CN117158999A - An EEG signal denoising method and system based on PPMCC and adaptive VMD - Google Patents
An EEG signal denoising method and system based on PPMCC and adaptive VMD Download PDFInfo
- Publication number
- CN117158999A CN117158999A CN202311061172.5A CN202311061172A CN117158999A CN 117158999 A CN117158999 A CN 117158999A CN 202311061172 A CN202311061172 A CN 202311061172A CN 117158999 A CN117158999 A CN 117158999A
- Authority
- CN
- China
- Prior art keywords
- eeg signal
- singular
- new
- singular values
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
技术领域Technical field
本发明涉及脑电信号去噪的技术领域,更具体地,涉及一种基于PPMCC和自适应VMD的脑电信号去噪方法及系统。The present invention relates to the technical field of EEG signal denoising, and more specifically, to an EEG signal denoising method and system based on PPMCC and adaptive VMD.
背景技术Background technique
脑电信号是通过脑电采集设备将人体脑部微弱的生物电放大记录生成的信号。脑电信号广泛应用于生物医疗的领域,例如睡眠分类、癫痫症、专注度分析以及抑郁症的诊断。因为脑电信号是一种低频的非线性非平稳的信号,主要频率在0.5~100Hz之间,信号幅值在5~300μV,并且人体自身其他部位的生理活动也会产生相应的电信号,所以脑电信号十分容易受到各种噪声污染,从而产生各种伪迹,如:心电伪迹、眼电伪迹和肌电伪迹,这些伪迹在采集信号的过程中很难被直接消除,也会影响实验和研究的效果,因此,对脑电信号进行去噪至关重要。。The EEG signal is a signal generated by amplifying and recording the weak bioelectricity of the human brain through an EEG acquisition device. EEG signals are widely used in biomedical fields, such as sleep classification, epilepsy, concentration analysis, and depression diagnosis. Because the EEG signal is a low-frequency, nonlinear and non-stationary signal, with the main frequency between 0.5 and 100Hz, and the signal amplitude between 5 and 300μV, and the physiological activities of other parts of the human body will also generate corresponding electrical signals, so EEG signals are very susceptible to various noise contamination, resulting in various artifacts, such as ECG artifacts, EOG artifacts and EMG artifacts. These artifacts are difficult to directly eliminate during the signal collection process. It will also affect the results of experiments and research. Therefore, it is crucial to denoise EEG signals. .
现有技术提出一种基于经验模式分解法(EMD)的脑电信号去噪方法,该方法对采集到的脑电信号进行预处理,得到原始信号;所述原始信号通过EMD算法得到多个本征模态函数(IMF)分量,通过计算IMF分量归一化自相关函数方差,得到去噪脑电信号。该方法在处理非平稳及非线性数据上具有明显的优势,适合分析非线性非平稳的信号序列,具有较高的信噪比和良好的时频聚焦性;但该方法在处理脑电信号时,会产生模态混叠现象和端点效应,模态混叠现象和端点效应容易混淆脑电信号的时频分布,进而破坏本征模态函数的物理意义,从而导致脑电信号去噪的效果不好。The existing technology proposes an EEG signal denoising method based on the Empirical Mode Decomposition (EMD) method. This method preprocesses the collected EEG signals to obtain original signals; the original signals obtain multiple original signals through the EMD algorithm. The eigenmode function (IMF) component is calculated, and the denoised EEG signal is obtained by calculating the variance of the normalized autocorrelation function of the IMF component. This method has obvious advantages in processing non-stationary and non-linear data. It is suitable for analyzing non-linear and non-stationary signal sequences, and has a high signal-to-noise ratio and good time-frequency focus. However, this method has problems when processing EEG signals. , will produce modal aliasing and endpoint effects. Modal aliasing and endpoint effects can easily confuse the time-frequency distribution of the EEG signal, thereby destroying the physical meaning of the intrinsic modal function, resulting in the denoising effect of the EEG signal. not good.
现有技术还提出一种基于变分模态分解(VMD)的脑电信号去噪方法,该方法通过对脑电信号进行VMD分解和降噪,改善了模态混叠、端点效应的问题。在利用VMD处理脑电信号时,可以根据自确定的模态函数分解个数确定信号的分解个数,然后自适应地匹配每种模态函数的最佳中心频率和有限带宽,并且可以实现模态函数分量的有效分离以及信号频域的划分,再通过选取模态函数进行信号重构,从而达到去噪的效果;但VMD的去噪效果依赖于信号分解个数,一旦信号分解个数的设置不正确,就不能很好地将噪声和信号分解出来,而该方法中的信号分解个数是人为设置的,容易出现信号分解个数设置不正确,从而导致脑电信号去噪效果不好的情况。The existing technology also proposes a method for denoising EEG signals based on variational mode decomposition (VMD). This method improves the problems of modal aliasing and endpoint effects by performing VMD decomposition and noise reduction on EEG signals. When using VMD to process EEG signals, the number of signal decompositions can be determined based on the self-determined number of modal function decompositions, and then the optimal center frequency and limited bandwidth of each modal function can be adaptively matched, and the modal function can be realized It effectively separates the state function components and divides the signal frequency domain, and then selects the mode function for signal reconstruction to achieve the denoising effect; however, the denoising effect of VMD depends on the number of signal decompositions. Once the number of signal decompositions is If the setting is incorrect, the noise and signal cannot be decomposed well. The number of signal decompositions in this method is artificially set. It is easy to have incorrect setting of the number of signal decompositions, resulting in poor EEG signal denoising effect. Case.
现有技术还提出一种基于奇异谱分析(SSA)的脑电信号去噪方法,该方法通过奇异谱分析将原始脑电信号分解为不同的子成分,并设定自相关系数阈值来提取脑电信号主体成分相关的子成分,由子成分重构得到对应的时间序列构成所述脑电信号主体成分;从所述原始脑电信号中减去所述脑电信号主体成分得到残留脑电成分;将所述残留脑电成分输入至深度卷积神经网络以提取细节特征,再将所述深度卷积神经网络的输出结合所述脑电信号主体成分以重建除去噪后的脑电信号。该方法在对原始脑电信号进行重构的时候,需要设定阈值来提取脑电信号主体成分相关的子成分,容易出现错误去除应保留的子成分,破坏脑电信号的情况,从而导致脑电信号去噪效果不好。The existing technology also proposes an EEG signal denoising method based on singular spectrum analysis (SSA). This method decomposes the original EEG signal into different sub-components through singular spectrum analysis, and sets an autocorrelation coefficient threshold to extract brain signals. The sub-components related to the main component of the electrical signal are reconstructed from the sub-components to obtain corresponding time series to form the main component of the EEG signal; the main component of the EEG signal is subtracted from the original EEG signal to obtain the residual EEG component; The residual EEG components are input into a deep convolutional neural network to extract detailed features, and then the output of the deep convolutional neural network is combined with the main components of the EEG signal to reconstruct the noise-removed EEG signal. When reconstructing the original EEG signal, this method needs to set a threshold to extract the sub-components related to the main component of the EEG signal. It is easy to mistakenly remove the sub-components that should be retained and destroy the EEG signal, resulting in brain damage. The denoising effect of electrical signals is not good.
发明内容Contents of the invention
本发明为克服上述现有技术所述的在对脑电信号去噪时,去噪效果不佳的缺陷,提供一种能够自适应确定脑电信号分解个数的基于PPMCC(皮尔森相关系数,Pearsoncorrelation coefficient)和自适应VMD的脑电信号去噪方法及系统。In order to overcome the defect of poor denoising effect in denoising EEG signals described above in the prior art, the present invention provides a method based on PPMCC (Pearson Correlation Coefficient, which can adaptively determine the number of EEG signal decompositions). Pearson correlation coefficient) and adaptive VMD EEG signal denoising method and system.
为解决上述技术问题,本发明的技术方案如下:In order to solve the above technical problems, the technical solutions of the present invention are as follows:
一种基于PPMCC和自适应VMD的脑电信号去噪方法,包括以下步骤:An EEG signal denoising method based on PPMCC and adaptive VMD, including the following steps:
S1:对原始脑电信号进行奇异谱分析,得到奇异值;S1: Perform singular spectrum analysis on the original EEG signal to obtain singular values;
S2:对奇异值求解皮尔森相关系数,根据皮尔森相关系数确定脑电信号的奇异值及噪声信号的奇异值,将脑电信号的奇异值重构为新的脑电信号;S2: Solve the Pearson correlation coefficient for singular values, determine the singular values of the EEG signal and the singular value of the noise signal based on the Pearson correlation coefficient, and reconstruct the singular value of the EEG signal into a new EEG signal;
S3:对所述新的脑电信号进行经验模态分解,得到若干本征模态函数;S3: Perform empirical mode decomposition on the new EEG signal to obtain several eigenmodal functions;
S4:计算每个本征模态函数与新的脑电信号间的互信息熵,自适应确定变分模态分解新的脑电信号的分解个数;S4: Calculate the mutual information entropy between each eigenmodal function and the new EEG signal, and adaptively determine the number of decompositions of the new EEG signal through variational mode decomposition;
S5:根据分解个数对新的脑电信号进行变分模态分解,完成脑电信号去噪。S5: Perform variational mode decomposition on the new EEG signal based on the number of decompositions to complete EEG signal denoising.
本发明还提出了一种基于PPMCC和自适应VMD的脑电信号去噪系统用于实现上述的基于PPMCC和自适应VMD的脑电信号去噪方法。所述系统包括:The present invention also proposes an EEG signal denoising system based on PPMCC and adaptive VMD to implement the above EEG signal denoising method based on PPMCC and adaptive VMD. The system includes:
奇异值生成模块,用于对原始脑电信号进行奇异谱分析,得到奇异值;The singular value generation module is used to perform singular spectrum analysis on the original EEG signal to obtain singular values;
脑电信号重构模块,用于对奇异值求解皮尔森相关系数,根据皮尔森相关系数确定脑电信号的奇异值及噪声信号的奇异值,将脑电信号的奇异值重构为新的脑电信号;The EEG signal reconstruction module is used to solve the Pearson correlation coefficient for singular values, determine the singular values of the EEG signal and the singular value of the noise signal based on the Pearson correlation coefficient, and reconstruct the singular values of the EEG signal into a new brain electric signal;
经验模态分解模块,用于对所述新的脑电信号进行经验模态分解,得到若干本征模态函数;An empirical mode decomposition module is used to perform empirical mode decomposition on the new EEG signal to obtain several eigenmode functions;
自适应确定分解个数模块:用于计算每个本征模态函数与新的脑电信号间的互信息熵,自适应确定变分模态分解新的脑电信号的分解个数;Adaptive determination of the number of decompositions module: used to calculate the mutual information entropy between each intrinsic mode function and the new EEG signal, and adaptively determine the number of decompositions of the new EEG signal through variational mode decomposition;
去噪模块,用于根据分解个数对新的脑电信号进行变分模态分解,完成脑电信号去噪。The denoising module is used to perform variational mode decomposition on new EEG signals based on the number of decompositions to complete EEG signal denoising.
本发明还提出了一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机可读指令,其中所述计算机可读指令被所述处理器执行时,使得所述处理器执行本发明提出的基于PPMCC和自适应VMD的脑电信号去噪方法的步骤。The present invention also proposes a computer device, including a memory and a processor. Computer-readable instructions are stored in the memory, and when the computer-readable instructions are executed by the processor, they cause the processor to execute the present invention. The steps of the proposed EEG signal denoising method based on PPMCC and adaptive VMD.
与现有技术相比,本发明技术方案的有益效果是:Compared with the existing technology, the beneficial effects of the technical solution of the present invention are:
本发明使用基于皮尔森相关系数的奇异谱分析对脑电信号进行处理,能自适应地去除噪声的奇异值和保留脑电信号的奇异值,保证对脑电信号完全重构的同时去除部分噪声;而且本发明还能自适应地确定重构的脑电信号的分解个数,确保变分模态分解方法的分解个数设置正确,从而达到良好的脑电信号去噪效果。The present invention uses singular spectrum analysis based on Pearson correlation coefficient to process the EEG signal, and can adaptively remove the singular values of the noise and retain the singular values of the EEG signal, ensuring complete reconstruction of the EEG signal while removing part of the noise. ; Moreover, the present invention can also adaptively determine the number of decompositions of the reconstructed EEG signal to ensure that the number of decompositions of the variational mode decomposition method is set correctly, thereby achieving a good denoising effect of the EEG signal.
附图说明Description of drawings
图1为实施例1的基于PPMCC和自适应VMD的脑电信号去噪方法的流程示意图;Figure 1 is a schematic flow chart of the EEG signal denoising method based on PPMCC and adaptive VMD in Embodiment 1;
图2为实施例1的对新的脑电信号进行经验模态分解的流程图;Figure 2 is a flow chart of empirical mode decomposition of new EEG signals in Embodiment 1;
图3为实施例2的基于PPMCC和自适应VMD的脑电信号去噪系统的整体框架图。Figure 3 is an overall framework diagram of the EEG signal denoising system based on PPMCC and adaptive VMD in Embodiment 2.
具体实施方式Detailed ways
附图仅用于示例性说明,不能理解为对本专利的限制;The drawings are for illustrative purposes only and should not be construed as limitations of this patent;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;In order to better illustrate this embodiment, some components in the drawings will be omitted, enlarged or reduced, which does not represent the size of the actual product;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。It is understandable to those skilled in the art that some well-known structures and their descriptions may be omitted in the drawings.
下面结合附图和实施例对本发明的技术方案做进一步的说明。The technical solution of the present invention will be further described below with reference to the accompanying drawings and examples.
实施例1Example 1
本实施例提出一种基于PPMCC和自适应VMD的脑电信号去噪方法,图1为本实施例的基于PPMCC和自适应VMD的脑电信号去噪方法的流程示意图。This embodiment proposes an EEG signal denoising method based on PPMCC and adaptive VMD. Figure 1 is a flow chart of the EEG signal denoising method based on PPMCC and adaptive VMD in this embodiment.
在本实施例提出的基于PPMCC和自适应VMD的脑电信号去噪方法中,包括以下步骤:In the EEG signal denoising method based on PPMCC and adaptive VMD proposed in this embodiment, the following steps are included:
S1:对原始脑电信号进行奇异谱分析,得到奇异值;S1: Perform singular spectrum analysis on the original EEG signal to obtain singular values;
S2:对奇异值求解皮尔森相关系数,根据皮尔森相关系数确定脑电信号的奇异值及噪声信号的奇异值,将脑电信号的奇异值重构为新的脑电信号;S2: Solve the Pearson correlation coefficient for singular values, determine the singular values of the EEG signal and the singular value of the noise signal based on the Pearson correlation coefficient, and reconstruct the singular value of the EEG signal into a new EEG signal;
S3:对所述新的脑电信号进行经验模态分解,得到若干本征模态函数;S3: Perform empirical mode decomposition on the new EEG signal to obtain several eigenmodal functions;
S4:计算每个本征模态函数与新的脑电信号间的互信息熵,自适应确定变分模态分解新的脑电信号的分解个数;S4: Calculate the mutual information entropy between each eigenmodal function and the new EEG signal, and adaptively determine the number of decompositions of the new EEG signal through variational mode decomposition;
S5:根据分解个数对新的脑电信号进行变分模态分解,完成脑电信号去噪。S5: Perform variational mode decomposition on the new EEG signal based on the number of decompositions to complete EEG signal denoising.
在具体实施过程中,通过使用基于皮尔森相关系数的奇异谱分析对脑电信号进行处理,能自适应地去除噪声的奇异值和保留脑电信号的奇异值,保证对脑电信号完全重构的同时去除部分噪声;再利用经验模态分解从新的脑电信号中分解出若干本征模态函数,利用本征模态函数计算互信息熵,从而自适应地确定新的脑电信号的分解个数,确保变分模态分解方法的分解个数设置正确,从而根据分解个数对新的脑电信号进行变分模态分解,完成脑电信号去噪,达到良好的脑电信号去噪效果。In the specific implementation process, by using singular spectrum analysis based on Pearson correlation coefficient to process the EEG signal, the singular values of the noise can be adaptively removed and the singular values of the EEG signal retained, ensuring complete reconstruction of the EEG signal. while removing part of the noise; then use empirical mode decomposition to decompose several intrinsic mode functions from the new EEG signal, and use the intrinsic mode functions to calculate the mutual information entropy, thereby adaptively determining the decomposition of the new EEG signal. number, ensure that the number of decompositions of the variational mode decomposition method is set correctly, so as to perform variational mode decomposition on the new EEG signal according to the number of decompositions, complete EEG signal denoising, and achieve good EEG signal denoising. Effect.
在一可选实施例中,S1步骤包括:In an optional embodiment, step S1 includes:
S1.1:将所述原始脑电信号以长度为N的一维实序列X的形式表示,表达式为:S1.1: Represent the original EEG signal in the form of a one-dimensional real sequence X of length N. The expression is:
X={x1,x2,……,xN}X={x 1 ,x 2 ,...,x N }
S1.2:以预设的窗口长度L对一维实序列X进行滞后排列,得到轨迹矩阵X1;S1.2: Perform a lag arrangement on the one-dimensional real sequence X with the preset window length L to obtain the trajectory matrix X 1 ;
其中,1<L<N,Q=N-L+1;Among them, 1<L<N, Q=N-L+1;
S1.3:对轨迹矩阵X1进行奇异值分解,得到轨迹矩阵X1对应的d个奇异值;S1.3: Perform singular value decomposition on the trajectory matrix X 1 to obtain d singular values corresponding to the trajectory matrix X 1 ;
所述奇异值分解的过程表达式满足:The process expression of singular value decomposition satisfies:
其中,d为预设的正整数,λi表示轨迹矩阵X1对应的第i个奇异值,Ui和Vi皆为单位正交矩阵,且Ui和Vi分别表示轨迹矩阵X1的第i个左奇异向量矩阵和第i个右奇异向量矩阵,I表示单位矩阵。Among them, d is a preset positive integer, λ i represents the i-th singular value corresponding to the trajectory matrix X 1 , U i and V i are both unit orthogonal matrices, and U i and V i respectively represent the The i-th left singular vector matrix and the i-th right singular vector matrix, I represents the identity matrix.
其中可选地,预设的d满足不等式:d=rank(X)≤min(L,Q)。Optionally, the preset d satisfies the inequality: d=rank(X)≤min(L,Q).
在本可选实施例中,如果d的值取得过大,可能会取到零奇异值,从而导致计算出值为零的皮尔森相关系数,使得后续脑电信号奇异值和噪声信号奇异值的分组结果不准确,从而使脑电信号去噪效果不好;如果d的值取得过小,可能会漏掉脑电信号对应的奇异值,从而损坏脑电信号的原始重要信息;本可选实施例预设的d满足不等式:d=rank(X)≤min(L,Q),确保不会取到零奇异值,也不会漏掉脑电信号对应的奇异值,还能去除脑电信号中的大部分高频噪声。In this optional embodiment, if the value of d is too large, zero singular values may be obtained, resulting in the calculation of a Pearson correlation coefficient with a value of zero, resulting in a difference between the singular values of the subsequent EEG signals and the singular values of the noise signal. The grouping results are inaccurate, resulting in poor EEG signal denoising effect; if the value of d is too small, the singular values corresponding to the EEG signal may be missed, thereby damaging the original important information of the EEG signal; this optional implementation For example, the preset d satisfies the inequality: d=rank(X)≤min(L,Q), ensuring that zero singular values will not be obtained, singular values corresponding to the EEG signal will not be missed, and the EEG signal can be removed. Most of the high-frequency noise in the
其中可选地,S2步骤中,对奇异值求解皮尔森相关系数,根据皮尔森相关系数确定脑电信号的奇异值及噪声信号的奇异值的具体步骤包括:Optionally, in step S2, the specific steps of solving the Pearson correlation coefficient for the singular values and determining the singular values of the EEG signal and the singular value of the noise signal based on the Pearson correlation coefficient include:
按奇异值的值大小,对所有奇异值进行降序排序,按排序顺序计算所有相邻的两个奇异值对应的皮尔森相关系数;Sort all singular values in descending order according to the value of the singular value, and calculate the Pearson correlation coefficient corresponding to all two adjacent singular values in the sorting order;
计算表达式为:The calculation expression is:
1≤dL<d1≤dL<d
式中,λdL和λdL+1分别表示排序后的第dL个和第dL+1个奇异值;cov(λdL,λdL+1)表示λdL和λdL+1的协方差,σdLσdL+1表示λdL与λdL+1之和的标准差;ρλdL,λdL+1表示奇异值λdL和λdL+1之间的皮尔森相关系数;In the formula, λ dL and λ dL+1 respectively represent the dL-th and dL+1-th singular values after sorting; cov(λ dL , λ dL+1 ) represents the covariance of λ dL and λ dL+1 , σ dL σ dL+1 represents the standard deviation of the sum of λ dL and λ dL+1 ; ρλ dL , λ dL+1 represents the Pearson correlation coefficient between the singular values λ dL and λ dL+1 ;
比较所有皮尔森相关系数,获得所有皮尔森相关系数中值最小的皮尔森相关系数以/>对应的第v+1个奇异值λv+1为界,将前v+1个奇异值划分为脑电信号的奇异值,将剩余的奇异值划分为噪声信号的奇异值。Compare all Pearson correlation coefficients and obtain the Pearson correlation coefficient with the smallest value among all Pearson correlation coefficients with/> The corresponding v+1th singular value λ v+1 is used as the boundary. The first v+1 singular values are divided into singular values of the EEG signal, and the remaining singular values are divided into singular values of the noise signal.
在本可选实施例中,按奇异值的值大小,对所有奇异值进行降序排序,排序后的奇异值包括前若干个脑电信号的奇异值和后若干个噪声信号的奇异值;为了确定脑电信号的奇异值与噪声信号的奇异值的分界线,按排序顺序计算所有相邻的两个奇异值对应的皮尔森相关系数;皮尔森相关系数越小代表两个奇异值之间的相关性就越小,所有皮尔森相关系数中值最小的皮尔森相关系数对应的两个奇异值λv和λv+1之间的相关性最小,说明λv可能是脑电信号的奇异值,λv+1是噪声信号的奇异值;In this optional embodiment, all singular values are sorted in descending order according to the value of the singular value. The sorted singular values include the singular values of the first several EEG signals and the singular values of the last several noise signals; in order to determine The dividing line between the singular values of the EEG signal and the singular values of the noise signal. Calculate the Pearson correlation coefficient corresponding to all two adjacent singular values in sorting order; the smaller the Pearson correlation coefficient, the smaller the correlation between the two singular values. The smaller the correlation coefficient, the Pearson correlation coefficient with the smallest value among all Pearson correlation coefficients. The correlation between the corresponding two singular values λ v and λ v+1 is the smallest, indicating that λ v may be the singular value of the EEG signal, and λ v+1 is the singular value of the noise signal;
为了避免错误去除脑电信号的奇异值,本可选实施例选择把λv+1也视为脑电信号的奇异值,即使λv+1实际上为噪声信号的奇异值,也可以经过后续的变分模态分解被去除掉;In order to avoid incorrectly removing the singular values of the EEG signal, this optional embodiment chooses to regard λ v+1 as the singular value of the EEG signal. Even if λ v+1 is actually the singular value of the noise signal, it can still be processed through subsequent The variational mode decomposition of is removed;
本可选实施例不设置统一的皮尔森相关系数阈值,而是自适应地划分脑电信号的奇异值和噪声信号的奇异值,可以有效避免人为设置的阈值误差大,从而表面造成脑电信号的信息损失或留下过多噪声信号。This optional embodiment does not set a unified Pearson correlation coefficient threshold, but adaptively divides the singular values of the EEG signal and the singular values of the noise signal, which can effectively avoid artificially setting the threshold with large errors, thereby causing the EEG signal to appear on the surface. information loss or leaving too much noise in the signal.
其中可选地,将脑电信号的奇异值重构为新的脑电信号的具体步骤包括:Optionally, the specific steps of reconstructing the singular values of the EEG signal into a new EEG signal include:
计算脑电信号的奇异值对应的轨迹矩阵X2,计算表达式为:Calculate the trajectory matrix X 2 corresponding to the singular value of the EEG signal. The calculation expression is:
式中,Y1、Y2和Yj+1分别表示轨迹矩阵X2的第1个、第2个和第j+1个轨迹矩阵分量;λ1、λ2和λj+1分别表示第1个、第2个和第j+1个脑电信号的奇异值;In the formula, Y 1 , Y 2 and Y j+1 respectively represent the first, second and j+1th trajectory matrix components of the trajectory matrix X 2 ; λ 1 , λ 2 and λ j+1 respectively represent the The singular values of the 1st, 2nd and j+1th EEG signals;
将轨迹矩阵X2中的每一个轨迹矩阵分量转换为长度为N的一维实序列,获得j+1个一维实序列;Convert each trajectory matrix component in the trajectory matrix X 2 into a one-dimensional real sequence of length N, and obtain j+1 one-dimensional real sequences;
L*=min(L,Q)L * =min(L,Q)
Q*=max(L,Q)Q * =max(L,Q)
其中,Y′a表示轨迹矩阵X2中的第a个轨迹矩阵分量对应的序列,表示序列Y′a的第/>个序列元素;/>表示轨迹矩阵分量Ya中的第m行第/>列对应的元素;Among them, Y′ a represents the sequence corresponding to the a-th trajectory matrix component in the trajectory matrix X 2 , Represents the sequence Y′ a 's/> sequence elements;/> Represents the m-th row/> in the trajectory matrix component Y a The element corresponding to the column;
将j+1个长度为N的一维实序列相加,得到新的脑电信号X′。Add j+1 one-dimensional real sequences of length N to obtain a new EEG signal X′.
在本可选实施例中,将j+1个长度为N的一维实序列相加时,是将任一序列的第i个序列元素与其他序列的第i个序列元素,从而得到一个新的长度为N的一维实序列,即,得到新的脑电信号X′。In this optional embodiment, when adding j+1 one-dimensional real sequences of length N, the i-th sequence element of any sequence is combined with the i-th sequence element of other sequences to obtain a new A one-dimensional real sequence of length N, that is, a new EEG signal X′ is obtained.
其中可选地,图2为本实施例的对新的脑电信号进行经验模态分解的流程图;S3步骤包括:Optionally, Figure 2 is a flow chart of empirical mode decomposition of new EEG signals in this embodiment; step S3 includes:
S3.1:将新的脑电信号X′转换为连续时域脑电信号;S3.1: Convert the new EEG signal X′ into a continuous time domain EEG signal;
S3.2:对连续时域脑电信号进行经验模态分解,获得第一本征模态函数,将连续时域脑电信号减去第一本征模态函数,得到剩余分量;S3.2: Perform empirical mode decomposition on the continuous time-domain EEG signal to obtain the first eigenmode function. Subtract the first eigenmode function from the continuous time-domain EEG signal to obtain the remaining component;
S3.3:对剩余分量进行经验模态分解,获得第二本征模态函数,将剩余分量减去第二本征模态函数,获得更新的剩余分量;S3.3: Perform empirical mode decomposition on the remaining components to obtain the second eigenmode function, subtract the second eigenmode function from the remaining components to obtain the updated remaining components;
S3.4:重复S3.3步骤迭代更新剩余分量,直到更新的剩余分量不满足本征模态函数约束条件时,停止迭代更新,输出迭代过程获得的所有本征模态函数。S3.4: Repeat step S3.3 to iteratively update the remaining components until the updated remaining components do not meet the constraint conditions of the intrinsic mode function, stop the iterative update, and output all the intrinsic mode functions obtained by the iterative process.
本征模态函数(IMF)的定义如下:如果一个函数满足以下两个条件,则认为它是IMF:The definition of intrinsic mode function (IMF) is as follows: if a function satisfies the following two conditions, it is considered to be an IMF:
(1)函数在整个时间范围内,局部极值点和过零点的数目必须相等或最多相差一个;(1) In the entire time range of the function, the number of local extreme points and zero-crossing points must be equal or differ by at most one;
(2)在任意时刻点,局部最大值的包络(上包络线)和局部最小值的包络(下包络线)的平均值必须为零。(2) At any point in time, the average value of the envelope of the local maximum (upper envelope) and the envelope of the local minimum (lower envelope) must be zero.
所以,所述本征模态函数约束条件具体为:信号的极值点总数与过零点总数的差值的绝对值小于等于1,且信号的包络均值等于0。Therefore, the intrinsic mode function constraint conditions are specifically: the absolute value of the difference between the total number of extreme points of the signal and the total number of zero-crossing points is less than or equal to 1, and the envelope mean of the signal is equal to 0.
经验模态分解(EMD)是一个无需预先设定任何基函数而依据数据自身的时间尺度特征来进行信号分解的一种时频域信号处理方式。对信号进行EMD,就是对信号的包络进行迭代检测,并对信号进行筛选。由于这种分解是基于信号的局部时间尺度特征,因此适用于非线性和非平稳信号的表示。Empirical mode decomposition (EMD) is a time-frequency domain signal processing method that decomposes signals based on the time scale characteristics of the data itself without setting any basis functions in advance. Performing EMD on a signal is to iteratively detect the envelope of the signal and filter the signal. Since this decomposition is based on the local time scale characteristics of the signal, it is suitable for the representation of nonlinear and non-stationary signals.
在本可选实施例中,所述经验模态分解采用样条插值法分别拟合连续时域脑电信号、中间信号、剩余分量或更新的剩余分量的所有局部极大值点和所有局部极小值点,形成上包络线eup(t)和下包络线elow(t),计算eup(t)和elow(t)对应的包络均值m(t);将连续时域脑电信号、剩余分量或更新的剩余分量减去包络均值m(t),得到中间信号;判断中间信号是否满足本征模态函数约束条件,若是,将中间信号视为本征模态函数,输出本征模态函数;否则,继续对中间信号进行经验模态分解;In this optional embodiment, the empirical mode decomposition uses spline interpolation to fit all local maximum points and all local extremes of the continuous time domain EEG signal, intermediate signal, residual component or updated residual component. The small value point forms the upper envelope e up (t) and the lower envelope e low (t), and calculates the envelope mean m (t) corresponding to e up (t) and e low (t); convert the continuous time Subtract the envelope mean m(t) from the domain EEG signal, residual component or updated residual component to obtain the intermediate signal; determine whether the intermediate signal satisfies the intrinsic mode function constraint, and if so, the intermediate signal is regarded as the intrinsic mode. function, output the eigenmode function; otherwise, continue to perform empirical mode decomposition on the intermediate signal;
其中, in,
其中可选地,S4步骤包括:Optionally, step S4 includes:
S4.1:按本征模态函数的频率大小,对所有本征模态函数进行升序排序,按排列顺序计算每个本征模态函数与新的脑电信号X′之间的互信息熵;S4.1: Sort all the eigenmodal functions in ascending order according to the frequency of the eigenmodal functions, and calculate the mutual information entropy between each eigenmodal function and the new EEG signal X′ in the order of arrangement. ;
计算表达式为:The calculation expression is:
其中,MIEg表示第g个互信息熵,Ig表示第g个本征模态函数,x′h表示新的脑电信号X′中的第h个序列元素,P(Ig,X′)表示第g个本征模态函数与新的脑电信号X′之间的联合概率分布,p(Ig)和p(x′h)分别表示Ig和x′h的边缘概率分布;Among them, MIE g represents the g-th mutual information entropy, I g represents the g-th eigenmodal function, x′ h represents the h-th sequence element in the new EEG signal X′, P(I g ,X′ ) represents the joint probability distribution between the g-th eigenmodal function and the new EEG signal X′, p(I g ) and p(x′ h ) represent the marginal probability distributions of I g and x′ h respectively;
S4.2:比较所有互信息熵,获得值最小的互信息熵MIEf,计算排列在MIEf之后的所有互信息熵的个数xnoise,利用所述个数Knoise确定新的脑电信号X′的分解个数K:S4.2: Compare all mutual information entropies, obtain the mutual information entropy MIE f with the smallest value, calculate the number x noise of all mutual information entropies arranged after MIE f , and use the number K noise to determine the new EEG signal The number of decompositions K of X′:
K=Knoise+1。K=K noise +1.
因为使用EMD对信号进行分解,容易出现模态混叠,导致两个信号包含的信息混叠在一起,无法有效分离,从而影响信躁分离的效果,所以本可选实施例仅使用EMD得到新的脑电信号的本征模态函数,使用VMD对新的脑电信号进行分解;Because EMD is used to decompose signals, modal aliasing is prone to occur, causing the information contained in the two signals to be mixed together and unable to be effectively separated, thus affecting the effect of signal-to-noise separation. Therefore, this optional embodiment only uses EMD to obtain new The eigenmodal function of the EEG signal is used to decompose the new EEG signal using VMD;
在使用VMD对新的脑电信号进行分解前,需要预设分解个数,该分解个数不宜过大,否则会出现过分解,致使新的脑电信号因为分解个数过多而损失信息;该分解个数也不宜过小,否则会导致新的脑电信号分解不完全,无法做到信躁分离;Before using VMD to decompose a new EEG signal, you need to preset the number of decompositions. The number of decompositions should not be too large, otherwise over-decomposition will occur, causing the new EEG signal to lose information due to too many decompositions; The number of decompositions should not be too small, otherwise it will lead to incomplete decomposition of new EEG signals, making it impossible to separate signal from noise;
在本实施例中,使用互信息熵确定新的脑电信号的分解个数;其中,互信息熵表示本征模态函数Ih所能带来的对序列元素x′h不确定度的减少程度,互信息熵的值越小,其对应的本征模态函数中包含有效的脑电信号就越少;值最小的互信息熵MIEf对应的本征模态函数中包含有效的脑电信号最少,又因为本征模态函数是按频率由低到高的顺序排列的,而且,脑电信号的频率较低,所以判断MIEf及MIEf之前的互信息熵为脑电信号对应的互信息熵,MIEf之后的互信息熵为噪声信号对应的互信息熵;In this embodiment, the mutual information entropy is used to determine the number of decompositions of the new EEG signal; where the mutual information entropy represents the reduction in uncertainty of the sequence element x′ h that the intrinsic mode function I h can bring degree, the smaller the value of mutual information entropy, the less effective EEG signals are contained in its corresponding eigenmodal function; the eigenmodal function corresponding to the smallest mutual information entropy MIE f contains effective EEG signals. The signal is the least, and because the eigenmode functions are arranged in order from low to high frequency, and the frequency of the EEG signal is low, it is judged that MIE f and the mutual information entropy before MIE f are corresponding to the EEG signal. Mutual information entropy, the mutual information entropy after MIE f is the mutual information entropy corresponding to the noise signal;
由于值最小的互信息熵MIEf可能出现在前3个互信息熵的范围内,如果以脑电信号对应的互信息熵个数为新的脑电信号的分解个数,该分解个数可能过小,所以不以脑电信号对应的互信息熵个数为标准设置分解个数;因为在之前的步骤中,已经使用基于皮尔森相关系数的奇异谱分析对脑电信号进行部分去噪,所以噪声信号对应的互信息熵个数一般不会过大或过小,所以将噪声信号对应的互信息熵个数Knoise为标准设置分解个数是个不错的选择;在此基础上,经过多次实验对比,最终将分解个数设置为Knoise+1。Since the mutual information entropy MIE f with the smallest value may appear within the range of the first three mutual information entropies, if the number of mutual information entropies corresponding to the EEG signal is used as the number of decompositions of the new EEG signal, the number of decompositions may is too small, so the number of decompositions is not set based on the number of mutual information entropy corresponding to the EEG signal; because in the previous step, singular spectrum analysis based on the Pearson correlation coefficient has been used to partially denoise the EEG signal. Therefore, the number of mutual information entropy corresponding to the noise signal is generally not too large or too small, so it is a good choice to set the number of mutual information entropy K noise corresponding to the noise signal as the standard setting number of decompositions; on this basis, after many After comparing the experiments, the number of decompositions was finally set to K noise +1.
其中可选地,S5步骤包括:Optionally, step S5 includes:
S5.1:基于变分模态分解,构建变分问题模型,表达式为:S5.1: Based on variational mode decomposition, construct a variational problem model, the expression is:
S=X′S=X′
式中,uk表示新的脑电信号X′对应的第k个模态分量;ωk表示uk的中心频率,δ(t)表示狄拉克函数,*表示卷积运算符;In the formula, u k represents the k-th modal component corresponding to the new EEG signal X′; ω k represents the center frequency of u k , δ(t) represents the Dirac function, and * represents the convolution operator;
S5.2:将变分问题转化为非约束性变分问题:S5.2: Convert the variation problem into an unconstrained variation problem:
式中,α表示惩罚参数,用于降低高斯噪声的干扰;表示对函数求偏导,θ表示拉格朗日乘法算子;τ表示噪声容忍度,/>和/>分别对应和/>的傅里叶变换;In the formula, α represents the penalty parameter, which is used to reduce the interference of Gaussian noise; Represents the partial derivative of the function, θ represents the Lagrangian multiplier operator; τ represents the noise tolerance,/> and/> corresponding respectively and/> Fourier transform of;
S5.3:利用交替迭代法迭代求解非约束性变分问题,当满足迭代停止条件时,结束迭代,获得K个最终的模态分量和K个中心频率,去掉不属于脑电信号的模态分量和中心频率,完成脑电信号去噪;S5.3: Use the alternating iteration method to iteratively solve the non-constrained variation problem. When the iteration stop condition is met, end the iteration, obtain K final modal components and K central frequencies, and remove modes that do not belong to the EEG signal. components and center frequencies to complete EEG signal denoising;
所述迭代停止条件为:The iteration stop condition is:
式中,ε表示预设的精度收敛判据。In the formula, ε represents the preset accuracy convergence criterion.
作为示例性说明,通过看频率、看频域、或看时域图形来判断最终的模态分量是否属于脑电信号;其中,因为脑电信号一般分为α波、β波、θ波和δ波,且每种波都有其特定的频率范围,所以,当获得的最终的模态分量的频率不属于这四种波的频率范围内时,该最终的模态分量被视为噪声去除。As an example, determine whether the final modal component belongs to the EEG signal by looking at the frequency, frequency domain, or time domain graphics; among them, because the EEG signal is generally divided into alpha waves, beta waves, theta waves, and delta waves Waves, and each wave has its specific frequency range, so when the frequency of the final modal component obtained does not fall within the frequency range of these four waves, the final modal component is regarded as noise for removal.
在本可选实施例中,因为脑电信号大部分噪声都在高频(50Hz~150Hz)上,所以使用基于皮尔森相关系数的奇异谱分析对脑电信号处理,既能保证信号完全重构的同时,还能去除一部分高频的噪声。基于皮尔森相关系数的奇异谱分析能根据分解出的信号分量的自适应地去选择合适非零奇异值的分量进行重构,能很好的保留干净的脑电信号。由于变分模态分解在低频信号上分解性能比在高频信号上的要更好,所以使用自适应的变分模态分解对重构的脑电信号进行处理,不仅能去除低频的眼电伪迹,还能够抑制传统经验模态分解存在的模态混合和端点效应,拥有更好鲁棒性,避免噪声的影响。In this optional embodiment, because most of the noise in the EEG signal is at high frequencies (50Hz~150Hz), singular spectrum analysis based on Pearson correlation coefficient is used to process the EEG signal, which can ensure complete reconstruction of the signal. At the same time, it can also remove part of the high-frequency noise. Singular spectrum analysis based on Pearson correlation coefficient can adaptively select appropriate non-zero singular value components for reconstruction based on the decomposed signal components, and can well preserve clean EEG signals. Since variational mode decomposition has better decomposition performance on low-frequency signals than on high-frequency signals, using adaptive variational mode decomposition to process the reconstructed EEG signals can not only remove low-frequency EEG signals. Artifacts can also suppress the modal mixing and endpoint effects that exist in traditional empirical mode decomposition, have better robustness, and avoid the influence of noise.
实施例2Example 2
本实施例提出一种基于PPMCC和自适应VMD的脑电信号去噪系统,用于实现实施例1提出的一种基于PPMCC和自适应VMD的脑电信号去噪方法。This embodiment proposes an EEG signal denoising system based on PPMCC and adaptive VMD, which is used to implement the EEG signal denoising method based on PPMCC and adaptive VMD proposed in Embodiment 1.
图3为本实施例的基于PPMCC和自适应VMD的脑电信号去噪系统的整体框架图。Figure 3 is an overall framework diagram of the EEG signal denoising system based on PPMCC and adaptive VMD in this embodiment.
所述基于PPMCC和自适应VMD的脑电信号去噪系统,包括:The EEG signal denoising system based on PPMCC and adaptive VMD includes:
奇异值生成模块,用于对原始脑电信号进行奇异谱分析,得到奇异值;The singular value generation module is used to perform singular spectrum analysis on the original EEG signal to obtain singular values;
脑电信号重构模块,用于对奇异值求解皮尔森相关系数,根据皮尔森相关系数确定脑电信号的奇异值及噪声信号的奇异值,将脑电信号的奇异值重构为新的脑电信号;The EEG signal reconstruction module is used to solve the Pearson correlation coefficient for singular values, determine the singular values of the EEG signal and the singular value of the noise signal based on the Pearson correlation coefficient, and reconstruct the singular values of the EEG signal into a new brain electric signal;
经验模态分解模块,用于对所述新的脑电信号进行经验模态分解,得到若干本征模态函数;An empirical mode decomposition module is used to perform empirical mode decomposition on the new EEG signal to obtain several eigenmode functions;
自适应确定分解个数模块:用于计算每个本征模态函数与新的脑电信号间的互信息熵,自适应确定变分模态分解脑电信号的分解个数;Adaptively determine the number of decomposition modules: used to calculate the mutual information entropy between each intrinsic mode function and the new EEG signal, and adaptively determine the number of decompositions of the variational mode decomposition EEG signal;
去噪模块,用于根据分解个数对新的脑电信号进行变分模态分解,完成脑电信号去噪。The denoising module is used to perform variational mode decomposition on new EEG signals based on the number of decompositions to complete EEG signal denoising.
可以理解,本实施例的系统应用于上述实施例1的方法,上述实施例1中的可选项同样适用于本实施例,故在此不再重复描述。It can be understood that the system of this embodiment is applied to the method of the above-mentioned Embodiment 1, and the options in the above-mentioned Embodiment 1 are also applicable to this embodiment, so the description will not be repeated here.
实施例3Example 3
本实施例提出一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机可读指令,其中所述计算机可读指令被所述处理器执行时,使得所述处理器执行实施例1提出的基于PPMCC和自适应VMD的脑电信号去噪方法的步骤。This embodiment proposes a computer device, including a memory and a processor. The memory stores computer readable instructions. When executed by the processor, the computer readable instructions cause the processor to execute Embodiment 1. The steps of the proposed EEG signal denoising method based on PPMCC and adaptive VMD.
可以理解,本实施例的计算机设备应用于上述实施例1的方法,上述实施例1中的可选项同样适用于本实施例,故在此不再重复描述。It can be understood that the computer device of this embodiment is applied to the method of the above-mentioned Embodiment 1, and the options in the above-mentioned Embodiment 1 are also applicable to this embodiment, so the description will not be repeated here.
相同或相似的标号对应相同或相似的部件;The same or similar numbers correspond to the same or similar parts;
附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制;The terms used to describe positional relationships in the drawings are only for illustrative purposes and should not be construed as limitations to this patent;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Obviously, the above-mentioned embodiments of the present invention are only examples to clearly illustrate the present invention, and are not intended to limit the implementation of the present invention. For those of ordinary skill in the art, other different forms of changes or modifications can be made based on the above description. An exhaustive list of all implementations is neither necessary nor possible. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention shall be included in the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202311061172.5A CN117158999B (en) | 2023-08-22 | 2023-08-22 | A method and system for denoising EEG signals based on PPMCC and adaptive VMD |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202311061172.5A CN117158999B (en) | 2023-08-22 | 2023-08-22 | A method and system for denoising EEG signals based on PPMCC and adaptive VMD |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN117158999A true CN117158999A (en) | 2023-12-05 |
| CN117158999B CN117158999B (en) | 2024-11-05 |
Family
ID=88946100
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202311061172.5A Active CN117158999B (en) | 2023-08-22 | 2023-08-22 | A method and system for denoising EEG signals based on PPMCC and adaptive VMD |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN117158999B (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117370737A (en) * | 2023-12-08 | 2024-01-09 | 成都信息工程大学 | Unsteady state non-Gaussian noise removing method based on self-adaptive Gaussian filter |
| CN117860273A (en) * | 2024-03-13 | 2024-04-12 | 小舟科技有限公司 | Intelligent noise reduction method, system, equipment and medium for electroencephalogram signals |
| CN118766471A (en) * | 2024-06-12 | 2024-10-15 | 西南石油大学 | A device and method based on pet health monitoring |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109307862A (en) * | 2018-07-05 | 2019-02-05 | 西安电子科技大学 | A method for individual identification of target radiation source |
| CN109558863A (en) * | 2019-01-07 | 2019-04-02 | 哈尔滨工业大学(深圳) | EEG signals character representation and extracting method, device and storage medium |
| CN111310570A (en) * | 2020-01-16 | 2020-06-19 | 山东师范大学 | A method and system for EEG emotion recognition based on VMD and WPD |
| WO2021056727A1 (en) * | 2019-09-27 | 2021-04-01 | 山东科技大学 | Joint noise reduction method based on variational mode decomposition and permutation entropy |
| CN113887398A (en) * | 2021-09-29 | 2022-01-04 | 中南大学 | GPR signal denoising method based on variational modal decomposition and singular spectrum analysis |
| DE202022103434U1 (en) * | 2022-06-20 | 2022-06-24 | Khyati Chopra | An encephalogram (EEG)-based device used to detect epileptic seizures |
| CN115211869A (en) * | 2022-08-23 | 2022-10-21 | 浙江大学 | An EEG signal denoising method, device and system based on empirical mode decomposition and Kalman filtering |
-
2023
- 2023-08-22 CN CN202311061172.5A patent/CN117158999B/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109307862A (en) * | 2018-07-05 | 2019-02-05 | 西安电子科技大学 | A method for individual identification of target radiation source |
| CN109558863A (en) * | 2019-01-07 | 2019-04-02 | 哈尔滨工业大学(深圳) | EEG signals character representation and extracting method, device and storage medium |
| WO2021056727A1 (en) * | 2019-09-27 | 2021-04-01 | 山东科技大学 | Joint noise reduction method based on variational mode decomposition and permutation entropy |
| CN111310570A (en) * | 2020-01-16 | 2020-06-19 | 山东师范大学 | A method and system for EEG emotion recognition based on VMD and WPD |
| CN113887398A (en) * | 2021-09-29 | 2022-01-04 | 中南大学 | GPR signal denoising method based on variational modal decomposition and singular spectrum analysis |
| DE202022103434U1 (en) * | 2022-06-20 | 2022-06-24 | Khyati Chopra | An encephalogram (EEG)-based device used to detect epileptic seizures |
| CN115211869A (en) * | 2022-08-23 | 2022-10-21 | 浙江大学 | An EEG signal denoising method, device and system based on empirical mode decomposition and Kalman filtering |
Non-Patent Citations (1)
| Title |
|---|
| 黄维新;刘敦文;: "基于变分模态分解和独立成分分析的矿山微震信号降噪", 振动与冲击, no. 04, 28 February 2019 (2019-02-28), pages 61 - 68 * |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117370737A (en) * | 2023-12-08 | 2024-01-09 | 成都信息工程大学 | Unsteady state non-Gaussian noise removing method based on self-adaptive Gaussian filter |
| CN117370737B (en) * | 2023-12-08 | 2024-02-06 | 成都信息工程大学 | An unsteady non-Gaussian noise removal method based on adaptive Gaussian filter |
| CN117860273A (en) * | 2024-03-13 | 2024-04-12 | 小舟科技有限公司 | Intelligent noise reduction method, system, equipment and medium for electroencephalogram signals |
| CN117860273B (en) * | 2024-03-13 | 2024-06-11 | 小舟科技有限公司 | Intelligent noise reduction method, system, equipment and medium for electroencephalogram signals |
| CN118766471A (en) * | 2024-06-12 | 2024-10-15 | 西南石油大学 | A device and method based on pet health monitoring |
Also Published As
| Publication number | Publication date |
|---|---|
| CN117158999B (en) | 2024-11-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108714026B (en) | Fine-grained electrocardiosignal classification method based on deep convolutional neural network and online decision fusion | |
| CN109784242B (en) | EEG signal denoising method based on one-dimensional residual convolutional neural network | |
| CN117158999B (en) | A method and system for denoising EEG signals based on PPMCC and adaptive VMD | |
| CN110680308B (en) | ECG signal denoising method based on fusion of improved EMD and threshold method | |
| Tracey et al. | Nonlocal means denoising of ECG signals | |
| CN115211869B (en) | A method, device and system for denoising electroencephalogram signals based on empirical mode decomposition and Kalman filtering | |
| CN108113665B (en) | A method for automatic noise reduction of ECG signals | |
| CN110353672A (en) | Eye artefact removal system and minimizing technology in a kind of EEG signals | |
| CN107495959A (en) | A kind of electrocardiosignal sorting technique based on one-dimensional convolutional neural networks | |
| CN114224360B (en) | An EEG signal processing method, equipment and storage medium based on improved EMD-ICA | |
| WO2010045724A1 (en) | Method and rhythm extractor for detecting and isolating rhythmic signal features from an input signal using the wavelet packet transform | |
| Sharma | EEG signal denoising based on wavelet transform | |
| CN103690160A (en) | Electroencephalogram feature extraction method based on non-Gaussian time sequence model | |
| Vijayasankar et al. | Correction of blink artifacts from single channel EEG by EMD-IMF thresholding | |
| Keshavamurthy et al. | Review paper on denoising of ECG signal | |
| CN106805969B (en) | EEG relaxation recognition method and device based on Kalman filter and wavelet transform | |
| CN106236075B (en) | A kind of noise-reduction method applied to portable electrocardiograph institute thought-read electrograph | |
| Mishra et al. | Adaptive artefact canceller filter based on penguins search optimisation algorithm for ECG signals | |
| Pang et al. | A novel approach framework based on statistics for reconstruction and heartrate estimation from PPG with heavy motion artifacts | |
| CN111493864B (en) | EEG signal mixed noise processing method, equipment and storage medium | |
| El Bouny et al. | Wavelet-based denoising diffusion models for ecg signal enhancement | |
| Bhavsar | Improved ECG Denoising using CEEMAN based on Complexity Measure and Nonlocal Mean Approach. | |
| CN115105088B (en) | Improved electrocardiosignal denoising method based on wavelet domain sparse characteristic | |
| Khandait et al. | ECG signal processing using classifier to analyses cardiovascular disease | |
| Mortaheb et al. | Wavelet based single trial Event Related Potential extraction in very low SNR conditions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |