[go: up one dir, main page]

CN116879917A - Laser radar terrain matching auxiliary navigation method and system - Google Patents

Laser radar terrain matching auxiliary navigation method and system Download PDF

Info

Publication number
CN116879917A
CN116879917A CN202310938254.7A CN202310938254A CN116879917A CN 116879917 A CN116879917 A CN 116879917A CN 202310938254 A CN202310938254 A CN 202310938254A CN 116879917 A CN116879917 A CN 116879917A
Authority
CN
China
Prior art keywords
point cloud
map
digital elevation
matching
elevation map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310938254.7A
Other languages
Chinese (zh)
Inventor
赵龙
王晓龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202310938254.7A priority Critical patent/CN116879917A/en
Publication of CN116879917A publication Critical patent/CN116879917A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3811Point data, e.g. Point of Interest [POI]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3826Terrain data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Navigation (AREA)

Abstract

本发明提供了一种激光雷达地形匹配辅助导航方法及系统,方法包括利用惯性导航系统提供的位姿信息,实现激光三维地形点云数据坐标转换和航带拼接处理,进而对点云进行粗差点剔除和布料模拟滤波,构建点云数字高程地图;将点云数字高程地图与先验数字高程地图进行相似性对比,获取载体的位置修正信息;通过最优滤波实现惯性导航与激光点云地形匹配结果融合并对惯性导航系统误差进行校正。本发明通过点云投影成像模型、点云数据滤波处理算法和点云数字高程相似性匹配,有效提高了地形匹配辅助导航系统的地形高程检测水平和地图匹配精度,拓展了系统在复杂地形条件下的可用性。

The present invention provides a lidar terrain matching auxiliary navigation method and system. The method includes using the pose information provided by the inertial navigation system to realize coordinate conversion of laser three-dimensional terrain point cloud data and flight strip splicing processing, and then perform rough point cloud error. Eliminate and cloth simulate filtering to construct a point cloud digital elevation map; compare the similarity between the point cloud digital elevation map and the prior digital elevation map to obtain the position correction information of the carrier; achieve inertial navigation and laser point cloud terrain matching through optimal filtering The results are fused and the inertial navigation system errors are corrected. The invention effectively improves the terrain elevation detection level and map matching accuracy of the terrain matching auxiliary navigation system through point cloud projection imaging model, point cloud data filtering processing algorithm and point cloud digital elevation similarity matching, and expands the system's ability to operate under complex terrain conditions. availability.

Description

一种激光雷达地形匹配辅助导航方法及系统A lidar terrain matching assisted navigation method and system

技术领域Technical field

本发明涉及导航和定位技术领域,更具体的说是涉及一种激光雷达地形匹配辅助导航方法及系统。The present invention relates to the technical field of navigation and positioning, and more specifically to a lidar terrain matching assisted navigation method and system.

背景技术Background technique

机载导航系统在复杂工作环境下运行时,往往会伴随有各类的干扰和扰动问题,如GNSS在城市或森林区域信号受干扰或消失、环境磁干扰、电气磁干扰等,这将导致导航系统在进行导航和保证飞行安全的过程中存在很大的隐患。When airborne navigation systems operate in complex working environments, they are often accompanied by various interference and disturbance problems, such as interference or disappearance of GNSS signals in urban or forest areas, environmental magnetic interference, electromagnetic interference, etc., which will cause navigation problems. The system has great hidden dangers in the process of navigation and ensuring flight safety.

地形辅助导航(Terrain AidedNavigation,TAN)作为广泛使用的组合导航系统之一,具有抗干扰能力强、普适度高和便于操作实施等优点,可有效解决GNSS拒止环境下抑制惯性导航系统误差发散的问题,实现有效自主导航。传统地形匹配辅助导航方法采用以气压高度计与无线电高度计作为测量传感器,用于测量沿航线的地形高程剖面数据,按最佳匹配位置确定飞行器的地理位置。但该类测量传感器方案数据采集能力有限,数据采集过程易受干扰导致误匹配结果的出现。Terrain Aided Navigation (TAN), as one of the widely used integrated navigation systems, has the advantages of strong anti-interference ability, high universality and easy operation and implementation. It can effectively solve the problem of suppressing the error divergence of inertial navigation systems in GNSS-denied environments. problem to achieve effective autonomous navigation. The traditional terrain matching assisted navigation method uses barometric altimeters and radio altimeters as measurement sensors to measure terrain elevation profile data along the route and determine the aircraft's geographical location based on the best matching position. However, this type of measurement sensor solution has limited data collection capabilities, and the data collection process is susceptible to interference, leading to false matching results.

激光雷达作为一种主动式测量系统,能够通过发射激光线束对载体下方的地形结构进行测量,具有相较于传统地形匹配辅助导航测量传感器方案更大的测量范围以及更为精确的测量结果,且运行情况更为稳定。同时,结合高效可靠的点云数据处理技术,可以建立更为准确且信息更为丰富的地形高程地图。As an active measurement system, lidar can measure the terrain structure under the carrier by emitting laser beams. It has a larger measurement range and more accurate measurement results than the traditional terrain matching auxiliary navigation measurement sensor solution, and The operation is more stable. At the same time, combined with efficient and reliable point cloud data processing technology, a more accurate and information-rich terrain elevation map can be established.

因此,将激光点云数据处理技术应用于地形匹配辅助导航,构建更高精度且可靠的点云地形高程地图与先验地形高程地图匹配,可进一步提升地形匹配辅助导航定位方法的精度和可靠性,满足其在更复杂地形条件下的应用需求。Therefore, applying laser point cloud data processing technology to terrain matching-assisted navigation to construct a higher-precision and reliable point cloud terrain elevation map that matches a priori terrain elevation maps can further improve the accuracy and reliability of the terrain matching-assisted navigation and positioning method. , to meet its application needs in more complex terrain conditions.

发明内容Contents of the invention

有鉴于此,本发明提供了一种激光雷达地形匹配辅助导航方法及系统,通过点云数据获取、坐标转换和航带拼接、粗差点剔除及点云数据滤波处理算法、点云高程地图的相似性匹配,有效提高了地形匹配辅助导航系统的地形高程检测水平和地图匹配精度,也增强了地形匹配辅助导航系统在复杂地形条件下的可用性。In view of this, the present invention provides a lidar terrain matching auxiliary navigation method and system, which uses point cloud data acquisition, coordinate conversion and flight strip splicing, coarse point elimination and point cloud data filtering processing algorithms, and similarity of point cloud elevation maps. Sexual matching effectively improves the terrain elevation detection level and map matching accuracy of the terrain matching auxiliary navigation system, and also enhances the usability of the terrain matching auxiliary navigation system under complex terrain conditions.

为了实现上述目的,本发明采用如下技术方案:In order to achieve the above objects, the present invention adopts the following technical solutions:

一种激光雷达地形匹配辅助导航方法,包括以下步骤:A lidar terrain matching assisted navigation method includes the following steps:

S1:通过激光雷达获取载体下方三维地形点云数据,并通过惯性导航提供的载体位姿递推信息对三维地形点云数据进行坐标转换和航带拼接,积累一定航带区域内的点云数据;S1: Acquire the three-dimensional terrain point cloud data under the carrier through lidar, and perform coordinate conversion and flight belt splicing on the three-dimensional terrain point cloud data through the carrier pose recursion information provided by inertial navigation, and accumulate point cloud data within a certain flight belt area. ;

S2:选取航带区域一定范围内的点云数据进行降采样;通过KD树结构对降采样后的点云数据进行管理,遍历搜索每个点一定半径范围内的近邻点,通过计算近邻点的高程分布平均值与高程分布标准差实现点云粗差点的剔除;S2: Select point cloud data within a certain range of the flight zone area for downsampling; manage the downsampled point cloud data through the KD tree structure, traverse and search for the nearest neighbor points within a certain radius of each point, and calculate the distance of the nearest neighbor point The mean value of the elevation distribution and the standard deviation of the elevation distribution realize the elimination of coarse points in the point cloud;

S3:滤除粗差点剔除后点云数据中的地物点云,按先验数字高程地图分辨率建立格网和编号,得到点云数字高程地图;对点云数字高程地图进行匹配可用性评估,若满足条件则进行后续地图相似性匹配,否则放弃当前点云数字高程地图数据继续递推惯性导航数据;S3: Filter out the surface object point clouds in the point cloud data after removing the coarse errors, establish grids and numbers according to the resolution of the prior digital elevation map, and obtain the point cloud digital elevation map; conduct a matching usability evaluation on the point cloud digital elevation map, If the conditions are met, subsequent map similarity matching will be performed, otherwise the current point cloud digital elevation map data will be abandoned and the inertial navigation data will continue to be recursively derived;

S4:建立地图搜索区域,调取地图搜索区域内的先验数字高程地图数据,进行滑窗匹配,根据归一化互相关判定准则计算点云数字高程地图与当前窗格内先验数字高程地图间的归一化互相关系数,若归一化互相关系数大于设定阈值,则判定匹配结果有效,得到载体在先验数字高程地图中的位置信息,否则放弃当前匹配继续递推惯性导航数据;S4: Establish a map search area, retrieve the a priori digital elevation map data in the map search area, perform sliding window matching, and calculate the point cloud digital elevation map and the a priori digital elevation map in the current pane based on the normalized cross-correlation criterion. The normalized cross-correlation coefficient between ;

S5:以载体在先验数字高程地图中的位置信息作为观测信息,构建由惯性导航系统与激光雷达地形匹配导航系统形成的组合导航系统并估计惯性导航系统误差,进而对惯性导航系统误差进行校正。S5: Using the position information of the carrier in the prior digital elevation map as observation information, construct a combined navigation system formed by an inertial navigation system and a lidar terrain matching navigation system, estimate the inertial navigation system error, and then correct the inertial navigation system error. .

优选的,S1包括:Preferably, S1 includes:

S11、通过激光雷达获取载体下方三维地形点云数据;S11. Obtain the three-dimensional terrain point cloud data below the carrier through lidar;

S12、地形匹配辅助导航平台利用惯性测量元件获取载体运动加速度及角速率,通过惯性导航递推解算和最优滤波预测过程得到载体位姿递推信息,具体包括载体所处位置、姿态以及导航误差信息;S12. The terrain matching auxiliary navigation platform uses inertial measurement elements to obtain the carrier's motion acceleration and angular rate, and obtains the carrier's posture recursive information through the inertial navigation recursive calculation and optimal filter prediction processes, specifically including the carrier's position, attitude and navigation. error information;

S13、根据位姿递推信息将对应时刻激光雷达本地坐标系l下的三维点云数据pl进行坐标转换及航带拼接,得到全局坐标系g下一定航带区域内的点云数据pg,其中第i个点云数据pi的坐标转换为:S13. According to the pose recursion information, perform coordinate conversion and flight belt splicing on the three-dimensional point cloud data p l under the lidar local coordinate system l at the corresponding time, and obtain the point cloud data p g in a certain flight belt area under the global coordinate system g. , where the coordinates of the i-th point cloud data p i are converted to:

式中,b为载体坐标系;为激光点云数据pi在全局坐标系g下的位置信息;同理,为pi在激光雷达本地坐标系l下的位置信息;/>为载体坐标系向全局坐标系的坐标变换矩阵,其由惯性导航系统对惯性运动数据进行积分获得,其中涉及到利用相邻时刻间位姿数据进行插值获得中间时刻位姿变换信息的处理过程;/>为激光雷达本地坐标系向载体坐标系的坐标变换矩阵,通常情况下由于激光雷达是以固定连接的方式安装在载体上的,因此该变换矩阵不随时间变化,为一个常值变换矩阵。In the formula, b is the carrier coordinate system; is the position information of the laser point cloud data p i in the global coordinate system g; similarly, is the position information of p i in the lidar local coordinate system l;/> is the coordinate transformation matrix from the carrier coordinate system to the global coordinate system, which is obtained by integrating the inertial motion data by the inertial navigation system, which involves the process of interpolating the pose data between adjacent moments to obtain the pose transformation information at the intermediate moment; /> It is the coordinate transformation matrix from the local coordinate system of the lidar to the carrier coordinate system. Usually, since the lidar is installed on the carrier in a fixed connection, the transformation matrix does not change with time and is a constant value transformation matrix.

优选的,S2包括:Preferably, S2 includes:

S21、选取航带区域一定矩形范围内的点云数据并通过体素网格方法对该区域内的点云数据进行降采样,体素网格大小与先验数字高程地图分辨率相同;S21. Select the point cloud data within a certain rectangular range of the flight zone area and downsample the point cloud data in the area through the voxel grid method. The voxel grid size is the same as the resolution of the prior digital elevation map;

S22、基于KD树结构对降采样后的点云数据进行管理,循环遍历当前点云数据中的各个点,对每个遍历点搜索以其自身为中心、半径大小为r的范围内的近邻点数据,计算近邻点的高程分布平均值μ及高程分布标准差σ,判断当前点高程h是否满足粗差点判定条件,粗差点判定条件为:S22. Manage the downsampled point cloud data based on the KD tree structure, loop through each point in the current point cloud data, and search for neighboring points within a range of radius r with itself as the center and each traversed point. Data, calculate the average value of the elevation distribution μ and the standard deviation of the elevation distribution σ of the neighboring points, and determine whether the height h of the current point satisfies the rough difference judgment condition. The rough difference judgment condition is:

|h-μ|>3σ|h-μ|>3σ

当满足上述条件时,判定当前点为粗差点,将当前点从点云数据中剔除且更新KD树,否则当前点不是粗差点,并将当前点保留。When the above conditions are met, the current point is determined to be a rough point, the current point is removed from the point cloud data and the KD tree is updated. Otherwise, the current point is not a rough point and the current point is retained.

优选的,S3包括:Preferably, S3 includes:

S31、对粗差点剔除后的点云数据,通过布料模拟滤波算法滤除粗差点剔除后点云数据中的地物点云,并通过布料模拟方法对地物点云滤除后的空缺网格进行拟合,按先验数字高程地图分辨率对点云数据建立格网并编号,得到网格化的点云数字高程地图;S31. For the point cloud data after the coarse point cloud removal, use the cloth simulation filtering algorithm to filter out the ground object point clouds in the point cloud data after the coarse point cloud removal, and use the cloth simulation method to filter the empty grid of the ground object point cloud. Perform fitting, establish a grid and number the point cloud data according to the resolution of the prior digital elevation map, and obtain a gridded point cloud digital elevation map;

S32、计算点云数字高程地图的地形分布特征参数,包括高程均值Mh、高程标准差σh和地形粗糙度σz,计算公式为:S32. Calculate the terrain distribution characteristic parameters of the point cloud digital elevation map, including elevation mean M h , elevation standard deviation σ h and terrain roughness σ z . The calculation formula is:

式中,点云数字高程地图大小为m×n;h(j,k)为点云数字高程地图中第j行第k列处的点云高程值;Qx与Qy分别为x方向和y方向相邻点间高程分布的粗糙度,计算公式为:In the formula, the size of the point cloud digital elevation map is m×n; h(j,k) is the point cloud elevation value at the jth row and kth column in the point cloud digital elevation map; Q x and Q y are the x direction and The roughness of the elevation distribution between adjacent points in the y direction, the calculation formula is:

式中,h(j,k+1)表示点云数字高程地图中第j行第k+1列处的点云高程值,h(j+1,k)为点云数字高程地图中第j+1行第k列处的点云高程值;In the formula, h(j,k+1) represents the point cloud elevation value at the jth row and k+1th column in the point cloud digital elevation map, h(j+1,k) is the jth point cloud digital elevation map Point cloud elevation value at row k of +1;

S33、对点云数字高程地图匹配可用性进行评估,若S32中地形分布特征参数满足阈值条件,则判定当前点云数字高程地图可用于后续地图匹配;否则,放弃当前点云数字高程地图数据,继续递推惯性导航数据;点云数字高程地图匹配可用性评估判别式为:S33. Evaluate the matching availability of the point cloud digital elevation map. If the terrain distribution characteristic parameters in S32 meet the threshold conditions, then determine that the current point cloud digital elevation map can be used for subsequent map matching; otherwise, abandon the current point cloud digital elevation map data and continue. Recursive inertial navigation data; point cloud digital elevation map matching usability evaluation discriminant is:

式中,Dstd与Drough分别为高程标准差判定阈值及地形粗糙度判定阈值;Rule为地图匹配可用性评估结果;True代表所建点云数字高程地图可以用于后续地图匹配,False代表所建点云数字高程地图不可以用于后续地图匹配。In the formula, D std and D rough are the elevation standard deviation judgment threshold and terrain roughness judgment threshold respectively; Rule is the map matching usability evaluation result; True means that the built point cloud digital elevation map can be used for subsequent map matching, and False means that the built point cloud digital elevation map can be used for subsequent map matching. Point cloud digital elevation maps cannot be used for subsequent map matching.

优选的,S4包括:Preferably, S4 includes:

S41、根据当前时刻惯性导航输出的位置及位置误差,从先验数字高程地图中提取其三倍误差范围内的地图数据,用于高程地图匹配;S41. According to the position and position error output by the inertial navigation at the current moment, extract the map data within three times the error range from the prior digital elevation map for elevation map matching;

S42、对提取的先验数字高程地图数据进行滑窗遍历搜索,窗口大小与点云数字高程地图大小一致,根据归一化互相关判定准则计算点云数字高程地图与当前滑窗内先验数字高程地图间的归一化互相关系数,归一化互相关系数计算模型为:S42. Perform a sliding window traversal search on the extracted a priori digital elevation map data. The window size is consistent with the size of the point cloud digital elevation map. Calculate the point cloud digital elevation map and the current a priori number in the sliding window based on the normalized cross-correlation criterion. The normalized cross-correlation coefficient between elevation maps, the calculation model of the normalized cross-correlation coefficient is:

式中,N为点云数字图像素网格数量;IDEM与ILiDAR分别为先验数字高程地图和点云数字高程地图中对应点的高程值;(u,v)为点云数字高程地图区域相对于先验数字高程地图区域的位置偏差值;μDEM与μLiDAR分别为先验数字高程地图和点云数字高程地图中高程数据的平均值;σDEM与σLiDAR分别为两先验数字高程地图和点云数字高程地图中高程数据的标准差,NCC(u,v)表示归一化互相关系数;In the formula, N is the number of pixel grids in the point cloud digital image; I DEM and I LiDAR are the elevation values of the corresponding points in the prior digital elevation map and the point cloud digital elevation map respectively; (u, v) are the point cloud digital elevation map The position deviation value of the area relative to the a priori digital elevation map area; μ DEM and μ LiDAR are respectively the average value of the elevation data in the a priori digital elevation map and the point cloud digital elevation map; σ DEM and σ LiDAR are two a priori numbers respectively. The standard deviation of the elevation data in the elevation map and point cloud digital elevation map, NCC(u,v) represents the normalized cross-correlation coefficient;

S43、判断归一化互相关系数是否大于归一化互相关系数阈值,当归一化互相关系数大于归一化互相关系数阈值时,得到高程地图匹配位置结果。S43. Determine whether the normalized cross-correlation coefficient is greater than the normalized cross-correlation coefficient threshold. When the normalized cross-correlation coefficient is greater than the normalized cross-correlation coefficient threshold, the elevation map matching position result is obtained.

优选的,S5包括:Preferably, S5 includes:

S51、对地形匹配辅助导航定位误差和惯性测量元件偏差进行建模,构建误差状态最优滤波状态预测模型;S51. Model the terrain matching-assisted navigation positioning error and the inertial measurement element deviation, and build an optimal filtering state prediction model for the error state;

S52、若所建点云数字高程地图具备匹配可用性且地图匹配结果满足归一化互相关系数判定准则,则基于匹配位置结果构建误差状态最优滤波观测模型,对最优滤波各状态量进行更新和修正,否则仅执行S51。S52. If the built point cloud digital elevation map has matching availability and the map matching results meet the normalized cross-correlation coefficient determination criteria, then build an error state optimal filtering observation model based on the matching position results, and update each state quantity of the optimal filtering and corrections, otherwise only S51 is executed.

本发明还公开一种激光雷达地形匹配辅助导航系统,其适用于一种激光雷达地形匹配辅助导航方法,包括:激光雷达模块、惯性导航模块、点云坐标转换及航带拼接模块、点云地图数据处理模块、点云数字高程地图构建及匹配可用性评估模块、地形匹配计算模块和导航误差校正模块;The invention also discloses a lidar terrain matching auxiliary navigation system, which is suitable for a lidar terrain matching auxiliary navigation method, including: a lidar module, an inertial navigation module, a point cloud coordinate conversion and air strip splicing module, and a point cloud map. Data processing module, point cloud digital elevation map construction and matching availability evaluation module, terrain matching calculation module and navigation error correction module;

激光雷达模块,用于获取载体下方三维地形点云数据;Lidar module, used to obtain three-dimensional terrain point cloud data below the carrier;

惯性导航模块,用于获取惯性导航提供的载体运动过程中的载体位姿递推信息;The inertial navigation module is used to obtain the carrier pose recursion information during the carrier movement provided by the inertial navigation;

点云坐标转换及航带拼接模块,用于基于载体位姿递推信息对三维地形点云数据进行坐标转换和航带拼接,积累一定航带区域内的点云数据;The point cloud coordinate conversion and flight belt splicing module is used to perform coordinate conversion and flight belt splicing of three-dimensional terrain point cloud data based on carrier pose recursion information, and accumulate point cloud data within a certain flight belt area;

点云地图数据处理模块,用于对航带区域一定范围内的点云数据进行降采样;通过KD树结构对降采样后的点云数据进行管理,遍历搜索每个点以其自身为中心、一定半径范围内的近邻点,通过计算近邻点的高程分布平均值与高程分布标准差实现点云粗差点的剔除;The point cloud map data processing module is used to downsample point cloud data within a certain range of the flight zone area; manage the downsampled point cloud data through the KD tree structure, and traverse and search each point centered on itself. For neighboring points within a certain radius, the coarse points of the point cloud can be eliminated by calculating the average elevation distribution and standard deviation of the elevation distribution of the neighboring points;

点云数字高程地图构建及匹配可用性评估模块,用于滤除粗差点剔除后点云数据中的地物点云,按先验数字高程地图分辨率建立格网和编号,得到点云数字高程地图;对点云数字高程地图进行匹配可用性评估,若满足条件则进行后续地图相似性匹配,否则放弃当前点云数字高程地图数据继续递推惯性导航数据;The point cloud digital elevation map construction and matching usability evaluation module is used to filter out the feature point clouds in the point cloud data after removing the coarse points, establish grids and numbers according to the resolution of the prior digital elevation map, and obtain the point cloud digital elevation map. ;Evaluate the matching availability of the point cloud digital elevation map. If the conditions are met, subsequent map similarity matching will be performed. Otherwise, the current point cloud digital elevation map data will be abandoned and the inertial navigation data will continue to be recursively derived;

地形匹配计算模块,用于建立地图搜索区域,调取地图搜索区域内的先验数字高程地图数据,进行滑窗匹配,根据归一化互相关判定准则计算点云数字高程地图与当前窗格内先验数字高程地图间的归一化互相关系数,若归一化互相关系数大于所设定阈值,则判定匹配结果有效,得到载体在先验数字高程地图中的位置信息,否则放弃当前匹配结果继续递推惯性导航数据;The terrain matching calculation module is used to establish a map search area, retrieve a priori digital elevation map data in the map search area, perform sliding window matching, and calculate the point cloud digital elevation map and the current pane according to the normalized cross-correlation criterion. The normalized cross-correlation coefficient between the prior digital elevation maps. If the normalized cross-correlation coefficient is greater than the set threshold, the matching result is judged to be valid and the position information of the carrier in the prior digital elevation map is obtained. Otherwise, the current match is given up. The results continue to recurse the inertial navigation data;

导航误差校正模块,用于以载体在先验数字高程地图中的位置信息作为观测信息,构建由惯性导航系统与激光雷达地形匹配导航系统形成的组合导航系统并估计惯性导航系统误差,进而对惯性导航系统误差进行校正。The navigation error correction module is used to use the position information of the carrier in the prior digital elevation map as observation information to construct a combined navigation system formed by an inertial navigation system and a lidar terrain matching navigation system and estimate the inertial navigation system error, and then calculate the inertial navigation system error. Navigation system errors are corrected.

经由上述的技术方案可知,与传统地形匹配辅助导航方法采用气压高度计与无线电高度计作为测量传感器获取飞行路线地形高程剖面数据,并进行高程匹配的方法相比,本发明利用激光雷达作为测量传感器,针对点云数据特征,进行点云数字高程地图的构建,并与机载先验数字高程地图数据库进行匹配,最终根据高程匹配计算结果,实现对惯性导航定位误差的校正。本发明通过激光雷达构建更大范围的点云数字高程地图,将传统测量方案的高程“线”数据拓展为高程“面”数据,有效降低了地形匹配辅助导航易受噪声干扰导致误匹配的情况,提升了地形高程检测水平、高程匹配结果精度以及地形匹配辅助导航定位的准确性。It can be seen from the above technical solution that compared with the traditional terrain matching auxiliary navigation method that uses barometric altimeters and radio altimeters as measurement sensors to obtain terrain elevation profile data of the flight route and perform elevation matching, the present invention uses lidar as the measurement sensor. Point cloud data characteristics are used to construct a point cloud digital elevation map and match it with the airborne prior digital elevation map database. Finally, based on the elevation matching calculation results, the inertial navigation positioning error is corrected. This invention uses lidar to construct a larger point cloud digital elevation map, and expands the elevation "line" data of the traditional measurement scheme into elevation "surface" data, effectively reducing the vulnerability of terrain matching auxiliary navigation to noise interference and causing mismatching. , which improves the level of terrain elevation detection, the accuracy of elevation matching results, and the accuracy of terrain matching-assisted navigation and positioning.

附图说明Description of the drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are only These are embodiments of the present invention. For those of ordinary skill in the art, other drawings can be obtained based on the provided drawings without exerting creative efforts.

图1附图为本发明提供的一种激光雷达地形匹配辅助导航方法流程图;Figure 1 is a flow chart of a lidar terrain matching assisted navigation method provided by the present invention;

图2附图为本发明提供的点云粗差点剔除流程示意图;Figure 2 is a schematic diagram of the point cloud coarse point elimination process provided by the present invention;

图3附图为本发明提供的一种激光雷达地形匹配辅助导航系统的结构示意图;Figure 3 is a schematic structural diagram of a lidar terrain matching auxiliary navigation system provided by the present invention;

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.

如图1所示,本发明实施例公开了一种激光雷达地形匹配辅助导航方法,包括以下步骤:As shown in Figure 1, an embodiment of the present invention discloses a lidar terrain matching assisted navigation method, which includes the following steps:

S1:利用激光雷达获取载体下方三维地形点云数据并利用惯性导航提供的载体位姿递推信息对三维地形点云数据进行坐标转换和航带拼接,积累一定时间范围即一定航带区域内的点云数据;S1: Use lidar to obtain the three-dimensional terrain point cloud data below the carrier, and use the carrier pose recursion information provided by inertial navigation to perform coordinate conversion and flight belt splicing on the three-dimensional terrain point cloud data, and accumulate a certain time range, that is, a certain flight belt area. point cloud data;

S2:选取航带区域内一定范围内的点云数据对其进行降采样;利用KD树结构对降采样后的点云数据进行管理,遍历搜索每个点一定半径范围内的近邻点,计算近邻点的高程分布平均值与高程分布标准差实现点云粗差点的剔除;S2: Select the point cloud data within a certain range in the flight zone area to downsample it; use the KD tree structure to manage the downsampled point cloud data, traverse and search for the nearest neighbor points within a certain radius of each point, and calculate the nearest neighbor The average point elevation distribution and the standard deviation of the elevation distribution realize the elimination of coarse points in the point cloud;

S3:滤除粗差点剔除后点云数据中的地物点云,按先验数字高程地图分辨率建立格网和编号,得到点云数字高程地图;对点云数字高程地图进行匹配可用性评估,若满足条件则进行后续地图相似性匹配,否则放弃当前点云数字高程地图数据继续递推惯性导航数据;S3: Filter out the surface object point clouds in the point cloud data after removing the coarse errors, establish grids and numbers according to the resolution of the prior digital elevation map, and obtain the point cloud digital elevation map; conduct a matching usability evaluation on the point cloud digital elevation map, If the conditions are met, subsequent map similarity matching will be performed, otherwise the current point cloud digital elevation map data will be abandoned and the inertial navigation data will continue to be recursively derived;

S4:建立地图搜索区域,调取地图搜索区域内的先验数字高程地图数据,进行滑窗匹配,根据归一化互相关判定准则计算点云数字高程地图与当前窗格内先验数字高程地图间的归一化互相关系数,若归一化互相关系数大于所设定阈值,则判定匹配结果有效,得到载体在先验数字高程地图中的位置信息,否则放弃当前匹配结果继续递推惯性导航数据;S4: Establish a map search area, retrieve the a priori digital elevation map data in the map search area, perform sliding window matching, and calculate the point cloud digital elevation map and the a priori digital elevation map in the current pane based on the normalized cross-correlation criterion. The normalized cross-correlation coefficient between navigation data;

S5:以载体在先验数字高程地图中的位置信息作为观测信息,构建由惯性导航系统与激光雷达地形匹配导航系统形成的组合导航系统并估计惯性导航系统误差,进而对惯性导航系统误差进行校正。其中,以惯性导航系统为主导航系统,并将惯性导航作为最优滤波要估计的状态变量;以激光雷达地形匹配导航系统作为辅助导航系统,将地形匹配得到的结果作为观测信息,用于校正惯性导航的误差。S5: Using the position information of the carrier in the prior digital elevation map as observation information, construct a combined navigation system formed by an inertial navigation system and a lidar terrain matching navigation system, estimate the inertial navigation system error, and then correct the inertial navigation system error. . Among them, the inertial navigation system is used as the main navigation system, and the inertial navigation is used as the state variable to be estimated for optimal filtering; the lidar terrain matching navigation system is used as the auxiliary navigation system, and the results obtained from terrain matching are used as observation information for correction. Inertial navigation errors.

在本实施例中,S1具体包括:In this embodiment, S1 specifically includes:

S11、通过激光雷达获取载体下方三维地形点云数据;S11. Obtain the three-dimensional terrain point cloud data below the carrier through lidar;

S12、地形匹配辅助导航平台利用惯性测量元件获取载体运动加速度及角速率,通过惯性导航递推解算和卡尔曼滤波预测过程得到载体位姿递推信息,具体包括载体所处位置、姿态以及导航误差信息;S12. The terrain matching auxiliary navigation platform uses inertial measurement elements to obtain the carrier's motion acceleration and angular rate, and obtains the carrier's posture recursive information through the inertial navigation recursive calculation and Kalman filter prediction processes, specifically including the carrier's position, attitude and navigation. error information;

步骤S13、根据载体位姿递推信息将对应时刻激光雷达本地坐标系l下的点云数据pl进行坐标转换及航带拼接,得到全局坐标系g下一定航带区域内的点云数据pg,其中第i个点云数据pi的坐标转换为:Step S13: According to the carrier pose recursion information, coordinate conversion and flight belt splicing are performed on the point cloud data p l in the lidar local coordinate system l at the corresponding moment, to obtain point cloud data p in a certain flight zone area in the global coordinate system g. g , where the coordinates of the i-th point cloud data p i are converted to:

式中,b为载体坐标系;为激光点云数据pi在全局坐标系g下的位置信息;同理,为pi在激光雷达本地坐标系l下的位置信息;/>为载体坐标系向全局坐标系的坐标变换矩阵,其由惯性导航系统对惯性运动数据进行积分获得,其中涉及到利用相邻时刻间位姿数据进行插值获得中间时刻位姿变换信息的处理过程;/>为激光雷达本地坐标系向载体坐标系的坐标变换矩阵,通常情况下由于激光雷达是以固定连接的方式安装在载体上的,因此该变换矩阵不随时间变化,为一个常值变换矩阵。In the formula, b is the carrier coordinate system; is the position information of the laser point cloud data p i in the global coordinate system g; similarly, is the position information of p i in the lidar local coordinate system l;/> is the coordinate transformation matrix from the carrier coordinate system to the global coordinate system, which is obtained by integrating the inertial motion data by the inertial navigation system, which involves the process of interpolating the pose data between adjacent moments to obtain the pose transformation information at the intermediate moment; /> It is the coordinate transformation matrix from the local coordinate system of the lidar to the carrier coordinate system. Usually, since the lidar is installed on the carrier in a fixed connection, the transformation matrix does not change with time and is a constant value transformation matrix.

在本实施例中,S2具体包括:In this embodiment, S2 specifically includes:

S21、选取航带区域一定矩形范围内的点云数据,为保证导航系统计算效率,对所选取矩形区域内的点云数据利用体素网格方法进行数据降采样,体素网格大小需与先验数字高程地图分辨率相同;S21. Select point cloud data within a certain rectangular range of the flight zone area. In order to ensure the calculation efficiency of the navigation system, use the voxel grid method to downsample the point cloud data in the selected rectangular area. The voxel grid size needs to be the same as The a priori digital elevation maps have the same resolution;

S22、如图2所示,基于KD树结构对体素网格降采样后的点云数据建立管理,循环遍历当前点云中的各个点,对每个遍历点搜索以其自身为中心、半径大小为r的范围内的近邻点数据,计算近邻点高程分布平均值μ及高程分布标准差σ,若当前点高程满足粗差点判定条件,则将当前点从点云数据中剔除并更新KD树,继续遍历,其粗差点判定条件为:S22. As shown in Figure 2, establish management of point cloud data after voxel grid downsampling based on the KD tree structure, loop through each point in the current point cloud, and search for each traversed point with its own center and radius For the neighboring point data within a range of size r, calculate the average value μ of the neighboring point elevation distribution and the standard deviation σ of the elevation distribution. If the height of the current point meets the rough point determination condition, the current point is removed from the point cloud data and the KD tree is updated. , continue traversing, and the rough difference determination condition is:

|h-μ|>3σ|h-μ|>3σ

式中,h为当前点的高程值。当满足上述条件时,判定当前点为粗差点并将其剔除且更新KD树,否则不是粗差点并将其保留。In the formula, h is the altitude value of the current point. When the above conditions are met, the current point is determined to be a rough point and removed and the KD tree is updated. Otherwise, it is not a rough point and retained.

在本实施例中,S3具体包括:In this embodiment, S3 specifically includes:

S31、对剔除粗差点后的点云数据,进一步采用布料模拟滤波算法滤除其中的地物点云,并通过布料模拟方法对地物点云滤除后的空缺网格进行拟合。布料模拟滤波算法的具体过程记载于文献“Zhang W,Qi J,Wan P,et al.An easy-to-use airborne LiDARdata filtering method based on cloth simulation[J].Remote sensing,2016,8(6):501.”中,其思想为将点云进行翻转,假设有一块布料受到“重力”作用从上方落下,则最终落下的布料即为代表点云中地表部分翻转后结果,以此来将地面点云与地物点云数据进行分离。按S21中先验数字高程地图分辨率对点云数据建立格网并编号,得到网格化的点云数字高程地图;S31. For the point cloud data after removing the coarse points, further use the cloth simulation filtering algorithm to filter out the ground object point clouds, and use the cloth simulation method to fit the vacant grid after filtering the ground object point clouds. The specific process of cloth simulation filtering algorithm is recorded in the document "Zhang W, Qi J, Wan P, et al. An easy-to-use airborne LiDARdata filtering method based on cloth simulation[J].Remote sensing, 2016, 8(6) :501.", the idea is to flip the point cloud. Assume that a piece of cloth falls from above due to the effect of "gravity", and the final falling cloth represents the result of flipping the surface part of the point cloud. In this way, the ground Separate point cloud and ground object point cloud data. Establish a grid and number the point cloud data according to the resolution of the prior digital elevation map in S21 to obtain a gridded point cloud digital elevation map;

S32、计算点云数字高程地图地形分布特征参数:高程均值Mh、高程标准差σh以及地形粗糙度σz,其中σh反映高程地图中点云高程值的离散程度以及整个区域中地形总的起伏程度;而σz则可以用于表征地形高程地图的平均光滑程度,并刻画较为细微的局部起伏情况。各地形特征参数计算公式为:S32. Calculate the terrain distribution characteristic parameters of the point cloud digital elevation map: elevation mean M h , elevation standard deviation σ h and terrain roughness σ z , where σ h reflects the degree of discreteness of the point cloud elevation values in the elevation map and the total terrain in the entire region. The degree of fluctuation; and σ z can be used to characterize the average smoothness of the terrain elevation map and describe the more subtle local fluctuations. The calculation formula of each terrain characteristic parameter is:

式中,点云数字高程地图大小为m×n;h(j,k)为网格化地图中第j行第k列处的点云高程值;Qx与Qy分别为x方向和y方向相邻点间高程分布的粗糙度,计算公式为:In the formula, the size of the point cloud digital elevation map is m×n; h(j,k) is the point cloud elevation value at the jth row and kth column in the gridded map; Q x and Q y are the x direction and y respectively. The roughness of the elevation distribution between adjacent points in the direction, the calculation formula is:

式中,h(j,k+1)表示点云数字高程地图中第j行第k+1列处的点云高程值,h(j+1,k)为点云数字高程地图中第j+1行第k列处的点云高程值;In the formula, h(j,k+1) represents the point cloud elevation value at the jth row and k+1th column in the point cloud digital elevation map, h(j+1,k) is the jth point cloud digital elevation map Point cloud elevation value at row k of +1;

S33、对点云数字高程地图匹配可用性进行评估,若S32中各地形分布特征参数满足阈值条件,则判定当前点云数字高程地图可用于后续地图匹配;否则,放弃当前点云数字高程地图数据继续递推惯性导航数据;点云数字高程地图匹配可用性评估判别式为:S33. Evaluate the matching availability of the point cloud digital elevation map. If the terrain distribution characteristic parameters in S32 meet the threshold conditions, then determine that the current point cloud digital elevation map can be used for subsequent map matching; otherwise, abandon the current point cloud digital elevation map data and continue. Recursive inertial navigation data; point cloud digital elevation map matching usability evaluation discriminant is:

式中,Dstd与Drough分别为高程标准差及地形粗糙度判定阈值;Rule为地图匹配可用性评估结果;True代表所建点云数字高程地图可以用于后续地图匹配,False代表所建点云数字高程地图不可以用于后续地图匹配。In the formula, D std and D rough are the elevation standard deviation and terrain roughness determination threshold respectively; Rule is the map matching usability evaluation result; True means that the built point cloud digital elevation map can be used for subsequent map matching, and False means that the built point cloud Digital elevation maps cannot be used for subsequent map matching.

在本实施例中,S4具体包括:In this embodiment, S4 specifically includes:

S41、根据当前时刻惯性导航输出的位置及位置误差,从先验数字高程地图中提取其三倍误差范围内的地图数据,用于高程地图匹配;S41. According to the position and position error output by the inertial navigation at the current moment, extract the map data within three times the error range from the prior digital elevation map for elevation map matching;

S42、对提取的先验数字高程地图数据进行滑窗遍历搜索,窗口大小与点云数字高程地图大小相一致,根据归一化互相关相似性判定准则计算点云数字高程地图与当前滑窗内先验数字高程地图间的归一化互相关系数,进行高程分布相似性评估,归一化互相关系数计算模型为:S42. Perform a sliding window traversal search on the extracted a priori digital elevation map data. The window size is consistent with the size of the point cloud digital elevation map. Calculate the difference between the point cloud digital elevation map and the current sliding window based on the normalized cross-correlation similarity determination criterion. The normalized cross-correlation coefficient between prior digital elevation maps is used to evaluate the similarity of elevation distribution. The calculation model of the normalized cross-correlation coefficient is:

式中,N为点云数字图像素网格数量;IDEM与ILiDAR分别为先验数字高程地图和点云数字高程地图中对应点的高程值;(u,v)为点云数字高程地图区域相对于先验数字高程地图区域的位置偏差值;μDEM与μLiDAR分别为先验数字高程地图和点云数字高程地图中高程数据的平均值;σDEM与σLiDAR分别为两先验数字高程地图和点云数字高程地图中高程数据的标准差,NCC(u,v)表示归一化互相关系数;In the formula, N is the number of pixel grids in the point cloud digital image; I DEM and I LiDAR are the elevation values of the corresponding points in the prior digital elevation map and the point cloud digital elevation map respectively; (u, v) are the point cloud digital elevation map The position deviation value of the area relative to the a priori digital elevation map area; μ DEM and μ LiDAR are respectively the average value of the elevation data in the a priori digital elevation map and the point cloud digital elevation map; σ DEM and σ LiDAR are two a priori numbers respectively. The standard deviation of the elevation data in the elevation map and point cloud digital elevation map, NCC(u,v) represents the normalized cross-correlation coefficient;

S43、为保证高程匹配结果准确性和可靠性,对高程匹配结果进行限制,即引入归一化互相关系数阈值,只有当归一化互相关系数大于归一化互相关系数阈值时,才判定为有足够准确的匹配结果,得到高程地图匹配位置结果。S43. In order to ensure the accuracy and reliability of the elevation matching results, the elevation matching results are restricted, that is, a normalized cross-correlation coefficient threshold is introduced. Only when the normalized cross-correlation coefficient is greater than the normalized cross-correlation coefficient threshold, it is determined to be There are sufficiently accurate matching results to obtain elevation map matching location results.

在本实施例中,组合导航系统采用最优滤波方法来实现不同导航源数据的融合,其中最优滤波包括预测和更新两个步骤,S5具体包括:In this embodiment, the integrated navigation system uses an optimal filtering method to achieve the fusion of different navigation source data, where the optimal filtering includes two steps: prediction and update. S5 specifically includes:

S51、对地形匹配辅助导航定位误差以及惯性测量元件偏差进行建模,构建误差状态最优滤波状态预测模型,进行惯性导航递推解算和最优滤波预测过程;最优滤波状态预测模型可以为卡尔曼滤波状态预测模型;S51. Model the terrain matching-assisted navigation positioning error and the deviation of the inertial measurement element, construct an optimal filtering state prediction model of the error state, and perform the inertial navigation recursive calculation and optimal filtering prediction process; the optimal filtering state prediction model can be Kalman filter state prediction model;

S52、若所建点云数字高程地图具备匹配可用性且地图匹配结果满足步骤S43中归一化互相关系数判定准则,则基于匹配位置结果构建误差状态最优滤波观测模型,误差状态最优滤波观测模型可以为卡尔曼滤波观测模型,对卡尔曼滤波各状态量进行更新和修正,否则仅执行步骤S51。S52. If the built point cloud digital elevation map has matching availability and the map matching result meets the normalized cross-correlation coefficient determination criterion in step S43, then an error state optimal filter observation model is constructed based on the matching position result, and the error state optimal filter observation is The model can be a Kalman filter observation model, and each state quantity of the Kalman filter is updated and corrected. Otherwise, only step S51 is performed.

如图3所示,本发明还提供一种激光雷达地形匹配辅助导航系统,适用于一种激光雷达地形匹配辅助导航方法,包括:激光雷达模块、惯性导航模块、点云坐标转换及航带拼接模块、点云地图数据处理模块、点云数字高程地图构建及匹配可用性评估模块、地形匹配计算模块和导航误差校正模块。As shown in Figure 3, the present invention also provides a lidar terrain matching auxiliary navigation system, which is suitable for a lidar terrain matching auxiliary navigation method, including: lidar module, inertial navigation module, point cloud coordinate conversion and air strip splicing module, point cloud map data processing module, point cloud digital elevation map construction and matching usability evaluation module, terrain matching calculation module and navigation error correction module.

激光雷达模块用于实时测量载体下方的地形特征,获取包括地形高程在内的三维地形点云数据,作用于后续的点云坐标转换及航带拼接模块。The lidar module is used to measure the terrain features under the carrier in real time, obtain three-dimensional terrain point cloud data including terrain elevation, and act on the subsequent point cloud coordinate conversion and flight strip splicing modules.

惯性导航模块用于提供载体运动过程中的位置、姿态以及导航误差递推信息,作用于点云坐标转换及航带拼接模块、地形匹配计算模块。The inertial navigation module is used to provide the position, attitude and navigation error recursive information during the movement of the carrier, and acts on the point cloud coordinate conversion and air strip splicing module, and the terrain matching calculation module.

点云坐标转换及航带拼接模块,用于基于载体位姿递推信息对三维地形点云数据进行坐标转换和航带拼接,积累一定航带区域内的点云数据;点云坐标转换及航带拼接模块主要作用于点云地图数据处理模块,提供激光点云地图原始数据。具体处理过程为:The point cloud coordinate conversion and flight belt splicing module is used to perform coordinate conversion and flight belt splicing of three-dimensional terrain point cloud data based on carrier pose recursion information, and accumulate point cloud data within a certain flight belt area; point cloud coordinate conversion and flight belt splicing. The splicing module is mainly used in the point cloud map data processing module to provide the original data of the laser point cloud map. The specific processing process is:

根据载体位姿递推信息将对应时刻激光雷达本地坐标系l下的三维地形点云数据pl进行坐标转换及航带拼接,得到全局坐标系g下一定航带区域内的点云数据pg,其中第i个点云数据pi的坐标转换为:According to the carrier pose recursion information, the three-dimensional terrain point cloud data p l under the lidar local coordinate system l at the corresponding moment is coordinate transformed and air strip spliced, and the point cloud data p g in a certain air zone area under the global coordinate system g is obtained. , where the coordinates of the i-th point cloud data p i are converted to:

式中,b为载体坐标系;为第i个点云数据pi在全局坐标系g下的位置信息;/>为第i个点云数据pi在激光雷达本地坐标系l下的位置信息;/>为载体坐标系向全局坐标系的坐标变换矩阵;/>为激光雷达本地坐标系向载体坐标系的坐标变换矩阵。In the formula, b is the carrier coordinate system; is the position information of the i-th point cloud data p i in the global coordinate system g;/> is the position information of the i-th point cloud data p i in the lidar local coordinate system l;/> is the coordinate transformation matrix from the carrier coordinate system to the global coordinate system;/> is the coordinate transformation matrix from the lidar local coordinate system to the carrier coordinate system.

点云地图数据处理模块,用于对航带区域内的点云数据进行降采样;通过KD树结构对降采样后的点云数据进行管理,遍历搜索每个点以其自身为中心、一定半径范围内的近邻点,通过计算近邻点的高程分布平均值与高程分布标准差实现点云粗差点的剔除;点云地图数据处理模块主要作用于点云数字高程地图构建及匹配可用性评估模块。具体处理过程为:The point cloud map data processing module is used to downsample the point cloud data in the air zone area; manage the downsampled point cloud data through the KD tree structure, and traverse and search each point with itself as the center and a certain radius. For nearby points within the range, the coarse points of the point cloud are eliminated by calculating the average elevation distribution and the standard deviation of the elevation distribution of the neighboring points; the point cloud map data processing module is mainly used in the construction of point cloud digital elevation maps and the matching usability evaluation module. The specific processing process is:

通过体素网格方法对所选取的航带区域一定矩形范围内的点云数据进行降采样,体素网格大小与先验数字高程地图分辨率相同;The point cloud data within a certain rectangular range of the selected flight zone area is downsampled through the voxel grid method. The voxel grid size is the same as the resolution of the prior digital elevation map;

基于KD树结构对降采样后的点云数据进行管理,循环遍历当前点云数据中的各个点,对每个遍历点搜索以其自身为中心、半径大小为r的范围内的近邻点数据,计算近邻点的高程分布平均值μ及高程分布标准差σ,判断当前点高程h是否满足粗差点判定条件,粗差点判定条件为:The downsampled point cloud data is managed based on the KD tree structure, and each point in the current point cloud data is cyclically traversed, and each traversed point is searched for neighboring point data within a range of radius r with itself as the center. Calculate the average value μ of the elevation distribution and the standard deviation σ of the elevation distribution of the neighboring points, and determine whether the height h of the current point satisfies the rough difference judgment condition. The rough difference judgment condition is:

|h-μ|>3σ|h-μ|>3σ

当满足上述条件时,判定当前点为粗差点,将当前点从点云数据中剔除且更新KD树,否则当前点不是粗差点,并将当前点保留。When the above conditions are met, the current point is determined to be a rough point, the current point is removed from the point cloud data and the KD tree is updated. Otherwise, the current point is not a rough point and the current point is retained.

点云数字高程地图构建及匹配可用性评估模块,用于滤除粗差点剔除后点云数据中的地物点云,按先验数字高程地图分辨率建立格网和编号,得到点云数字高程地图;对点云数字高程地图进行匹配可用性评估,若满足条件则进行后续地图相似性匹配,否则放弃当前点云数字高程地图数据继续递推惯性导航数据;点云数字高程地图构建及匹配可用性评估模块决定了是否进行后续的地形匹配计算。具体处理过程为:The point cloud digital elevation map construction and matching usability evaluation module is used to filter out the feature point clouds in the point cloud data after removing the coarse points, establish grids and numbers according to the resolution of the prior digital elevation map, and obtain the point cloud digital elevation map. ; Perform matching usability evaluation on the point cloud digital elevation map. If the conditions are met, subsequent map similarity matching will be performed. Otherwise, the current point cloud digital elevation map data will be abandoned and the inertial navigation data will continue to be recursively derived. Point cloud digital elevation map construction and matching usability evaluation module Determines whether to perform subsequent terrain matching calculations. The specific processing process is:

对粗差点剔除后的点云数据,通过布料模拟滤波算法滤除粗差点剔除后点云数据中的地物点云,并通过布料模拟方法对地物点云滤除后的空缺网格进行拟合,按先验数字高程地图分辨率对点云数据建立格网并编号,得到网格化的点云数字高程地图;For the point cloud data after the coarse difference removal, the cloth simulation filtering algorithm is used to filter out the ground object point clouds in the point cloud data after the coarse difference removal, and the cloth simulation method is used to simulate the empty grid after the ground object point cloud filtering. Combined, the point cloud data is gridded and numbered according to the resolution of the prior digital elevation map, and a gridded point cloud digital elevation map is obtained;

计算点云数字高程地图的地形分布特征参数,包括高程均值Mh、高程标准差σh和地形粗糙度σz,计算公式为:Calculate the terrain distribution characteristic parameters of the point cloud digital elevation map, including elevation mean M h , elevation standard deviation σ h and terrain roughness σ z . The calculation formula is:

式中,点云数字高程地图大小为m×n;h(j,k)为点云数字高程地图中第j行第k列处的点云高程值;Qx与Qy分别为x方向和y方向相邻点间高程分布的粗糙度,计算公式为:In the formula, the size of the point cloud digital elevation map is m×n; h(j,k) is the point cloud elevation value at the jth row and kth column in the point cloud digital elevation map; Q x and Q y are the x direction and The roughness of the elevation distribution between adjacent points in the y direction, the calculation formula is:

式中,h(j,k+1)表示点云数字高程地图中第j行第k+1列处的点云高程值,h(j+1,k)为点云数字高程地图中第j+1行第k列处的点云高程值;In the formula, h(j,k+1) represents the point cloud elevation value at the jth row and k+1th column in the point cloud digital elevation map, h(j+1,k) is the jth point cloud digital elevation map Point cloud elevation value at row k of +1;

对点云数字高程地图匹配可用性进行评估,若地形分布特征参数满足阈值条件,则判定当前点云数字高程地图可用于后续地图匹配;否则,放弃当前点云数字高程地图数据,继续递推惯性导航数据;点云数字高程地图匹配可用性评估判别式为:Evaluate the matching availability of the point cloud digital elevation map. If the terrain distribution characteristic parameters meet the threshold conditions, it is determined that the current point cloud digital elevation map can be used for subsequent map matching; otherwise, the current point cloud digital elevation map data is abandoned and the recursive inertial navigation continues. Data; point cloud digital elevation map matching usability evaluation discriminant is:

式中,Dstd与Drough分别为高程标准差判定阈值及地形粗糙度判定阈值;Rule为地图匹配可用性评估结果;True代表所建点云数字高程地图可以用于后续地图匹配,False代表所建点云数字高程地图不可以用于后续地图匹配。In the formula, D std and D rough are the elevation standard deviation judgment threshold and terrain roughness judgment threshold respectively; Rule is the map matching usability evaluation result; True means that the built point cloud digital elevation map can be used for subsequent map matching, and False means that the built point cloud digital elevation map can be used for subsequent map matching. Point cloud digital elevation maps cannot be used for subsequent map matching.

地形匹配计算模块用于建立地图搜索区域,调取地图搜索区域内的先验数字高程地图数据,进行滑窗匹配,根据归一化互相关判定准则计算点云数字高程地图与当前窗格内先验数字高程地图间的归一化互相关系数,若归一化互相关系数大于所设定阈值,则判定匹配结果有效,得到载体在先验数字高程地图中的位置信息,否则放弃当前匹配结果继续递推惯性导航数据。地形匹配计算模块判定结果决定是否进行导航误差校正。具体处理过程为:The terrain matching calculation module is used to establish a map search area, retrieve the prior digital elevation map data in the map search area, perform sliding window matching, and calculate the point cloud digital elevation map and the prior digital elevation map in the current pane based on the normalized cross-correlation criterion. The normalized cross-correlation coefficient between the prior digital elevation maps. If the normalized cross-correlation coefficient is greater than the set threshold, the matching result is judged to be valid and the position information of the carrier in the prior digital elevation map is obtained. Otherwise, the current matching result is discarded. Continue to recurse inertial navigation data. The judgment result of the terrain matching calculation module determines whether to perform navigation error correction. The specific processing process is:

根据当前时刻惯性导航输出的位置及位置误差,从先验数字高程地图中提取其三倍误差范围内的地图数据,用于高程地图匹配;According to the position and position error output by inertial navigation at the current moment, map data within three times the error range is extracted from the prior digital elevation map for elevation map matching;

对提取的先验数字高程地图数据进行滑窗遍历搜索,窗口大小与点云数字高程地图大小一致,根据归一化互相关判定准则计算点云数字高程地图与当前滑窗内先验数字高程地图间的归一化互相关系数,归一化互相关系数计算模型为:Perform a sliding window traversal search on the extracted a priori digital elevation map data. The window size is consistent with the size of the point cloud digital elevation map. The point cloud digital elevation map and the a priori digital elevation map within the current sliding window are calculated based on the normalized cross-correlation criterion. The normalized cross-correlation coefficient between , the normalized cross-correlation coefficient calculation model is:

式中,N为点云数字图像素网格数量;IDEM与ILiDAR分别为先验数字高程地图和点云数字高程地图中对应点的高程值;(u,v)为点云数字高程地图区域相对于先验数字高程地图区域的位置偏差值;μDEM与μLiDAR分别为先验数字高程地图和点云数字高程地图中高程数据的平均值;σDEM与σLiDAR分别为先验数字高程地图和点云数字高程地图中高程数据的标准差,NCC(u,v)表示归一化互相关系数;In the formula, N is the number of pixel grids in the point cloud digital image; I DEM and I LiDAR are the elevation values of the corresponding points in the prior digital elevation map and the point cloud digital elevation map respectively; (u, v) are the point cloud digital elevation map The position deviation value of the area relative to the a priori digital elevation map area; μ DEM and μ LiDAR are the average values of the elevation data in the a priori digital elevation map and point cloud digital elevation map respectively; σ DEM and σ LiDAR are the a priori digital elevation respectively. The standard deviation of elevation data in maps and point cloud digital elevation maps, NCC(u,v) represents the normalized cross-correlation coefficient;

判断归一化互相关系数是否大于归一化互相关系数阈值,当归一化互相关系数大于归一化互相关系数阈值时,得到高程地图匹配位置结果。Determine whether the normalized cross-correlation coefficient is greater than the normalized cross-correlation coefficient threshold. When the normalized cross-correlation coefficient is greater than the normalized cross-correlation coefficient threshold, the elevation map matching position result is obtained.

导航误差校正模块用于以载体在先验数字高程地图中的位置信息作为观测信息,构建由惯性导航系统与激光雷达地形匹配导航系统形成的组合导航系统并估计惯性导航系统误差,进而对惯性导航系统误差进行校正。The navigation error correction module is used to use the position information of the carrier in the a priori digital elevation map as observation information to construct a combined navigation system formed by an inertial navigation system and a lidar terrain matching navigation system and estimate the inertial navigation system error, and then correct the inertial navigation System errors are corrected.

本发明对于地形匹配辅助导航系统,将常规的气压高度计与无线电高度计组合的测量传感器方案以激光雷达替换,在载体飞行的过程中,通过激光雷达模块扫描载体下方地形分布的三维点云数据;坐标转换及航带拼接模块根据惯性导航模块提供的位姿信息完成对点云数据的坐标转换,并通过地图构建及地图匹配可用性评估模块完成对激光点云数字高程地图的搭建和后续对激光点云数字高程地图匹配可用性的评估,确保了激光点云数字高程地图数据的有效性,拓展了地形匹配辅助导航系统的测量范围,有效避免了常规测量传感器在扫描过程中易受干扰导致地形误匹配情况的发生,保证了地形匹配辅助导航系统的稳定性和可靠性。For the terrain matching auxiliary navigation system, the present invention replaces the conventional measurement sensor solution that combines a barometric altimeter and a radio altimeter with a lidar. During the flight of the carrier, the lidar module scans the three-dimensional point cloud data of the terrain distribution below the carrier; the coordinates The conversion and flight strip splicing module completes the coordinate conversion of the point cloud data based on the pose information provided by the inertial navigation module, and completes the construction of the laser point cloud digital elevation map and subsequent laser point cloud through the map construction and map matching usability assessment module. The evaluation of the usability of digital elevation map matching ensures the validity of laser point cloud digital elevation map data, expands the measurement range of the terrain matching auxiliary navigation system, and effectively avoids terrain mismatching caused by conventional measurement sensors being susceptible to interference during the scanning process. occurs, ensuring the stability and reliability of the terrain matching auxiliary navigation system.

本实施例提供了一种计算机设备,包括:存储器和处理器,存储器中存储有可在处理器上运行的计算机程序,处理器执行计算机程序时,实现激光雷达地形匹配辅助导航方法的步骤。This embodiment provides a computer device, including: a memory and a processor. The memory stores a computer program that can be run on the processor. When the processor executes the computer program, it implements the steps of the lidar terrain matching assisted navigation method.

本实施例提供了一种计算机可读存储介质,存储介质上存储有计算机程序,该计算机程序被处理器执行时,实现激光雷达地形匹配辅助导航方法的步骤。This embodiment provides a computer-readable storage medium. A computer program is stored on the storage medium. When the computer program is executed by a processor, the steps of the laser radar terrain matching assisted navigation method are implemented.

本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。Those of ordinary skill in the art can understand that all or part of the steps to implement the above method embodiments can be completed through hardware related to program instructions. The aforementioned program can be stored in a computer-readable storage medium. When the program is executed, the execution includes: The steps of the above method embodiment; and the aforementioned storage media include: mobile storage devices, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks, etc. The medium on which program code is stored.

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。Each embodiment in this specification is described in a progressive manner. Each embodiment focuses on its differences from other embodiments. The same and similar parts between the various embodiments can be referred to each other. As for the device disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple. For relevant details, please refer to the description in the method section.

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments enables those skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be practiced in other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (9)

1.一种激光雷达地形匹配辅助导航方法,其特征在于,包括以下步骤:1. A lidar terrain matching assisted navigation method, characterized by comprising the following steps: S1:通过激光雷达获取载体下方三维地形点云数据,并通过惯性导航提供的载体位姿递推信息对三维地形点云数据进行坐标转换和航带拼接,积累一定航带区域内的点云数据;S1: Acquire the three-dimensional terrain point cloud data under the carrier through lidar, and perform coordinate conversion and flight belt splicing on the three-dimensional terrain point cloud data through the carrier pose recursion information provided by inertial navigation, and accumulate point cloud data within a certain flight belt area. ; S2:选取航带区域一定范围内的点云数据进行降采样;利用KD树结构对降采样后的点云数据进行管理,遍历搜索每个点一定半径范围内的近邻点,通过计算近邻点的高程分布平均值与高程分布标准差实现点云粗差点的剔除;S2: Select point cloud data within a certain range of the flight zone area for downsampling; use the KD tree structure to manage the downsampled point cloud data, traverse and search for the nearest neighbor points within a certain radius of each point, and calculate the distance of the nearest neighbor point The mean value of the elevation distribution and the standard deviation of the elevation distribution realize the elimination of coarse points in the point cloud; S3:滤除粗差点剔除后点云数据中的地物点云,按先验数字高程地图分辨率建立格网和编号,得到点云数字高程地图;对点云数字高程地图进行匹配可用性评估,若满足条件则进行后续地图相似性匹配,否则放弃当前点云数字高程地图数据继续递推惯性导航数据;S3: Filter out the surface object point clouds in the point cloud data after removing the coarse errors, establish grids and numbers according to the resolution of the prior digital elevation map, and obtain the point cloud digital elevation map; conduct a matching usability evaluation on the point cloud digital elevation map, If the conditions are met, subsequent map similarity matching will be performed, otherwise the current point cloud digital elevation map data will be abandoned and the inertial navigation data will continue to be recursively derived; S4:建立地图搜索区域,调取地图搜索区域内的先验数字高程地图数据,进行滑窗匹配,根据归一化互相关判定准则计算点云数字高程地图与当前窗格内先验数字高程地图间的归一化互相关系数,若归一化互相关系数大于设定阈值,则判定匹配结果有效,得到载体在先验数字高程地图中的位置信息,否则放弃当前匹配结果继续递推惯性导航数据;S4: Establish a map search area, retrieve the a priori digital elevation map data in the map search area, perform sliding window matching, and calculate the point cloud digital elevation map and the a priori digital elevation map in the current pane based on the normalized cross-correlation criterion. The normalized cross-correlation coefficient between data; S5:以载体在先验数字高程地图中的位置信息作为观测信息,构建由惯性导航系统与激光雷达地形匹配导航系统形成的组合导航系统并估计惯性导航系统误差,进而对惯性导航系统误差进行校正。S5: Using the position information of the carrier in the prior digital elevation map as observation information, construct a combined navigation system formed by an inertial navigation system and a lidar terrain matching navigation system, estimate the inertial navigation system error, and then correct the inertial navigation system error. . 2.根据权利要求1所述的一种激光雷达地形匹配辅助导航方法,其特征在于,S1包括:2. A lidar terrain matching assisted navigation method according to claim 1, characterized in that S1 includes: S11、通过激光雷达获取载体下方三维地形点云数据;S11. Obtain the three-dimensional terrain point cloud data below the carrier through lidar; S12、通过惯性测量元件获取载体运动加速度及角速率,通过惯性导航递推解算和最优滤波预测过程得到载体位姿递推信息,具体包括载体所处位置、姿态以及导航误差信息;S12. Obtain the carrier's motion acceleration and angular rate through the inertial measurement element, and obtain the carrier's posture recursive information through the inertial navigation recursive solution and optimal filter prediction process, specifically including the carrier's position, attitude, and navigation error information; S13、根据载体位姿递推信息将对应时刻激光雷达本地坐标系l下的三维地形点云数据pl进行坐标转换及航带拼接,得到全局坐标系g下一定航带区域内的点云数据pg,其中第i个点云数据pi的坐标转换为:S13. According to the carrier pose recursion information, perform coordinate conversion and flight belt splicing on the three-dimensional terrain point cloud data p l under the lidar local coordinate system l at the corresponding moment, to obtain point cloud data in a certain flight belt area under the global coordinate system g. p g , where the coordinates of the i-th point cloud data p i are converted to: 式中,b为载体坐标系;为第i个点云数据pi在全局坐标系g下的位置信息;/>为第i个点云数据pi在激光雷达本地坐标系l下的位置信息;/>为载体坐标系向全局坐标系的坐标变换矩阵;/>为激光雷达本地坐标系向载体坐标系的坐标变换矩阵。In the formula, b is the carrier coordinate system; is the position information of the i-th point cloud data p i in the global coordinate system g;/> is the position information of the i-th point cloud data p i in the lidar local coordinate system l;/> is the coordinate transformation matrix from the carrier coordinate system to the global coordinate system;/> is the coordinate transformation matrix from the lidar local coordinate system to the carrier coordinate system. 3.根据权利要求1所述的一种激光雷达地形匹配辅助导航方法,其特征在于,S2包括:3. A lidar terrain matching assisted navigation method according to claim 1, characterized in that S2 includes: S21、选取航带区域一定矩形范围内的点云数据并通过体素网格方法对该区域内的点云数据进行降采样,体素网格大小与先验数字高程地图分辨率相同;S21. Select the point cloud data within a certain rectangular range of the flight zone area and downsample the point cloud data in the area through the voxel grid method. The voxel grid size is the same as the resolution of the prior digital elevation map; S22、基于KD树结构对降采样后的点云数据进行管理,循环遍历当前点云数据中的各个点,对每个遍历点搜索以其自身为中心、半径大小为r的范围内的近邻点数据,计算近邻点的高程分布平均值μ及高程分布标准差σ,判断当前点高程h是否满足粗差点判定条件,粗差点判定条件为:S22. Manage the downsampled point cloud data based on the KD tree structure, loop through each point in the current point cloud data, and search for neighboring points within a range of radius r with itself as the center and each traversed point. Data, calculate the average value of the elevation distribution μ and the standard deviation of the elevation distribution σ of the neighboring points, and determine whether the height h of the current point satisfies the rough difference judgment condition. The rough difference judgment condition is: |h-μ|>3σ|h-μ|>3σ 当满足上述条件时,判定当前点为粗差点,将当前点从点云数据中剔除且更新KD树,否则当前点不是粗差点,并将当前点保留。When the above conditions are met, the current point is determined to be a rough point, the current point is removed from the point cloud data and the KD tree is updated. Otherwise, the current point is not a rough point and the current point is retained. 4.根据权利要求1所述的一种激光雷达地形匹配辅助导航方法,其特征在于,S3包括:4. A lidar terrain matching assisted navigation method according to claim 1, characterized in that S3 includes: S31、对粗差点剔除后的点云数据,通过布料模拟滤波算法滤除粗差点剔除后点云数据中的地物点云,并通过布料模拟方法对地物点云滤除后的空缺网格进行拟合,按先验数字高程地图分辨率对点云数据建立格网并编号,得到网格化的点云数字高程地图;S31. For the point cloud data after the coarse point cloud removal, use the cloth simulation filtering algorithm to filter out the ground object point clouds in the point cloud data after the coarse point cloud removal, and use the cloth simulation method to filter the empty grid of the ground object point cloud. Perform fitting, establish a grid and number the point cloud data according to the resolution of the prior digital elevation map, and obtain a gridded point cloud digital elevation map; S32、计算点云数字高程地图的地形分布特征参数,包括高程均值Mh、高程标准差σh和地形粗糙度σz,计算公式为:S32. Calculate the terrain distribution characteristic parameters of the point cloud digital elevation map, including elevation mean M h , elevation standard deviation σ h and terrain roughness σ z . The calculation formula is: 式中,点云数字高程地图大小为m×n;h(j,k)为点云数字高程地图中第j行第k列处的点云高程值;Qx与Qy分别为x方向和y方向相邻点间高程分布的粗糙度,计算公式为:In the formula, the size of the point cloud digital elevation map is m×n; h(j,k) is the point cloud elevation value at the jth row and kth column in the point cloud digital elevation map; Q x and Q y are the x direction and The roughness of the elevation distribution between adjacent points in the y direction, the calculation formula is: 式中,h(j,k+1)表示点云数字高程地图中第j行第k+1列处的点云高程值,h(j+1,k)为点云数字高程地图中第j+1行第k列处的点云高程值;In the formula, h(j,k+1) represents the point cloud elevation value at the jth row and k+1th column in the point cloud digital elevation map, h(j+1,k) is the jth point cloud digital elevation map Point cloud elevation value at row k of +1; S33、对点云数字高程地图匹配可用性进行评估,若S32中地形分布特征参数满足阈值条件,则判定当前点云数字高程地图可用于后续地图匹配;否则,放弃当前点云数字高程地图数据,继续递推惯性导航数据;点云数字高程地图匹配可用性评估判别式为:S33. Evaluate the matching availability of the point cloud digital elevation map. If the terrain distribution characteristic parameters in S32 meet the threshold conditions, then determine that the current point cloud digital elevation map can be used for subsequent map matching; otherwise, abandon the current point cloud digital elevation map data and continue. Recursive inertial navigation data; point cloud digital elevation map matching usability evaluation discriminant is: 式中,Dstd与Drough分别为高程标准差判定阈值及地形粗糙度判定阈值;Rule为地图匹配可用性评估结果;True代表所建点云数字高程地图可以用于后续地图匹配,False代表所建点云数字高程地图不可以用于后续地图匹配。In the formula, D std and D rough are the elevation standard deviation judgment threshold and terrain roughness judgment threshold respectively; Rule is the map matching usability evaluation result; True means that the built point cloud digital elevation map can be used for subsequent map matching, and False means that the built point cloud digital elevation map can be used for subsequent map matching. Point cloud digital elevation maps cannot be used for subsequent map matching. 5.根据权利要求1所述的一种激光雷达地形匹配辅助导航方法,其特征在于,S4包括:5. A lidar terrain matching assisted navigation method according to claim 1, characterized in that S4 includes: S41、根据当前时刻惯性导航输出的位置及位置误差,从先验数字高程地图中提取其三倍误差范围内的地图数据,用于高程地图匹配;S41. According to the position and position error output by the inertial navigation at the current moment, extract the map data within three times the error range from the prior digital elevation map for elevation map matching; S42、对提取的先验数字高程地图数据进行滑窗遍历搜索,窗口大小与点云数字高程地图大小一致,根据归一化互相关判定准则计算点云数字高程地图与当前滑窗内先验数字高程地图间的归一化互相关系数,归一化互相关系数计算模型为:S42. Perform a sliding window traversal search on the extracted a priori digital elevation map data. The window size is consistent with the size of the point cloud digital elevation map. Calculate the point cloud digital elevation map and the current a priori number in the sliding window based on the normalized cross-correlation criterion. The normalized cross-correlation coefficient between elevation maps, the calculation model of the normalized cross-correlation coefficient is: 式中,N为点云数字图像素网格数量;IDEM与ILiDAR分别为先验数字高程地图和点云数字高程地图中对应点的高程值;(u,v)为点云数字高程地图区域相对于先验数字高程地图区域的位置偏差值;μDEM与μLiDAR分别为先验数字高程地图和点云数字高程地图中高程数据的平均值;σDEM与σLiDAR分别为两先验数字高程地图和点云数字高程地图中高程数据的标准差,NCC(u,v)表示归一化互相关系数;In the formula, N is the number of pixel grids in the point cloud digital image; I DEM and I LiDAR are the elevation values of the corresponding points in the prior digital elevation map and the point cloud digital elevation map respectively; (u, v) are the point cloud digital elevation map The position deviation value of the area relative to the a priori digital elevation map area; μ DEM and μ LiDAR are respectively the average value of the elevation data in the a priori digital elevation map and the point cloud digital elevation map; σ DEM and σ LiDAR are two a priori numbers respectively. The standard deviation of the elevation data in the elevation map and point cloud digital elevation map, NCC(u,v) represents the normalized cross-correlation coefficient; S43、判断归一化互相关系数是否大于归一化互相关系数阈值,当归一化互相关系数大于归一化互相关系数阈值时,得到高程地图匹配位置结果。S43. Determine whether the normalized cross-correlation coefficient is greater than the normalized cross-correlation coefficient threshold. When the normalized cross-correlation coefficient is greater than the normalized cross-correlation coefficient threshold, the elevation map matching position result is obtained. 6.根据权利要求1所述的一种激光雷达地形匹配辅助导航方法,其特征在于,S5包括:6. A lidar terrain matching assisted navigation method according to claim 1, characterized in that S5 includes: S51、对地形匹配辅助导航定位误差和惯性测量元件偏差进行建模,构建误差状态最优滤波状态预测模型,进行惯性导航递推解算和最优滤波预测过程;S51. Model the terrain matching-assisted navigation positioning error and inertial measurement element deviation, construct an error state optimal filter state prediction model, and perform the inertial navigation recursive solution and optimal filter prediction process; S52、若所建点云数字高程地图具备匹配可用性且地图匹配结果满足归一化互相关系数判定准则,则基于匹配位置结果构建误差状态最优滤波观测模型,对最优滤波各状态量进行更新和修正,否则仅执行S51。S52. If the built point cloud digital elevation map has matching availability and the map matching results meet the normalized cross-correlation coefficient determination criteria, then build an error state optimal filtering observation model based on the matching position results, and update each state quantity of the optimal filtering and corrections, otherwise only S51 is executed. 7.一种激光雷达地形匹配辅助导航系统,其适用于如权利要求1-6任一项所述的一种激光雷达地形匹配辅助导航方法,其特征在于,包括:激光雷达模块、惯性导航模块、点云坐标转换及航带拼接模块、点云地图数据处理模块、点云数字高程地图构建及匹配可用性评估模块、地形匹配计算模块和导航误差校正模块;7. A lidar terrain matching auxiliary navigation system, which is suitable for a lidar terrain matching auxiliary navigation method according to any one of claims 1 to 6, characterized in that it includes: a lidar module, an inertial navigation module , point cloud coordinate conversion and flight strip splicing module, point cloud map data processing module, point cloud digital elevation map construction and matching usability evaluation module, terrain matching calculation module and navigation error correction module; 激光雷达模块,用于获取载体下方三维地形点云数据;Lidar module, used to obtain three-dimensional terrain point cloud data below the carrier; 惯性导航模块,用于获取惯性导航提供的载体运动过程中的载体位姿递推信息;The inertial navigation module is used to obtain the carrier pose recursion information during the carrier movement provided by the inertial navigation; 点云坐标转换及航带拼接模块,用于基于载体位姿递推信息对三维地形点云数据进行坐标转换和航带拼接,积累一定航带区域内的点云数据;The point cloud coordinate conversion and flight belt splicing module is used to perform coordinate conversion and flight belt splicing of three-dimensional terrain point cloud data based on carrier pose recursion information, and accumulate point cloud data within a certain flight belt area; 点云地图数据处理模块,用于对航带区域一定范围内的点云数据进行降采样;利用KD树结构对降采样后的点云数据进行管理,遍历搜索每个点以其自身为中心、一定半径范围内的近邻点,通过计算近邻点的高程分布平均值与高程分布标准差实现点云粗差点的剔除;The point cloud map data processing module is used to downsample the point cloud data within a certain range of the air zone area; use the KD tree structure to manage the downsampled point cloud data, and traverse and search each point centered on itself. For neighboring points within a certain radius, the coarse points of the point cloud can be eliminated by calculating the average elevation distribution and standard deviation of the elevation distribution of the neighboring points; 点云数字高程地图构建及匹配可用性评估模块,用于滤除粗差点剔除后点云数据中的地物点云,按先验数字高程地图分辨率建立格网和编号,得到点云数字高程地图;对点云数字高程地图进行匹配可用性评估,若满足条件则进行后续地图相似性匹配,否则放弃当前点云数字高程地图数据继续递推惯性导航数据;The point cloud digital elevation map construction and matching usability evaluation module is used to filter out the feature point clouds in the point cloud data after removing the coarse points, establish grids and numbers according to the resolution of the prior digital elevation map, and obtain the point cloud digital elevation map. ;Evaluate the matching availability of the point cloud digital elevation map. If the conditions are met, subsequent map similarity matching will be performed. Otherwise, the current point cloud digital elevation map data will be abandoned and the inertial navigation data will continue to be recursively derived; 地形匹配计算模块,用于建立地图搜索区域,调取地图搜索区域内的先验数字高程地图数据,进行滑窗匹配,根据归一化互相关判定准则计算点云数字高程地图与当前窗格内先验数字高程地图间的归一化互相关系数,若归一化互相关系数大于所设定阈值,则判定匹配结果有效,得到载体在先验数字高程地图中的位置信息,否则放弃当前匹配结果继续递推惯性导航数据;The terrain matching calculation module is used to establish a map search area, retrieve a priori digital elevation map data in the map search area, perform sliding window matching, and calculate the point cloud digital elevation map and the current pane according to the normalized cross-correlation criterion. The normalized cross-correlation coefficient between the prior digital elevation maps. If the normalized cross-correlation coefficient is greater than the set threshold, the matching result is judged to be valid and the position information of the carrier in the prior digital elevation map is obtained. Otherwise, the current match is given up. The results continue to recurse the inertial navigation data; 导航误差校正模块,用于以载体在先验数字高程地图中的位置信息作为观测信息,构建由惯性导航系统与激光雷达地形匹配导航系统形成的组合导航系统并估计惯性导航系统误差,进而对惯性导航系统误差进行校正。The navigation error correction module is used to use the position information of the carrier in the prior digital elevation map as observation information to construct a combined navigation system formed by an inertial navigation system and a lidar terrain matching navigation system and estimate the inertial navigation system error, and then calculate the inertial navigation system error. Navigation system errors are corrected. 8.一种计算机设备,其特征在于,包括:存储器和处理器,所述存储器中存储有可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现权利要求1至6任一项所述方法的步骤。8. A computer device, characterized in that it includes: a memory and a processor, the memory stores a computer program that can run on the processor, and when the processor executes the computer program, the claim is realized Steps of the method described in any one of 1 to 6. 9.一种计算机可读存储介质,其特征在于,所述存储介质上存储有计算机程序,该计算机程序被处理器执行时,实现权利要求1至6中任一项所述方法的步骤。9. A computer-readable storage medium, characterized in that a computer program is stored on the storage medium, and when the computer program is executed by a processor, the steps of the method according to any one of claims 1 to 6 are implemented.
CN202310938254.7A 2023-07-28 2023-07-28 Laser radar terrain matching auxiliary navigation method and system Pending CN116879917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310938254.7A CN116879917A (en) 2023-07-28 2023-07-28 Laser radar terrain matching auxiliary navigation method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310938254.7A CN116879917A (en) 2023-07-28 2023-07-28 Laser radar terrain matching auxiliary navigation method and system

Publications (1)

Publication Number Publication Date
CN116879917A true CN116879917A (en) 2023-10-13

Family

ID=88254797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310938254.7A Pending CN116879917A (en) 2023-07-28 2023-07-28 Laser radar terrain matching auxiliary navigation method and system

Country Status (1)

Country Link
CN (1) CN116879917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117333688A (en) * 2023-12-01 2024-01-02 西安现代控制技术研究所 High-precision terrain matching method based on multidimensional gradient characteristics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117333688A (en) * 2023-12-01 2024-01-02 西安现代控制技术研究所 High-precision terrain matching method based on multidimensional gradient characteristics
CN117333688B (en) * 2023-12-01 2024-03-15 西安现代控制技术研究所 High-precision terrain matching method based on multidimensional gradient characteristics

Similar Documents

Publication Publication Date Title
CN112113574B (en) Method, apparatus, computing device and computer-readable storage medium for positioning
CN111947671B (en) Method, apparatus, computing device and computer-readable storage medium for positioning
CN110146909B (en) Positioning data processing method
CN108921947B (en) Method, device, equipment, storage medium and acquisition entity for generating electronic map
Ghallabi et al. LIDAR-Based road signs detection For Vehicle Localization in an HD Map
CN103411609B (en) A kind of aircraft return route planing method based on online composition
JP6760114B2 (en) Information processing equipment, data management equipment, data management systems, methods, and programs
CN114526745A (en) Drawing establishing method and system for tightly-coupled laser radar and inertial odometer
CN111272165A (en) An intelligent vehicle localization method based on feature point calibration
CN110989619B (en) Method, apparatus, device and storage medium for locating objects
CN115639547B (en) Multi-line laser radar and GNSS-INS combined calibration method, system and medium
CN111862214B (en) Computer equipment positioning method, device, computer equipment and storage medium
CN118298122A (en) NDT-ICP point cloud registration-based laser radar-IMU tight coupling mapping method for unmanned platform
CN117804445A (en) Laser/inertial odometer method in non-ideal environment
CN114660589A (en) Method, system and device for positioning underground tunnel
CN119291716A (en) Multi-story building mapping method, system and medium based on laser radar and IMU coupling
CN116879917A (en) Laser radar terrain matching auxiliary navigation method and system
Li et al. Aerial-triangulation aided boresight calibration for a low-cost UAV-LiDAR system
CN116465393A (en) Synchronous positioning and mapping method and device based on area array laser sensor
CN104915988A (en) Photogrammetric dense point cloud generation method
US20250029332A1 (en) Building modeling method using aerial lidar and computer program recorded on recording medium to execute the same
Monnier et al. Registration of terrestrial mobile laser data on 2D or 3D geographic database by use of a non-rigid ICP approach.
Escourrou et al. Ndt localization with 2d vector maps and filtered lidar scans
CN116429090A (en) Synchronous positioning and mapping method and device based on line laser and mobile robot
CN117075140A (en) A dual-matching robust laser positioning method and system applied in dynamic environments

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination