[go: up one dir, main page]

CN116756140A - Data management method and system for online repair of railway freight cars - Google Patents

Data management method and system for online repair of railway freight cars Download PDF

Info

Publication number
CN116756140A
CN116756140A CN202310588099.0A CN202310588099A CN116756140A CN 116756140 A CN116756140 A CN 116756140A CN 202310588099 A CN202310588099 A CN 202310588099A CN 116756140 A CN116756140 A CN 116756140A
Authority
CN
China
Prior art keywords
data
metadata
module
database
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310588099.0A
Other languages
Chinese (zh)
Inventor
张欢
徐建喜
焦杨
王洪昆
边志宏
王蒙
丁颖
王萌
马瑞峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHN Energy Railway Equipment Co Ltd
Original Assignee
CHN Energy Railway Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHN Energy Railway Equipment Co Ltd filed Critical CHN Energy Railway Equipment Co Ltd
Priority to CN202310588099.0A priority Critical patent/CN116756140A/en
Publication of CN116756140A publication Critical patent/CN116756140A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • G06F16/2228Indexing structures
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • G06F16/211Schema design and management
    • G06F16/212Schema design and management with details for data modelling support
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2457Query processing with adaptation to user needs
    • G06F16/24573Query processing with adaptation to user needs using data annotations, e.g. user-defined metadata
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/26Visual data mining; Browsing structured data
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/906Clustering; Classification
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Library & Information Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供一种用于铁路货车在线修的数据管理方法及系统,该系统包括元数据采集模块、元数据分类模块和数据库管理模块;元数据采集模块用于确定数据源类型并采用与数据源类型相对应的数据适配器采集铁路货车在线修过程中的元数据,采用数据缓存层解耦对元数据的数据采集和数据处理,采用数据管道的方式对元数据进行传输;元数据分类模块用于根据铁路货车在线修的业务需要,对所采集的元数据进行类别划分,并按照数据类别将所采集的元数据存入对应的数据库中;数据库管理模块用于对数据库进行管理。通过数据适配器能够有效地接入多源头、多格式的元数据,能够显著地提高铁路货车在线修的数据管理效率。

The invention provides a data management method and system for online maintenance of railway trucks. The system includes a metadata collection module, a metadata classification module and a database management module; the metadata collection module is used to determine the data source type and adopt the data source type. The data adapter corresponding to the type collects metadata of railway trucks during the online maintenance process, uses the data cache layer to decouple the data collection and data processing of metadata, and uses the data pipeline to transmit metadata; the metadata classification module is used According to the business needs of online maintenance of railway trucks, the collected metadata is divided into categories, and the collected metadata is stored in the corresponding database according to the data category; the database management module is used to manage the database. The data adapter can effectively access metadata from multiple sources and formats, which can significantly improve the data management efficiency of online maintenance of railway trucks.

Description

用于铁路货车在线修的数据管理方法及系统Data management method and system for online repair of railway freight cars

技术领域Technical field

本发明实施例涉及数据处理技术领域,具体涉及一种用于铁路货车在线修的数据管理方法及系统。Embodiments of the present invention relate to the field of data processing technology, and specifically relate to a data management method and system for online maintenance of railway trucks.

背景技术Background technique

随着科学技术的不断发展,企业在生产过程中,产生的数据量呈大幅度的增长,人类进入了大数据时代。在数字化过程中,业务对象在信息系统中均以数据的形式存在,数据是业务活动在信息系统中的真实反映。铁路货车在线修采用数据驱动型作业模式,具有基础数据量大、故障定位准确和实时数据交互等特点,同时在状态监测维修(HCCBM)系统建设过程中非状态修铁路货车也积累了大量的多T报警等检修运用数据,在整个企业中,不同的人拥有不同层面的数据知识,但是很难有人掌握全部数据。因此必须将这些数据记录下来,否则可能会丢失关于自身的宝贵知识。With the continuous development of science and technology, the amount of data generated by enterprises during the production process has increased significantly, and mankind has entered the era of big data. In the process of digitization, business objects exist in the form of data in the information system. Data is the true reflection of business activities in the information system. The online maintenance of railway freight cars adopts a data-driven operation mode, which has the characteristics of large amount of basic data, accurate fault location and real-time data interaction. At the same time, during the construction of the condition monitoring and maintenance (HCCBM) system, non-condition repair of railway freight cars has also accumulated a large amount of data. T alarm and other maintenance use data. Throughout the enterprise, different people have different levels of data knowledge, but it is difficult for anyone to master all the data. This data must therefore be recorded, otherwise valuable knowledge about oneself may be lost.

目前各维修分公司列检所对于铁路货车在线修作业主要通过广播或对讲设备进行任务以及多T故障的下发与反馈,作业人员通过纸质卡片记录作业信息,作业完成后提交列检值班员录入系统,每天定时上传。这种集中录入、定时单向上报的数据管理模式效率低下,已经无法满足状态修实施后的铁路货车在线修作业,因此亟需提供一种高效的用于铁路货车在线修的数据管理方法。At present, the train inspection offices of each maintenance branch mainly use broadcasting or intercom equipment to carry out online repair operations for railway freight cars and issue and feedback multi-T faults. The operators record the operation information through paper cards and submit it to the train inspection duty after the operation is completed. The staff enters the system and uploads it regularly every day. This data management model of centralized entry and timed one-way reporting is inefficient and can no longer satisfy the online maintenance operations of railway freight cars after status repair is implemented. Therefore, there is an urgent need to provide an efficient data management method for online maintenance of railway freight cars.

发明内容Contents of the invention

本发明实施例提供一种用于铁路货车在线修的数据管理方法及系统,用以解决现有方法效率低的问题。Embodiments of the present invention provide a data management method and system for online maintenance of railway trucks to solve the problem of low efficiency of existing methods.

第一方面,本发明实施例提供一种用于铁路货车在线修的数据管理系统,包括:元数据采集模块、元数据分类模块和数据库管理模块;In a first aspect, embodiments of the present invention provide a data management system for online maintenance of railway trucks, including: a metadata collection module, a metadata classification module and a database management module;

元数据采集模块用于确定数据源类型并采用与数据源类型相对应的数据适配器采集铁路货车在线修过程中的元数据,采用数据缓存层解耦对元数据的数据采集和数据处理,采用数据管道的方式对元数据进行传输;The metadata collection module is used to determine the data source type and use the data adapter corresponding to the data source type to collect metadata of railway trucks during the online maintenance process. The data cache layer is used to decouple the data collection and data processing of metadata. Transmit metadata through pipelines;

元数据分类模块用于根据铁路货车在线修的业务需要,对所采集的元数据进行类别划分,并按照数据类别将所采集的元数据存入对应的数据库中;The metadata classification module is used to classify the collected metadata according to the business needs of online maintenance of railway trucks, and store the collected metadata in the corresponding database according to the data category;

数据库管理模块用于对数据库进行管理。The database management module is used to manage the database.

一种实施例中,还包括元数据模型模块;In one embodiment, it also includes a metadata model module;

元数据模型模块用于按照数据类别构建数据模型,并对数据模型进行结构监控,在结构发生变化时对数据模型进行更新;The metadata model module is used to build data models according to data categories, monitor the structure of the data model, and update the data model when the structure changes;

元数据模型模块还用于按照指定的算法类型和业务数据通过数据模型识别铁路货车在线修过程中所采集的元数据之间的关系。The metadata model module is also used to identify the relationship between the metadata collected during the online repair process of railway freight cars through the data model according to the specified algorithm type and business data.

一种实施例中,还包括元数据可视化展示模块;In one embodiment, it also includes a metadata visual display module;

元数据可视化展示模块用于通过图形化或者拖拽式的方式对所采集的铁路货车在线修过程中的元数据进行展示。The metadata visual display module is used to graphically or drag-and-drop the collected metadata of railway freight cars during the online maintenance process.

一种实施例中,还包括元数据质量检测模块;In one embodiment, it also includes a metadata quality detection module;

元数据质量检测模块用于根据完整性、唯一性、准确性、一致性、及时性、真实性和相关性中的一种或者多种对所采集的元数据进行前置质量检测以及周期性质量检测,并对不合格的元数据进行自动清洗。The metadata quality inspection module is used to perform pre-quality inspection and periodic quality inspection on the collected metadata based on one or more of completeness, uniqueness, accuracy, consistency, timeliness, authenticity and relevance. Detect and automatically clean unqualified metadata.

第二方面,本发明实施例提供一种用于铁路货车在线修的数据管理方法,包括:In a second aspect, embodiments of the present invention provide a data management method for online maintenance of railway trucks, including:

确定数据源类型并采用与数据源类型相对应的数据适配器采集铁路货车在线修过程中的元数据;Determine the data source type and use the data adapter corresponding to the data source type to collect metadata during the online maintenance process of railway freight cars;

采用数据缓存层解耦对元数据的数据采集和数据处理;Use the data cache layer to decouple the data collection and data processing of metadata;

采用数据管道的方式对元数据进行传输;Use data pipelines to transmit metadata;

根据铁路货车在线修的业务需要,对所采集的元数据进行类别划分;Classify the collected metadata according to the business needs of online maintenance of railway trucks;

按照数据类别将所采集的元数据存入对应的数据库中。Store the collected metadata in the corresponding database according to the data category.

一种实施例中,所述方法还包括:In one embodiment, the method further includes:

按照数据类别构建数据模型,并对数据模型进行结构监控,在结构发生变化时对数据模型进行更新;Build a data model according to data categories, monitor the structure of the data model, and update the data model when the structure changes;

按照指定的算法类型和业务数据通过数据模型识别铁路货车在线修过程中所采集的元数据之间的关系。According to the specified algorithm type and business data, the relationship between the metadata collected during the online repair process of railway trucks is identified through the data model.

一种实施例中,所述方法还包括:In one embodiment, the method further includes:

通过图形化或者拖拽式的方式对所采集的铁路货车在线修过程中的元数据进行展示。The collected metadata of railway freight cars during the online maintenance process is displayed graphically or in a drag-and-drop manner.

一种实施例中,所述方法还包括:In one embodiment, the method further includes:

根据完整性、唯一性、准确性、一致性、及时性、真实性和相关性中的一种或者多种对所采集的元数据进行前置质量检测以及周期性质量检测;Conduct pre-quality testing and periodic quality testing on the collected metadata based on one or more of completeness, uniqueness, accuracy, consistency, timeliness, authenticity and relevance;

对不合格的元数据进行自动清洗。Automatically clean unqualified metadata.

第三方面,本发明实施例提供一种电子设备,包括:In a third aspect, an embodiment of the present invention provides an electronic device, including:

至少一个处理器和存储器;at least one processor and memory;

存储器存储计算机执行指令;Memory stores instructions for execution by the computer;

至少一个处理器执行存储器存储的计算机执行指令,使得至少一个处理器执行如第一方面任一项所述的用于铁路货车在线修的数据管理方法。At least one processor executes computer execution instructions stored in the memory, so that at least one processor executes the data management method for online maintenance of railway freight cars as described in any one of the first aspects.

第四方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,计算机执行指令被处理器执行时用于实现如第一方面任一项所述的用于铁路货车在线修的数据管理方法。In a fourth aspect, embodiments of the present invention provide a computer-readable storage medium. The computer-readable storage medium stores computer-executable instructions. When executed by a processor, the computer-executable instructions are used to implement any one of the first aspects. The above-mentioned data management method for online maintenance of railway freight cars.

本发明实施例提供的用于铁路货车在线修的数据管理方法及系统,该系统包括:元数据采集模块、元数据分类模块和数据库管理模块;元数据采集模块用于确定数据源类型并采用与数据源类型相对应的数据适配器采集铁路货车在线修过程中的元数据,采用数据缓存层解耦对元数据的数据采集和数据处理,采用数据管道的方式对元数据进行传输;元数据分类模块用于根据铁路货车在线修的业务需要,对所采集的元数据进行类别划分,并按照数据类别将所采集的元数据存入对应的数据库中;数据库管理模块用于对数据库进行管理。不仅能够显著提高铁路货车在线修的数据管理效率,而且通过数据适配器能够有效地接入多源头、多格式的元数据,通过数据缓存层和数据传输方式提高了数据采集性能。The embodiment of the present invention provides a data management method and system for online maintenance of railway trucks. The system includes: a metadata collection module, a metadata classification module and a database management module; the metadata collection module is used to determine the data source type and adopt the The data adapter corresponding to the data source type collects metadata of railway trucks during the online maintenance process, uses the data cache layer to decouple the data collection and data processing of metadata, and uses the data pipeline to transmit metadata; the metadata classification module It is used to classify the collected metadata according to the business needs of online maintenance of railway trucks, and store the collected metadata in the corresponding database according to the data category; the database management module is used to manage the database. Not only can it significantly improve the data management efficiency of online maintenance of railway trucks, but it can also effectively access multi-source and multi-format metadata through data adapters, and improve data collection performance through the data cache layer and data transmission methods.

附图说明Description of the drawings

此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the invention and together with the description serve to explain the principles of the invention.

图1为本发明一实施例提供的用于铁路货车在线修的数据管理系统的结构示意图;Figure 1 is a schematic structural diagram of a data management system for online maintenance of railway trucks provided by an embodiment of the present invention;

图2为本发明一实施例提供的用于铁路货车在线修的数据管理方法的流程图;Figure 2 is a flow chart of a data management method for online maintenance of railway trucks provided by an embodiment of the present invention;

图3为本发明一实施例提供的电子设备的结构示意图。FIG. 3 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.

通过上述附图,已示出本发明明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本发明构思的范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。Specific embodiments of the present invention have been shown in the above-mentioned drawings and will be described in more detail below. These drawings and written description are not intended to limit the scope of the inventive concept in any way, but rather to illustrate the concept of the present invention to those skilled in the art with reference to specific embodiments.

具体实施方式Detailed ways

下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。The present invention will be further described in detail below through specific embodiments in conjunction with the accompanying drawings. Similar elements in different embodiments use associated similar element numbers. In the following embodiments, many details are described in order to make the present application better understood. However, those skilled in the art can readily recognize that some of the features may be omitted in different situations, or may be replaced by other elements, materials, and methods. In some cases, some operations related to the present application are not shown or described in the specification. This is to avoid the core part of the present application being overwhelmed by excessive descriptions. For those skilled in the art, it is difficult to describe these in detail. The relevant operations are not necessary, and they can fully understand the relevant operations based on the descriptions in the instructions and general technical knowledge in the field.

另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。Additionally, the features, operations, or characteristics described in the specification may be combined in any suitable manner to form various embodiments. At the same time, each step or action in the method description can also be sequentially exchanged or adjusted in a manner that is obvious to those skilled in the art. Therefore, the various sequences in the description and drawings are only for clearly describing a certain embodiment, and do not imply a necessary sequence, unless otherwise stated that a certain sequence must be followed.

本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。The serial numbers assigned to components in this article, such as "first", "second", etc., are only used to distinguish the described objects and do not have any sequential or technical meaning. The terms "connection" and "connection" mentioned in this application include direct and indirect connections (connections) unless otherwise specified.

现有铁路货车在线修所采用的数据集中录入、定时单向上报数据的模式已经无法满足状态修实施后的在线修作业,将面临以下问题:The existing model of centralized data entry and timed one-way reporting of data used in online maintenance of railway freight cars can no longer meet the needs of online maintenance operations after the implementation of status maintenance, and will face the following problems:

1、目前装备货车列检作业人员无法在作业前及时获取HCCBM系统推送的多T故障、三车典故、关键指标性零部件磨耗预警等故障预报信息,货车检修运用过程积累的大量业务数据无法有效指导在线修工作开展。1. Currently, equipment truck train inspection operators are unable to obtain fault forecast information such as multi-T faults, three-vehicle allusions, and key indicator component wear warnings pushed by the HCCBM system in time before operation. The large amount of business data accumulated during the truck inspection and application process cannot be effectively Guide the implementation of online repair work.

2、在线修通过广播、对讲设备进行任务的下发与反馈,无法实现一次性、点对点的高效作业分发,尤其是存在信息重复传达、信息传达不准的情况,列检值班员只靠对讲机与现场作业人员沟通,无法掌握生产进度,会存在故障漏反馈隐患,随着HCCBM推送的车辆数据内容持续增加闸瓦厚度预测信息、轮对踏面擦伤信息、全方位拍照设备推送故障信息等,传统的手工作业方式将无法支撑在技检作业时间内大数据量任务点对点的下发与反馈工作。2. Online maintenance uses broadcasting and intercom equipment to distribute and provide feedback on tasks. It is impossible to achieve one-time, point-to-point efficient job distribution, especially when information is repeatedly transmitted or information is inaccurately transmitted. Train inspection attendants only rely on intercoms. Communicating with on-site workers, unable to grasp the production progress, will lead to hidden dangers of leakage of fault feedback. As the vehicle data content pushed by HCCBM continues to increase, brake shoe thickness prediction information, wheel set tread scratch information, and all-round camera equipment push fault information, etc., The traditional manual work method will not be able to support the point-to-point delivery and feedback of large data volume tasks during technical inspection operations.

3、作业人员检车过程中发现的新故障及检修过程中接收的预报故障处理信息只能通过纸质卡片记录,待作业完成后提交列检值班员录入系统并上传。该模式属于事后信息补录,无法实现的故障实时闭环处理,造成上线运行列车实际已经处理完相关故障,但数据上没有故障销号的情况,造成列车实时状态不准确。3. New faults discovered by operators during vehicle inspection and forecast fault handling information received during maintenance can only be recorded on paper cards. After the operation is completed, they will be submitted to the train inspection attendant for input into the system and uploaded. This mode is a post-information supplementary recording, which cannot realize real-time closed-loop processing of faults. As a result, the trains running online have actually processed the relevant faults, but there is no fault cancellation number in the data, resulting in inaccurate real-time status of the trains.

4、列检所作业场地具有进出车车流频繁、作业技检时间短等实际情况,缺乏有效的安全监控措施,现场作业容易忽略红旗、红灯等关键作业设备是否准确安装、作业无法自动获取,尚无在线修作业在安全层面辅助管理手段。4. The operation site of the train inspection station has actual conditions such as frequent incoming and outgoing traffic and short operation technical inspection time. It lacks effective safety monitoring measures. It is easy to ignore whether key operation equipment such as red flags and red lights are accurately installed during on-site operations, and the operation cannot be automatically obtained. There is no auxiliary management method for online maintenance operations at the safety level.

5、在线修检修过程中涉及零部件更换,但无法实现配件装卸车及成本的跟踪,为状态修全寿命管理配件的全生命周期的跟踪及成本管理留有隐患。5. Parts replacement is involved in the online repair and maintenance process, but it is impossible to track parts loading and unloading trucks and costs, leaving hidden dangers in the tracking and cost management of the entire life cycle of condition repair life management parts.

针对上述问题及难点,本申请提出了一种用于重载铁路货车智能在线修的基于元数据的数据管理方法。元数据是描述数据的数据,是指从信息资源中抽取出来用于描述其特征与内容的数据,从一般意义上来讲,元数据是指数据的类型、名称、和值等;在关系型数据库中,常常指数据表的属性、取值范围、数据来源,以及数据之间的关系等。元数据对于数据管理和数据使用来说都是必不可少的。元数据相关管理活动均需以业务为基础,并以标准的形式规范业务对象在各信息系统中的统一定义和应用,以提升企业在业务协同、监管合规、数据共享开放、数据分析应用等各方面的能力。元数据管理提供了获取和管理组织数据的主要方法。然而,元数据管理不仅是知识管理面临的一个挑战,还是风险管理的一个必要条件。元数据可以确保企业识别私有的或敏感的数据,能够管理数据的生命周期,以实现自身利益,满足合规要求,并减少风险敞口。如果没有可靠的元数据,企业就不知道它拥有什么数据、数据表示什么、数据来自何处、它如何在系统中流转,谁有权访问它,或者对于数据保持高质量的意义。如果没有元数据,企业就不能将其数据作为资产进行管理。实际上,如果没有元数据,企业可能根本无法管理其数据。使用数据时,元数据需要以XML或其他格式呈现,其他类型的元数据要求在基于保留所有权、安全要求等属性的基础上进行数据交换。与其他数据一样,元数据需要管理。随着企业收集和存储数据能力的提升,元数据在数据管理中的作用变得越来越重要。要实现数据驱动,组织必须先实现元数据驱动。In view of the above problems and difficulties, this application proposes a metadata-based data management method for intelligent online maintenance of heavy-haul railway freight cars. Metadata is data that describes data. It refers to data extracted from information resources to describe its characteristics and content. In a general sense, metadata refers to the type, name, and value of data; in relational databases , often refers to the attributes, value ranges, data sources, and relationships between data in the data table. Metadata is essential for both data management and data usage. Metadata-related management activities need to be business-based, and standardize the unified definition and application of business objects in various information systems in a standard form to improve the enterprise's business collaboration, regulatory compliance, data sharing and openness, data analysis applications, etc. Ability in all aspects. Metadata management provides the primary method for capturing and managing an organization's data. However, metadata management is not only a challenge for knowledge management but also a necessity for risk management. Metadata can ensure that enterprises identify private or sensitive data and can manage the data lifecycle to their own benefit, meet compliance requirements, and reduce risk exposure. Without reliable metadata, a business doesn't know what data it has, what it represents, where it comes from, how it moves through the system, who has access to it, or what it means to keep the data high quality. Without metadata, enterprises cannot manage their data as an asset. In fact, without metadata, enterprises may not be able to manage their data at all. When using data, metadata needs to be presented in XML or other formats, and other types of metadata require data exchange based on attributes such as retention of ownership and security requirements. Like other data, metadata needs to be managed. As enterprises improve their ability to collect and store data, the role of metadata in data management becomes increasingly important. To become data-driven, organizations must first become metadata-driven.

图1为本发明一实施例提供的用于铁路货车在线修的数据管理系统的结构示意图。如图1所示,本实施例提供的用于铁路货车在线修的数据管理系统10可以包括:元数据采集模块101、元数据分类模块102和数据库管理模块103;元数据采集模块101用于确定数据源类型并采用与数据源类型相对应的数据适配器采集铁路货车在线修过程中的元数据,采用数据缓存层解耦对元数据的数据采集和数据处理,采用数据管道的方式对元数据进行传输;元数据分类模块102用于根据铁路货车在线修的业务需要,对所采集的元数据进行类别划分,并按照数据类别将所采集的元数据存入对应的数据库中;数据库管理模块103用于对数据库进行管理。Figure 1 is a schematic structural diagram of a data management system for online maintenance of railway trucks provided by an embodiment of the present invention. As shown in Figure 1, the data management system 10 for online maintenance of railway trucks provided by this embodiment may include: a metadata collection module 101, a metadata classification module 102 and a database management module 103; the metadata collection module 101 is used to determine The data source type is used and the data adapter corresponding to the data source type is used to collect metadata of railway freight cars during the online maintenance process. The data cache layer is used to decouple the data collection and data processing of metadata, and the metadata is processed using a data pipeline. Transmission; the metadata classification module 102 is used to classify the collected metadata according to the business needs of online maintenance of railway trucks, and store the collected metadata in the corresponding database according to the data category; the database management module 103 uses For database management.

铁路货车在线修过程中的元数据包括业务元数据和技术元数据。其中业务元数据主要关注数据的内容和条件,另包括与数据治理相关的详细信息。业务元数据包括主题域、概念、实体、属性的非技术名称和定义、属性的数据类型和其他特征,如范围描述、计算公式、算法和业务规则、有效的域值及其定义。业务元数据具体可以包括:The metadata in the online maintenance process of railway freight cars includes business metadata and technical metadata. Among them, business metadata mainly focuses on the content and conditions of data, and also includes detailed information related to data governance. Business metadata includes non-technical names and definitions of subject areas, concepts, entities, attributes, data types of attributes and other characteristics, such as range descriptions, calculation formulas, algorithms and business rules, valid domain values and their definitions. Business metadata can specifically include:

1)数据集、表和字段的定义和描述;1) Definition and description of data sets, tables and fields;

2)业务规则、转换规则、计算公式和推导公式;2) Business rules, conversion rules, calculation formulas and derivation formulas;

3)数据模型;3) Data model;

4)数据质量规则和检核结果;4) Data quality rules and inspection results;

5)数据的更新计划;5) Data update plan;

6)数据溯源和数据血缘;6) Data traceability and data lineage;

7)数据标准;7) Data standards;

8)特定的数据元素记录系统;8) Specific data element recording system;

9)有效值约束;9) Valid value constraints;

10)数据的安全/隐私级别;10) Data security/privacy level;

11)已知的数据问题;11) Known data issues;

12)数据使用说明。12) Data usage instructions.

技术元数据提供有关数据的技术细节、存储数据的系统以及在系统内和系统之间数据流转过程的信息。技术元数据具体可以包括:Technical metadata provides information about the technical details of the data, the systems in which the data is stored, and the processes by which data flows within and between systems. Technical metadata can specifically include:

1)物理数据库表名和字段名;1) Physical database table name and field name;

2)字段属性;2) Field attributes;

3)数据库对象的属性;3) Attributes of database objects;

4)访问权限;4)Access rights;

5)数据CRUD规则,即数据增(Create)、查(Read)、改(Update)、删(Delete)规则;5) Data CRUD rules, namely data create, read, update and delete rules;

6)物理数据模型,包括数据表名、键和索引;6) Physical data model, including data table names, keys and indexes;

7)记录数据模型与实物资产之间的关系;7) Record the relationship between the data model and physical assets;

8)抽取-转换-加载(Extract-Transform-Load,ETL)作业详细信息;8) Extract-Transform-Load (ETL) job details;

9)文件格式模式定义。9) File format mode definition.

现有方法难以实现多源头、多格式、高并发的元数据采集需求,难以在多用户、多租户、多设备、多采集点的场景下有效、快速的进行元数据的操作及查询。为解决多源头、多格式、高并发的元数据采集需求,本实施例中通过元数据采集模块中的数据适配器、数据缓存层以及数据传输方式来解决。Existing methods are difficult to meet the multi-source, multi-format, and high-concurrency metadata collection requirements, and are difficult to effectively and quickly operate and query metadata in multi-user, multi-tenant, multi-device, and multi-collection point scenarios. In order to solve the multi-source, multi-format, and high-concurrency metadata collection requirements, in this embodiment, the data adapter, data cache layer, and data transmission method in the metadata collection module are used to solve the problem.

具体的,元数据采集模块是元数据的源头,为解决多源头、多格式、高并发的元数据采集需求,在元数据采集模块设计上,采用适配器模式,可以根据不同的系统及采集的方式,添加对应的采集规则。铁路货车在线修过程中的元数据的数据源类型具体可以包括结构化数据、非结构化数据、接口数据、硬件数据、历史数据以及线下数据等,通过数据源类型的入参便可以确定相对应数据适配器。例如可以根据获取适配器方法getAdapterByType(String type),通过数据源类型的入参来确定数据适配器。其中,非结构化数据又称为文件元数据,支持文件元数据的采集及同步,提供系统属性管理、属性自定义、分类属性分配等属性管理应用;支持授权用户统一管理平台中的文件属性,并可将文件属性分配给不同的文件分类。用户可手动自定义创建文件属性,字段信息包括属性名称、英文名称、数据类型、长度、引用数据字典、是否非空、排序号等。同时平台提供文件名称、文件大小、扩展名、所属分类、存储位置、密级、上传人、上传时间等默认的内置文件属性,支持启用、停用文件属性。Specifically, the metadata collection module is the source of metadata. In order to solve the multi-source, multi-format, and high-concurrency metadata collection requirements, the adapter mode is adopted in the design of the metadata collection module, which can be adapted to different systems and collection methods. , add corresponding collection rules. The data source types of metadata in the online repair process of railway trucks can specifically include structured data, unstructured data, interface data, hardware data, historical data, offline data, etc. The relevant data can be determined through the input parameters of the data source type. Corresponding data adapter. For example, you can determine the data adapter through the input parameter of the data source type according to the getAdapterByType(String type) method. Among them, unstructured data, also known as file metadata, supports the collection and synchronization of file metadata, and provides attribute management applications such as system attribute management, attribute customization, classification attribute assignment, etc.; it supports authorized users to uniformly manage file attributes in the platform. And file attributes can be assigned to different file categories. Users can manually create custom file attributes. Field information includes attribute name, English name, data type, length, reference data dictionary, whether it is non-empty, sort number, etc. At the same time, the platform provides default built-in file attributes such as file name, file size, extension, category, storage location, confidentiality level, uploader, upload time, etc., and supports enabling and disabling file attributes.

通过数据缓存层解决采集与数据处理间的解耦,实现采集模块资源动态横向拓展,能够提高采集性能。The data cache layer solves the decoupling between collection and data processing, realizes dynamic horizontal expansion of collection module resources, and improves collection performance.

在数据的传输上,采用数据管道的方式,通过对数据管道制定统一的数据格式标准,实现数据的统一传输,同时在数据管道中提供自定义数据过滤器及数据处理机制,实现对一份数据的连续和多重的处理,做到一份数据多种用途。在数据的采集性能上,通过动态网管技术实现数据的处理的自动分发,例如可以调用自动分发方法auto Distribution(Text Data),即可实现把数据自动分发到数据层进行持久化存储。同时,对业务系统历史数据进行集成,针对业务系统增量数据采用数据集成工具利用业务系统增量时间戳开展增量数据集成。In terms of data transmission, the data pipeline method is used to achieve unified transmission of data by formulating a unified data format standard for the data pipeline. At the same time, custom data filters and data processing mechanisms are provided in the data pipeline to realize a copy of the data. Continuous and multiple processing enables one data to be used for multiple purposes. In terms of data collection performance, dynamic network management technology is used to realize automatic distribution of data processing. For example, the automatic distribution method auto Distribution (Text Data) can be called to automatically distribute data to the data layer for persistent storage. At the same time, the historical data of the business system is integrated, and data integration tools are used for incremental data of the business system using incremental timestamps of the business system to carry out incremental data integration.

元数据分类模块可以不依赖数据的物理存储位置,根据铁路货车在线修的业务需要,对系统所采集的元数据进行类别划分,可满足不同的数据分类管理及应用需求。系统支持数据分类的新增、删除、移动、编辑、查看、查询及启/停用等管理,提供数据分类授权快捷入口,可快速进行数据分类授权。The metadata classification module can classify the metadata collected by the system according to the business needs of online maintenance of railway trucks without relying on the physical storage location of the data, which can meet different data classification management and application needs. The system supports the management of adding, deleting, moving, editing, viewing, querying, and starting/deactivating data classifications, and provides a quick entry for data classification authorization, which can quickly perform data classification authorization.

数据库管理模块是用于对数据库进行管理的模块,数据库是数据存储、抽取的源头,均为已经“物理”创建的数据库。一类是平台本身的数据存储数据库,例如用于存储铁路货车在线修过程中所采集到的元数据的数据库;另一类是外部数据库,通常指第三方业务平台的业务数据库,用于抽取数据模型和数据,例如Oracle、SQLServer、MySQL等类型的数据库。通过数据库注册可将平台与对数据库进行连接,支持多数据源的统一管理,为数据存储、抽取奠定基础。支持多源数据的快捷接入,支持数据自动抽取,一键式完成源数据同步入库;支持多数据源的统一管理。只需根据一个数据库只读账号和密码,即可快捷完成数据源接入。借助元数据管理的感知能力,实现数据自动抽取功能,一键式完成源数据同步入库。The database management module is a module used to manage the database. The database is the source of data storage and extraction, and they are all "physically" created databases. One type is the data storage database of the platform itself, such as a database used to store metadata collected during the online repair process of railway trucks; the other type is an external database, which usually refers to the business database of a third-party business platform, used to extract data. Models and data, such as Oracle, SQLServer, MySQL and other types of databases. Database registration can connect the platform to the database, support unified management of multiple data sources, and lay the foundation for data storage and extraction. Supports quick access to multi-source data, supports automatic data extraction, and synchronizes source data into the database with one click; supports unified management of multiple data sources. Data source access can be quickly completed through a database read-only account and password. With the help of the perception ability of metadata management, the automatic data extraction function is realized, and the source data is synchronized into the database with one click.

本实施例提供的用于铁路货车在线修的数据管理系统包括元数据采集模块、元数据分类模块和数据库管理模块;元数据采集模块用于确定数据源类型并采用与数据源类型相对应的数据适配器采集铁路货车在线修过程中的元数据,采用数据缓存层解耦对元数据的数据采集和数据处理,采用数据管道的方式对元数据进行传输;元数据分类模块用于根据铁路货车在线修的业务需要,对所采集的元数据进行类别划分,并按照数据类别将所采集的元数据存入对应的数据库中;数据库管理模块用于对数据库进行管理。不仅能够显著提高铁路货车在线修的数据管理效率,而且通过数据适配器能够有效地接入多源头、多格式的元数据,通过数据缓存层和数据传输方式提高了数据采集性能。The data management system for online maintenance of railway trucks provided by this embodiment includes a metadata collection module, a metadata classification module and a database management module; the metadata collection module is used to determine the data source type and use data corresponding to the data source type. The adapter collects metadata during the online repair process of railway trucks, uses the data cache layer to decouple the data collection and data processing of metadata, and uses data pipelines to transmit metadata; the metadata classification module is used to perform online maintenance of railway trucks based on According to the business needs, the collected metadata is divided into categories, and the collected metadata is stored in the corresponding database according to the data category; the database management module is used to manage the database. Not only can it significantly improve the data management efficiency of online maintenance of railway trucks, but it can also effectively access multi-source and multi-format metadata through data adapters, and improve data collection performance through the data cache layer and data transmission methods.

为了解决现有方法不支持多数据源自动抽取、不支持自动创建数据库模型、不支持业务系统表结构的动态感知、不支持多版本数据管理以及不支持数据模型关系发现等问题,在上述实施例的基础上,本实施例提供的用于铁路货车在线修的数据管理系统还可以包括元数据模型模块;元数据模型模块用于按照数据类别构建数据模型,并对数据模型进行结构监控,在结构发生变化时对数据模型进行更新;元数据模型模块还用于按照指定的算法类型和业务数据通过数据模型识别铁路货车在线修过程中所采集的元数据之间的关系。例如元数据模型模块可通过数据模型关系自动发现算法autoFindAlgorithm(Stringtype,List<String>datasource),按照传入的算法类型和数据源列表,自动整理元数据之间的关系。此外,还可以通过智能感应方法smartChangeTable(String dataSource)智能感知表结构变化情况。In order to solve the problems that the existing method does not support automatic extraction of multiple data sources, does not support automatic creation of database models, does not support dynamic perception of business system table structures, does not support multi-version data management, and does not support data model relationship discovery, in the above embodiment On the basis of The data model is updated when changes occur; the metadata model module is also used to identify the relationship between the metadata collected during the line repair process of railway freight cars through the data model according to the specified algorithm type and business data. For example, the metadata model module can automatically discover the algorithm autoFindAlgorithm(Stringtype, List<String>datasource) through the data model relationship, and automatically organize the relationships between metadata according to the incoming algorithm type and data source list. In addition, you can also intelligently sense table structure changes through the smart sensing method smartChangeTable(String dataSource).

元数据模型又称数据模型,是数据管理的基础。用户可通过多种方式在数据分类下构建数据模型,实现元数据的统一归集管理。数据模型能根据企业业务发展变化动态扩展,用户通过平台可对创建的模型及其属性进行管理,包括修订、版本管理、模型生效及模型启用、停用等。数据建模方式包括界面新增、模型复制、模板导入、模型抽取、数据融合新增等方式。支持对已抽取的模型进行结构监控,智能感知表结构变化情况,并给出相关提示和日志记录信息,提醒用户进行更新,确保数据模型信息与物理库表结构信息的一致性和准确性。支持数据模型关系自动发现,业务系统中大量的历史数据及数据关系随着时间推移和版本迭代已经无法追寻,人工梳理耗时耗力且准确度无法验证,元数据管理系统提供了一种使用业务数据本身验证数据模型关系的算法,能够利用业务数据自动发现数据模型的关系。多表模型自定义新增创建,通过配置方式关联的一个或多个单表模型为多表模型。支持通过多表模型同时管理不同子模型信息,支持同时查看多个子模型的数据。支持自动创建数据库模型,对接源业务数据库后,元数据管理系统自动创建一个数据库模型,统一管理并呈现数据库表结构,关联关系以及数据库变化日志。Metadata model, also known as data model, is the basis of data management. Users can build data models under data classification through various methods to achieve unified collection and management of metadata. The data model can be dynamically expanded according to changes in enterprise business development. Users can manage the created models and their attributes through the platform, including revisions, version management, model validation, model activation and deactivation, etc. Data modeling methods include interface addition, model copying, template import, model extraction, data fusion addition, etc. Supports structural monitoring of extracted models, intelligently senses table structure changes, and provides relevant prompts and log record information to remind users to update, ensuring the consistency and accuracy of data model information and physical database table structure information. Supports automatic discovery of data model relationships. A large amount of historical data and data relationships in the business system have become untraceable over time and version iterations. Manual sorting is time-consuming and labor-intensive, and the accuracy cannot be verified. The metadata management system provides a way to use the business The data itself verifies the algorithm of the data model relationship, which can automatically discover the relationship of the data model using business data. Multi-table models are newly created and customized. One or more single-table models associated through configuration are multi-table models. Supports simultaneous management of different sub-model information through multi-table models, and supports simultaneous viewing of data from multiple sub-models. Supports automatic creation of database models. After docking with the source business database, the metadata management system automatically creates a database model to uniformly manage and present the database table structure, relationships, and database change logs.

为便于形象直观地对元数据进行展示,在上述实施例的基础上,本实施例提供的用于铁路货车在线修的数据管理系统还可以包括元数据可视化展示模块;元数据可视化展示模块用于通过图形化或者拖拽式的方式对所采集的铁路货车在线修过程中的元数据进行展示。从而实现对元数据的全方位深度展示和构建。In order to facilitate the intuitive display of metadata, on the basis of the above embodiments, the data management system for online repair of railway trucks provided in this embodiment may also include a metadata visual display module; the metadata visual display module is used to The collected metadata of railway freight cars during the online maintenance process is displayed graphically or in a drag-and-drop manner. This enables comprehensive and in-depth display and construction of metadata.

为解决现有技术不支持元数据质量检测,不支持基于发现的元数据质量问题智能构建清洗策略的问题,在上述实施例的基础上,本实施例提供的用于铁路货车在线修的数据管理系统还可以包括元数据质量检测模块;元数据质量检测模块用于根据完整性、唯一性、准确性、一致性、及时性、真实性和相关性中的一种或者多种对所采集的元数据进行前置质量检测以及周期性质量检测,并对不合格的元数据进行自动清洗。具体的,元数据质量检测模块可以以业务元数据为驱动,对数据表、宽表和接口进行质量核查和管理。支持按照不同的业务场景自定义配置质量核查对象,灵活配置核查规则,自定义输出核查结果的结构并自定义配置相应的核查报告,并以可视化看板的形式进行展现。支持设定不同规则的权重值,并基于权重值计算模型质量评估得分;支持排雷任务中的多个模型对象的规则的核查顺序。支持基于发现的数据质量问题,智能构建清洗策略。不同的数据管理方式,数据清洗策略不同:管控型数据,提供数据清洗功能实现数据整改。In order to solve the problem that the existing technology does not support metadata quality detection and does not support the intelligent construction of cleaning strategies based on discovered metadata quality problems, on the basis of the above embodiments, this embodiment provides data management for online repair of railway freight cars. The system may also include a metadata quality detection module; the metadata quality detection module is used to evaluate the collected metadata based on one or more of completeness, uniqueness, accuracy, consistency, timeliness, authenticity and relevance. The data undergoes pre-quality inspection and periodic quality inspection, and unqualified metadata is automatically cleaned. Specifically, the metadata quality detection module can be driven by business metadata to conduct quality inspection and management of data tables, wide tables and interfaces. It supports custom configuration of quality inspection objects according to different business scenarios, flexible configuration of inspection rules, customized structure of output inspection results and custom configuration of corresponding inspection reports, and displays them in the form of a visual dashboard. Supports setting the weight values of different rules and calculating model quality assessment scores based on the weight values; supports the verification order of rules for multiple model objects in demining tasks. Supports intelligent construction of cleaning strategies based on discovered data quality issues. Different data management methods have different data cleaning strategies: controlled data provides data cleaning functions to achieve data rectification.

元数据质量检测模块可以根据业务需要自定义数据质量规则,对数据进行前置质量校验以及周期性质量稽查,自动发现数据质量问题,生成质量分析报告,并进行针对性清洗和整改,沉淀高质量的数据资产,支撑数据价值变现。例如可通过创建规则方法createRule(Map<String,Object>rules)建立元数据质量考核规则,以及通过权重分配方法weightDistribution(Map<String,Rule>rules)传入对应规则的权重,最终通过质量评估qualityAssessment(List rules,bool createReport)自动评估元数据质量,并可生成评估报告。对于一些判定为脏数据的元数据,可通过自动清洗程序autoCleanData(Textdata)进行元数据的清洗。The metadata quality detection module can customize data quality rules according to business needs, perform pre-quality verification and periodic quality inspections on data, automatically discover data quality problems, generate quality analysis reports, and carry out targeted cleaning and rectification, thus achieving high Quality data assets support the realization of data value. For example, you can create metadata quality assessment rules through the rule method createRule(Map<String,Object>rules), and pass in the weight of the corresponding rules through the weight distribution method weightDistribution(Map<String,Rule>rules), and finally pass the quality assessment qualityAssessment (List rules, bool createReport) Automatically evaluates metadata quality and can generate evaluation reports. For some metadata determined to be dirty data, the metadata can be cleaned through the automatic cleaning program autoCleanData (Textdata).

图2为本发明一实施例提供的用于铁路货车在线修的数据管理方法的流程图。如图2所示,本实施例提供的用于铁路货车在线修的数据管理方法可以包括:Figure 2 is a flow chart of a data management method for online maintenance of railway freight cars provided by an embodiment of the present invention. As shown in Figure 2, the data management method for online maintenance of railway trucks provided by this embodiment may include:

S201、确定数据源类型并采用与数据源类型相对应的数据适配器采集铁路货车在线修过程中的元数据;S201. Determine the data source type and use a data adapter corresponding to the data source type to collect metadata of the railway freight car during the online maintenance process;

S202、采用数据缓存层解耦对元数据的数据采集和数据处理;S202. Use the data cache layer to decouple the data collection and data processing of metadata;

S203、采用数据管道的方式对元数据进行传输;S203. Transmit metadata using a data pipeline;

S204、根据铁路货车在线修的业务需要,对所采集的元数据进行类别划分;S204. Classify the collected metadata according to the business needs of online maintenance of railway trucks;

S205、按照数据类别将所采集的元数据存入对应的数据库中。S205. Store the collected metadata in the corresponding database according to the data category.

数据适配器可解决多源头、多格式的数据来源问题,根据获取适配器方法getAdapterByType(String type),通过数据源类型的入参来确定数据适配器。通过数据缓存层解决采集与数据处理间的解耦,实现采集模块资源动态横向拓展,提高采集性能。在数据的传输上,采用数据管道传输的方式,通过对数据管道制定统一的数据格式标准,实现数据的统一传输,同时在数据管道中提供自定义数据过滤器及数据处理机制,实现对一份数据的连续和多重的处理,做到一份数据多种用途。在数据的采集性能上,通过动态网管技术实现数据的处理的自动分发,调用自动分发方法auto Distribution(Text Data)即可实现把数据自动分发到数据层进行持久化存储。The data adapter can solve the problem of multi-source and multi-format data sources. According to the adapter method getAdapterByType(String type), the data adapter is determined through the input parameter of the data source type. The data cache layer solves the decoupling between collection and data processing, enables dynamic horizontal expansion of collection module resources, and improves collection performance. In terms of data transmission, the data pipeline transmission method is used to achieve unified transmission of data by formulating a unified data format standard for the data pipeline. At the same time, custom data filters and data processing mechanisms are provided in the data pipeline to realize a Continuous and multiple processing of data allows one data to be used for multiple purposes. In terms of data collection performance, dynamic network management technology is used to realize automatic distribution of data processing. Calling the automatic distribution method auto Distribution (Text Data) can automatically distribute data to the data layer for persistent storage.

本实施例提供的用于铁路货车在线修的数据管理方法,通过数据适配器能够有效地接入多源头、多格式的元数据,通过采用数据缓存层和数据管道的传输方式提高了采集性能,显著提高了铁路货车在线修的数据管理效率。The data management method for online maintenance of railway trucks provided by this embodiment can effectively access multi-source and multi-format metadata through the data adapter, and improves the collection performance by using the data cache layer and data pipeline transmission method, which significantly improves the collection performance. Improved data management efficiency for online maintenance of railway freight cars.

为了解决现有方法不支持多数据源自动抽取、不支持自动创建数据库模型、不支持业务系统表结构的动态感知、不支持多版本数据管理以及不支持数据模型关系发现等问题,在上述实施例的基础上,本实施例提供的用于铁路货车在线修的数据管理方法还可以包括:按照数据类别构建数据模型,并对数据模型进行结构监控,在结构发生变化时对数据模型进行更新;按照指定的算法类型和业务数据通过数据模型识别铁路货车在线修过程中所采集的元数据之间的关系。例如可通过数据模型关系自动发现算法autoFindAlgorithm(String type,List<String>datasource),传入算法类型和数据源列表,自动整理元数据之间的关系。此外,还可以通过智能感应方法smartChangeTable(String dataSource)智能感知表结构变化情况。In order to solve the problems that the existing method does not support automatic extraction of multiple data sources, does not support automatic creation of database models, does not support dynamic perception of business system table structures, does not support multi-version data management, and does not support data model relationship discovery, in the above embodiment On the basis of The specified algorithm type and business data identify the relationship between the metadata collected during the online repair process of railway freight cars through the data model. For example, the algorithm autoFindAlgorithm(String type, List<String>datasource) can be automatically discovered through the data model relationship, passing in the algorithm type and data source list, and automatically sorting out the relationship between metadata. In addition, you can also intelligently sense table structure changes through the smart sensing method smartChangeTable(String dataSource).

为便于形象直观地对元数据进行展示,在上述实施例的基础上,本实施例提供的用于铁路货车在线修的数据管理方法还可以包括:通过图形化或者拖拽式的方式对所采集的铁路货车在线修过程中的元数据进行展示。In order to facilitate the intuitive display of metadata, based on the above embodiments, the data management method for online repair of railway trucks provided in this embodiment may also include: graphically or drag-and-drop the collected data. The metadata of railway freight cars during online maintenance is displayed.

为解决现有方法不支持元数据质量检测,不支持基于发现的元数据质量问题智能构建清洗策略的问题,在上述实施例的基础上,本实施例提供的用于铁路货车在线修的数据管理方法还可以包括:根据完整性、唯一性、准确性、一致性、及时性、真实性和相关性中的一种或者多种对所采集的元数据进行前置质量检测以及周期性质量检测;对不合格的元数据进行自动清洗。具体的,可以根据业务需要自定义数据质量规则,对数据进行前置质量校验以及周期性质量稽查,自动发现数据质量问题,生成质量分析报告,并进行针对性清洗和整改,沉淀高质量的数据资产,支撑数据价值变现。可通过创建规则方法createRule(Map<String,Object>rules)建立元数据质量考核规则,以及通过权重分配方法weightDistribution(Map<String,Rule>rules)传入对应规则的权重,最终通过质量评估qualityAssessment(List rules,bool createReport)自动评估元数据质量,并可生成评估报告。对于一些判定为脏数据的元数据,可通过自动清洗程序autoCleanData(Textdata)进行元数据的清洗。In order to solve the problem that the existing method does not support metadata quality detection and does not support the intelligent construction of cleaning strategies based on discovered metadata quality problems, on the basis of the above embodiments, this embodiment provides data management for online repair of railway freight cars. The method may also include: performing pre-quality testing and periodic quality testing on the collected metadata based on one or more of completeness, uniqueness, accuracy, consistency, timeliness, authenticity and relevance; Automatically clean unqualified metadata. Specifically, data quality rules can be customized according to business needs, pre-quality verification and periodic quality inspections can be performed on the data, data quality problems can be automatically discovered, quality analysis reports can be generated, and targeted cleaning and rectification can be carried out to precipitate high-quality data. Data assets support the realization of data value. Metadata quality assessment rules can be established through the create rule method createRule(Map<String,Object>rules), and the weight of the corresponding rules can be passed in through the weight distribution method weightDistribution(Map<String,Rule>rules), and finally the quality assessment can be passed qualityAssessment( List rules, bool createReport) automatically evaluates metadata quality and can generate evaluation reports. For some metadata determined to be dirty data, the metadata can be cleaned through the automatic cleaning program autoCleanData (Textdata).

综上所述,本申请提供的用于铁路货车在线修的数据管理方法及系统,通过元数据采集模块中数据适配器、数据缓存层和数据传输方式解决了现有元数据管理难以实现多源头、多格式、高并发的元数据采集需求,难以在多用户、多租户、多设备、多采集点的场景下有效、快速的进行元数据的操作及查询的问题;通过元数据模型模块中的数据模型关系自动发现,多数据源自动抽取,智能感知表结构实现了多数据源自动抽取、自动创建数据库模型、业务系统表结构的动态感知、多版本数据管理以及数据模型关系自动发现;通过在元数据模型及场景规则建立之后,根据完整性、唯一性、准确性、一致性、及时性、真实性、相关性等因素来评估元数据的质量,并通过质量规则及权重分配,根据质量评估算法来进行元数据质量评估,并可使用自动清洗数据来治理不合格的元数据,解决了现有技术中存在的不支持元数据质量检测,不支持基于发现的元数据质量问题智能构建清洗策略等问题。In summary, the data management method and system for online maintenance of railway trucks provided by this application solves the problem of existing metadata management that is difficult to achieve from multiple sources and through the data adapter, data cache layer and data transmission method in the metadata collection module. Multi-format, high-concurrency metadata collection requirements make it difficult to operate and query metadata effectively and quickly in scenarios with multi-users, multi-tenants, multi-devices, and multi-collection points; through the data in the metadata model module Automatic discovery of model relationships, automatic extraction of multiple data sources, and intelligent perception of table structures realize automatic extraction of multiple data sources, automatic creation of database models, dynamic perception of business system table structures, multi-version data management, and automatic discovery of data model relationships; After the data model and scene rules are established, the quality of the metadata is evaluated based on factors such as completeness, uniqueness, accuracy, consistency, timeliness, authenticity, and relevance, and through quality rules and weight distribution, based on the quality assessment algorithm To conduct metadata quality assessment, and use automatic cleaning data to manage unqualified metadata, solving the problems existing in the existing technology that do not support metadata quality detection, do not support the intelligent construction of cleaning strategies based on discovered metadata quality issues, etc. question.

本发明实施例还提供一种电子设备,请参见图3所示,本发明实施例仅以图3为例进行说明,并不表示本发明仅限于此。图3为本发明一实施例提供的电子设备的结构示意图。如图3所示,本实施例提供的电子设备30可以包括:存储器301、处理器302和总线303。其中,总线303用于实现各元件之间的连接。An embodiment of the present invention also provides an electronic device, as shown in Figure 3. The embodiment of the present invention is only described using Figure 3 as an example, which does not mean that the present invention is limited thereto. FIG. 3 is a schematic structural diagram of an electronic device according to an embodiment of the present invention. As shown in FIG. 3 , the electronic device 30 provided in this embodiment may include: a memory 301 , a processor 302 and a bus 303 . Among them, the bus 303 is used to realize the connection between various components.

存储器301中存储有计算机程序,计算机程序被处理器302执行时可以实现上述任一方法实施例的技术方案。The computer program is stored in the memory 301. When the computer program is executed by the processor 302, the technical solutions of any of the above method embodiments can be implemented.

其中,存储器301和处理器302之间直接或间接地电性连接,以实现数据的传输或交互。例如,这些元件相互之间可以通过一条或者多条通信总线或信号线实现电性连接,如可以通过总线303连接。存储器301中存储有实现用于铁路货车在线修的数据管理方法的计算机程序,包括至少一个可以软件或固件的形式存储于存储器301中的软件功能模块,处理器302通过运行存储在存储器301内的软件程序以及模块,从而执行各种功能应用以及数据处理。The memory 301 and the processor 302 are electrically connected directly or indirectly to realize data transmission or interaction. For example, these components can be electrically connected to each other through one or more communication buses or signal lines, such as through the bus 303 . The memory 301 stores a computer program that implements a data management method for online maintenance of railway freight cars, including at least one software function module that can be stored in the memory 301 in the form of software or firmware. The processor 302 runs the program stored in the memory 301. Software programs and modules to perform various functional applications and data processing.

存储器301可以是,但不限于,随机存取存储器(Random Access Memory,简称:RAM),只读存储器(Read Only Memory,简称:ROM),可编程只读存储器(ProgrammableRead-Only Memory,简称:PROM),可擦除只读存储器(Erasable Programmable Read-OnlyMemory,简称:EPROM),电可擦除只读存储器(Electric Erasable Programmable Read-Only Memory,简称:EEPROM)等。其中,存储器301用于存储程序,处理器302在接收到执行指令后,执行程序。进一步地,上述存储器301内的软件程序以及模块还可包括操作系统,其可包括各种用于管理系统任务(例如内存管理、存储设备控制、电源管理等)的软件组件和/或驱动,并可与各种硬件或软件组件相互通信,从而提供其他软件组件的运行环境。The memory 301 may be, but is not limited to, random access memory (Random Access Memory, RAM for short), Read Only Memory (ROM for short), Programmable Read-Only Memory (PROM for short) ), Erasable Programmable Read-Only Memory (EPROM for short), Electric Erasable Programmable Read-Only Memory (EEPROM for short), etc. The memory 301 is used to store the program, and the processor 302 executes the program after receiving the execution instruction. Furthermore, the software programs and modules in the memory 301 may also include an operating system, which may include various software components and/or drivers for managing system tasks (such as memory management, storage device control, power management, etc.), and Can communicate with various hardware or software components to provide a running environment for other software components.

处理器302可以是一种集成电路芯片,具有信号的处理能力。上述的处理器302可以是通用处理器,包括中央处理器(Central Processing Unit,简称:CPU)、网络处理器(Network Processor,简称:NP)等。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。可以理解,图3的结构仅为示意,还可以包括比图3中所示更多或者更少的组件,或者具有与图3所示不同的配置。图3中所示的各组件可以采用硬件和/或软件实现。The processor 302 may be an integrated circuit chip with signal processing capabilities. The above-mentioned processor 302 may be a general-purpose processor, including a central processing unit (Central Processing Unit, CPU for short), a network processor (Network Processor, NP for short), etc. Each method, step and logical block diagram disclosed in the embodiment of the present invention can be implemented or executed. A general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc. It can be understood that the structure of FIG. 3 is only illustrative, and may also include more or fewer components than shown in FIG. 3 , or have a different configuration than that shown in FIG. 3 . Each component shown in Figure 3 may be implemented in hardware and/or software.

本发明实施例还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行以实现上述任一方法实施例的技术方案。Embodiments of the present invention also provide a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the technical solutions of any of the above method embodiments.

本公开中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。Each embodiment in the present disclosure is described in a progressive manner, and the same and similar parts between the various embodiments can be referred to each other. Each embodiment focuses on its differences from other embodiments.

本公开的保护范围不限于上述的实施例,显然,本领域的技术人员可以对本公开进行各种改动和变形而不脱离本公开的范围和精神。倘若这些改动和变形属于本公开权利要求及其等同技术的范围,则本公开的意图也包含这些改动和变形在内。The protection scope of the present disclosure is not limited to the above-mentioned embodiments. Obviously, those skilled in the art can make various changes and transformations to the present disclosure without departing from the scope and spirit of the present disclosure. If these changes and modifications fall within the scope of the claims of the present disclosure and its equivalent technology, the present disclosure is also intended to include these changes and modifications.

Claims (10)

1. A data management system for on-line repair of a railway wagon, comprising: the system comprises a metadata acquisition module, a metadata classification module and a database management module;
the metadata acquisition module is used for determining a data source type, acquiring metadata of the railway wagon in the online repair process by adopting a data adapter corresponding to the data source type, acquiring and processing the metadata by adopting a data caching layer decoupling, and transmitting the metadata by adopting a data pipeline mode;
the metadata classification module is used for classifying the acquired metadata according to the service requirement of the on-line repair of the railway wagon and storing the acquired metadata into a corresponding database according to the data type;
the database management module is used for managing the database.
2. The system of claim 1, further comprising a metadata model module;
the metadata model module is used for constructing a data model according to data types, carrying out structure monitoring on the data model, and updating the data model when the structure changes;
the metadata model module is also used for identifying the relation between metadata collected in the railway wagon online repair process through the data model according to the designated algorithm type and service data.
3. The system of claim 1, further comprising a metadata visualization presentation module;
the metadata visual display module is used for displaying the metadata of the collected railway wagon in the online repair process in a graphical or dragging mode.
4. A system according to any one of claims 1-3, further comprising a metadata quality detection module;
the metadata quality detection module is used for performing front quality detection and periodic quality detection on the collected metadata according to one or more of integrity, uniqueness, accuracy, consistency, timeliness, authenticity and relativity, and automatically cleaning unqualified metadata.
5. A data management method for on-line repair of a railway wagon, comprising:
determining a data source type and acquiring metadata of the railway wagon in the online repair process by adopting a data adapter corresponding to the data source type;
adopting a data cache layer decoupling to collect and process the data of the metadata;
transmitting the metadata in a data pipeline mode;
classifying the collected metadata according to the service requirement of the on-line repair of the railway freight car;
and storing the acquired metadata into a corresponding database according to the data category.
6. The method of claim 5, wherein the method further comprises:
constructing a data model according to data types, carrying out structure monitoring on the data model, and updating the data model when the structure changes;
and identifying the relation between metadata acquired in the online repair process of the railway freight car according to the designated algorithm type and the service data through the data model.
7. The method of claim 5, wherein the method further comprises:
and displaying the metadata collected in the online repair process of the railway wagon in a graphical or dragging mode.
8. The method according to any one of claims 5-7, further comprising:
performing front quality detection and periodic quality detection on the acquired metadata according to one or more of integrity, uniqueness, accuracy, consistency, timeliness, authenticity and correlation;
and automatically cleaning unqualified metadata.
9. An electronic device, comprising: at least one processor and memory;
the memory stores computer-executable instructions;
the at least one processor executing computer-executable instructions stored in the memory causes the at least one processor to perform the data management method for rail wagon online repair of any of claims 5-8.
10. A computer readable storage medium having stored therein computer executable instructions which when executed by a processor are adapted to implement a data management method for on-line repair of rail wagons as claimed in any one of claims 5 to 8.
CN202310588099.0A 2023-05-23 2023-05-23 Data management method and system for online repair of railway freight cars Pending CN116756140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310588099.0A CN116756140A (en) 2023-05-23 2023-05-23 Data management method and system for online repair of railway freight cars

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310588099.0A CN116756140A (en) 2023-05-23 2023-05-23 Data management method and system for online repair of railway freight cars

Publications (1)

Publication Number Publication Date
CN116756140A true CN116756140A (en) 2023-09-15

Family

ID=87954251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310588099.0A Pending CN116756140A (en) 2023-05-23 2023-05-23 Data management method and system for online repair of railway freight cars

Country Status (1)

Country Link
CN (1) CN116756140A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993529B1 (en) * 2001-06-01 2006-01-31 Revenue Science, Inc. Importing data using metadata
CN105701181A (en) * 2016-01-06 2016-06-22 中电科华云信息技术有限公司 Dynamic heterogeneous metadata acquisition method and system
CN113010506A (en) * 2021-03-11 2021-06-22 江苏省生态环境监控中心(江苏省环境信息中心) Multi-source heterogeneous water environment big data management system
CN114925054A (en) * 2022-05-24 2022-08-19 浪潮软件科技有限公司 A meta-model-based metadata management system and method
CN115617776A (en) * 2022-09-30 2023-01-17 国家石油天然气管网集团有限公司 A data management system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993529B1 (en) * 2001-06-01 2006-01-31 Revenue Science, Inc. Importing data using metadata
CN105701181A (en) * 2016-01-06 2016-06-22 中电科华云信息技术有限公司 Dynamic heterogeneous metadata acquisition method and system
CN113010506A (en) * 2021-03-11 2021-06-22 江苏省生态环境监控中心(江苏省环境信息中心) Multi-source heterogeneous water environment big data management system
CN114925054A (en) * 2022-05-24 2022-08-19 浪潮软件科技有限公司 A meta-model-based metadata management system and method
CN115617776A (en) * 2022-09-30 2023-01-17 国家石油天然气管网集团有限公司 A data management system and method

Similar Documents

Publication Publication Date Title
CN110549336B (en) A centralized control master station system of substation inspection robot
CN113706101B (en) Intelligent system architecture and method for power grid project management
CN109784758B (en) Engineering quality supervision early warning system and method based on BIM model
CN110264015A (en) Anti-stealing inspection and monitoring method and platform
CN115375146B (en) Digital construction integrated platform
CN108090675A (en) A quality management system for vehicle manufacturing
CN106022617A (en) Inspection control system based on marketing multi-system data center
CN110399363B (en) A data quality management method and system for the whole lifecycle of problematic data
CN114911908A (en) Method and device for safety management of pipe network data
CN202373025U (en) Intelligent device for dispatching business integration and data integration
CN102609537A (en) Data quality audit method based on database schema
CN114880405A (en) Data lake-based data processing method and system
CN118898348B (en) Method and device for intelligently matching engineering quantity list and constructing cost index
CN114239877B (en) A full-cycle control method and system for rail vehicle component maintenance
CN113657854B (en) A human-machine collaborative intelligent audit analysis method for incomplete data
CN119938661A (en) Inter-factory standard specification conversion and application management system
CN117828148A (en) Land sample data management method and system for land management
CN117688108A (en) Pipeline full life cycle data processing method and system based on data lake
CN103258047B (en) A data organization method for data warehouse of pharmaceutical enterprise activity cost control
CN117540965A (en) A metadata-based data asset inventory method and system
CN116756140A (en) Data management method and system for online repair of railway freight cars
CN120336323A (en) A multi-caliber budget table processing method, system, device and medium
CN107578192A (en) The operation indicator monitoring method of aviation settlement system
CN113515542B (en) Pipeline data association method and device
Cheng et al. Research on the key technologies of big data based high-speed railway permanent way data asset collection platform

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination