CN116415701A - Method and system for predicting arrival time of vehicle - Google Patents
Method and system for predicting arrival time of vehicle Download PDFInfo
- Publication number
- CN116415701A CN116415701A CN202111633196.4A CN202111633196A CN116415701A CN 116415701 A CN116415701 A CN 116415701A CN 202111633196 A CN202111633196 A CN 202111633196A CN 116415701 A CN116415701 A CN 116415701A
- Authority
- CN
- China
- Prior art keywords
- sample
- time
- information
- vehicle
- prediction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/067—Enterprise or organisation modelling
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/40—Business processes related to the transportation industry
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- General Business, Economics & Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Development Economics (AREA)
- Game Theory and Decision Science (AREA)
- Health & Medical Sciences (AREA)
- Educational Administration (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
技术领域technical field
本说明书涉及信息技术领域,特别涉及一种车辆到站时间预测方法和系统。This specification relates to the field of information technology, in particular to a method and system for predicting the arrival time of a vehicle.
背景技术Background technique
公交车用户希望可以在用户端查看公交车的实时位置以及预测到站时间,从而决定何时到达站点候车。然而,现有的公交GPS跟踪系统间隔和延迟较大,导致了公交的位置信息不准确,在此基础上预测到站时间也同样不准确。因此,有必要提供一种车辆到站时间预测方法和系统,以提高预测到站时间的准确性。Bus users hope to be able to view the real-time location of the bus and predict the arrival time on the user end, so as to decide when to arrive at the station and wait for the bus. However, the existing bus GPS tracking system has large intervals and delays, resulting in inaccurate bus location information, and based on this, the predicted arrival time is also inaccurate. Therefore, it is necessary to provide a vehicle arrival time prediction method and system to improve the accuracy of the predicted arrival time.
发明内容Contents of the invention
本说明书实施例之一提供一种车辆到站时间预测方法。所述车辆到站时间预测方法包括:获取目标站点的位置信息和目标车辆上报的第一定位信息;确定所述第一定位信息对应的第一时刻到当前时刻的时间间隔;基于所述目标站点的位置信息、所述第一定位信息以及所述时间间隔,通过预测模型预测所述目标车辆在所述当前时刻的当前位置和所述目标车辆到达所述目标站点的时间。One of the embodiments of this specification provides a method for predicting the arrival time of a vehicle. The vehicle arrival time prediction method includes: obtaining the position information of the target site and the first positioning information reported by the target vehicle; determining the time interval from the first moment to the current moment corresponding to the first positioning information; The position information of the target vehicle, the first positioning information, and the time interval are used to predict the current position of the target vehicle at the current moment and the time when the target vehicle arrives at the target site through a prediction model.
本说明书实施例之一提供一种车辆到站时间预测系统,所述车辆到站时间预测系统包括获取模块、确定模块和预测模块;所述获取模块用于获取目标站点的位置信息和目标车辆上报的第一定位信息;所述确定模块用于确定所述第一定位信息对应的第一时刻到当前时刻的时间间隔;所述预测模块用于基于所述目标站点的位置信息、所述第一定位信息以及所述时间间隔,通过预测模型预测所述目标车辆在所述当前时刻的当前位置和所述目标车辆到达所述目标站点的时间。One of the embodiments of this specification provides a vehicle arrival time prediction system, the vehicle arrival time prediction system includes an acquisition module, a determination module and a prediction module; the acquisition module is used to acquire the location information of the target site and the report of the target vehicle the first location information; the determination module is used to determine the time interval from the first moment corresponding to the first location information to the current moment; The positioning information and the time interval are used to predict the current position of the target vehicle at the current moment and the time when the target vehicle arrives at the target site through a prediction model.
本说明书实施例之一提供一种车辆到站时间预测装置,包括处理器和存储设备,所述存储设备用于存储指令,当所述处理器执行指令时,实现所述车辆到站时间预测的方法。One of the embodiments of this specification provides a vehicle arrival time prediction device, including a processor and a storage device, the storage device is used to store instructions, and when the processor executes the instructions, the vehicle arrival time prediction is realized method.
附图说明Description of drawings
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:This specification will be further illustrated by way of exemplary embodiments, which will be described in detail with the accompanying drawings. These examples are non-limiting, and in these examples, the same number indicates the same structure, wherein:
图1是根据本说明书一些实施例所示的车辆到站时间预测系统的应用场景示意图;Fig. 1 is a schematic diagram of an application scenario of a vehicle arrival time prediction system according to some embodiments of this specification;
图2是根据本说明书一些实施例所示的车辆到站时间预测方法的示例性流程图;Fig. 2 is an exemplary flowchart of a vehicle arrival time prediction method according to some embodiments of the present specification;
图3是根据本说明书一些实施例所示的确定时间间隔的示例性流程图;Fig. 3 is an exemplary flow chart of determining a time interval according to some embodiments of the present specification;
图4是根据本说明书一些实施例所示的预测模型的两种建模方式的示意图;Fig. 4 is a schematic diagram of two modeling modes of the prediction model according to some embodiments of the present specification;
图5是根据本说明书一些实施例所示的训练初始模型的示例性流程图;Fig. 5 is an exemplary flowchart of training an initial model according to some embodiments of the present specification;
图6是根据本说明书一些实施例所示的车辆到站时间预测系统的模块图。Fig. 6 is a block diagram of a vehicle arrival time prediction system according to some embodiments of the present specification.
具体实施方式Detailed ways
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。In order to more clearly illustrate the technical solutions of the embodiments of the present specification, the following briefly introduces the drawings that need to be used in the description of the embodiments. Apparently, the accompanying drawings in the following description are only some examples or embodiments of this specification, and those skilled in the art can also apply this specification to other similar scenarios. Unless otherwise apparent from context or otherwise indicated, like reference numerals in the figures represent like structures or operations.
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。It should be understood that "system", "device", "unit" and/or "module" as used herein is a method for distinguishing different components, elements, parts, parts or assemblies of different levels. However, the words may be replaced by other expressions if other words can achieve the same purpose.
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。As indicated in the specification and claims, the terms "a", "an", "an" and/or "the" are not specific to the singular and may include the plural unless the context clearly indicates an exception. Generally speaking, the terms "comprising" and "comprising" only suggest the inclusion of clearly identified steps and elements, and these steps and elements do not constitute an exclusive list, and the method or device may also contain other steps or elements.
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。The flowchart is used in this specification to illustrate the operations performed by the system according to the embodiment of this specification. It should be understood that the preceding or following operations are not necessarily performed in the exact order. Instead, various steps may be processed in reverse order or simultaneously. At the same time, other operations can be added to these procedures, or a certain step or steps can be removed from these procedures.
图1是根据本说明书一些实施例所示的车辆到站时间预测系统的应用场景示意图。在一些实施例中,车辆到站时间预测系统100可以包括服务器110、网络120、用户终端130、车辆140和存储设备150。Fig. 1 is a schematic diagram of an application scenario of a vehicle arrival time prediction system according to some embodiments of the present specification. In some embodiments, the vehicle arrival
在一些实施例中,服务器110可以是单个服务器或者服务器组。服务器组可以是集中式的或分布式的(例如,服务器110可以是分布式系统)。在一些实施例中,服务器110可以是本地的或远程的。例如,服务器110可以经由网络120访问存储在车辆140和/或存储设备150中的信息和/或数据。又例如,服务器110可以直接连接到车辆140和/或存储设备150以访问存储的信息和/或数据。在一些实施例中,服务器110可以在云平台或车载计算机上实现。仅作为示例,云平台可以包括私有云、公共云、混合云、社区云、分布云、内部云、多层云等或其任意组合。在一些实施例中,服务器110可以部署在用户终端130上(例如,用户终端130的处理器可以作为服务器110或其一部分)。在一些实施例中,服务器110可以部署在线上服务平台的处理设备上(例如,线上服务平台的处理设备可以作为服务器110或其一部分)。在一些实施例中,服务器110可以部署在车辆140上(例如,车辆140的处理器可以作为服务器110或其一部分)。In some embodiments,
在一些实施例中,服务器110可以包括处理设备112。处理设备112可以处理与服务请求相关的信息和/或数据,以执行本申请中描述的一个或以上功能。例如,处理设备112可以从用户终端130获取的服务请求来预测车辆到站时间。又例如,处理设备112可以获得目标站点的经纬度信息。在一些实施例中,处理设备112可以包括一个或以上处理引擎(例如,单芯片处理引擎或多芯片处理引擎)。仅作为范例,处理设备112可以包括中央处理单元(CPU)、特定应用集成电路(ASIC)、特定应用指令集处理器(ASIP)、图形处理单元(GPU)、物理处理单元(PPU)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、可编程逻辑装置(PLD)、控制器、微控制器单元、精简指令集计算机(RISC)、微处理器等或其任意组合。In some embodiments,
网络120可以促进信息和/或数据的交换。在一些实施例中,车辆到站时间预测系统100中的一个或以上部件(例如,服务器110、用户终端130、车辆140和/或存储设备150)可以通过网络120向车辆到站时间预测系统100的其他部件发送信息和/或数据。例如,服务器110可以通过网络120从用户终端130获取/得到服务请求。在一些实施例中,网络120可以是任意形式的有线网络或无线网络,或其任意组合。仅仅作为示例,网络120可以包括电缆网络、线缆网络、光纤网络、电信网络、内部网络、互联网、局域网络(LAN)、广域网(WAN)、无线局域网络(WLAN)、城域网络(MAN)、公共交换电话网络(PSTN)、蓝牙网络、紫蜂网络、近场通信(NFC)网络等或其任意组合。在一些实施例中,网络120可以包括一个或以上网络交换点。例如,网络120可以包括有线或无线网络交换点,如基站和/或互联网交换点120-1、120-2、……,通过该互联网交换点,车辆到站时间预测系统100的一个或以上部件可以连接到网络120以交换数据和/或信息。
在一些实施例中,用户(例如,乘客)可以是用户终端130的所有者。在一些实施例中,用户终端130的所有者可以是除乘客之外的其他人。例如,用户终端130的所有者A可以使用用户终端130来发送对乘客B的服务请求,或者从服务器110接收服务确认和/或信息或指令。In some embodiments, a user (eg, a passenger) may be the owner of the
在一些实施例中,用户终端130可以包括移动设备130-1、平板电脑130-2、膝上型电脑130-3等或其任意组合。在一些实施例中,移动设备130-1可以包括智能家居设备、可穿戴设备、智能移动设备、虚拟现实设备、增强现实设备等,或其任意组合。在一些实施例中,智能家居设备可以包括智能照明设备、智能电器控制设备、智能监控设备、智能电视、智能摄像机、对讲机等,或其任意组合。在一些实施例中,可穿戴设备可包括智能手环、智能鞋袜、智能眼镜、智能头盔、智能手表、智能服装、智能背包、智能配件等,或其任何组合。在一些实施例中,智能移动设备可以包括智能电话、个人数字助理(PDA)、游戏设备、导航设备、销售点(POS)等,或其任意组合。在一些实施例中,虚拟现实设备和/或增强现实设备可以包括虚拟现实头盔、虚拟现实眼镜、虚拟现实眼罩、增强实境头盔、增强实境眼镜、增强实境眼罩等或其任意组合。例如,虚拟现实设备和/或增强现实设备可以包括Google TM Glass、OculusRift、HoloLens、GearVR等。在一些实施例中,用户终端130可以是具有定位技术的设备,用于定位用户和/或用户终端130的位置。In some embodiments, the
车辆140可以是任何类型的车辆。车辆140可以包括自动车辆和非自动车辆。自动车辆能够在没有人类操纵的情况下感测环境信息和导航。车辆140可包括传统车辆的结构。例如,车辆140可包括至少两个控制组件,其被配置为控制车辆140的操作。至少两个控制组件可以包括转向设备(例如,方向盘)、制动设备(例如,制动踏板)、加速器等。转向设备可以被配置为调节车辆140的朝向和/或方向。制动设备可以被配置为执行制动操作以停止车辆140。加速器可以被配置为控制车辆140的速度和/或加速度。车辆140还可以包括全球定位系统(GPS)模块。在一些实施例中,车辆140可以向处理设备112上报定位信息(例如第一定位信息)。
存储设备150可以存储数据和/或指令。在一些实施例中,存储设备150可以存储从用户终端130获得的数据。在一些实施例中,存储设备150可以存储服务器110用来执行或使用来完成本申请中描述的示例性方法的数据和/或指令。在一些实施例中,存储设备150可包括大容量存储器、可移动存储器、挥发性读写内存、只读存储器(ROM)等或其任意组合。示例性大容量存储器可包括磁盘、光盘、固态驱动器等。示例性可移动存储器可以包括闪存驱动器、软盘、光盘、存储卡、压缩盘、磁带等。示例性易失性读写存储器可以包括随机存取存储器(RAM)。示例性RAM可包括动态随机存取存储器(DRAM)、双倍数据速率同步动态随机存取存储器(DDRSDRAM)、静态随机存取存储器(SRAM)、晶闸管随机存取存储器(T-RAM)和零电容随机存取存储器(Z-RAM)等。示例性只读存储器可以包括掩模型只读存储器(MROM)、可编程只读存储器(PROM)、可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、光盘只读存储器(CD-ROM)和数字多功能磁盘只读存储器等。在一些实施例中,所述存储设备150可以在云平台上实现。仅作为示例,所述云平台可以包括私有云、公共云、混合云、社区云、分布云、内部云、多层云等或其任意组合。
在一些实施例中,存储设备150可以连接到网络120以与车辆到站时间预测系统100的至少一个组件(例如,服务器110、用户终端130或车辆140)通信。车辆到站时间预测系统100的至少一个组件可以经由网络120访问存储设备150中存储的数据或指令。在一些实施例中,存储设备150可以直接连接到车辆到站时间预测系统100的至少一个组件(例如,服务器110、用户终端130或车辆140)或与之通信。在一些实施例中,存储设备150可以是服务器110的一部分。在一些实施例中,存储设备150可以部署在服务器110、用户终端130、和/或车辆140上。在一些实施例中,存储设备150可以独立部署,并且服务器110、用户终端130、和/或车辆140可以直接访问或通过网络120访问存储设备150,以获取相关的数据和/或指令。In some embodiments, the
需要注意的是,上述对于车辆到站时间预测系统的描述,仅为描述方便,并不能把本说明书限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该系统的原理后,可能在不背离这一原理的情况下,对各个组件进行任意组合,或者构成子系统与其他组件连接。It should be noted that the above description of the vehicle arrival time prediction system is only for convenience of description, and does not limit this specification to the scope of the examples. It can be understood that for those skilled in the art, after understanding the principle of the system, it is possible to combine various components arbitrarily, or form a subsystem to connect with other components without departing from this principle.
图2是根据本说明书一些实施例所示的车辆到站时间预测方法的示例性流程图。如图2所示,流程200包括下述步骤。在一些实施例中,流程200可以由处理设备112执行。Fig. 2 is an exemplary flowchart of a method for predicting the arrival time of a vehicle according to some embodiments of the present specification. As shown in FIG. 2 , the
步骤210,获取目标站点的位置信息和目标车辆上报的第一定位信息。在一些实施例中,步骤210可以由获取模块610执行。
目标站点为目标车辆将要到达的站点,预测的到站时间即预测的目标车辆将要到达目标站点的时间。The target site is the site where the target vehicle will arrive, and the predicted arrival time is the time when the target vehicle will arrive at the target site.
在一些实施例中,目标站点可以由用户直接指定,例如,用户可以通过用户终端130查询准备前往或用户所处的公交站点(如“XX街站”),处理设备112可以将用户查询的公交站确定为目标站点。在一些实施例中,目标站点可以由机器确定。例如,在用户授权的情况下,处理设备112可以获取用户终端130的定位信息,并根据用户终端130的定位信息确定用户附近的公交站点,并将其确定为目标站点。可以理解,当确定用户附近存在多个公交站点时,可以根据预设策略选择一个公交站点作为目标站点,也可以将所述多个公交站点中的每一个确定为目标站点,并为每个目标站点预测到站时间。在一些实施例中,目标站点的确定方式也可以是人工与机器方式的结合。例如,在用户授权的情况下,处理设备112可以根据用户的查询历史和/或用户终端130的定位信息向用户终端130推荐用户附近的若干站点,用户可以通过用户终端130选择其中一个站点,从而处理设备112可以将该站点确定为目标站点。In some embodiments, the target site can be directly designated by the user. For example, the user can query the bus site (such as "XX Street Station") that the user is going to or the user is in through the
类似地,目标车辆可以由用户指定,也可以由机器确定,或者采用人工与机器相结合的方式确定。例如,用户可以通过用户终端130查询准备搭乘的公交车(如“128路”),处理设备112可以将用户查询的公交车确定为目标站点。又如,处理设备112可以获取目标站点的位置信息,并根据目标站点的位置信息以及行驶路线经过目标站点的公交车上报定位信息确定离目标站点最近的一辆或多辆(如两辆、三辆)公交车,进而可以将确定的目标站点最近的公交车确定为目标车辆。当确定离目标站点最近的公交车有至少两辆时,处理设备112可以将确定的至少两辆公交车中的每一辆作为目标车辆,并为每个目标车辆预测到站时间。当确定离目标站点最近的公交车有至少两辆时,处理设备112也可以提示用户选择其中一辆,从而处理设备112可以将该辆公交车确定为目标车辆。Similarly, the target vehicle can be specified by the user, can also be determined by a machine, or can be determined by a combination of manual and machine. For example, the user may inquire about the bus to be boarded (such as "Route 128") through the
目标车辆可以安装有定位系统(如GPS系统、北斗定位系统),并将通过定位系统获得的定位信息(如GPS信息)按需或持续上报给处理设备112。定位信息可以指示定位对象(如目标车辆)在某一时刻(如精确到分钟、秒)的位置(如经纬度)。在一些实施例中,定位信息还可以指示更多信息,例如,定位对象的速度、定位对象的海拔等。例如,第一定位信息可以指示目标车辆在第一时刻的位置。在一些实施例中,第一时刻可以是在当前时刻之前,目标车辆最近一次上报定位信息的时刻;相应地,第一定位信息可以是在当前时刻之前,目标车辆最近一次上报的定位信息。The target vehicle may be equipped with a positioning system (such as GPS system, Beidou positioning system), and report the positioning information (such as GPS information) obtained through the positioning system to the
步骤220,确定第一定位信息对应的第一时刻到当前时刻的时间间隔。在一些实施例中,步骤220可以由确定模块620执行。
参考图3,历史位置(第一定位信息指示的位置)对应的第一时刻即t0,当前位置对应的时刻(当前时刻)即t1,基于目标车辆的历史位置以及第一时刻到当前时刻的时间间隔(t1-t0),可以预测目标车辆在当前时刻的当前位置。基于目标车辆的当前位置以及目标站点的位置,可以预测目标车辆到达目标站点的时间。即,基于目标站点的位置信息、第一定位信息以及时间间隔,可以预测目标车辆的当前位置和目标车辆到达目标站点的时间。第一定位信息可以是目标车辆在当前时刻之前的某一时刻(例如第一时刻)上报的定位信息。具体的预测细节参见后文对步骤230的详细说明。Referring to FIG. 3 , the first moment corresponding to the historical position (the position indicated by the first positioning information) is t0, and the moment corresponding to the current position (current moment) is t1, based on the historical position of the target vehicle and the time from the first moment to the current moment interval (t1-t0), the current position of the target vehicle at the current moment can be predicted. Based on the current location of the target vehicle and the location of the target site, the time when the target vehicle arrives at the target site can be predicted. That is, based on the position information of the target site, the first positioning information and the time interval, the current position of the target vehicle and the time when the target vehicle arrives at the target site can be predicted. The first location information may be location information reported by the target vehicle at a certain moment (for example, the first moment) before the current moment. For specific prediction details, refer to the detailed description of
在一些实施例中,处理设备112可以将预测请求的发起时刻确定为当前时刻,例如,预测请求可以携带/包含时间戳,以指示该预测请求的发起时刻。在一些实施例中,处理设备112可以将接收到预测请求的时刻确定为当前时刻。可以理解,步骤220中的当前时刻不一定是符合用户预期的当前时刻,符合用户预期的当前时刻可以指用户终端130展示预测的当前位置的真实时刻,例如,用户终端130提供预测服务的页面的刷新时刻。考虑到预测耗费的时间、网络通信时间等因素,还可以在预测请求的发起/接收时刻的基础上推定当前时刻,例如,处理设备112可以将预测请求的发起/接收时刻之后预设时长(如0.1s、0.5s、1s、2s、5s等)对应的时刻作为当前时刻。In some embodiments, the
步骤230,基于目标站点的位置信息、第一定位信息以及时间间隔,通过预测模型预测目标车辆在当前时刻的当前位置和目标车辆到达目标站点的时间(或称到站时间)。在一些实施例中,步骤230可以由预测模块630执行。
预测模型可以是任何用于预测车辆当前位置和到站时间的模型。在一些实施例中,预测模型可以包括机器学习模型。具体地,预测模型可以包括回归模型、决策树、神经网络等中的一种或多种。The predictive model can be any model that predicts the vehicle's current location and arrival time. In some embodiments, the predictive model may include a machine learning model. Specifically, the predictive model may include one or more of a regression model, a decision tree, a neural network, and the like.
在一些实施例中,处理设备112可以将目标站点的位置信息、第一定位信息以及时间间隔输入至预测模型。进而,处理设备112可以通过预测模型,利用特征信息预测目标车辆的当前位置和目标车辆到达目标站点的时间。在一些实施例中,特征信息可以从模型输入中提取,具体地,可以将模型输入直接作为特征信息,也可以对模型输入(可视为输入层特征)进行处理得到特征信息(可视为中间层特征)。在一些实施例中,特征信息可以由模型从存储设备150和/或其他应用服务(例如,地图服务)中获取。In some embodiments, the
在一些实施例中,特征信息可以包括道路信息、道路通行速度信息、道路拥堵信息、时段信息、交通信号灯信息中的至少一种。In some embodiments, the feature information may include at least one of road information, road speed information, road congestion information, time period information, and traffic signal light information.
其中,道路信息可以包括目标车辆从历史位置(例如,第一定位信息指示的位置)行驶至目标站点经过的一条或多条道路的信息(如道路标识)。例如,当目标车辆为公交车时,道路信息可以为既定的公交线路,该公交线路可包括从起点到终点的所有道路的表示。具体地,道路信息可以以序列形式存储,序列中各道路标识的顺序可以由目标车辆行驶至目标站点经过各道路的先后顺序决定。Wherein, the road information may include information of one or more roads (such as road signs) traveled by the target vehicle from the historical position (for example, the position indicated by the first positioning information) to the target site. For example, when the target vehicle is a bus, the road information may be a predetermined bus route, and the bus route may include representations of all roads from the starting point to the ending point. Specifically, the road information can be stored in the form of a sequence, and the order of the road signs in the sequence can be determined by the order in which the target vehicle passes through the roads when it travels to the target site.
道路通行速度信息可指示感兴趣的一条或多条道路上的车辆通行速度,例如,目标车辆从历史位置行驶至目标站点经过道路a、道路b和/或道路c,相应地,道路通行速度信息可包括道路a的车辆通行速度、道路b的车辆通行速度和/或道路c的车辆通行速度。道路上的车辆通行速度可以是实时速度,如基于当前在道路上的多个车辆的行驶轨迹数据统计的平均速度,也可以是通过数据挖掘得到的估计速度。The road speed information may indicate the vehicle speed on one or more roads of interest, for example, the target vehicle travels from the historical location to the target site via road a, road b and/or road c, correspondingly, the road speed information The vehicle traffic speed of road a, the vehicle traffic speed of road b and/or the vehicle traffic speed of road c may be included. The vehicle speed on the road may be a real-time speed, such as an average speed based on the statistics of the trajectory data of multiple vehicles currently on the road, or an estimated speed obtained through data mining.
道路拥堵信息可以反映感兴趣的一条或多条道路的拥堵状况,如是否拥堵、拥堵程度等。Road congestion information can reflect the congestion status of one or more roads of interest, such as whether it is congested, the degree of congestion, and so on.
时段信息可反映当前时段属于预设时段中的哪一个。不同时段的通行情况往往不同,例如,可以将全天划分成早高峰(如上午8点到9点)、晚高峰(如下午5点到7点)和其他时段,通常高峰时段的通行量大,相应地通行速度慢。在一些实施例中,可以认为早高峰的通行量大于晚高峰的通行量,即认为早高峰的通行速度比晚高峰的通行速度还慢。当然,也可以将全天划分成高峰时段(如包含早上8点到9点和下午5点到7点)和其他时段。The period information may reflect which one of the preset periods the current period belongs to. Traffic conditions in different time periods are often different. For example, the whole day can be divided into morning peak (such as 8:00 am to 9:00 am), evening peak (such as 5:00 pm to 7:00 pm) and other time periods. Usually, the traffic volume during peak hours is large. , and the traffic speed is correspondingly slow. In some embodiments, it can be considered that the traffic volume in the morning peak is greater than that in the evening peak, that is, the traffic speed in the morning peak is considered to be slower than that in the evening peak. Of course, the whole day can also be divided into peak hours (such as including 8:00 am to 9:00 pm and 5:00 pm to 7:00 pm) and other time periods.
交通信号灯信息可反映目标车辆从历史位置(第一定位信息指示的位置)行驶至目标站点经过的路段上一个或多个交通灯在一段时间内指示的信号(如红灯指示禁止通行、黄灯指示准备、绿灯指示放行)或信号变化规律(例如,红灯时长、绿灯时长、黄灯时长)。在一些实施例中,上述特征信息中的一种或多种可以影响目标车辆的行驶速度,进而影响目标车辆的当前位置及其到达目标站点的时间。The traffic signal light information can reflect the signals indicated by one or more traffic lights on the road section where the target vehicle travels from the historical position (the position indicated by the first positioning information) to the target site within a period of time (such as red light indicating no traffic, yellow light Indicates readiness, green light indicates clearance) or signal change pattern (for example, red light duration, green light duration, amber light duration). In some embodiments, one or more of the above characteristic information can affect the traveling speed of the target vehicle, and further affect the current position of the target vehicle and the time when it arrives at the target site.
在一些实施例中,特征信息还可以包括推演路线信息和/或推演时间信息。其中,推演路线信息可以反映以第一定位信息对应的位置为起点,预估目标车辆经过上述时间间隔后到达的位置。推演时间信息可以反映以当前位置为起点,预估目标车辆到达目标站点所需的时长。不难看出,推演路线信息可以作为初步预估的当前位置,推演时间信息可以作为初步预估的到站时间。预测模型可以对推演路线信息和/或推演时间信息进行修正,从而输出预测的当前位置和/或到站时间。在一些实施例中,可以利用模型输入进行当前位置和/或到站时间的初步预估,再利用特征信息中除推演路线信息和/或推演时间信息外的其他信息修正初步预估结果,从而得到预测模型的预测结果(预测的当前位置和/或到站时间)。仅作为示例,可以按目标车辆的既定行驶路线以及该路线上各道路的通行速度进行推演,得到以第一定位信息对应的位置为起点,目标车辆经过上述时间间隔后到达的位置,即获得初步预估的当前位置。进而,可以按目标车辆的既定行驶路线以及该路线上各道路的通行速度进行推演,得到以初步预估的当前位置为起点,目标车辆到达目标站点所需的时长,即获得初步预估的到站时间。In some embodiments, the feature information may also include derivation route information and/or derivation time information. Wherein, the deduced route information may reflect the location corresponding to the first positioning information as the starting point, and the estimated location where the target vehicle will arrive after the above time interval. The derivation time information can reflect the estimated time required for the target vehicle to reach the target site starting from the current location. It is not difficult to see that the derivation route information can be used as the preliminary estimated current position, and the deduction time information can be used as the preliminary estimated arrival time. The prediction model can correct the derivation route information and/or derivation time information, so as to output the predicted current position and/or arrival time. In some embodiments, the model input can be used to make a preliminary estimate of the current position and/or arrival time, and then use other information in the feature information except the derivation route information and/or derivation time information to correct the preliminary estimate result, thereby The prediction result of the prediction model (predicted current position and/or arrival time) is obtained. As an example only, deduction can be carried out according to the predetermined driving route of the target vehicle and the passing speed of each road on the route to obtain the position corresponding to the first positioning information as the starting point and the target vehicle’s arrival position after the above-mentioned time interval, that is, to obtain a preliminary Estimated current location. Furthermore, deduction can be carried out according to the predetermined driving route of the target vehicle and the traffic speed of each road on the route, and the time required for the target vehicle to reach the target station is obtained starting from the preliminary estimated current position, that is, the preliminary estimated arrival time. station time.
图4示出了预测模型的两种建模方式。在一些实施例中,预测模型可以包括当前位置预测模型和到站时间预测模型,预测请求发起后,第一定位信息对应的第一时刻到当前时刻的时间间隔和第一定位信息输入至当前位置预测模型,当前位置预测模型的输出(预测的当前位置)为到站时间预测模型的输入之一,到站时间预测模型的输入还可包括目标站点的位置信息,到站时间预测模型的输出即预测的到站时间。可以看出,这种建模方式包含当前位置预测和到站时间预测两个阶段,每个阶段的预测都可能存在一定误差,即这种建模方式可能存在两重误差。在另一些实施例中,预测模型可以是位置预测和到站时间预测的融合模型,即,预测请求发起后,目标站点的位置信息、第一定位信息以及时间间隔可以输入至该融合模型,该融合模型可以同时输出预测的当前位置和到站时间。如此,可以实现统一建模,且仅可能存在一重误差,从而减少预测的误差,提高预测的准确度。Figure 4 shows two modeling ways of the prediction model. In some embodiments, the prediction model may include a current location prediction model and an arrival time prediction model. After the prediction request is initiated, the time interval from the first moment to the current moment corresponding to the first positioning information and the first positioning information are input to the current location Forecasting model, the output of the current position prediction model (predicted current position) is one of the inputs of the arrival time prediction model, and the input of the arrival time prediction model can also include the position information of the target site, and the output of the arrival time prediction model is Predicted arrival time. It can be seen that this modeling method includes two stages of current position prediction and arrival time prediction, and there may be certain errors in the prediction of each stage, that is, there may be double errors in this modeling method. In some other embodiments, the prediction model may be a fusion model of position prediction and arrival time prediction, that is, after the prediction request is initiated, the location information of the target station, the first positioning information and the time interval may be input into the fusion model, the The fusion model can simultaneously output the predicted current location and arrival time. In this way, unified modeling can be realized, and only one error may exist, thereby reducing the error of prediction and improving the accuracy of prediction.
当预测模型为机器学习模型时,处理设备112可以获取训练数据集,进而利用训练数据集训练初始模型,得到训练好的预测模型。其中,训练数据集可以包括多个训练样本的特征和/或标签。在一些实施例中,每个训练样本的特征可以包括样本站点的位置信息、样本车辆上报的第一样本定位信息以及第一样本定位信息对应的第一样本时刻到样本车辆上报的第二样本定位信息对应的第二样本时刻的样本时间间隔,每个训练样本的标签可以包括实际位置信息和实际到站时间信息。第一样本定位信息和第二样本定位信息可以是样本车辆分别在两个不同的时刻(例如,第一样本时刻和第二样本时刻),分别上报的定位信息。在一些实施例中,第一样本时刻可以早于第二样本时刻。在一些实施例中,实际位置信息可以包括:样本车辆在第二样本时刻的真实位置;或者,第一样本时刻与第二样本时刻之间,样本车辆的真实位置之间的距离。实际到站时间信息可以包括:样本车辆到达样本站点的实际时间;或者,第二样本时刻与样本车辆到达样本站点的实际时间之间的时间差。When the prediction model is a machine learning model, the
需要说明的是,在训练阶段,可将样本车辆上报的第二样本定位信息对应的第二样本时刻作为预测的当前位置对应的当前时刻,而在应用训练得到的所述预测模型时(即预测阶段),一般基于预测请求确定预测的当前位置对应的当前时刻。这是因为,在向用户提供预测服务的过程中,等待目标车辆上报第二定位信息可能需要付出时间代价(例如,定位信息从上传到接收有一定延迟),进一步地,可能会造成预测位置的实时性较差。例如,假设用户终端130于10:00发起服务请求,第二定位信息对应的第二时刻为10:01,而处理设备112在10:02才接收到所述第二定位信息(即有1分钟的延迟)。若将所述第二时刻(10:01)作为预测的当前位置对应的当前时刻,则用户终端130可能会在10:02之后接收到服务响应(包含预测位置结果),然而预测的位置为目标车辆在10:01的位置,存在至少1分钟的时间误差。显然,将服务请求的发起时刻(10:00)作为预测的当前位置对应的当前时刻时,处理设备112无需等待第二定位信息的到来,节省了1分钟的时间误差,可以提供实时性更好的位置预测服务。It should be noted that in the training phase, the second sample moment corresponding to the second sample location information reported by the sample vehicle can be used as the current moment corresponding to the predicted current position, and when the prediction model obtained by training is applied (that is, the prediction stage), generally based on the prediction request to determine the current moment corresponding to the predicted current location. This is because, in the process of providing prediction services to users, waiting for the target vehicle to report the second positioning information may require a time penalty (for example, there is a certain delay from uploading to receiving the positioning information), and further, it may cause a loss in the predicted position. The real-time performance is poor. For example, assuming that the
图5是根据本说明书一些实施例所示的训练初始模型的示例性流程图。流程500可以由处理设备112(例如,训练模块)或其他设备(如第三方设备)执行。如图5所示,流程500可以包括下述步骤。Fig. 5 is an exemplary flow chart of training an initial model according to some embodiments of the present specification.
步骤510,将每个训练样本的特征输入至初始模型,以获取预测结果。
步骤520,基于各训练样本的预测结果与标签的差异,调整初始模型的参数。
在一些实施例中,可以基于各训练样本的预测结果与标签计算损失函数的值。损失函数可以反映各训练样本的预测结果与标签之间的差异。对于统一建模方式,损失函数可以包括两部分损失:位置损失和时间损失。在一些实施例中,位置损失可以反映预测结果中样本车辆的预测位置与样本车辆在第二样本时刻的真实位置之间的差异(误差)。在一些实施例中,时间损失可以反映预测结果中样本车辆到达样本站点的预测时间与样本车辆到达样本站点的实际时间之间的差异(误差)。例如,对于每个训练样本,位置损失可以表示为该训练样本的预测结果中样本车辆的预测位置与样本车辆在第二样本时刻的真实位置之间的距离(如求位置差后取绝对值),时间损失可以表示为该训练样本的预测结果中样本车辆到达样本站点的预测时刻与样本车辆到达样本站点的实际时刻之间的时间偏差(误差)。In some embodiments, the value of the loss function may be calculated based on the prediction results and labels of each training sample. The loss function can reflect the difference between the prediction result and the label of each training sample. For the unified modeling method, the loss function can include two parts of loss: position loss and time loss. In some embodiments, the position loss may reflect the difference (error) between the predicted position of the sample vehicle in the prediction result and the real position of the sample vehicle at the second sample moment. In some embodiments, the time loss may reflect the difference (error) between the predicted time when the sample vehicle arrives at the sample site and the actual time when the sample vehicle arrives at the sample site in the prediction result. For example, for each training sample, the position loss can be expressed as the distance between the predicted position of the sample vehicle in the prediction result of the training sample and the real position of the sample vehicle at the second sample moment (such as taking the absolute value after calculating the position difference) , the time loss can be expressed as the time deviation (error) between the predicted time when the sample vehicle arrives at the sample site and the actual time when the sample vehicle arrives at the sample site in the prediction result of the training sample.
损失函数可反映多个训练样本的误差。在一些实施例中,可以采用平均绝对误差(Mean Absolute Error,MAE)、均方误差(Mean Square Error,MSE)、均方根误差(RootMean Square Error,RMSE)等中的任意一种预测评价指标来构建损失函数。A loss function reflects the error over multiple training samples. In some embodiments, any predictive evaluation index in Mean Absolute Error (Mean Absolute Error, MAE), Mean Square Error (Mean Square Error, MSE), Root Mean Square Error (RootMean Square Error, RMSE) etc. can be used to construct the loss function.
在一些实施例中,损失函数可以包括位置损失和时间损失的加权求和。其中,可以根据对位置损失/时间损失的重视程度为位置损失/时间损失赋予权重,例如,当对时间损失更加重视时(例如,用户可能更关注车辆到站时间),时间损失的权重可以大于位置损失的权重。In some embodiments, the loss function may include a weighted sum of a position loss and a time loss. Among them, the position loss/time loss can be weighted according to the importance of the position loss/time loss. For example, when the time loss is more important (for example, the user may pay more attention to the arrival time of the vehicle), the weight of the time loss can be greater than The weight of the position loss.
可以理解,训练(模型调参过程)即损失函数的优化过程。当损失函数的值小于或等于设定阈值时,可以停止训练,此时得到的模型参数即预测模型的参数。仅作为示例,训练算法可以采用梯度下降算法。具体地,可以采用批量梯度下降算法、随机梯度下降算法或其他类型的梯度下降算法。It can be understood that the training (model tuning process) is the optimization process of the loss function. When the value of the loss function is less than or equal to the set threshold, the training can be stopped, and the model parameters obtained at this time are the parameters of the prediction model. By way of example only, the training algorithm may employ a gradient descent algorithm. Specifically, a batch gradient descent algorithm, a stochastic gradient descent algorithm or other types of gradient descent algorithms may be used.
在一些实施例中,在接收到服务响应后,用户终端130可以同时显示预测模型预测的目标车辆的当前位置和目标车辆到达目标站点的时间。例如,用户终端130的图形用户界面可以包含地图,地图中可以标注预测模型预测的目标车辆(如距离用户查询的公交站点最近的某辆公交车)的当前位置,同时,该图形界面可以显示预测模型预测的目标车辆到达目标站点(如用户查询的公交站点)的时间,如5分钟后或10:05。In some embodiments, after receiving the service response, the
应当注意的是,上述有关流程200和流程500的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对流程200和/或流程500进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。例如,在训练阶段,也可以将样本预测请求的发起时刻作为预测的当前位置对应的当前时刻,即,每个训练样本的特征中包含样本车辆上报的第一样本定位信息对应的第一样本时刻到样本预测请求的发起(接收)时刻的样本时间间隔,相应地,每个训练样本的标签中,实际位置可以是样本预测请求的发起(接收)时刻样本车辆的真实位置或者第一样本时刻与样本预测请求的发起(接收)时刻之间样本车辆的真实位置之间的距离,实际到站时间可以是样本车辆到达样本站点的实际时间或者样本预测请求的发起(接收)时刻与样本车辆到达样本站点的实际时间之间的时间差。It should be noted that the above descriptions about the
图6是根据本说明书一些实施例所示的车辆到站时间预测系统的模块图。Fig. 6 is a block diagram of a vehicle arrival time prediction system according to some embodiments of the present specification.
在一些实施例中,车辆到站时间预测系统600可以包括获取模块、确定模块和预测模块。In some embodiments, the vehicle arrival
在一些实施例中,获取模块610可以用于获取目标站点的位置信息和目标车辆上报的第一定位信息。In some embodiments, the obtaining
在一些实施例中,确认模块620可以用于确定第一定位信息对应的第一时刻到当前时刻的时间间隔。In some embodiments, the confirming
在一些实施例中,预测模块630可以用于基于目标站点的位置信息、第一定位信息以及时间间隔,通过预测模型预测目标车辆在当前时刻的当前位置和目标车辆到达目标站点的时间。In some embodiments, the
在一些实施例中,预测模块630可以进一步用于将目标站点的位置信息、第一定位信息以及时间间隔输入至预测模型;通过预测模型,利用特征信息,预测目标车辆的当前位置和目标车辆到达目标站点的时间。特征信息可以包括道路信息、道路通行速度信息、道路拥堵信息、时段信息、交通信号灯信息中的至少一种。在一些实施例中,特征信息还可以包括推演路线信息和/或推演时间信息。推演路线信息可以反映以第一定位信息对应的位置为起点,预估目标车辆经过前述时间间隔后到达的位置。推演时间信息可以反映以当前位置为起点,预估目标车辆到达目标站点所需的时长。在一些实施例中,预测模型可以为位置预测和到站时间预测的融合模型。In some embodiments, the
在一些实施例中,车辆到站时间预测系统600还可以包括显示模块(未示出)。显示模块可以同时显示预测模型预测的目标车辆的当前位置和目标车辆到达目标站点的时间。In some embodiments, the vehicle arrival
在一些实施例中,车辆到站时间预测系统600还可以包括训练模块(未示出)。在一些实施例中,训练模块与预测模块630(和/或获取模块610、确认模块620)可以部署在不同的处理设备或处理器(例如,服务器)上。例如,训练模块可以在线下在某个或多个处理设备上训练预测模型;而预测模块630可以在线上在另外的处理设备上应用预测模型预测车辆的当前位置和/或车辆到站时间。In some embodiments, the vehicle arrival
在一些实施例中,训练模块可以用于获取训练数据集,训练数据集可以包括多个训练样本的特征及标签;利用训练数据集训练初始模型;其中,每个训练样本的特征可以包括样本站点的位置信息、样本车辆上报的第一样本定位信息以及第一样本定位信息对应的第一样本时刻到样本车辆上报的第二样本定位信息对应的第二样本时刻的样本时间间隔,每个训练样本的标签可以包括实际位置信息和实际到站时间信息。实际位置信息可以为:样本车辆在第二样本时刻的真实位置;或者第一样本时刻与第二样本时刻之间,样本车辆的真实位置之间的距离。实际到站时间信息可以为:样本车辆到达样本站点的实际时间;或者第二样本时刻与样本车辆到达样本站点的实际时间之间的时间差。In some embodiments, the training module can be used to obtain a training data set, and the training data set can include features and labels of a plurality of training samples; use the training data set to train the initial model; wherein, the features of each training sample can include sample sites The position information of the sample vehicle, the first sample location information reported by the sample vehicle, and the sample time interval from the first sample moment corresponding to the first sample location information to the second sample moment corresponding to the second sample location information reported by the sample vehicle, each The labels of each training sample can include actual location information and actual arrival time information. The actual position information may be: the real position of the sample vehicle at the second sample time; or the distance between the real positions of the sample vehicles between the first sample time and the second sample time. The actual arrival time information may be: the actual time when the sample vehicle arrives at the sample site; or the time difference between the second sample moment and the actual time when the sample vehicle arrives at the sample site.
在一些实施例中,训练模块可以进一步用于将每个训练样本的特征输入至初始模型,以获取预测结果;基于各训练样本的预测结果与标签的差异,调整初始模型的参数。其中,损失函数可以包括位置损失和时间损失的加权求和。位置损失可以反映预测结果中样本车辆的预测位置与第二样本时刻样本车辆的真实位置之间的差异。时间损失可以反映预测结果中样本车辆到达样本站点的预测时间与样本车辆到达样本站点的实际时间之间的差异。在一些实施例中,时间损失的权重可以大于位置损失的权重。In some embodiments, the training module can be further used to input the features of each training sample into the initial model to obtain a prediction result; based on the difference between the prediction result of each training sample and the label, adjust the parameters of the initial model. Wherein, the loss function may include a weighted sum of position loss and time loss. The position loss may reflect the difference between the predicted position of the sample vehicle in the prediction result and the real position of the sample vehicle at the second sample moment. The time loss can reflect the difference between the predicted time when the sample vehicle arrives at the sample site in the prediction results and the actual time when the sample vehicle arrives at the sample site. In some embodiments, the time loss may be weighted more than the position loss.
需要注意的是,以上对于模块的描述,仅为描述方便,并不能把本说明书限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该系统的原理后,可能在不背离这一原理的情况下,对各个模块进行任意组合,或者构成子系统与其他模块连接。在一些实施例中,图6中披露的获取模块、确认模块和预测模块可以是一个系统中的不同模块,也可以是一个模块实现上述的两个或两个以上模块的功能。例如,各个模块可以共用一个存储模块,各个模块也可以分别具有各自的存储模块。诸如此类的变形,均在本说明书的保护范围之内。It should be noted that the above description of the modules is only for convenience of description, and does not limit this description to the scope of the examples. It can be understood that for those skilled in the art, after understanding the principle of the system, it is possible to combine various modules arbitrarily, or form a subsystem to connect with other modules without departing from this principle. In some embodiments, the acquisition module, confirmation module and prediction module disclosed in FIG. 6 may be different modules in one system, or one module may realize the functions of the above two or more modules. For example, each module may share one storage module, or each module may have its own storage module. Such deformations are within the protection scope of this specification.
本说明书实施例可能带来的有益效果可以包括但不限于:(1)同时为用户提供车辆当前位置预测服务和到站时间预测服务,以便用户做出进一步决策;(2)提高了位置预测和到站时间预测的实时性;(3)设计了位置预测和到站时间预测的融合模型,可以实现统一建模,可以减少预测误差,提高预测准确性。The possible beneficial effects of the embodiments of this specification may include but are not limited to: (1) providing users with vehicle current location prediction services and arrival time prediction services at the same time, so that users can make further decisions; (2) improving location prediction and The real-time performance of arrival time prediction; (3) The fusion model of location prediction and arrival time prediction is designed, which can realize unified modeling, reduce prediction error and improve prediction accuracy.
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。The basic concept has been described above, obviously, for those skilled in the art, the above detailed disclosure is only an example, and does not constitute a limitation to this description. Although not expressly stated here, those skilled in the art may make various modifications, improvements and corrections to this description. Such modifications, improvements and corrections are suggested in this specification, so such modifications, improvements and corrections still belong to the spirit and scope of the exemplary embodiments of this specification.
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。Meanwhile, this specification uses specific words to describe the embodiments of this specification. For example, "one embodiment", "an embodiment", and/or "some embodiments" refer to a certain feature, structure or characteristic related to at least one embodiment of this specification. Therefore, it should be emphasized and noted that two or more references to "an embodiment" or "an embodiment" or "an alternative embodiment" in different places in this specification do not necessarily refer to the same embodiment . In addition, certain features, structures or characteristics in one or more embodiments of this specification may be properly combined.
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。In addition, unless explicitly stated in the claims, the order of processing elements and sequences described in this specification, the use of numbers and letters, or the use of other names are not used to limit the sequence of processes and methods in this specification. While the foregoing disclosure has discussed by way of various examples some embodiments of the invention that are presently believed to be useful, it should be understood that such detail is for illustrative purposes only and that the appended claims are not limited to the disclosed embodiments, but rather, the claims The claims are intended to cover all modifications and equivalent combinations that fall within the spirit and scope of the embodiments of this specification. For example, although the system components described above may be implemented by hardware devices, they may also be implemented by a software-only solution, such as installing the described system on an existing server or mobile device.
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。In the same way, it should be noted that in order to simplify the expression disclosed in this specification and help the understanding of one or more embodiments of the invention, in the foregoing description of the embodiments of this specification, sometimes multiple features are combined into one embodiment, drawings or descriptions thereof. This method of disclosure does not, however, imply that the subject matter of the specification requires more features than are recited in the claims. Indeed, embodiment features are less than all features of a single foregoing disclosed embodiment.
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。In some embodiments, numbers describing the quantity of components and attributes are used. It should be understood that such numbers used in the description of the embodiments use the modifiers "about", "approximately" or "substantially" in some examples. grooming. Unless otherwise stated, "about", "approximately" or "substantially" indicates that the stated figure allows for a variation of ±20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical parameters should take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and parameters used in some embodiments of this specification to confirm the breadth of the range are approximations, in specific embodiments, such numerical values are set as precisely as practicable.
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。Each patent, patent application, patent application publication, and other material, such as article, book, specification, publication, document, etc., cited in this specification is hereby incorporated by reference in its entirety. Application history documents that are inconsistent with or conflict with the content of this specification are excluded, and documents (currently or later appended to this specification) that limit the broadest scope of the claims of this specification are also excluded. It should be noted that if there is any inconsistency or conflict between the descriptions, definitions, and/or terms used in the accompanying materials of this manual and the contents of this manual, the descriptions, definitions and/or terms used in this manual shall prevail .
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。Finally, it should be understood that the embodiments described in this specification are only used to illustrate the principles of the embodiments of this specification. Other modifications are also possible within the scope of this description. Therefore, by way of example and not limitation, alternative configurations of the embodiments of this specification may be considered consistent with the teachings of this specification. Accordingly, the embodiments of this specification are not limited to the embodiments explicitly introduced and described in this specification.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111633196.4A CN116415701B (en) | 2021-12-28 | 2021-12-28 | Vehicle arrival time prediction method and system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111633196.4A CN116415701B (en) | 2021-12-28 | 2021-12-28 | Vehicle arrival time prediction method and system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN116415701A true CN116415701A (en) | 2023-07-11 |
| CN116415701B CN116415701B (en) | 2025-02-28 |
Family
ID=87047996
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202111633196.4A Active CN116415701B (en) | 2021-12-28 | 2021-12-28 | Vehicle arrival time prediction method and system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN116415701B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119903955A (en) * | 2024-12-27 | 2025-04-29 | 深圳依时货拉拉科技有限公司 | Estimated arrival time prediction method, device, computer equipment and storage medium |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090313072A1 (en) * | 2008-06-12 | 2009-12-17 | Ford Motor Company | Computer-based vehicle order tracking system |
| CN112749825A (en) * | 2019-10-31 | 2021-05-04 | 华为技术有限公司 | Method and device for predicting destination of vehicle |
| CN113066302A (en) * | 2021-03-24 | 2021-07-02 | 北京百度网讯科技有限公司 | Vehicle information prediction method and device and electronic equipment |
| CN113838303A (en) * | 2021-09-26 | 2021-12-24 | 千方捷通科技股份有限公司 | Parking lot recommendation method and device, electronic equipment and storage medium |
-
2021
- 2021-12-28 CN CN202111633196.4A patent/CN116415701B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090313072A1 (en) * | 2008-06-12 | 2009-12-17 | Ford Motor Company | Computer-based vehicle order tracking system |
| CN112749825A (en) * | 2019-10-31 | 2021-05-04 | 华为技术有限公司 | Method and device for predicting destination of vehicle |
| CN113066302A (en) * | 2021-03-24 | 2021-07-02 | 北京百度网讯科技有限公司 | Vehicle information prediction method and device and electronic equipment |
| CN113838303A (en) * | 2021-09-26 | 2021-12-24 | 千方捷通科技股份有限公司 | Parking lot recommendation method and device, electronic equipment and storage medium |
Non-Patent Citations (1)
| Title |
|---|
| 姜桂艳 等: "基于出租车GPS数据的路段平均速度估计模型", 西南交通大学学报, vol. 45, no. 04, 15 August 2011 (2011-08-15), pages 638 - 644 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119903955A (en) * | 2024-12-27 | 2025-04-29 | 深圳依时货拉拉科技有限公司 | Estimated arrival time prediction method, device, computer equipment and storage medium |
Also Published As
| Publication number | Publication date |
|---|---|
| CN116415701B (en) | 2025-02-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12018951B1 (en) | Dynamic geolocation optimization of pickup locations using location scores | |
| US20230044760A1 (en) | Systems and methods for recommending transportation services | |
| CN112818497B (en) | Traffic simulation method, traffic simulation device, computer equipment and storage medium | |
| TWI734941B (en) | Systems and methods for monitoring traffic congestion | |
| TW201917352A (en) | Systems and methods for recommending a destination | |
| CN105424052B (en) | Random travelable mileage | |
| US10380503B2 (en) | Distributed online learning for privacy-preserving personal predictive models | |
| TW201908696A (en) | Systems and methods for displaying a movement of a vehicle on a map | |
| US10852443B2 (en) | Algorithm and architecture for map-matching streaming probe data | |
| JP6515649B2 (en) | Shared vehicle management device | |
| US10054443B1 (en) | Journey analysis system and method | |
| AU2018102202A4 (en) | Systems and methods for cheat examination | |
| JP7551874B2 (en) | Information processing system, information processing device, information processing method, and information processing program | |
| US20190096250A1 (en) | Systems and Methods for Determining Whether an Autonomous Vehicle Can Provide a Requested Service for a Rider | |
| AU2018381722A1 (en) | Systems and methods for determining an estimated time of arrival for online to offline services | |
| CN111858790B (en) | Bypass reminding method and device, electronic equipment and medium | |
| WO2019087595A1 (en) | Mobile body distribution situation forecast device and mobile body distribution situation forecast method | |
| CN113112850A (en) | Crowdsourcing navigation system and method | |
| CN111882112B (en) | Method and system for predicting arrival time | |
| CN114234997A (en) | Path planning method, device, electronic device and storage medium | |
| CN116415701A (en) | Method and system for predicting arrival time of vehicle | |
| US20230408265A1 (en) | Inferring accurate locations | |
| CN109470257B (en) | A method of guiding lost people based on blockchain technology | |
| CN111325993B (en) | Traffic speed determination method and device, electronic equipment and computer storage medium | |
| CN111879322B (en) | Prediction method and system for positioning accuracy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| TA01 | Transfer of patent application right |
Effective date of registration: 20241203 Address after: Room 501, 5th Floor, Building A, Building 1, Courtyard 6, Tangjialing North Ring Road, Haidian District, Beijing, 100193 Applicant after: Ditu (Beijing) Technology Co.,Ltd. Country or region after: China Address before: Building 34, yard 8, Dongbei Wangxi Road, Haidian District, Beijing 100193 Applicant before: BEIJING DIDI INFINITY TECHNOLOGY AND DEVELOPMENT Co.,Ltd. Country or region before: China |
|
| TA01 | Transfer of patent application right | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |