CN116567397A - Image processing method and device - Google Patents
Image processing method and device Download PDFInfo
- Publication number
- CN116567397A CN116567397A CN202310504781.7A CN202310504781A CN116567397A CN 116567397 A CN116567397 A CN 116567397A CN 202310504781 A CN202310504781 A CN 202310504781A CN 116567397 A CN116567397 A CN 116567397A
- Authority
- CN
- China
- Prior art keywords
- image
- processing
- hdr
- model
- inverse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/64—Computer-aided capture of images, e.g. transfer from script file into camera, check of taken image quality, advice or proposal for image composition or decision on when to take image
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
- G06T5/94—Dynamic range modification of images or parts thereof based on local image properties, e.g. for local contrast enhancement
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/761—Proximity, similarity or dissimilarity measures
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
- H04N23/682—Vibration or motion blur correction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/741—Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Image Processing (AREA)
Abstract
Description
技术领域technical field
本申请属于图像处理技术领域,尤其涉及一种图像处理方法和装置。The present application belongs to the technical field of image processing, and in particular relates to an image processing method and device.
背景技术Background technique
图像传感器是摄像机的重要组成部分。图像传感器可以采集光学图像并将光学图像转换成后端图像信号处理器(Image Signal Processor,ISP)可用的图像信号。ISP可以对前端图像传感器输出的图像信号(即输入图像信号)进行高动态范围成像(High DynamicRange,HDR)、自动白平衡(Auto white balance,AWB)、色彩校正(Color correctionMatrix,CCM)、Gamma矫正等处理,以在不同的光学条件下都能较好的还原出摄像的现场细节,得到目标图像。Image sensors are an important part of cameras. The image sensor can collect an optical image and convert the optical image into an image signal usable by a back-end image signal processor (Image Signal Processor, ISP). ISP can perform high dynamic range imaging (High Dynamic Range, HDR), automatic white balance (Auto white balance, AWB), color correction (Color correctionMatrix, CCM) and Gamma correction on the image signal output by the front-end image sensor (that is, the input image signal) And so on, in order to better restore the scene details of the camera under different optical conditions, and obtain the target image.
现有技术中,为了对ISP的输入图像进行仿真,通常是对目标图像进行与上述ISP处理对应的逆处理,也即,对目标图像进行Gamma逆变换、逆CCM色彩校正、逆白平衡等处理,以得到输入ISP之前的输入图像。另外,目前无法实现与HDR对应的逆处理。In the prior art, in order to simulate the input image of the ISP, the inverse processing corresponding to the above-mentioned ISP processing is usually performed on the target image, that is, inverse Gamma transformation, inverse CCM color correction, inverse white balance and other processing are performed on the target image , to get the input image before inputting to the ISP. In addition, inverse processing corresponding to HDR cannot be realized at present.
但是,目前与ISP处理对应的逆处理过程复杂,且得到的输入图像的准确率较低。也即,现有技术中ISP的逆处理仿真过程复杂,且逆处理仿真效果较差。However, the current inverse processing corresponding to the ISP processing is complicated, and the accuracy of the obtained input image is low. That is to say, the inverse processing simulation process of the ISP in the prior art is complicated, and the inverse processing simulation effect is poor.
发明内容Contents of the invention
本申请实施例提供了一种图像处理方法、装置、设备、计算机可读存储介质及计算机程序产品,能够简化ISP的逆处理仿真过程,提升仿真效果。Embodiments of the present application provide an image processing method, device, device, computer-readable storage medium, and computer program product, which can simplify the ISP inverse processing simulation process and improve the simulation effect.
第一方面,本申请实施例提供了一种图像处理方法,该方法包括:In the first aspect, the embodiment of the present application provides an image processing method, the method comprising:
获取第一图像,所述第一图像为图像信号处理器ISP处理后的图像,acquiring a first image, where the first image is an image processed by an image signal processor ISP,
利用图像逆处理模型对所述第一图像进行与目标图像处理过程对应的逆处理,得到第二图像,其中,所述目标图像处理过程包括所述ISP处理过程中除高动态范围成像HDR处理过程之外的其他图像处理过程,Using an image inverse processing model to perform inverse processing on the first image corresponding to the target image processing process to obtain a second image, wherein the target image processing process includes a high dynamic range imaging HDR processing process in the ISP processing process In addition to other image processing processes,
利用HDR逆处理模型对所述第二图像中的局部区域进行模糊处理,得到第三图像。The local area in the second image is blurred by using the HDR inverse processing model to obtain a third image.
在一种可能的实现方式中,所述利用图像逆处理模型对所述第一图像进行与目标图像处理过程对应的逆处理,得到第二图像之前,所述方法还包括:In a possible implementation manner, the inverse processing corresponding to the target image processing process is performed on the first image by using the image inverse processing model, and before obtaining the second image, the method further includes:
获取多个ISP处理后的第一图像样本及其分别对应的ISP处理前的第二图像样本,Acquiring a plurality of first image samples after ISP processing and corresponding second image samples before ISP processing,
对所述第一图像样本和所述第二图像样本进行特征提取,得到与每个所述第一图像样本分别对应的第一图像特征,以及与每个所述第二图像样本分别对应的第二图像特征,performing feature extraction on the first image sample and the second image sample to obtain a first image feature corresponding to each of the first image samples, and a first image feature corresponding to each of the second image samples Two image features,
利用初始图像逆处理模型对所述第一图像特征进行与所述目标图像处理过程对应的逆处理,得到与每个所述第一图像特征分别对应的第一预测图像特征,performing inverse processing corresponding to the target image processing process on the first image features by using an initial image inverse processing model to obtain first predicted image features respectively corresponding to each of the first image features,
根据多个所述第二图像特征及其分别对应的第一预测图像特征之间的相似度确定第一损失函数值,determining a first loss function value according to the similarities between the plurality of second image features and their respective corresponding first predicted image features,
根据所述第一损失函数值调整所述初始图像逆处理模型的模型参数,训练得到所述图像逆处理模型。Adjusting model parameters of the initial image inverse processing model according to the first loss function value, and training to obtain the image inverse processing model.
在一种可能的实现方式中,所述根据多个所述第二图像特征及其分别对应的第一预测图像特征之间的相似度确定第一损失函数值,包括:In a possible implementation manner, the determining the first loss function value according to the similarities between the multiple second image features and their respective corresponding first predicted image features includes:
计算多个所述第一预测图像特征和多个所述第二图像特征之间的均方差,calculating the mean square error between a plurality of said first predicted image features and a plurality of said second image features,
将所述均方差确定为所述第一损失函数值。The mean square error is determined as the first loss function value.
在一种可能的实现方式中,所述利用HDR逆处理模型对所述第二图像中的局部区域进行模糊处理,得到第三图像之前,所述方法还包括:In a possible implementation manner, before using the HDR inverse processing model to perform blurring processing on the local area in the second image, and obtaining the third image, the method further includes:
获取多个HDR处理后的第三图像样本及其分别对应的HDR处理前的第四图像样本,Acquiring a plurality of third image samples after HDR processing and corresponding fourth image samples before HDR processing,
利用初始HDR逆处理模型对每个所述第三图像样本的局部区域分别进行模糊处理,得到与每个所述第三图像样本分别对应的第二预测图像,Using the initial HDR inverse processing model to perform blurring processing on the local area of each of the third image samples to obtain a second predicted image corresponding to each of the third image samples,
根据多个所述第四图像样本及其分别对应的第二预测图像之间的相似度确定第二损失函数值,determining a second loss function value according to the similarities between the plurality of fourth image samples and their respective corresponding second prediction images,
根据所述第二损失函数值调整所述初始HDR逆处理模型的模型参数,训练得到所述HDR逆处理模型。Adjusting model parameters of the initial HDR inverse processing model according to the second loss function value, and training to obtain the HDR inverse processing model.
在一种可能的实现方式中,所述获取多个HDR处理后的第三图像样本,包括:In a possible implementation manner, the acquiring a plurality of HDR-processed third image samples includes:
获取多个在时间上连续的第四图像,acquire a plurality of temporally consecutive fourth images,
利用所述图像逆处理模型分别对多个所述第四图像进行与所述目标图像处理过程对应的逆处理,得到多个第五图像,Using the image inverse processing model to respectively perform inverse processing corresponding to the target image processing process on a plurality of the fourth images to obtain a plurality of fifth images,
在所述多个第五图像中获取连续的三帧第三图像样本。Acquiring three consecutive frames of third image samples in the plurality of fifth images.
在一种可能的实现方式中,所述利用初始HDR逆处理模型对每个所述第三图像样本的局部区域分别进行模糊处理,得到与每个所述第三图像样本分别对应的第二预测图像,包括:In a possible implementation, the initial HDR inverse processing model is used to perform blurring processing on the local area of each of the third image samples to obtain a second prediction corresponding to each of the third image samples. images, including:
利用所述初始HDR逆处理模型提取所述连续的三帧第三图像样本之间的关联特征,Using the initial HDR inverse processing model to extract the associated features between the three consecutive frames of the third image sample,
根据所述关联特征对目标图像样本的局部区域进行模糊处理,得到与所述目标图像样本对应的第二预测图像,所述目标图像样本为所述连续的三帧第三图像样本中处于中间位置的图像样本。According to the associated features, the partial area of the target image sample is blurred to obtain a second predicted image corresponding to the target image sample, and the target image sample is located in the middle of the three consecutive frames of the third image sample. image sample.
在一种可能的实现方式中,所述根据所述关联特征对目标图像样本的局部区域进行模糊处理,得到与所述目标图像样本对应的第二预测图像,包括:In a possible implementation manner, the blurring the local area of the target image sample according to the associated feature to obtain the second predicted image corresponding to the target image sample includes:
将所述关联特征确定为与所述目标图像样本对应的目标图像特征,determining the associated feature as a target image feature corresponding to the target image sample,
利用随机算法对所述目标图像特征进行处理,得到第二预测图像特征,Using a random algorithm to process the features of the target image to obtain a second predicted image feature,
确定与所述第二预测图像特征对应的图像为第二预测图像。Determining an image corresponding to the feature of the second predicted image as the second predicted image.
在一种可能的实现方式中,所述图像逆处理模型为四层的卷积神经网络模型,所述HDR逆处理模型为双向长短时记忆循环神经网络模型。In a possible implementation manner, the image inverse processing model is a four-layer convolutional neural network model, and the HDR inverse processing model is a bidirectional long-short-term memory recurrent neural network model.
在一种可能的实现方式中,所述模糊处理包括欠曝处理和过曝处理中的任意一个。In a possible implementation manner, the blurring processing includes any one of underexposure processing and overexposure processing.
第二方面,本申请实施例提供了一种图像处理装置,该装置包括:In a second aspect, an embodiment of the present application provides an image processing device, which includes:
第一获取模块,用于获取第一图像,所述第一图像为图像信号处理器ISP处理后的图像,A first acquiring module, configured to acquire a first image, where the first image is an image processed by an image signal processor ISP,
第一处理模块,用于利用图像逆处理模型对所述第一图像进行与目标图像处理过程对应的逆处理,得到第二图像,其中,所述目标图像处理过程包括所述ISP处理过程中除高动态范围成像HDR处理过程之外的其他图像处理过程,The first processing module is configured to use an image inverse processing model to perform inverse processing on the first image corresponding to the target image processing process to obtain a second image, wherein the target image processing process includes removing Other image processing processes other than high dynamic range imaging HDR processing,
第二处理模块,用于利用HDR逆处理模型对所述第二图像中的局部区域进行模糊处理,得到第三图像。The second processing module is configured to use the HDR inverse processing model to perform blurring processing on the local area in the second image to obtain a third image.
第三方面,本申请实施例提供了一种电子设备,该设备包括:处理器以及存储有计算机程序指令的存储器,In a third aspect, an embodiment of the present application provides an electronic device, the device includes: a processor and a memory storing computer program instructions,
所述处理器执行所述计算机程序指令时实现上述第一方面中任一种可能的实现方法中的方法。When the processor executes the computer program instructions, the method in any possible implementation method of the first aspect above is implemented.
第四方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时实现上述第一方面中任一种可能的实现方法中的方法。In a fourth aspect, an embodiment of the present application provides a computer-readable storage medium, on which computer program instructions are stored, and when the computer program instructions are executed by a processor, any one of the possible implementations in the above-mentioned first aspect can be realized. Implement the method in the method.
第五方面,本申请实施例提供了一种计算机程序产品,该计算机程序产品中的指令由电子设备的处理器执行时,使得电子设备执行如上述第一方面中任一种可能的实现方法中的方法。In the fifth aspect, the embodiment of the present application provides a computer program product. When the instructions in the computer program product are executed by the processor of the electronic device, the electronic device executes any one of the possible implementation methods in the first aspect above. Methods.
本申请实施例的图像处理方法、装置、设备、计算机可读存储介质及计算机程序产品,通过利用图像逆处理模型对第一图像进行与目标图像处理过程对应的逆处理,能够得到未经过HDR逆处理的第二图像。通过利用HDR逆处理模型对第二图像中的局部区域进行模糊处理,能够进行与HDR处理过程对应的逆处理,得到第三图像。由于第一图像为ISP处理后的图像,因此,通过利用图像逆处理模型和HDR逆处理模型对ISP处理后的图像进行处理,得到ISP处理前的图像,能够简化ISP的仿真过程,提升仿真效果。The image processing method, device, equipment, computer-readable storage medium, and computer program product of the embodiments of the present application, by using the image inverse processing model to perform inverse processing on the first image corresponding to the target image processing process, can obtain Processed second image. By using the HDR inverse processing model to perform blurring processing on the local area in the second image, inverse processing corresponding to the HDR processing process can be performed to obtain the third image. Since the first image is the image processed by ISP, by using the image inverse processing model and the HDR inverse processing model to process the image after ISP processing, the image before ISP processing can be obtained, which can simplify the simulation process of ISP and improve the simulation effect .
附图说明Description of drawings
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单的介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the following will briefly introduce the accompanying drawings that need to be used in the embodiments of the present application. Additional figures can be derived from these figures.
图1是本申请实施例提供的一种ISP逆处理原理的示意图,FIG. 1 is a schematic diagram of an ISP inverse processing principle provided in an embodiment of the present application.
图2是本申请实施例提供的一种图像处理方法的流程示意图,Fig. 2 is a schematic flow chart of an image processing method provided by an embodiment of the present application,
图3是本申请实施例提供的一种ISP逆处理神经网络模型的示意图,Fig. 3 is a schematic diagram of an ISP inverse processing neural network model provided by an embodiment of the present application,
图4是本申请实施例提供的一种图像处理装置的结构示意图,Fig. 4 is a schematic structural diagram of an image processing device provided by an embodiment of the present application,
图5是本申请实施例提供的一种电子设备的结构示意图。Fig. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
具体实施方式Detailed ways
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。The characteristics and exemplary embodiments of various aspects of the application will be described in detail below. In order to make the purpose, technical solution and advantages of the application clearer, the application will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. It should be understood that the specific embodiments described here are only intended to explain the present application rather than limit the present application. It will be apparent to one skilled in the art that the present application may be practiced without some of these specific details. The following description of the embodiments is only to provide a better understanding of the present application by showing examples of the present application.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that in this article, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that there is a relationship between these entities or operations. There is no such actual relationship or order between them. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or device. Without further limitations, an element defined by the statement "comprising..." does not exclude the presence of additional same elements in the process, method, article or device comprising said element.
如背景技术部分所述,与ISP处理对应的逆处理过程复杂,且得到的输入图像的准确率较低。As mentioned in the background section, the inverse processing corresponding to the ISP processing is complicated, and the accuracy of the obtained input image is low.
具体的,随着对图像质量的要求越来越高,HDR技术的进步使得显示领域发展到一个新的高度。现在的大部分ISP都具有HDR的功能,倘若依旧是按照ISP处理(ISP Pipeline)的流程依次进行逆变换处理,存在很多缺陷。首先,若ISP中含有HDR功能,HDR采用的是多帧融合技术,是对多张不同曝光程度的图片进行融合,得到一张高动态的、更有表达力的图片,如果直接采用逆变换不易还原出融合前的图像,其次,不同的色温条件下,ISP会动态的去调节对图像的矫正力度、白平衡力度,这意味着白平衡的矫正力度并不是固定的,加大了逆变换难度,最后,ISP处理流程中涉及多个图像处理模块,使得输入图像和输出图像间存在这一系列复杂的线性和非线性的叠加关系,期间复杂的关系很难通过数学、或者是固定的模型表达。Specifically, as the requirements for image quality become higher and higher, the progress of HDR technology makes the display field develop to a new height. Most of the current ISPs have the function of HDR. If the inverse transformation process is still performed sequentially according to the ISP processing (ISP Pipeline) process, there are many defects. First of all, if the ISP contains the HDR function, HDR uses multi-frame fusion technology, which is to fuse multiple pictures with different exposure levels to obtain a high-dynamic and expressive picture. It is not easy to directly use inverse transformation Restore the image before fusion. Secondly, under different color temperature conditions, ISP will dynamically adjust the correction strength and white balance strength of the image, which means that the correction strength of white balance is not fixed, which increases the difficulty of inverse transformation. , Finally, multiple image processing modules are involved in the ISP processing flow, so that there is a series of complex linear and nonlinear superposition relationships between the input image and the output image, and the complex relationship is difficult to express through mathematics or a fixed model .
因此,对于ISP的逆处理仿真,目前缺少能考虑到其动态变化且行之有效的仿真方法。同时,对于含有HDR功能的ISP图像处理单元,也缺少能考虑到多帧融合技术的逆处理仿真方法。从而导致ISP的仿真过程复杂,且仿真效果较差。Therefore, for the inverse processing simulation of ISP, there is currently a lack of an effective simulation method that can take into account its dynamic changes. At the same time, for the ISP image processing unit with HDR function, there is also a lack of an inverse processing simulation method that can take into account the multi-frame fusion technology. As a result, the simulation process of the ISP is complicated and the simulation effect is poor.
如此,为了解决现有技术问题,本申请实施例提供了一种图像处理方法、装置、设备、计算机可读存储介质及计算机程序产品。Thus, in order to solve the problems in the prior art, the embodiments of the present application provide an image processing method, device, equipment, computer-readable storage medium, and computer program product.
这里,图像处理方法可以是一种使用神经网络实现ISP逆处理的仿真方法,即通过神经网络代替ISP中各个模块的逆处理过程。该仿真方法可以是将人眼可接受的、没有噪点、瑕疵的图像输入ISP逆处理神经网络模型中。ISP逆处理神经网络模型可以对输入的图像数据进行目标图像逆处理(ISP逆处理中除HDR逆处理之外的其他图像逆处理)以及HDR逆处理。也即,ISP逆处理神经网络模型中可以包括用于进行目标图像逆处理的神经网络结构和用于进行HDR逆处理的神经网络结构。经过ISP逆处理神经网络模型可以输出得到输入ISP前的图像,从而达到仿真ISP输入图像的目的。基于此,本申请实施例提供的一种ISP逆处理原理的示意图可以如图1所示。Here, the image processing method may be a simulation method that uses a neural network to realize the inverse processing of the ISP, that is, the inverse processing process of each module in the ISP is replaced by the neural network. The simulation method may be to input an image acceptable to human eyes without noise or blemish into the ISP inverse processing neural network model. The ISP inverse processing neural network model can perform target image inverse processing (image inverse processing in ISP inverse processing except HDR inverse processing) and HDR inverse processing on the input image data. That is, the ISP inverse processing neural network model may include a neural network structure for performing target image inverse processing and a neural network structure for performing HDR inverse processing. After the ISP inverse processing neural network model can output the image before input to ISP, so as to achieve the purpose of simulating the input image of ISP. Based on this, a schematic diagram of an ISP inverse processing principle provided in the embodiment of the present application may be shown in FIG. 1 .
下面首先对本申请实施例所提供的图像处理方法进行介绍。The image processing method provided by the embodiment of the present application is firstly introduced below.
图2示出了本申请实施例提供的一种图像处理方法的流程示意图。如图2所示,本申请实施例提供的图像处理方法包括步骤S210至S230。FIG. 2 shows a schematic flowchart of an image processing method provided by an embodiment of the present application. As shown in FIG. 2 , the image processing method provided by the embodiment of the present application includes steps S210 to S230.
S210、获取第一图像,第一图像为图像信号处理器ISP处理后的图像。S210. Acquire a first image, where the first image is an image processed by an image signal processor (ISP).
这里,第一图像可以是不具有噪点、欠爆、过曝等瑕疵的图像。具体的,第一图像可以是经过ISP处理后的图像。其中,ISP处理可以包括HDR、AWB、CCM色彩校正和Gamma矫正等处理。当然,ISP处理还可以包括黑电瓶校正(Black level correction,BLC)、镜头阴影矫正(Lens shading correction,LSC)等处理,在此不做限定。Here, the first image may be an image without defects such as noise, underexposure, or overexposure. Specifically, the first image may be an image processed by the ISP. Among them, ISP processing can include HDR, AWB, CCM color correction and Gamma correction and other processing. Of course, the ISP processing may also include black battery correction (Black level correction, BLC), lens shading correction (Lens shading correction, LSC) and other processing, which is not limited here.
S220、利用图像逆处理模型对第一图像进行与目标图像处理过程对应的逆处理,得到第二图像,其中,目标图像处理过程包括ISP处理过程中除高动态范围成像HDR处理过程之外的其他图像处理过程。S220. Use the image inverse processing model to perform inverse processing on the first image corresponding to the target image processing process to obtain the second image, wherein the target image processing process includes other processes in the ISP processing process except the high dynamic range imaging HDR processing process Image processing process.
这里,图像逆处理模型可以具有进行目标图像逆处理的功能。其中,目标图像逆处理是与目标图像处理过程对应的逆处理。目标图像处理过程可以包括ISP处理过程中除HDR处理过程之外的其他图像处理过程。也即,目标图像处理过程可以包括AWB、CCM色彩校正、BLC、LSC和Gamma矫正等处理过程。如此,第二图像可以是具有噪点、欠爆、过曝等瑕疵的图像。另外,图像逆处理模型可以是一个单独的神经网络模型,也可以作为ISP逆处理神经网络模型中的第一层神经网络结构。Here, the image inverse processing model may have a function of inverse processing the target image. Wherein, the target image reverse processing is the reverse processing corresponding to the target image processing process. The target image processing process may include other image processing processes in the ISP processing process except the HDR processing process. That is, the target image processing process may include processing processes such as AWB, CCM color correction, BLC, LSC, and Gamma correction. In this way, the second image may be an image with defects such as noise, underexposure, overexposure, and the like. In addition, the image inverse processing model can be a separate neural network model, or can be used as the first layer of neural network structure in the ISP inverse processing neural network model.
作为一种示例,图像逆处理模型可以是四层的卷积神经网络(ConvolutionalNeural Networks,CNN)模型。在此基础上,ISP逆处理神经网络模型中的第一层神经网络结构可以是四层的卷积神经网络。As an example, the image inverse processing model may be a four-layer convolutional neural network (ConvolutionalNeural Networks, CNN) model. On this basis, the first layer of neural network structure in the ISP inverse processing neural network model can be a four-layer convolutional neural network.
基于此,为了使图像逆处理模型具有进行目标图像逆处理的功能,在一些实施例中,在S220之前,还可以包括:Based on this, in order to enable the image inverse processing model to have the function of performing target image inverse processing, in some embodiments, before S220, it may also include:
获取多个ISP处理后的第一图像样本及其分别对应的ISP处理前的第二图像样本,Acquiring a plurality of first image samples after ISP processing and corresponding second image samples before ISP processing,
对第一图像样本和第二图像样本进行特征提取,得到与每个第一图像样本分别对应的第一图像特征,以及与每个第二图像样本分别对应的第二图像特征,performing feature extraction on the first image sample and the second image sample to obtain a first image feature corresponding to each first image sample and a second image feature corresponding to each second image sample,
利用初始图像逆处理模型对第一图像特征进行与目标图像处理过程对应的逆处理,得到与每个第一图像特征分别对应的第一预测图像特征,Using the initial image inverse processing model to perform inverse processing corresponding to the target image processing process on the first image features to obtain first predicted image features corresponding to each first image feature,
根据多个第二图像特征及其分别对应的第一预测图像特征之间的相似度确定第一损失函数值,determining a first loss function value according to the similarities between the plurality of second image features and their respective corresponding first predicted image features,
根据第一损失函数值调整初始图像逆处理模型的模型参数,训练得到图像逆处理模型。The model parameters of the initial image inverse processing model are adjusted according to the value of the first loss function, and the image inverse processing model is obtained through training.
这里,ISP处理后的第一图像样本可以是不具有噪点、欠爆、过曝等瑕疵的图像样本。ISP处理前的第二图像样本可以是具有噪点、欠爆、过曝等瑕疵的图像样本。其中,对于整幅图像来说,噪点、欠曝、过曝等瑕疵可以属于一种局部的图像特征。另外,多个第一图像样本及其分别对应的第二图像样本可以7:3的比例分为训练组和测试组,以用于训练初始图像逆处理模型,得到图像逆处理模型。第二图像样本可以是训练样本标签。Here, the first image sample processed by the ISP may be an image sample without defects such as noise, underexposure, and overexposure. The second image sample before ISP processing may be an image sample with defects such as noise, underexposure, and overexposure. Wherein, for the entire image, defects such as noise, underexposure, and overexposure may belong to a local image feature. In addition, the plurality of first image samples and their respective corresponding second image samples can be divided into a training group and a test group at a ratio of 7:3 for training the initial image inverse processing model to obtain an image inverse processing model. The second image samples may be training sample labels.
作为一种示例,在图像逆处理模型为四层的卷积神经网络模型的情况下,卷积神经网络可以用于学习ISP中除HDR模块外的其他模块的逆处理特征。卷积神经网络可以采用3*3的卷积核对第一图像样本和第二图像样本进行卷积遍历,以提取第一图像样本和第二图像样本分别对应的图像特征信息,得到第一图像特征和第二图像特征。另外,每层的神经网络间可以设置Softmax激活函数。激活函数可以将上一层网络的输入映射到输出端,作为下一层网络的数据。As an example, when the image inverse processing model is a four-layer convolutional neural network model, the convolutional neural network can be used to learn inverse processing features of other modules in the ISP except the HDR module. The convolutional neural network can use a 3*3 convolution kernel to perform convolution traversal on the first image sample and the second image sample to extract the image feature information corresponding to the first image sample and the second image sample respectively, and obtain the first image feature and the second image features. In addition, the Softmax activation function can be set between the neural networks of each layer. The activation function can map the input of the upper layer network to the output terminal as the data of the next layer network.
作为一种示例,模型参数可以包括权重值、偏置和学习率。在模型训练的初始情况下,可以随机设置模型参数。在进行卷积迭代的过程中,通过根据预测值(第一预测图像特征)和真实值(第二图像特征)之间的第一损失函数值对初始图像逆处理模型中的权重值、偏置和学习率等模型参数进行动态调整,直至模型收敛,即可完成对初始图像逆处理模型的训练过程,得到训练后的图像逆处理模型。As an example, model parameters may include weight values, biases, and learning rates. In the initial case of model training, model parameters can be set randomly. In the process of convolution iteration, according to the first loss function value between the predicted value (the first predicted image feature) and the real value (the second image feature), the weight value and bias in the initial image inverse processing model The model parameters such as learning rate and learning rate are dynamically adjusted until the model converges, and the training process of the initial image inverse processing model can be completed, and the trained image inverse processing model can be obtained.
基于此,在一些实施例中,上述根据多个第二图像特征及其分别对应的第一预测图像特征之间的相似度确定第一损失函数值,可以包括:Based on this, in some embodiments, the determination of the first loss function value based on the similarity between the plurality of second image features and their respective corresponding first predicted image features may include:
计算多个第一预测图像特征和多个第二图像特征之间的均方差,calculating the mean square error between a plurality of first predicted image features and a plurality of second image features,
将均方差确定为第一损失函数值。The mean square error is determined as the first loss function value.
也即,根据预测值(第一预测图像特征)和真实值(第二图像特征)之间的均方差可以对初始图像逆处理模型中的权重值、偏置和学习率等模型参数进行动态调整。如此,经过多次卷积迭代,在均方差最小时即可确定模型收敛,得到训练后的图像逆处理模型。同时,还可以得到均方差最小时的权重、偏置、学习率等模型参数。That is, according to the mean square error between the predicted value (the first predicted image feature) and the real value (the second image feature), the model parameters such as weight value, bias and learning rate in the initial image inverse processing model can be dynamically adjusted . In this way, after multiple convolution iterations, the model convergence can be determined when the mean square error is the smallest, and the trained image inverse processing model can be obtained. At the same time, the model parameters such as weight, bias, and learning rate when the mean square error is the smallest can also be obtained.
这样,通过基于多个ISP处理后的第一图像样本及其分别对应的ISP处理前的第二图像样本训练得到图像逆处理模型,使图像逆处理模型能够具有进行目标图像逆处理的功能。In this way, the image inverse processing model is obtained through training based on a plurality of first image samples after ISP processing and their respective corresponding second image samples before ISP processing, so that the image inverse processing model can have the function of inverse processing of the target image.
S230、利用HDR逆处理模型对第二图像中的局部区域进行模糊处理,得到第三图像。S230. Use the HDR inverse processing model to perform blurring processing on the local area in the second image to obtain a third image.
这里,HDR逆处理模型可以具有进行HDR逆处理的功能。其中,HDR逆处理是与HDR处理过程对应的逆处理。由于HDR的多帧融合技术是将不同曝光程度下图片进行融合,将欠曝的局部提亮、将过曝的局部亮度调低,因此,对第二图像中的局部区域进行模糊处理具体可以是进行欠爆处理或过曝处理。其中,对第二图像中的局部区域进行欠爆处理即可以是降低第二图像的局部区域的亮度,对第二图像中的局部区域进行过曝处理即可以是提高第二图像的局部区域的亮度。如此,能够模拟HDR处理前图像的过曝、欠曝。也即,第三图像可以是具有噪点、欠爆、过曝等瑕疵的图像。另外,HDR逆处理模型可以是一个单独的神经网络模型,也可以作为ISP逆处理神经网络模型中的第二层神经网络结构。Here, the HDR inverse processing model may have a function of performing HDR inverse processing. Wherein, the HDR inverse processing is inverse processing corresponding to the HDR processing process. Since the multi-frame fusion technology of HDR is to fuse pictures under different exposure levels, brighten the underexposed part and lower the overexposed part brightness, therefore, the blurring process of the local area in the second image can be specifically Underexplode or overexposure. Wherein, performing underexposure processing on the local area in the second image may be to reduce the brightness of the local area in the second image, and performing overexposure processing on the local area in the second image may be to increase the brightness of the local area in the second image. brightness. In this way, overexposure and underexposure of the image before HDR processing can be simulated. That is, the third image may be an image with defects such as noise, underexposure, and overexposure. In addition, the HDR inverse processing model can be a separate neural network model, or it can be used as a second-layer neural network structure in the ISP inverse processing neural network model.
作为一种示例,HDR逆处理模型可以是双向长短时记忆循环神经网络(Bidirectional long short term memory,Bi-LSTM)模型。在此基础上,ISP逆处理神经网络模型中的第二层神经网络结构可以是双向长短时记忆循环神经网络。As an example, the HDR inverse processing model may be a bidirectional long short term memory recurrent neural network (Bidirectional long short term memory, Bi-LSTM) model. On this basis, the second-layer neural network structure in the ISP reverse processing neural network model can be a bidirectional long-short-term memory recurrent neural network.
基于此,为了使HDR逆处理模型具有进行HDR逆处理的功能,在一些实施例中,在S230之前,还可以包括:Based on this, in order to enable the HDR inverse processing model to have the function of performing HDR inverse processing, in some embodiments, before S230, it may also include:
获取多个HDR处理后的第三图像样本及其分别对应的HDR处理前的第四图像样本,Acquiring a plurality of third image samples after HDR processing and corresponding fourth image samples before HDR processing,
利用初始HDR逆处理模型对每个第三图像样本的局部区域分别进行模糊处理,得到与每个第三图像样本分别对应的第二预测图像,Using the initial HDR inverse processing model to perform blurring processing on the local area of each third image sample to obtain a second predicted image corresponding to each third image sample,
根据多个第四图像样本及其分别对应的第二预测图像之间的相似度确定第二损失函数值,determining a second loss function value according to the similarities between the plurality of fourth image samples and their respective corresponding second prediction images,
根据第二损失函数值调整初始HDR逆处理模型的模型参数,训练得到HDR逆处理模型。The model parameters of the initial HDR inverse processing model are adjusted according to the value of the second loss function, and the HDR inverse processing model is obtained through training.
这里,HDR处理后的第三图像样本和HDR处理前的第四图像样本均可以是具有噪点、欠爆、过曝等瑕疵的图像样本。第三图像样本是对其对应的第四图像样本进行HDR处理后得到的图像样本。其中,多个第三图像样本及其分别对应的第四图像样本可以7:3的比例分为训练组和测试组,以用于训练初始HDR逆处理模型,得到HDR逆处理模型。第四图像样本可以是训练样本标签。另外,由于HDR模块可以是ISP正处理过程中的第一个处理模块,因此,HDR处理前的第四图像样本和ISP处理前的第二图像样本可以是相同的图像样本。当然,第四图像样本和第二图像样本也可以是不同的图像样本,在此不做限定。另外,第三图像样本可以是具有噪点、欠爆、过曝等瑕疵的图像经HDR处理后得到的图像样本,也可以是不具有噪点、欠爆、过曝等瑕疵的图像经图像逆处理模型处理后得到的图像样本,在此不做限定。Here, both the third image sample after HDR processing and the fourth image sample before HDR processing may be image samples with defects such as noise, underexposure, and overexposure. The third image sample is an image sample obtained after HDR processing is performed on the corresponding fourth image sample. Wherein, the plurality of third image samples and their respective corresponding fourth image samples can be divided into a training group and a test group at a ratio of 7:3, so as to be used for training an initial HDR inverse processing model to obtain an HDR inverse processing model. The fourth image sample may be a training sample label. In addition, since the HDR module may be the first processing module in the ISP processing process, the fourth image sample before HDR processing and the second image sample before ISP processing may be the same image sample. Of course, the fourth image sample and the second image sample may also be different image samples, which is not limited here. In addition, the third image sample can be an image sample obtained after HDR processing of an image with defects such as noise, underexposure, or overexposure, or an image without defects such as noise, underexposure, or overexposure after an image inverse processing model The image samples obtained after processing are not limited here.
基于此,在一些实施例中,上述获取多个HDR处理后的第三图像样本,可以包括:Based on this, in some embodiments, the acquisition of a plurality of HDR-processed third image samples may include:
获取多个在时间上连续的第四图像,acquire a plurality of temporally consecutive fourth images,
利用图像逆处理模型分别对多个第四图像进行与目标图像处理过程对应的逆处理,得到多个第五图像,Using the image inverse processing model to respectively perform inverse processing corresponding to the target image processing process on the plurality of fourth images to obtain a plurality of fifth images,
在多个第五图像中获取连续的三帧第三图像样本。Three consecutive frames of third image samples are acquired in the plurality of fifth images.
这里,多个在时间上连续的第四图像可以是一个视频流中的多个图像,也可以是对同一个目标连续拍摄的多张图像,在此不做限定。另外,第四图像可以是不具有噪点、欠爆、过曝等瑕疵的图像。图像逆处理模型可以是已经训练完成的图像逆处理模型。在利用图像逆处理模型对第四图像进行与目标图像处理过程对应的逆处理之后,可以得到具有噪点、欠爆、过曝等瑕疵的第五图像。在得到第五图像之后,可以将每个第五图像分别确定为第三图像样本,也可以从多个第五图像中获取连续的三帧第三图像样本。Here, the multiple temporally continuous fourth images may be multiple images in one video stream, or may be multiple images continuously captured for the same target, which is not limited here. In addition, the fourth image may be an image without defects such as noise, underexposure, or overexposure. The image inverse processing model may be an image inverse processing model that has been trained. After performing inverse processing corresponding to the target image processing process on the fourth image by using the image inverse processing model, a fifth image with defects such as noise, underexposure, and overexposure can be obtained. After the fifth image is obtained, each fifth image may be determined as a third image sample, or three consecutive frames of third image samples may be obtained from multiple fifth images.
另外,作为一种示例,在HDR逆处理模型可以用于模拟ISP中的HDR功能。在模型训练的初始情况下,可以随机设置模型参数。在模型训练过程中,通过根据预测值(第二预测图像)和真实值(第四图像样本)之间的第二损失函数值对初始HDR逆处理模型中的模型参数进行动态调整,直至模型收敛,即可完成对初始HDR逆处理模型的训练过程,得到训练后的HDR逆处理模型。其中,预测值具体还可以为与第二预测图像对应的第二预测图像特征,真实值具体还可以为与第四图像样本对应的第四图像特征。In addition, as an example, the HDR inverse processing model can be used to simulate the HDR function in the ISP. In the initial case of model training, model parameters can be set randomly. During the model training process, the model parameters in the initial HDR inverse processing model are dynamically adjusted according to the second loss function value between the predicted value (the second predicted image) and the real value (the fourth image sample) until the model converges , the training process of the initial HDR inverse processing model can be completed, and the trained HDR inverse processing model can be obtained. Wherein, the predicted value may specifically be a second predicted image feature corresponding to the second predicted image, and the real value may specifically be a fourth image feature corresponding to the fourth image sample.
这样,通过基于多个HDR处理后的第三图像样本及其分别对应的HDR处理前的第四图像样本训练得到HDR逆处理模型,使HDR逆处理模型能够具有进行HDR逆处理的功能。In this way, the HDR inverse processing model is obtained through training based on a plurality of third image samples after HDR processing and their respective corresponding fourth image samples before HDR processing, so that the HDR inverse processing model can have the function of performing HDR inverse processing.
基于此,为了模拟ISP中的HDR功能,在一些实施例中,上述利用初始HDR逆处理模型对每个第三图像样本的局部区域分别进行模糊处理,得到与每个第三图像样本分别对应的第二预测图像,可以包括:Based on this, in order to simulate the HDR function in the ISP, in some embodiments, the local area of each third image sample is respectively blurred by using the initial HDR inverse processing model to obtain the corresponding The second predicted image may include:
利用初始HDR逆处理模型提取连续的三帧第三图像样本之间的关联特征,Using the initial HDR inverse processing model to extract the associated features between the three consecutive frames of the third image sample,
根据关联特征对目标图像样本的局部区域进行模糊处理,得到与目标图像样本对应的第二预测图像,目标图像样本为连续的三帧第三图像样本中处于中间位置的图像样本。Blurring is performed on the local area of the target image sample according to the associated feature to obtain a second prediction image corresponding to the target image sample, and the target image sample is an image sample in the middle of three consecutive frames of third image samples.
这里,初始HDR逆处理模型可以是双向长短时记忆循环神经网络,双向长短时记忆循环神经网络可以具有提取多个图像之间的关联特征的功能。若提取的是连续的三帧第三图像样本之间的关联特征,则关联特征中可以包括当前帧图像对应的特征信息,与当前帧图像的前一帧图像对应的特征信息,以及与当前帧图像的后一帧图像对应的特征信息。这里,当前帧图像可以是连续的三帧第三图像样本中处于中间位置的目标图像样本。由于目标图像特征中包括与目标图像样本的前一帧图像样本对应的特征信息和与目标图像样本的后一帧图像样本对应的特征信息,因此,通过对目标图像样本的局部区域进行模糊处理,能够模拟ISP中的HDR功能。Here, the initial HDR inverse processing model may be a bidirectional long-short-term memory recurrent neural network, and the bidirectional long-short-term memory recurrent neural network may have a function of extracting correlation features between multiple images. If what is extracted is the correlation feature between the third image samples of three consecutive frames, then the correlation feature may include the feature information corresponding to the current frame image, the feature information corresponding to the previous frame image of the current frame image, and the feature information corresponding to the current frame image The feature information corresponding to the next frame of the image. Here, the current frame image may be a target image sample at an intermediate position among three consecutive frames of third image samples. Since the target image features include the feature information corresponding to the previous frame image sample of the target image sample and the feature information corresponding to the next frame image sample of the target image sample, therefore, by blurring the local area of the target image sample, Ability to emulate the HDR function in the ISP.
基于此,为了模拟HDR处理前图像的过曝、欠曝,在一些实施例中,上述根据关联特征对目标图像样本的局部区域进行模糊处理,得到与目标图像样本对应的第二预测图像,可以包括:Based on this, in order to simulate the overexposure and underexposure of the image before HDR processing, in some embodiments, the local area of the target image sample is blurred according to the above-mentioned associated features to obtain the second predicted image corresponding to the target image sample, which can be include:
将关联特征确定为与目标图像样本对应的目标图像特征,determining the associated feature as the target image feature corresponding to the target image sample,
利用随机算法对目标图像特征进行处理,得到第二预测图像特征,Using a random algorithm to process the target image features to obtain the second predicted image features,
确定与第二预测图像特征对应的图像为第二预测图像。An image corresponding to the feature of the second predicted image is determined as the second predicted image.
这里,利用随机算法对目标图像特征进行处理可以是对Bi-LSTM中设置随机种子的权重矩阵和与目标图像特征对应的特征矩阵进行乘积。利用随机算法对目标图像特征进行处理之后,可以整体降低目标图像特征的局部范围的RGB值,或整体提高目标图像特征的局部范围的RGB值,得到第二预测图像特征。其中,整体降低目标图像特征的局部范围的RGB值即可以是对目标图像样本的局部区域进行欠爆处理,整体提高目标图像特征的局部范围的RGB值即可以是对目标图像样本的局部区域进行过曝处理。Here, using the random algorithm to process the target image feature may be to multiply the weight matrix with the random seed set in the Bi-LSTM and the feature matrix corresponding to the target image feature. After the target image feature is processed by the random algorithm, the local RGB value of the target image feature can be reduced overall, or the local RGB value of the target image feature can be increased overall to obtain the second predicted image feature. Among them, reducing the RGB value of the local range of the target image feature as a whole can be to perform underexplosive processing on the local area of the target image sample, and improving the RGB value of the local range of the target image feature as a whole can be to perform on the local area of the target image sample. Overexposure.
这样,通过利用随机算法对目标图像特征进行处理,能够模拟HDR处理前图像的过曝、欠曝。In this way, by using a random algorithm to process the characteristics of the target image, it is possible to simulate the overexposure and underexposure of the image before HDR processing.
本申请实施例的图像处理方法通过利用图像逆处理模型对第一图像进行与目标图像处理过程对应的逆处理,能够得到未经过HDR逆处理的第二图像。通过利用HDR逆处理模型对第二图像中的局部区域进行模糊处理,能够进行与HDR处理过程对应的逆处理,得到第三图像。由于第一图像为ISP处理后的图像,因此,通过利用图像逆处理模型和HDR逆处理模型对ISP处理后的图像进行处理,得到ISP处理前的图像,能够简化ISP的仿真过程,提升仿真效果。In the image processing method of the embodiment of the present application, by using the image inverse processing model to perform inverse processing corresponding to the target image processing process on the first image, a second image that has not undergone HDR inverse processing can be obtained. By using the HDR inverse processing model to perform blurring processing on the local area in the second image, inverse processing corresponding to the HDR processing process can be performed to obtain the third image. Since the first image is the image processed by ISP, by using the image inverse processing model and the HDR inverse processing model to process the image after ISP processing, the image before ISP processing can be obtained, which can simplify the simulation process of ISP and improve the simulation effect .
基于此,为了更好地描述整个方案,基于上述各实施例,举一个具体的例子。Based on this, in order to better describe the whole solution, a specific example is given based on the foregoing embodiments.
例如,如图3所示,ISP逆处理神经网络模型中可以具有两层神经网络结构。其中,第一层神经网络结构可以是CNN,第二层神经网络结构可以是Bi-LSTM。For example, as shown in FIG. 3 , the ISP inverse processing neural network model may have a two-layer neural network structure. Wherein, the neural network structure of the first layer may be CNN, and the neural network structure of the second layer may be Bi-LSTM.
如此,通过将不具有噪点、欠爆、过曝等瑕疵的图像输入至ISP逆处理神经网络模型中,能够输出得到具有噪点、欠爆、过曝等瑕疵的图像,从而达到对ISP的输入图像进行仿真的目的。由于ISP逆处理神经网络模型能够实现自动化进行ISP逆处理仿真过程,相比于按照ISP Piepline依次做逆变换,能够减少复杂度,提高仿真精度。同时,CNN以及Bi-LSTM网络的结合,能够使仿真过程能够兼容HDR逆处理过程。如此,能够简化ISP的仿真过程,提升仿真效果。In this way, by inputting images without noise, underexposure, overexposure, etc. into the ISP inverse processing neural network model, images with noise, underexposure, overexposure, etc. for the purpose of simulation. Since the ISP inverse processing neural network model can automate the ISP inverse processing simulation process, it can reduce complexity and improve simulation accuracy compared to sequential inverse transformation according to the ISP Piepline. At the same time, the combination of CNN and Bi-LSTM network can make the simulation process compatible with the HDR inverse processing process. In this way, the simulation process of the ISP can be simplified and the simulation effect can be improved.
基于上述实施例提供的图像处理方法,相应地,本申请还提供了图像处理装置的具体实现方式。请参见以下实施例。Based on the image processing method provided by the foregoing embodiments, correspondingly, the present application also provides a specific implementation manner of an image processing apparatus. See the examples below.
如图4所示,本申请实施例提供的图像处理装置400包括以下模块:As shown in FIG. 4, the image processing device 400 provided in the embodiment of the present application includes the following modules:
第一获取模块410,用于获取第一图像,第一图像为图像信号处理器ISP处理后的图像,The first acquiring module 410 is configured to acquire a first image, where the first image is an image processed by an image signal processor ISP,
第一处理模块420,用于利用图像逆处理模型对第一图像进行与目标图像处理过程对应的逆处理,得到第二图像,其中,目标图像处理过程包括ISP处理过程中除高动态范围成像HDR处理过程之外的其他图像处理过程,The first processing module 420 is configured to use the image inverse processing model to perform inverse processing on the first image corresponding to the target image processing process to obtain the second image, wherein the target image processing process includes removing high dynamic range imaging HDR during the ISP processing process Image processing other than processing,
第二处理模块430,用于利用HDR逆处理模型对第二图像中的局部区域进行模糊处理,得到第三图像。The second processing module 430 is configured to use the HDR inverse processing model to perform blurring processing on the local area in the second image to obtain a third image.
下面对上述图像处理装置400进行详细说明,具体如下所示:The above-mentioned image processing device 400 will be described in detail below, specifically as follows:
在其中一些实施例中,图像处理装置400还可以包括:In some of these embodiments, the image processing device 400 may further include:
第二获取模块,用于在利用图像逆处理模型对第一图像进行与目标图像处理过程对应的逆处理,得到第二图像之前,获取多个ISP处理后的第一图像样本及其分别对应的ISP处理前的第二图像样本,The second acquisition module is used to acquire a plurality of ISP-processed first image samples and their respective corresponding ones before performing inverse processing corresponding to the target image processing process on the first image by using the image inverse processing model to obtain the second image The second image sample before ISP processing,
特征提取模块,用于对第一图像样本和第二图像样本进行特征提取,得到与每个第一图像样本分别对应的第一图像特征,以及与每个第二图像样本分别对应的第二图像特征,A feature extraction module, configured to perform feature extraction on the first image sample and the second image sample, to obtain a first image feature corresponding to each first image sample, and a second image corresponding to each second image sample feature,
第三处理模块,用于利用初始图像逆处理模型对第一图像特征进行与目标图像处理过程对应的逆处理,得到与每个第一图像特征分别对应的第一预测图像特征,The third processing module is used to use the initial image inverse processing model to perform inverse processing on the first image features corresponding to the target image processing process, to obtain the first predicted image features respectively corresponding to each first image feature,
第一确定模块,用于根据多个第二图像特征及其分别对应的第一预测图像特征之间的相似度确定第一损失函数值,The first determination module is configured to determine a first loss function value according to the similarity between a plurality of second image features and their respective corresponding first predicted image features,
第一训练模块,用于根据第一损失函数值调整初始图像逆处理模型的模型参数,训练得到图像逆处理模型。The first training module is configured to adjust the model parameters of the initial image inverse processing model according to the value of the first loss function, and obtain the image inverse processing model through training.
在其中一些实施例中,上述第一确定模块可以包括:In some of these embodiments, the above-mentioned first determination module may include:
计算子模块,用于计算多个第一预测图像特征和多个第二图像特征之间的均方差,Calculation sub-module, used to calculate the mean square error between a plurality of first predicted image features and a plurality of second image features,
确定子模块,用于将均方差确定为第一损失函数值。A determination submodule is used to determine the mean square error as the first loss function value.
在其中一些实施例中,图像处理装置400还可以包括:In some of these embodiments, the image processing device 400 may further include:
第三获取模块,用于在利用HDR逆处理模型对第二图像中的局部区域进行模糊处理,得到第三图像之前,获取多个HDR处理后的第三图像样本及其分别对应的HDR处理前的第四图像样本,The third acquisition module is used to obtain a plurality of HDR-processed third image samples and their respective corresponding pre-HDR processing samples before using the HDR inverse processing model to perform blurring processing on the local area in the second image to obtain the third image The fourth image sample of ,
第四处理模块,用于利用初始HDR逆处理模型对每个第三图像样本的局部区域分别进行模糊处理,得到与每个第三图像样本分别对应的第二预测图像,The fourth processing module is used to use the initial HDR inverse processing model to perform blurring processing on the local area of each third image sample to obtain a second predicted image respectively corresponding to each third image sample,
第二确定模块,用于根据多个第四图像样本及其分别对应的第二预测图像之间的相似度确定第二损失函数值,The second determination module is configured to determine a second loss function value according to the similarity between a plurality of fourth image samples and their respective corresponding second prediction images,
第二训练模块,用于根据第二损失函数值调整初始HDR逆处理模型的模型参数,训练得到HDR逆处理模型。The second training module is configured to adjust the model parameters of the initial HDR inverse processing model according to the second loss function value, and obtain the HDR inverse processing model through training.
在其中一些实施例中,上述第三获取模块可以包括:In some of these embodiments, the above-mentioned third acquisition module may include:
第一获取子模块,用于获取多个在时间上连续的第四图像,The first acquisition submodule is used to acquire a plurality of temporally continuous fourth images,
第一处理子模块,用于利用图像逆处理模型分别对多个第四图像进行与目标图像处理过程对应的逆处理,得到多个第五图像,The first processing sub-module is used to use the image inverse processing model to respectively perform inverse processing corresponding to the target image processing process on a plurality of fourth images to obtain a plurality of fifth images,
第二获取子模块,用于在多个第五图像中获取连续的三帧第三图像样本。The second acquisition sub-module is used to acquire three consecutive frames of third image samples in a plurality of fifth images.
在其中一些实施例中,第四处理模块可以包括:In some of these embodiments, the fourth processing module may include:
提取子模块,用于利用初始HDR逆处理模型提取连续的三帧第三图像样本之间的关联特征,The extraction sub-module is used to extract the associated features between the three consecutive frames of the third image sample by using the initial HDR inverse processing model,
第二处理子模块,用于根据关联特征对目标图像样本的局部区域进行模糊处理,得到与目标图像样本对应的第二预测图像,目标图像样本为连续的三帧第三图像样本中处于中间位置的图像样本。The second processing sub-module is used to blur the local area of the target image sample according to the associated features to obtain a second predicted image corresponding to the target image sample, and the target image sample is in the middle of three consecutive frames of the third image sample image sample.
在其中一些实施例中,第二处理子模块可以包括:In some of these embodiments, the second processing submodule may include:
第一确定单元,用于将关联特征确定为与目标图像样本对应的目标图像特征,a first determining unit, configured to determine the associated feature as a target image feature corresponding to the target image sample,
处理单元,用于利用随机算法对目标图像特征进行处理,得到第二预测图像特征,A processing unit, configured to use a random algorithm to process the target image features to obtain the second predicted image features,
第二确定单元,用于确定与第二预测图像特征对应的图像为第二预测图像。The second determining unit is configured to determine the image corresponding to the feature of the second predicted image as the second predicted image.
在其中一些实施例中,图像逆处理模型为四层的卷积神经网络模型,HDR逆处理模型为双向长短时记忆循环神经网络模型。In some of the embodiments, the image inverse processing model is a four-layer convolutional neural network model, and the HDR inverse processing model is a bidirectional long-short-term memory recurrent neural network model.
在其中一些实施例中,模糊处理包括欠曝处理和过曝处理中的任意一个。In some of the embodiments, the blur processing includes any one of under-exposure processing and over-exposure processing.
本申请实施例的图像处理装置通过利用图像逆处理模型对第一图像进行与目标图像处理过程对应的逆处理,能够得到未经过HDR逆处理的第二图像。通过利用HDR逆处理模型对第二图像中的局部区域进行模糊处理,能够进行与HDR处理过程对应的逆处理,得到第三图像。由于第一图像为ISP处理后的图像,因此,通过利用图像逆处理模型和HDR逆处理模型对ISP处理后的图像进行处理,得到ISP处理前的图像,能够简化ISP的仿真过程,提升仿真效果。The image processing apparatus according to the embodiment of the present application can obtain a second image that has not undergone HDR inverse processing by using an image inverse processing model to perform inverse processing corresponding to a target image processing process on the first image. By using the HDR inverse processing model to perform blurring processing on the local area in the second image, inverse processing corresponding to the HDR processing process can be performed to obtain the third image. Since the first image is the image processed by ISP, by using the image inverse processing model and the HDR inverse processing model to process the image after ISP processing, the image before ISP processing can be obtained, which can simplify the simulation process of ISP and improve the simulation effect .
基于上述实施例提供的图像处理方法,本申请实施例还提供了电子设备的具体实施方式。图5示出了本申请实施例提供的电子设备500示意图。Based on the image processing method provided in the foregoing embodiments, the embodiments of the present application also provide specific implementation manners of electronic devices. FIG. 5 shows a schematic diagram of an electronic device 500 provided by an embodiment of the present application.
电子设备500可以包括处理器510以及存储有计算机程序指令的存储器520。The electronic device 500 may include a processor 510 and a memory 520 storing computer program instructions.
具体地,上述处理器510可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。Specifically, the above-mentioned processor 510 may include a central processing unit (CPU), or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits in the embodiments of the present application.
存储器520可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器520可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器520可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器520可在综合网关容灾设备的内部或外部。在特定实施例中,存储器520是非易失性固态存储器。Memory 520 may include mass storage for data or instructions. By way of example and not limitation, the memory 520 may include a hard disk drive (Hard Disk Drive, HDD), a floppy disk drive, a flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (Universal Serial Bus, USB) drive or two or more Combinations of multiple of the above. Storage 520 may include removable or non-removable (or fixed) media, where appropriate. Under appropriate circumstances, the storage 520 may be inside or outside the comprehensive gateway disaster recovery device. In a particular embodiment, memory 520 is a non-volatile solid-state memory.
存储器可包括只读存储器(ROM),随机存取存储器(RAM),磁盘存储介质设备,光存储介质设备,闪存设备,电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器包括一个或多个编码有包括计算机可执行指令的软件的有形(非暂态)计算机可读存储介质(例如,存储器设备),并且当该软件被执行(例如,由一个或多个处理器)时,其可操作来执行参考根据本申请的第一方面的方法所描述的操作。Memory may include read only memory (ROM), random access memory (RAM), magnetic disk storage media devices, optical storage media devices, flash memory devices, electrical, optical, or other physical/tangible memory storage devices. Thus, in general, memory includes one or more tangible (non-transitory) computer-readable storage media (e.g., memory devices) encoded with software comprising computer-executable instructions, and when the software is executed (e.g., by one or a plurality of processors) operable to perform the operations described with reference to the method according to the first aspect of the present application.
处理器510通过读取并执行存储器520中存储的计算机程序指令,以实现上述实施例中的任意一种图像处理方法。The processor 510 reads and executes the computer program instructions stored in the memory 520 to implement any image processing method in the above-mentioned embodiments.
在一个示例中,电子设备500还可包括通信接口530和总线540。其中,如图5所示,处理器510、存储器520、通信接口530通过总线540连接并完成相互间的通信。In one example, the electronic device 500 may further include a communication interface 530 and a bus 540 . Wherein, as shown in FIG. 5 , the processor 510 , the memory 520 , and the communication interface 530 are connected through a bus 540 to complete mutual communication.
通信接口530,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。The communication interface 530 is mainly used to implement communication between modules, devices, units and/or devices in the embodiments of the present application.
总线540包括硬件、软件或两者,将电子设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线540可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。Bus 540 includes hardware, software, or both, and couples the components of the electronic device to each other. By way of example and not limitation, the bus may include Accelerated Graphics Port (AGP) or other graphics bus, Enhanced Industry Standard Architecture (EISA) bus, Front Side Bus (FSB), HyperTransport (HT) interconnect, Industry Standard Architecture (ISA) Bus, Infiniband Interconnect, Low Pin Count (LPC) Bus, Memory Bus, Micro Channel Architecture (MCA) Bus, Peripheral Component Interconnect (PCI) Bus, PCI-Express (PCI-X) Bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or a combination of two or more of these. Bus 540 may comprise one or more buses, where appropriate. Although the embodiments of this application describe and illustrate a particular bus, this application contemplates any suitable bus or interconnect.
示例性的,电子设备500可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等。Exemplarily, the electronic device 500 may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle electronic device, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a netbook or a personal digital assistant (personal digital assistant, PDA) wait.
该电子设备可以执行本申请实施例中的图像处理方法,从而实现结合图1至图4描述的图像处理方法和装置。The electronic device can execute the image processing method in the embodiment of the present application, so as to realize the image processing method and apparatus described in conjunction with FIG. 1 to FIG. 4 .
另外,结合上述实施例中的图像处理方法,本申请实施例可提供一种计算机可读存储介质来实现。该计算机可读存储介质上存储有计算机程序指令,该计算机程序指令被处理器执行时实现上述实施例中的任意一种图像处理方法。In addition, in combination with the image processing method in the foregoing embodiments, the embodiments of the present application may provide a computer-readable storage medium for implementation. Computer program instructions are stored on the computer-readable storage medium, and when the computer program instructions are executed by a processor, any one of the image processing methods in the above-mentioned embodiments is implemented.
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。It is to be understood that the application is not limited to the specific configurations and processes described above and shown in the figures. For conciseness, detailed descriptions of known methods are omitted here. In the above embodiments, several specific steps are described and shown as examples. However, the method process of the present application is not limited to the specific steps described and shown, and those skilled in the art may make various changes, modifications and additions, or change the order of the steps after understanding the spirit of the present application.
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。The functional blocks shown in the structural block diagrams described above may be implemented as hardware, software, firmware, or a combination thereof. When implemented in hardware, it may be, for example, an electronic circuit, an application specific integrated circuit (ASIC), suitable firmware, a plug-in, a function card, or the like. When implemented in software, the elements of the present application are the programs or code segments employed to perform the required tasks. Programs or code segments can be stored in machine-readable media, or transmitted over transmission media or communication links by data signals carried in carrier waves. "Machine-readable medium" may include any medium that can store or transmit information. Examples of machine-readable media include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like. Code segments may be downloaded via a computer network such as the Internet, an Intranet, or the like.
还需要说明的是,本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。It should also be noted that the exemplary embodiments mentioned in this application describe some methods or systems based on a series of steps or devices. However, the present application is not limited to the order of the above steps, that is, the steps may be performed in the order mentioned in the embodiment, or may be different from the order in the embodiment, or several steps may be performed simultaneously.
上面参考根据本申请的实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本申请的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由计算机程序指令实现。这些计算机程序指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。Aspects of the present application are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the present application. It will be understood that each block of the flowchart and/or block diagrams, and combinations of blocks in the flowchart and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine such that execution of these instructions via the processor of the computer or other programmable data processing apparatus enables Implementation of the functions/actions specified in one or more blocks of the flowchart and/or block diagrams. Such processors may be, but are not limited to, general purpose processors, special purpose processors, application specific processors, or field programmable logic circuits. It can also be understood that each block in the block diagrams and/or flowcharts and combinations of blocks in the block diagrams and/or flowcharts can also be realized by dedicated hardware for performing specified functions or actions, or can be implemented by dedicated hardware and Combination of computer instructions to achieve.
以上所述,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。The above is only a specific implementation of the present application, and those skilled in the art can clearly understand that for the convenience and brevity of the description, the specific working process of the above-described systems, modules and units can refer to the foregoing method embodiments The corresponding process in , will not be repeated here. It should be understood that the protection scope of the present application is not limited thereto, and any person familiar with the technical field can easily think of various equivalent modifications or replacements within the technical scope disclosed in the application, and these modifications or replacements should cover all Within the protection scope of this application.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310504781.7A CN116567397A (en) | 2023-05-06 | 2023-05-06 | Image processing method and device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310504781.7A CN116567397A (en) | 2023-05-06 | 2023-05-06 | Image processing method and device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN116567397A true CN116567397A (en) | 2023-08-08 |
Family
ID=87501202
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310504781.7A Pending CN116567397A (en) | 2023-05-06 | 2023-05-06 | Image processing method and device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN116567397A (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102696220A (en) * | 2009-10-08 | 2012-09-26 | 国际商业机器公司 | Method and system for transforming a digital image from a low dynamic range (LDR) image to a high dynamic range (HDR) image |
| CN108182672A (en) * | 2014-05-28 | 2018-06-19 | 皇家飞利浦有限公司 | Method and apparatus for the method and apparatus encoded to HDR image and for using such coded image |
| CN114331871A (en) * | 2021-12-02 | 2022-04-12 | 深圳大学 | Video inverse tone mapping method capable of removing banding artifacts and related equipment |
| US20220122234A1 (en) * | 2020-10-21 | 2022-04-21 | Samsung Display Co., Ltd. | High dynamic range post-processing device, and display device including the same |
| CN115375909A (en) * | 2022-07-11 | 2022-11-22 | 华为技术有限公司 | Image processing method and device |
-
2023
- 2023-05-06 CN CN202310504781.7A patent/CN116567397A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102696220A (en) * | 2009-10-08 | 2012-09-26 | 国际商业机器公司 | Method and system for transforming a digital image from a low dynamic range (LDR) image to a high dynamic range (HDR) image |
| CN108182672A (en) * | 2014-05-28 | 2018-06-19 | 皇家飞利浦有限公司 | Method and apparatus for the method and apparatus encoded to HDR image and for using such coded image |
| US20220122234A1 (en) * | 2020-10-21 | 2022-04-21 | Samsung Display Co., Ltd. | High dynamic range post-processing device, and display device including the same |
| CN114331871A (en) * | 2021-12-02 | 2022-04-12 | 深圳大学 | Video inverse tone mapping method capable of removing banding artifacts and related equipment |
| CN115375909A (en) * | 2022-07-11 | 2022-11-22 | 华为技术有限公司 | Image processing method and device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111369545B (en) | Edge defect detection method, device, model, equipment and readable storage medium | |
| CN108304821B (en) | Image recognition method and device, image acquisition method and device, computer device, and non-volatile computer-readable storage medium | |
| CN108665417B (en) | License plate image deblurring method, device and system | |
| US12052511B2 (en) | Method and apparatus for generating image data | |
| CN112200732B (en) | A Video Deblurring Method Based on Clear Feature Fusion | |
| CN110189260B (en) | An Image Noise Reduction Method Based on Multi-scale Parallel Gated Neural Network | |
| WO2020010638A1 (en) | Method and device for detecting defective pixel in image | |
| CN114022732A (en) | Extremely dark light object detection method based on RAW image | |
| CN114862698A (en) | Method and device for correcting real overexposure image based on channel guidance | |
| CN110349102B (en) | Image beautification processing method, image beautification processing device and electronic equipment | |
| US20220398700A1 (en) | Methods and systems for low light media enhancement | |
| CN116433496A (en) | Image denoising method, device and storage medium | |
| CN111028171A (en) | Method, apparatus and server for determining image noise level | |
| CN115619666A (en) | Image processing method, image processing device, storage medium and electronic equipment | |
| US11783454B2 (en) | Saliency map generation method and image processing system using the same | |
| CN115311149A (en) | Image denoising method, model, computer-readable storage medium and terminal device | |
| CN111325671B (en) | Network training method and device, image processing method and electronic equipment | |
| CN113554059B (en) | Picture processing method and device, electronic equipment and storage medium | |
| CN117078574B (en) | Image deraining method and device | |
| CN110738625A (en) | Image resampling method, device, terminal, and computer-readable storage medium | |
| CN114549383A (en) | Image enhancement method, device, equipment and medium based on deep learning | |
| CN116567397A (en) | Image processing method and device | |
| CN106373107A (en) | Automatic image deblurring system and automatic image deblurring method of smart phone | |
| CN115456908A (en) | A Robust Self-Supervised Image Denoising Method | |
| WO2025247405A1 (en) | Image processing method and apparatus, and device, storage medium and computer program product |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |