

重建多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。Reconstruct multiple target K-space data sets and obtain magnetic resonance images corresponding to multiple excitations of the target site.

上述实施例提供的一种计算机程序产品,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。The implementation principles and technical effects of the computer program product provided by the above embodiments are similar to those of the above method embodiments, and will not be described again here.

本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be completed by instructing relevant hardware through a computer program. The computer program can be stored in a non-volatile computer-readable storage. In the media, when executed, the computer program may include the processes of the above method embodiments. Any reference to memory, storage, database or other media used in the embodiments provided in this application may include at least one of non-volatile and volatile memory. Non-volatile memory may include read-only memory (ROM), magnetic tape, floppy disk, flash memory or optical memory, etc. Volatile memory may include random access memory (Random Access Memory, RAM) or external cache memory. By way of illustration but not limitation, RAM can be in various forms, such as static random access memory (Static Random Access Memory, SRAM) or dynamic random access memory (Dynamic Random Access Memory, DRAM).

以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined in any way. To simplify the description, not all possible combinations of the technical features in the above embodiments are described. However, as long as there is no contradiction in the combination of these technical features, all possible combinations should be used. It is considered to be within the scope of this manual.

以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-described embodiments only express several implementation modes of the present application, and their descriptions are relatively specific and detailed, but they should not be construed as limiting the scope of the invention patent. It should be noted that, for those of ordinary skill in the art, several modifications and improvements can be made without departing from the concept of the present application, and these all fall within the protection scope of the present application. Therefore, the protection scope of this patent application should be determined by the appended claims.

Claims (10)

1.一种图像重建方法,其特征在于,所述方法包括:1. An image reconstruction method, characterized in that the method includes: 获取目标部位对应的K空间校准数据集,所述K空间校准数据集在K空间的中心区域全采样;Obtain a K-space calibration data set corresponding to the target part, and the K-space calibration data set is fully sampled in the central area of K-space; 获取所述目标部位对应的多个欠采样K空间数据集,每个欠采样K空间数据集分别为所述目标部位在一次激发中采集的数据;Obtain multiple under-sampled K-space data sets corresponding to the target part, each under-sampled K-space data set being data collected by the target part in one excitation; 基于所述K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集;Based on the K-space calibration data set, perform first fitting recovery on the unsampled points of each under-sampled K-space data set in the central area of K-space to obtain multiple intermediate K-space data sets; 对所述多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集;Perform a second fitting recovery on the unsampled points of the multiple intermediate K-space data sets in the non-center area of K-space to obtain multiple target K-space data sets; 重建所述多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。The multiple target K-space data sets are reconstructed to obtain magnetic resonance images corresponding to multiple excitations of the target part. 2.根据权利要求1所述的方法,其特征在于,所述基于所述K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,包括:2. The method according to claim 1, characterized in that, based on the K-space calibration data set, the first simulation is performed on the unsampled points of each under-sampled K-space data set in the central area of the K-space. Comprehensive recovery, including: 针对任一欠采样K空间数据集,根据所述K空间校准数据集和所述欠采样K空间数据集,构建数据恢复矩阵;For any undersampled K-space data set, construct a data recovery matrix according to the K-space calibration data set and the under-sampled K-space data set; 基于各所述欠采样K空间数据集对应的数据恢复矩阵,对各所述采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复。Based on the data recovery matrix corresponding to each of the under-sampled K-space data sets, a first fitting recovery is performed on the unsampled points in the central area of the K-space of each of the sampled K-space data sets. 3.根据权利要求2所述的方法,其特征在于,所述根据所述K空间校准数据集和所述欠采样K空间数据集,构建数据恢复矩阵,包括:3. The method according to claim 2, characterized in that, constructing a data recovery matrix according to the K-space calibration data set and the undersampled K-space data set includes: 基于所述K空间校准数据集,采用预设的低秩矩阵构建方式构建第一低秩矩阵;Based on the K-space calibration data set, construct a first low-rank matrix using a preset low-rank matrix construction method; 基于所述欠采样K空间数据集,采用所述低秩矩阵构建方式构建第二低秩矩阵;Based on the undersampled K-space data set, use the low-rank matrix construction method to construct a second low-rank matrix; 根据所述第一低秩矩阵和所述第二低秩矩阵,生成所述数据恢复矩阵。The data recovery matrix is generated according to the first low-rank matrix and the second low-rank matrix. 4.根据权利要求3所述的方法,其特征在于,构建低秩矩阵的过程,包括:4. The method according to claim 3, characterized in that the process of constructing a low-rank matrix includes: 从目标数据集中提取预设数量个不同的第一数据点,并获取各所述第一数据点的坐标信息;所述目标数据集为所述K空间校准数据集或所述欠采样K空间数据集;Extract a preset number of different first data points from the target data set, and obtain the coordinate information of each first data point; the target data set is the K-space calibration data set or the under-sampled K-space data set; 针对任一个所述第一数据点,获取与所述第一数据点距离小于预设长度的多个第二数据点,得到所述第一数据点对应的数据点集合;For any of the first data points, obtain a plurality of second data points whose distance from the first data point is less than a preset length, and obtain a set of data points corresponding to the first data points; 获取各所述数据点集合中多个所述第二数据点的信号值;Obtain signal values of a plurality of second data points in each of the data point sets; 根据各所述第一数据点的坐标信息,以及各所述第一数据点对应的所述数据点集合中多个所述第二数据点的信号值,构建低秩矩阵。A low-rank matrix is constructed based on the coordinate information of each first data point and the signal values of a plurality of second data points in the data point set corresponding to each first data point. 5.根据权利要求1至4中任一项所述的方法,其特征在于,所述对所述多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,包括:5. The method according to any one of claims 1 to 4, characterized in that the second fitting recovery is performed on unsampled points of the plurality of intermediate K-space data sets in non-central areas of K-space. ,include: 以各所述中间K空间数据集在K空间中心区域的拟合全采样数据为基准,计算各所述中间K空间数据集在K空间的非中心区域的未采样点的权重核;Calculate the weight kernel of the unsampled points of each intermediate K-space data set in the non-center area of K-space based on the fitted fully sampled data of each intermediate K-space data set in the central area of K-space; 针对任一中间K空间数据集,根据所述未采样点的权重核,对所述非中心区域的未采样点进行第二拟合恢复。For any intermediate K-space data set, perform a second fitting recovery on the unsampled points in the non-center area according to the weight kernel of the unsampled points. 6.一种磁共振成像方法,其特征在于,所述方法包括:6. A magnetic resonance imaging method, characterized in that the method includes: 采用部分采样技术对K空间的中心区域进行填充,获取目标部位对应的K空间校准数据集;Use partial sampling technology to fill the central area of K-space to obtain the K-space calibration data set corresponding to the target part; 对所述目标部位进行多次激发,并采集每次激发对应的欠采样K空间数据集;Excite the target part multiple times, and collect an undersampled K-space data set corresponding to each excitation; 基于所述K空间校准数据集,分别对每个欠采样K空间数据集在K空间的中心区域的未采样点进行第一拟合恢复,以获取多个中间K空间数据集;Based on the K-space calibration data set, perform first fitting recovery on the unsampled points of each under-sampled K-space data set in the central area of K-space to obtain multiple intermediate K-space data sets; 对所述多个中间K空间数据集在K空间的非中心区域的未采样点进行第二拟合恢复,获取多个目标K空间数据集Perform a second fitting recovery on the unsampled points of the multiple intermediate K-space data sets in the non-center area of K-space to obtain multiple target K-space data sets. 重建所述多个目标K空间数据集,获取目标部位多次激发对应的磁共振图像。The multiple target K-space data sets are reconstructed to obtain magnetic resonance images corresponding to multiple excitations of the target part. 7.根据权利要求6所述的方法,其特征在于,所述多次激发中每次激发施加的弥散梯度方向不同。7. The method according to claim 6, characterized in that the direction of the diffusion gradient applied in each of the multiple excitations is different. 8.根据权利要求6所述的方法,其特征在于,所述多次激发中每次激发所对应的目标部位的生理期相不同。8. The method according to claim 6, wherein the physiological period of the target part corresponding to each of the multiple excitations is different. 9.根据权利要求6所述的方法,其特征在于,所述多次激发中每次激发向所述目标部位施加标记脉冲,且在所述标记脉冲施加后的不同延迟时间采集所述欠采样K空间数据集。9. The method according to claim 6, characterized in that each of the multiple excitations applies a labeling pulse to the target site, and the undersampling is collected at different delay times after the labeling pulse is applied. K-space data set. 10.一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至9中任一项所述的方法的步骤。10. A computer device, comprising a memory and a processor, the memory stores a computer program, characterized in that when the processor executes the computer program, the method of any one of claims 1 to 9 is implemented. step.
CN202210778498.9A 2022-06-30 2022-06-30 Image reconstruction method, magnetic resonance imaging method and computer device Pending CN117368817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210778498.9A CN117368817A (en) 2022-06-30 2022-06-30 Image reconstruction method, magnetic resonance imaging method and computer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210778498.9A CN117368817A (en) 2022-06-30 2022-06-30 Image reconstruction method, magnetic resonance imaging method and computer device

Publications (1)

Publication Number Publication Date
CN117368817A true CN117368817A (en) 2024-01-09

Family

ID=89391655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210778498.9A Pending CN117368817A (en) 2022-06-30 2022-06-30 Image reconstruction method, magnetic resonance imaging method and computer device

Country Status (1)

Country Link
CN (1) CN117368817A (en)

Similar Documents

Publication Publication Date Title
US11143730B2 (en) System and method for parallel magnetic resonance imaging
CN103477238B (en) Compressive sensing MR image reconstruction employing constraints from prior acquisition
JP5926285B2 (en) Fast parallel reconstruction of arbitrary K-space trajectories
CN102772210B (en) Diffusion weighted MR imaging
US9396562B2 (en) MRI reconstruction with incoherent sampling and redundant haar wavelets
CN112014782B (en) Magnetic resonance imaging method, device and computer storage medium
US11002815B2 (en) System and method for reducing artifacts in echo planar magnetic resonance imaging
CN103027681B (en) For the system of the parallel MRI image obtaining of reconstruct
CN1616985B (en) Magnetic Resonance Imaging Method Based on Partially Parallel Acquisition and Reconstruction Method
CN107850652A (en) MR imagings with motion detection
WO2004093682A1 (en) Magnetic resonance imaging method and apparatus
CN112763957A (en) Magnetic resonance imaging system and method
WO2019148610A1 (en) Multi-excitation diffusion-weighted magnetic resonance imaging method based on data consistency
CN115639510A (en) Magnetic resonance imaging method, spectroscopic imaging method, apparatus, device, and storage medium
CN112272535A (en) Methods and systems for magnetic resonance diffusion imaging
CN110226100B (en) System and method for magnetic resonance imaging
CN110109036B (en) Two-dimensional space-time coding multi-scan magnetic resonance imaging non-Cartesian sampling and reconstruction method
CN115251885B (en) System and method for simultaneous multi-layer multitasking imaging
CN115598575B (en) Magnetic resonance imaging method, apparatus, computer equipment and storage medium
Saju et al. Suppressing image blurring of PROPELLER MRI via untrained method
US11022667B2 (en) System and method for image reconstruction
WO2022027419A1 (en) Magnetic resonance imaging method and apparatus, and computer storage medium
CN117368817A (en) Image reconstruction method, magnetic resonance imaging method and computer device
CN113296038A (en) Magnetic resonance imaging system and method based on K-space radial sampling
CN117179734A (en) Image uniformity correction method, device, computer equipment and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination