CN116403011A - Establishment Method of Effective Data Sample Group Based on SAR-Optical Image Matching - Google Patents
Establishment Method of Effective Data Sample Group Based on SAR-Optical Image Matching Download PDFInfo
- Publication number
- CN116403011A CN116403011A CN202310071993.0A CN202310071993A CN116403011A CN 116403011 A CN116403011 A CN 116403011A CN 202310071993 A CN202310071993 A CN 202310071993A CN 116403011 A CN116403011 A CN 116403011A
- Authority
- CN
- China
- Prior art keywords
- image
- sar
- remote sensing
- optical remote
- effective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/751—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/24—Aligning, centring, orientation detection or correction of the image
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Databases & Information Systems (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明属于图像处理技术领域,尤其涉及一种基于SAR-Optical图像匹配的有效数据样本群的建立方法。The invention belongs to the technical field of image processing, in particular to a method for establishing an effective data sample group based on SAR-Optical image matching.
背景技术Background technique
图像是自然场景信息在计算机中的最主要的表现形式,因此图像处理技术一直以来是理论研究和实际应用的重点与热点。通常,单一传感器只能获得场景的某一方面信息,而多传感器可以获得场景多方面的信息,例如可见光图像可以获得场景可见光波段的光谱反射信息,遥感图像可以获得拍摄地区的地物特质,SAR图像可以获得拍摄区域的全天候雷达图像。异源图像匹配及图像融合是综合利用多个传感器采集的互补图像信息的技术基础。异源图像匹配是指将不同传感器采集的同一场景的多幅图像在像素空间上对齐的过程,而异源图像融合是指将异源图像中的互补信息进行综合的过程。由于异源图像匹配及融合的基础性地位,因此被广泛应用于各类军事及民用领域,如导航制导、遥感场景分析、目标识别等。Image is the most important form of representation of natural scene information in computers, so image processing technology has always been the focus and hotspot of theoretical research and practical application. Usually, a single sensor can only obtain one aspect of the scene information, while multiple sensors can obtain various aspects of the scene information, for example, visible light images can obtain the spectral reflectance information of the visible light band of the scene, remote sensing images can obtain the characteristics of the ground features in the shooting area, SAR The image can obtain an all-weather radar image of the shooting area. Heterogeneous image matching and image fusion are the technical basis for comprehensive utilization of complementary image information collected by multiple sensors. Heterogeneous image matching refers to the process of aligning multiple images of the same scene collected by different sensors in pixel space, while heterogeneous image fusion refers to the process of synthesizing complementary information in heterogeneous images. Due to the basic status of heterogeneous image matching and fusion, it is widely used in various military and civilian fields, such as navigation guidance, remote sensing scene analysis, target recognition, etc.
在异源图像匹配任务中,SAR(合成孔径雷达)和可见光(Optical)图像的匹配最具代表性且有重要的军事应用前景。由于合成孔径雷达和光学图像在成像原理上的根本不同,导致他们图像之间具有复杂的非线性辐射差异。因此传统的基于特征点和基于模版的匹配方法往往不能取得理想的结果。In heterogeneous image matching tasks, the matching of SAR (Synthetic Aperture Radar) and visible light (Optical) images is the most representative and has important military application prospects. Due to the fundamental difference in the imaging principles of synthetic aperture radar and optical images, there are complex nonlinear radiation differences between their images. Therefore, the traditional matching methods based on feature points and templates often cannot achieve ideal results.
且现有技术中存在着以下几点技术问题:And there are following several technical problems in the prior art:
1)在SAR-Optical数据集制作的基本流程中,仍需要大量的人工介入,特别是在有效区域筛选这一部分,人为检查的方式不仅效率低下而且成本很高;1) In the basic process of making SAR-Optical data sets, a lot of manual intervention is still required, especially in the part of effective area screening. The manual inspection method is not only inefficient but also very costly;
2)此外,现有的SAR-Optical数据集由于是靠人工筛选样本,人并不能完全理解网络需要学习的特征和区域,因此人工筛选出来的数据往往并不能适应现有神经网络;2) In addition, because the existing SAR-Optical dataset relies on manual screening of samples, people cannot fully understand the features and regions that the network needs to learn, so the manually screened data often cannot adapt to the existing neural network;
3)考虑到近年来的匹配算法逐渐从特征依赖转为数据依赖,数据规模的大小有时将决定匹配算法的性能好坏。现有清洗数据的算法都具有速度慢,占用资源多,只能处理单种数据的问题。这些问题都大大限制了数据集规模的发展。3) Considering that the matching algorithm in recent years has gradually changed from feature dependence to data dependence, the size of the data scale will sometimes determine the performance of the matching algorithm. The existing algorithms for cleaning data are slow, occupy a lot of resources, and can only process a single type of data. These problems greatly limit the development of data set scale.
发明内容Contents of the invention
本发明的目的是提供一种基于SAR-Optical图像匹配的有效数据样本群的建立方法,以解决如何自动生成有效数据集,减小人工数据处理成本的技术问题。The purpose of the present invention is to provide a method for establishing an effective data sample group based on SAR-Optical image matching, so as to solve the technical problem of how to automatically generate an effective data set and reduce the cost of manual data processing.
本发明采用以下技术方案:The present invention adopts following technical scheme:
本发明实施例一提供了一种基于SAR-Optical图像匹配的有效数据样本群的建立方法,包括:Embodiment 1 of the present invention provides a method for establishing an effective data sample group based on SAR-Optical image matching, including:
获取SAR图像和光学遥感图像对;Obtain SAR image and optical remote sensing image pair;
对SAR图像和光学遥感图像对进行模板匹配,得到有效SAR图像和光学遥感图像对;Perform template matching on SAR images and optical remote sensing image pairs to obtain effective SAR images and optical remote sensing image pairs;
对筛选出的所有有效SAR图像和光学遥感图像对进行校准对齐,生成基于SAR-Optical图像匹配的有效数据样本群。All the selected effective SAR images and optical remote sensing image pairs are calibrated and aligned to generate an effective data sample group based on SAR-Optical image matching.
可选地,对所述SAR图像和光学遥感图像对进行模板匹配包括:Optionally, performing template matching on the SAR image and the optical remote sensing image pair includes:
根据模板匹配算法在SAR图像上随机选取第一矩形模板区域和第二矩形模板区域;Randomly select the first rectangular template area and the second rectangular template area on the SAR image according to the template matching algorithm;
计算第一矩形模板区域与第二矩形模板区域在第一预设偏移方向上的第一长度偏移量和第一宽度偏移量;calculating a first length offset and a first width offset between the first rectangular template area and the second rectangular template area in the first preset offset direction;
根据第一长度偏移量和第一宽度偏移量得到有效SAR图像和光学遥感图像对。An effective SAR image and an optical remote sensing image pair are obtained according to the first length offset and the first width offset.
可选地,对所述SAR图像和光学遥感图像对进行模板匹配还包括:Optionally, performing template matching on the SAR image and the optical remote sensing image pair also includes:
根据模板匹配算法在光学遥感图像上随机选取第三矩形模板区域和第四矩形模板区域;Randomly select the third rectangular template area and the fourth rectangular template area on the optical remote sensing image according to the template matching algorithm;
计算第三矩形模板区域与第四矩形模板区域在第二预设偏移方向上的第二长度偏移量和第二宽度偏移量;calculating a second length offset and a second width offset between the third rectangular template area and the fourth rectangular template area in a second preset offset direction;
根据第二长度偏移量和第二长度偏移量确定当前有效SAR图像和光学遥感图像对。The current effective SAR image and the optical remote sensing image pair are determined according to the second length offset and the second length offset.
可选地,得到有效SAR图像和光学遥感图像对包括:Optionally, obtaining effective SAR images and optical remote sensing image pairs includes:
判断第一长度偏移量与第二长度偏移量的第一差值是否大于第一阈值;judging whether the first difference between the first length offset and the second length offset is greater than a first threshold;
判断第二长度偏移量与第二长度偏移量的第二差值是否大于第二阈值;judging whether the second difference between the second length offset and the second length offset is greater than a second threshold;
若第一差值小于第一阈值且第二差值小于第二阈值,则保留当前SAR图像和光学遥感图像对为有效SAR图像和光学遥感图像对;If the first difference is less than the first threshold and the second difference is less than the second threshold, then retaining the current SAR image and the optical remote sensing image pair as a valid SAR image and the optical remote sensing image pair;
可选地,若第一差值不小于第一阈值且第二差值不小于第二阈值,则调整模板区域的大小或不同阈值的大小。Optionally, if the first difference is not smaller than the first threshold and the second difference is not smaller than the second threshold, then adjust the size of the template area or the size of different thresholds.
可选地,对筛选出的所有有效SAR图像和光学遥感图像对进行校准对齐包括:Optionally, performing calibration and alignment on all the effective SAR images and optical remote sensing image pairs screened out includes:
分别提取有效SAR图像和有效光学遥感图像中地物特征;Separately extract the features of ground objects in effective SAR images and effective optical remote sensing images;
计算有效SAR图像和有效光学遥感图像中地物特征之间的对齐度;Calculating the alignment between features in valid SAR images and valid optical remote sensing images;
根据对齐度筛选出若干个有效SAR图像和光学遥感图像对,生成基于SAR-Optical图像匹配的有效数据样本群。Several effective SAR images and optical remote sensing image pairs are screened out according to the alignment, and an effective data sample group based on SAR-Optical image matching is generated.
可选地,对齐度的计算方式包括:Optionally, the calculation method of the alignment includes:
其中,I1表示有效SAR图像的地物特征,I2表示有效光学遥感图像的地物特征,表示I1图像的像素方差,/>表示图像I2图像的像素方差,/>表示I2对I1的像素期望方差,/>表示I1对I2的像素期望方差,CI(I1,I2)表示有效SAR图像和有效光学遥感图像中地物特征之间的对齐度。Among them, I 1 represents the feature of the effective SAR image, I 2 represents the feature of the effective optical remote sensing image, represents the pixel variance of the I 1 image, /> represents the pixel variance of the image I 2 image, /> represents the pixel expected variance of I 2 to I 1 , /> Indicates the pixel expected variance of I 1 to I 2 , and CI(I 1 , I 2 ) indicates the alignment between effective SAR image and effective optical remote sensing image.
可选地,获取SAR图像和光学遥感图像对包括:Optionally, acquiring the SAR image and the optical remote sensing image pair includes:
对SAR图像和光学遥感图像进行数据格式转换;Data format conversion for SAR images and optical remote sensing images;
对数据格式转换后的SAR图像和光学遥感图像进行随机采样;Random sampling of SAR images and optical remote sensing images after data format conversion;
对随机采样采集到的SAR图像和光学遥感图像进行去重处理,生成SAR图像和光学遥感图像对。SAR images and optical remote sensing images collected by random sampling are deduplicated to generate SAR images and optical remote sensing image pairs.
本发明实施例二提供了一种基于SAR-Optical图像匹配的有效数据样本群的建立装置,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上述方法实施例中任一项的一种基于SAR-Optical图像匹配的有效数据样本群的建立方法。Embodiment 2 of the present invention provides a device for establishing an effective data sample group based on SAR-Optical image matching, including a memory, a processor, and a computer program stored in the memory and operable on the processor, and the processor executes the computer program A method for establishing an effective data sample group based on SAR-Optical image matching as in any one of the above method embodiments is implemented at the same time.
本发明的有益效果是:1)利用市场上成熟的Google Earth Engine获取SAR图像和光学遥感图像对,使用方便,易于掌握,且具有广泛的社会认可度;The beneficial effects of the present invention are: 1) using the mature Google Earth Engine on the market to obtain SAR images and optical remote sensing image pairs, it is easy to use, easy to grasp, and has a wide social acceptance;
2)对所述SAR图像和光学遥感图像对进行模板匹配,匹配中不需要人工使用肉眼对待测数据进行选择,减少了人工筛选分类错误的同时,提高了数据集制作效率,降低了时间和人力成本,并且更能适应目前基于深度学习的匹配算法。2) Template matching is performed on the SAR image and the optical remote sensing image pair. During the matching, it is not necessary to manually use the naked eye to select the test data, which reduces manual screening and classification errors, improves the efficiency of data set production, and reduces time and manpower. cost, and is more adaptable to current matching algorithms based on deep learning.
3)对筛选出的所有有效SAR图像和光学遥感图像对进行校准对齐,生成基于SAR-Optical图像匹配的有效数据样本群,并通过阈值法去除无效数据,保留有效数据,提高数据的有效性。3) Calibrate and align all the selected valid SAR images and optical remote sensing image pairs, generate valid data sample groups based on SAR-Optical image matching, and remove invalid data by threshold method, retain valid data, and improve data validity.
附图说明Description of drawings
图1为本发明实施例一提供的一种基于SAR-Optical图像匹配的有效数据样本群的建立方法步骤流程图;Fig. 1 is a flow chart of a method for establishing an effective data sample group based on SAR-Optical image matching provided by Embodiment 1 of the present invention;
图2为本发明实施例一提供的一种基于SAR-Optical图像匹配的有效数据样本群的建立方法步骤流程示意图;FIG. 2 is a schematic flow chart of the steps of a method for establishing an effective data sample group based on SAR-Optical image matching provided by Embodiment 1 of the present invention;
图3为本发明实施例一提供的一种矩形模板区域设置示意图;Fig. 3 is a schematic diagram of setting a rectangular template area provided by Embodiment 1 of the present invention;
图4为本发明实施例一提供的一种基于地面控制点(GCP)库的图像校准方法步骤示意图;4 is a schematic diagram of the steps of an image calibration method based on a ground control point (GCP) library provided by Embodiment 1 of the present invention;
图5为本发明实施例一提供的一种模板匹配算法网络结构示意图;FIG. 5 is a schematic diagram of a network structure of a template matching algorithm provided by Embodiment 1 of the present invention;
图6为本发明实施例二提供的一种基于SAR-Optical图像匹配的有效数据样本群的建立转置示意图。FIG. 6 is a schematic transposition diagram of establishment of an effective data sample group based on SAR-Optical image matching provided by Embodiment 2 of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
1、本发明实施例一提供了一种基于SAR-Optical图像匹配的有效数据样本群的建立方法,结合图1和图2,该方法包括:1. Embodiment 1 of the present invention provides a method for establishing an effective data sample group based on SAR-Optical image matching. In combination with FIGS. 1 and 2, the method includes:
步骤101,获取SAR图像和光学遥感图像对;
可选地,获取SAR图像和光学遥感图像对包括:Optionally, acquiring the SAR image and the optical remote sensing image pair includes:
对SAR图像和光学遥感图像进行数据格式转换;Data format conversion for SAR images and optical remote sensing images;
对数据格式转换后的SAR图像和光学遥感图像进行随机采样;Random sampling of SAR images and optical remote sensing images after data format conversion;
对随机采样采集到的SAR图像和光学遥感图像进行去重处理,生成SAR图像和光学遥感图像对。SAR images and optical remote sensing images collected by random sampling are deduplicated to generate SAR images and optical remote sensing image pairs.
步骤101的具体实现方式为:从Google Earth Engine下载所需的SAR图像和光学遥感图像,为了扩充数据源,或从网络上的公开雷达卫星采样数据构成的公开数据集获取预设城市或地区的SAR图像和光学遥感图像,并进行数据格式转换,将其处理转换成易于处理的数据。The specific implementation of
具体地,对于下载的公开数据集,首先需要将所有数据调整为统一格式以方便处理。Specifically, for downloaded public datasets, it is first necessary to adjust all the data into a unified format for easy processing.
以哨兵一号和哨兵二号数据为例,转换数据格式是指的将数据转换为GeoTiffs数据格式的图像,使用GEE的Export.image.toDrive函数将下载的SAR图像数据或光学遥感图像导出,生成GeoTiff数据;并将GeoTiff数据的灰度值控制在±2.5σ的范围内,像素值归一化到[0,1]的区间内用以表征一个相对大的范围,如果具有多个波段,则在所有波段上都实现以上校正操作。完成以上操作则可以实现SAR图像和光学遥感图像的数据格式转换。数据格式转换后随机采样并选取所需的地物区域数据。Taking the data of Sentinel 1 and Sentinel 2 as an example, converting the data format refers to converting the data into GeoTiffs data format images, using the Export.image.toDrive function of GEE to export the downloaded SAR image data or optical remote sensing images to generate GeoTiff data; and the gray value of GeoTiff data is controlled within the range of ±2.5σ, and the pixel value is normalized to the interval [0, 1] to represent a relatively large range. If there are multiple bands, then The above corrective operation is realized on all bands. After completing the above operations, the data format conversion between SAR images and optical remote sensing images can be realized. After the data format conversion, random sampling and selection of the required ground object area data.
为了去除存在重叠的随机采样数据,使用GEE内置的ee.ImageCollection.mosaic()函数和ee.Image.clip()函数为每一个随机采样设置一个可修剪采样数据的大小的功能。简而言之,ee.ImageCollection.mosaic()函数就是用处理那些部分重叠的图像,剔除无效的SAR图像和光学遥感图像,提高异源匹配性。In order to remove overlapping random sampling data, use GEE's built-in ee.ImageCollection.mosaic() function and ee.Image.clip() function to set a function that can trim the size of the sampling data for each random sampling. In short, the ee.ImageCollection.mosaic() function is used to process those partially overlapping images, eliminate invalid SAR images and optical remote sensing images, and improve heterogeneous matching.
对于从Google Earth Engine获取的图像,首先进行采样,进行去重处理,与公开数据集统一格式,并整合筛选出可用数据。For the images obtained from Google Earth Engine, first sample, de-duplicate, unify the format with the public dataset, and integrate and filter out the available data.
从Google Earth Engine下载所需的图像后需要设定区域进行随机采样,设定好采样seed,在预设城市或所需地区的地表泛泛地选100个点进行随机采样,再从预设城区选50个点。不同陆地或城市地区的形状详情由公共域Geodata服务提供,其采样比例为1:50m。After downloading the required image from Google Earth Engine, you need to set the area for random sampling, set the sampling seed, and generally select 100 points on the surface of the preset city or the required area for random sampling, and then select from the preset urban area 50 points. Shape details of different land or urban areas are provided by public domain Geodata services with a sampling scale of 1:50m.
如果得到的两个点位置相当接近,需要进行去重处理去掉其中的一个点,保证采样时没有重叠部分,保留不存在重叠的SAR图像和光学遥感图像对。对于采样得到的图像,再进行图像去重工作,使用上文所述GEE内置的ee.ImageCollection.mosaic()函数和ee.Image.clip()函数进行处理。If the positions of the two points obtained are quite close, it is necessary to remove one of the points through deduplication processing to ensure that there is no overlapping part during sampling, and keep the non-overlapping SAR image and optical remote sensing image pair. For the sampled image, the image deduplication work is performed, and the above-mentioned GEE built-in ee.ImageCollection.mosaic() function and ee.Image.clip() function are used for processing.
采样完成后将Google Earth Engine数据统一格式,再将公开数据集数据和Google Earth Engine数据进行整合,对不可用数据进行筛选。例如基于SAR-Optical图像匹配的有效数据样本群需要哨兵二号图像的云覆盖范围小于1%且哨兵一号的VV-IW所有波段都可用,使用GEE的工具按照上述条件过滤图像,以此来筛选处理采样数据,如果有不符合条件的数据,则去除。After the sampling is completed, the Google Earth Engine data will be unified in a format, and then the public dataset data and Google Earth Engine data will be integrated to screen unavailable data. For example, an effective data sample group based on SAR-Optical image matching requires that the cloud coverage of the Sentinel-2 image is less than 1% and all the VV-IW bands of the Sentinel-1 are available. Use the GEE tool to filter the image according to the above conditions, so as to Filter and process the sampling data, if there is data that does not meet the conditions, remove it.
步骤102,对所述SAR图像和光学遥感图像对进行模板匹配,得到有效SAR图像和光学遥感图像对;
在一种实施例中,需要说明的是哨兵二号的颗粒的云覆盖的数据仅仅是一个全球共享的参数,根据参数筛选SAR图像和光学遥感图像并不准确,存在整个颗粒中包括了一堆被云遮挡的图像数据,其中只有少部分云覆盖局部图像数据,这些均为无效数据,只有极少部分数据为无任何遮挡物的数据为有效数据。而通过模板匹配法在SAR图像和光学遥感图像分别设置矩形模板区域,需要说明的是该模板区域包含目标地物特征,通过对SAR图像和光学遥感图像中各自模板偏移量进行判断,筛选有效SAR图像和光学遥感图像对。从而通过模板匹配法去除SAR图像和光学遥感图像中大块的无效区域以及具有严重的云覆盖的图像,实现SAR图像和光学遥感图像的粗匹配,初步筛选出有效数据,达到数据清洗的效果。In one embodiment, it should be noted that the cloud coverage data of Sentinel-2 particles is only a globally shared parameter, and it is not accurate to filter SAR images and optical remote sensing images according to parameters, and there are a bunch of particles in the whole particle For the image data covered by clouds, only a small part of the cloud covers the local image data, which are all invalid data, and only a very small part of the data without any occlusion is valid data. However, the template matching method is used to set a rectangular template area in the SAR image and the optical remote sensing image respectively. It should be noted that the template area contains the characteristics of the target object. SAR image and optical remote sensing image pair. Therefore, the template matching method is used to remove large invalid areas and images with severe cloud coverage in SAR images and optical remote sensing images, to achieve rough matching between SAR images and optical remote sensing images, and to preliminarily screen out effective data to achieve the effect of data cleaning.
可选地,对所述SAR图像和光学遥感图像对进行模板匹配包括:Optionally, performing template matching on the SAR image and the optical remote sensing image pair includes:
根据模板匹配算法在SAR图像上随机选取第一矩形模板区域和第二矩形模板区域;Randomly select the first rectangular template area and the second rectangular template area on the SAR image according to the template matching algorithm;
第一矩形模板区域与第二矩形模板区域按照第一预设偏移方向存在第一长度偏移量和第一宽度偏移量;The first rectangular template area and the second rectangular template area have a first length offset and a first width offset according to a first preset offset direction;
根据第一长度偏移量和第一宽度偏移量得到有效SAR图像和光学遥感图像对。An effective SAR image and an optical remote sensing image pair are obtained according to the first length offset and the first width offset.
可选地,对所述SAR图像和光学遥感图像对进行模板匹配还包括:Optionally, performing template matching on the SAR image and the optical remote sensing image pair also includes:
根据模板匹配算法在光学遥感图像上随机选取第三矩形模板区域和第四矩形模板区域;Randomly select the third rectangular template area and the fourth rectangular template area on the optical remote sensing image according to the template matching algorithm;
第三矩形模板区域与第四矩形模板区域按照第二预设偏移方向存在第二长度偏移量和第二宽度偏移量;The third rectangular template area and the fourth rectangular template area have a second length offset and a second width offset according to a second preset offset direction;
根据第二长度偏移量和第二长度偏移量确定当前有效SAR图像和光学遥感图像对。The current effective SAR image and the optical remote sensing image pair are determined according to the second length offset and the second length offset.
可选地,得到有效SAR图像和光学遥感图像对包括:Optionally, obtaining effective SAR images and optical remote sensing image pairs includes:
判断第一长度偏移量与第二长度偏移量的第一差值是否大于第一阈值;judging whether the first difference between the first length offset and the second length offset is greater than a first threshold;
判断第二长度偏移量与第二长度偏移量的第二差值是否大于第二阈值;judging whether the second difference between the second length offset and the second length offset is greater than a second threshold;
若第一差值小于第一阈值且第二差值小于第二阈值,则保留当前SAR图像和光学遥感图像对为有效SAR图像和光学遥感图像对;If the first difference is less than the first threshold and the second difference is less than the second threshold, then retaining the current SAR image and the optical remote sensing image pair as a valid SAR image and the optical remote sensing image pair;
可选地,若第一差值不小于第一阈值且第二差值不小于第二阈值,则调整模板区域的大小或不同阈值的大小。Optionally, if the first difference is not smaller than the first threshold and the second difference is not smaller than the second threshold, then adjust the size of the template area or the size of different thresholds.
在一种实施例中,如图3所示,首先在待检测的SAR图像中随机设置两个矩形模板区域,例如区域A为第一矩形模板区域,区域B为第二矩形模板区域,其中区域B相对区域A按照预设方向存在一定的偏移量。例如在二维坐标系中,区域B相对区域A在水平方向上存在第一长度偏移量Δx,在垂直方向上存在第一宽度偏移量Δy。以同样的方法在光学遥感图像设置对应的模板,例如区域A′为第三矩形模板区域,区域B′为第四矩形模板区域。其中区域B′相对区域A′按照预设方向存在一定的偏移量。例如在二维坐标系中,区域B′相对区域A′在水平方向上存在第二长度偏移量Δx′,在垂直方向上存在第二宽度偏移量Δy′。In one embodiment, as shown in FIG. 3 , firstly, two rectangular template regions are randomly set in the SAR image to be detected, for example, region A is the first rectangular template region, and region B is the second rectangular template region, wherein the region There is a certain amount of offset between area B and area A according to the preset direction. For example, in the two-dimensional coordinate system, there is a first length offset Δx in the horizontal direction and a first width offset Δy in the vertical direction relative to the area B relative to the area A. The corresponding template is set in the optical remote sensing image in the same way, for example, the area A' is the third rectangular template area, and the area B' is the fourth rectangular template area. There is a certain amount of offset between the area B' and the area A' according to the preset direction. For example, in a two-dimensional coordinate system, there is a second length offset Δx' in the horizontal direction and a second width offset Δy' in the vertical direction between the region B' and the region A'.
为此,进一步计算SAR图像和光学遥感图像之间的第一长度偏移量和第二长度偏移量之间的第一差值,即(Δx-Δx′)是否大于模板匹配算法中设置的第一阈值;同时判断SAR图像和遥感光学图像之间的第一宽度偏移量和第二宽度偏移量之间的第二差值,即(Δy-Δy′)是否大于模板匹配算法中的设置的第二阈值,只有当第一差值小于第一阈值且第二差值小于第二阈值的时,表明当前处理的SAR图像和光学遥感图像为有效SAR图像和光学遥感图像对。To this end, further calculate the first difference between the first length offset and the second length offset between the SAR image and the optical remote sensing image, that is, whether (Δx-Δx′) is greater than the value set in the template matching algorithm The first threshold; simultaneously judge the second difference between the first width offset and the second width offset between the SAR image and the remote sensing optical image, that is, whether (Δy-Δy') is greater than in the template matching algorithm The second threshold is set, only when the first difference is smaller than the first threshold and the second difference is smaller than the second threshold, it indicates that the currently processed SAR image and optical remote sensing image are valid SAR image and optical remote sensing image pair.
若第一差值不小于第一阈值且第二差值不小于第二阈值,则调整模板区域的大小或不同阈值的大小。If the first difference is not smaller than the first threshold and the second difference is not smaller than the second threshold, then adjust the size of the template area or the size of different thresholds.
需要说明的是,通常情况下,如果该区域存在很高的适配性,那么Δx,Δy与Δx′,Δy′将十分接近。如果该区域的适配性很低,那么Δx与Δx′,Δy与Δy′将表现出较大的偏差。通过对Δx,Δy与Δx′,Δy′的偏差设置一定的阈值,即可筛查出大部分的不适配区域。It should be noted that, usually, if there is a high adaptability in this region, then Δx, Δy will be very close to Δx′, Δy′. If the fitness of this region is low, then Δx and Δx', Δy and Δy' will show large deviations. By setting a certain threshold for the deviation between Δx, Δy and Δx′, Δy′, most of the unsuitable regions can be screened out.
需要说明的是在整个清洗过程中矩形模板区域的大小和位置并非固定的,可以不断变换以适应不同的无效区域筛选要求和图像类型。比如对待数据上较小的无效区域,大的矩形模板区域可能并不能检测出其存在,或者其计算的偏移量非常小,不满足阈值。因此可以额外加入一个由粗到精的矩形模板区域设置策略。It should be noted that the size and position of the rectangular template area are not fixed throughout the cleaning process, and can be continuously changed to meet different invalid area screening requirements and image types. For example, when dealing with a small invalid area on the data, the existence of a large rectangular template area may not be detected, or the calculated offset is very small and does not meet the threshold. Therefore, an additional coarse-to-fine rectangular template area setting strategy can be added.
在由粗到精的矩形模板区域设置策略当中,首先设置一对尺寸较大的矩形模板区域作为滑动窗口,该滑动窗口可根据实际待检测特征的所在区域的大小而调整大小,并且可在整个参考图像上滑动,以便包含全部待检测图像特征,便于更加准确地计算SAR图像和光学遥感图像中矩形模板区域的偏移量。In the coarse-to-fine rectangular template area setting strategy, a pair of larger rectangular template areas are first set as sliding windows, which can be adjusted according to the size of the area where the feature to be detected is actually located, and can be used in the entire Slide on the reference image to include all the image features to be detected, so as to more accurately calculate the offset of the rectangular template area in the SAR image and optical remote sensing image.
通过该模板检测方法对所有SAR图像和光学遥感图像进行多次循环检测,以增加对数据的筛选精确度。All SAR images and optical remote sensing images are detected repeatedly through the template detection method to increase the accuracy of data screening.
并且通过本实施例中设置多种阈值,可以根据网络的需求构建调整数据集。在整个数据集构建流程中,对同一批数据循环使用数据清洗,逐步去除所有的不适配图像,保留适配图像,从而有效替代数据集制备流程中的人工介入步骤,实现大规模数据集制备过程的自动化。And by setting various thresholds in this embodiment, an adjustment data set can be constructed according to the requirements of the network. In the entire data set construction process, data cleaning is used cyclically for the same batch of data to gradually remove all unsuitable images and retain suitable images, thereby effectively replacing manual intervention steps in the data set preparation process and realizing large-scale data set preparation Process automation.
步骤103,对筛选出的所有有效SAR图像和光学遥感图像对进行校准对齐,生成基于SAR-Optical图像匹配的有效数据样本群。
在一种实施例中,需要说明的是通过上述步骤102筛选出的SAR图像和光学遥感图像对中,由于实际采集的SAR图像信息为地物目标的后向散射形成的图像信息,其图像呈现一个区域的曲面图像信息,为了更好的将SAR图像和光学遥感图像进行对齐,首先采用基于地面控制点(GCP)库的图像校准方法对SAR图像和光学遥感图像进行校准,具体如图4所示,将待校准的图像作为校准器的输入,通过(GCP)库获取的目标区域的光学遥感图像,并且可直接提取该光学遥感图像的中心点位置;此外,由于SAR图像呈现目标区域地表的曲面图像信息,为此需获取SAR轨道参数和成像参数,将SAR图像进行展开处理,同时计算展开后SAR图像的四个角点的位置信息,根据四个角点的位置信息计算出SAR图像的中心点的位置,SAR图像的中心点位置和(GCP)库中光学遥感光学图像的中心点位置进行校准,采用仿射变换和重采样提取初匹配区域,确保可以从两个图像中可以找到同一目标地区的图像片或者同一地物特征;最后,对SAR图像的中心点位置和(GCP)库中光学遥感光学图像的初匹配区域进行互相关精匹配。In one embodiment, it should be noted that in the pair of SAR images and optical remote sensing images screened out through the
可选地,对筛选出的所有有效SAR图像和光学遥感图像对进行校准对齐,生成基于SAR-Optical图像匹配的有效数据样本群包括:Optionally, calibrate and align all the effective SAR images and optical remote sensing image pairs screened out, and generate an effective data sample group based on SAR-Optical image matching including:
分别提取有效SAR图像和有效光学遥感图像中地物特征;Separately extract the features of ground objects in effective SAR images and effective optical remote sensing images;
计算有效SAR图像和有效光学遥感图像中地物特征之间的对齐度;Calculating the alignment between features in valid SAR images and valid optical remote sensing images;
根据对齐度筛选出若干个有效SAR图像和光学遥感图像对,生成基于SAR-Optical图像匹配的有效数据样本群。Several effective SAR images and optical remote sensing image pairs are screened out according to the alignment, and an effective data sample group based on SAR-Optical image matching is generated.
在一种实施例中,如图5所示,基于孪生网络架构,将筛选出的有效SAR图像和光学遥感图像对作为矩形模板区域匹配算法网络的输入,并使用相同的CNN特征提取器分别对有效SAR图像和有效光学遥感图像地物特征,当确定出SAR图像的地物特征图与光学遥感图像的地物特征图之后,根据如下方式计算SAR图像和有效光学遥感图像地物特征之间的对齐度:In one embodiment, as shown in Figure 5, based on the Siamese network architecture, the effective SAR images and optical remote sensing image pairs screened out are used as the input of the rectangular template area matching algorithm network, and the same CNN feature extractor is used to respectively Effective SAR image and effective optical remote sensing image feature feature, after determining the feature map of the SAR image and the feature map of the optical remote sensing image, calculate the distance between the SAR image and the effective optical remote sensing image feature feature according to the following method Alignment:
其中,I1表示有效SAR图像的地物特征,I2表示有效光学遥感图像的地物特征,表示I1图像的像素方差,/>表示图像I2图像的像素方差,/>表示I2对I1的像素期望方差,表示I1对I2的像素期望方差,CI(I1,I2)表示有效SAR图像和有效光学遥感图像中地物特征之间的对齐度。Among them, I 1 represents the feature of the effective SAR image, I 2 represents the feature of the effective optical remote sensing image, represents the pixel variance of the I 1 image, /> represents the pixel variance of the image I 2 image, /> Denotes the pixel-wise expected variance of I 2 to I 1 , Indicates the pixel expected variance of I 1 to I 2 , and CI(I 1 , I 2 ) indicates the alignment between effective SAR image and effective optical remote sensing image.
为了实现SAR图像和光学图像的对齐,采用交互方差计算对齐度,反映两幅图像灰度相互对应的稳定程度。其主要思想是如果两幅图像对齐,那么一幅图像的每个灰度级在像素位置上所对应的另一幅图像的灰度级最稳定,即方差最小。为此可根据方差的大小或者对齐度的大小筛选出所有满足预设对齐度阈值要求的有效SAR图像和光学遥感图像对,生成基于SAR-Optical图像匹配的有效数据样本群。实现了SAR图像和光学图像的精准匹配。In order to realize the alignment of the SAR image and the optical image, the alignment degree is calculated by using the interaction variance, which reflects the stability of the gray levels of the two images corresponding to each other. The main idea is that if two images are aligned, each gray level of one image corresponds to the gray level of the other image at the pixel position is the most stable, that is, the variance is the smallest. To this end, all valid SAR images and optical remote sensing image pairs that meet the preset alignment threshold requirements can be screened out according to the size of the variance or the size of the alignment, and an effective data sample group based on SAR-Optical image matching can be generated. Accurate matching of SAR images and optical images is realized.
需要说明的是,如图5中,对提取到的SAR图像和有效光学遥感图像地物特征之后,使用傅立叶卷积对提取到的特征图进行相关性计算。由于特征提取网络存在一定的下采样操作,最后还需要对相关性图进行上采样,以恢复原来的空间分辨率精度。It should be noted that, as shown in Figure 5, after extracting the features of the SAR image and the effective optical remote sensing image, Fourier convolution is used to perform correlation calculation on the extracted feature map. Since there is a certain downsampling operation in the feature extraction network, it is necessary to upsample the correlation map at the end to restore the original spatial resolution accuracy.
本方案在服务器端训练一个较大的模型,在移动端布置一个轻量化模型。在服务器端,本方案使用了经典的ResNet网络结构,并通过channel attention模块来增强图像特征的鲁棒性和辨识性。在实际移动端部署的轻量化模型,主要采用以mobilenetv2为主的网络结构,该网络结构具有更小的参数量和计算量。This solution trains a larger model on the server side and deploys a lightweight model on the mobile side. On the server side, this solution uses the classic ResNet network structure, and enhances the robustness and recognition of image features through the channel attention module. The lightweight model deployed on the actual mobile terminal mainly adopts a network structure based on mobilenetv2, which has a smaller amount of parameters and calculations.
在计算SAR图像的地物特征图与光学遥感图像的地物特征图的相关性时,本发明采用基于对比学习采用稠密InforNCE损失函数,并基于使用一种多粒度正则化方案,可以有效避免训练阶段的过拟合问题。When calculating the correlation between the feature map of the SAR image and the feature map of the optical remote sensing image, the present invention adopts a dense InforNCE loss function based on contrastive learning and uses a multi-granularity regularization scheme, which can effectively avoid training stage overfitting problem.
且整个训练过程中通过计算SAR图像的地物特征图与光学遥感图像的地物特征图匹配正确位置得到相关性得分:And during the whole training process, the correlation score is obtained by calculating the correct position of the feature map of the SAR image and the feature map of the optical remote sensing image:
其中,sp是SAR图像的地物特征图与光学遥感图像的地物特征图匹配正确位置p处的相关性得分,sj是SAR图像的地物特征图与光学遥感图像的地物特征图匹配过程中总的相关性得分,τ是温度系数用来对不同位置处的相关性得分进行适度的非线性缩放,R代表相关性得分图的所有位置。该损失函数可以有效应对匹配问题中的多模式分布问题,从而有效地监督整个网络的训练,并且增强网络特征学习与提取的稳定性与泛化性。Among them, sp is the correlation score at the correct position p between the feature map of the SAR image and the feature map of the optical remote sensing image, and s j is the feature map of the SAR image and the feature map of the optical remote sensing image The total correlation score during the matching process, τ is the temperature coefficient used to moderately non-linearly scale the correlation scores at different locations, and R represents all locations of the correlation score map. The loss function can effectively deal with the multi-mode distribution problem in the matching problem, thereby effectively supervising the training of the entire network, and enhancing the stability and generalization of network feature learning and extraction.
为了加快匹配过程,使用傅里叶(FFT)卷积代替普通卷积。在FFT卷积过程中,首先对作为卷积核的SAR图像和作为参考的光学遥感图像进行FFT卷积。在卷积时,要对SAR图像通过补零进行padding,使其与参考图像有相同的大小。总计算量相对于普通卷积的运算有明显的下降。To speed up the matching process, Fourier (FFT) convolutions are used instead of ordinary convolutions. In the process of FFT convolution, FFT convolution is first performed on the SAR image as the convolution kernel and the reference optical remote sensing image. During convolution, padding is performed on the SAR image to make it the same size as the reference image. Compared with the operation of ordinary convolution, the total calculation amount is significantly reduced.
通过本发明提供的矩形模板区域匹配算法并结合SAR图像实现两种异源图像的粗匹配;进一步对有效光学遥感图像地物特征校准对齐实现两种异源图像的精匹配,提高了改模型最终的匹配效率和精度。Through the rectangular template area matching algorithm provided by the present invention and combined with SAR images, the rough matching of two heterogeneous images is realized; further, the fine matching of the two heterogeneous images is realized by calibrating and aligning the features of effective optical remote sensing images, and the final improvement of the modified model is improved. matching efficiency and accuracy.
本发明实施例二提供了一种基于SAR-Optical图像匹配的有效数据样本群的建立装置500,如图6所示,包括存储器510、处理器520以及存储在存储器中并可在处理器上运行的计算机程序530,处理器执行计算机程序时实现如上述方法实施例中任一项的一种基于SAR-Optical图像匹配的有效数据样本群的建立方法。Embodiment 2 of the present invention provides a
需要说明的是,上述基于SAR-Optical图像匹配的有效数据样本群的建立装置500可实时的基于SAR-Optical图像匹配的有效数据样本群的建立方法与实施例一的方法步骤一致,此处不再赘述。It should be noted that, the above-mentioned
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310071993.0A CN116403011B (en) | 2023-02-01 | 2023-02-01 | Method for establishing effective data sample group based on SAR-Optical image matching |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310071993.0A CN116403011B (en) | 2023-02-01 | 2023-02-01 | Method for establishing effective data sample group based on SAR-Optical image matching |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN116403011A true CN116403011A (en) | 2023-07-07 |
| CN116403011B CN116403011B (en) | 2025-11-21 |
Family
ID=87012988
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310071993.0A Active CN116403011B (en) | 2023-02-01 | 2023-02-01 | Method for establishing effective data sample group based on SAR-Optical image matching |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN116403011B (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117274627A (en) * | 2023-09-19 | 2023-12-22 | 昆明理工大学 | A multi-temporal snow remote sensing image matching method and system based on image conversion |
| CN118334362A (en) * | 2024-04-24 | 2024-07-12 | 电子科技大学 | Heterogeneous image matching method and system based on contrastive learning |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102708386A (en) * | 2012-04-18 | 2012-10-03 | 中国电子科技集团公司第十研究所 | Optical/SAR (synthetic aperture radar) heterogeneous image matching method |
| CN107730541A (en) * | 2016-08-12 | 2018-02-23 | 广州康昕瑞基因健康科技有限公司 | Method for registering images and system and image taking alignment method and system |
| CN111210384A (en) * | 2020-04-23 | 2020-05-29 | 成都科睿埃科技有限公司 | An image mosaic method suitable for airport runway scene |
| US20200226413A1 (en) * | 2017-08-31 | 2020-07-16 | Southwest Jiaotong University | Fast and robust multimodal remote sensing images matching method and system |
| CN112288781A (en) * | 2018-08-22 | 2021-01-29 | 深圳市真迈生物科技有限公司 | Image registration method, apparatus and computer program product |
| CN113723447A (en) * | 2021-07-15 | 2021-11-30 | 西北工业大学 | End-to-end template matching for multimodal images |
| CN114565653A (en) * | 2022-03-02 | 2022-05-31 | 哈尔滨工业大学 | Heterogeneous remote sensing image matching method with rotation change and scale difference |
-
2023
- 2023-02-01 CN CN202310071993.0A patent/CN116403011B/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102708386A (en) * | 2012-04-18 | 2012-10-03 | 中国电子科技集团公司第十研究所 | Optical/SAR (synthetic aperture radar) heterogeneous image matching method |
| CN107730541A (en) * | 2016-08-12 | 2018-02-23 | 广州康昕瑞基因健康科技有限公司 | Method for registering images and system and image taking alignment method and system |
| US20200226413A1 (en) * | 2017-08-31 | 2020-07-16 | Southwest Jiaotong University | Fast and robust multimodal remote sensing images matching method and system |
| CN112288781A (en) * | 2018-08-22 | 2021-01-29 | 深圳市真迈生物科技有限公司 | Image registration method, apparatus and computer program product |
| CN111210384A (en) * | 2020-04-23 | 2020-05-29 | 成都科睿埃科技有限公司 | An image mosaic method suitable for airport runway scene |
| CN113723447A (en) * | 2021-07-15 | 2021-11-30 | 西北工业大学 | End-to-end template matching for multimodal images |
| CN114565653A (en) * | 2022-03-02 | 2022-05-31 | 哈尔滨工业大学 | Heterogeneous remote sensing image matching method with rotation change and scale difference |
Non-Patent Citations (2)
| Title |
|---|
| 刘川;尹奎英;: "一种基于异源图像匹配的极化SAR分类准确率标定方法", 现代雷达, no. 07, 25 July 2020 (2020-07-25) * |
| 张翰墨;尤红建;: "SAR和光学异源遥感图像匹配方法的探讨", 测绘科学, no. 06, 20 November 2012 (2012-11-20), pages 120 - 123 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117274627A (en) * | 2023-09-19 | 2023-12-22 | 昆明理工大学 | A multi-temporal snow remote sensing image matching method and system based on image conversion |
| CN118334362A (en) * | 2024-04-24 | 2024-07-12 | 电子科技大学 | Heterogeneous image matching method and system based on contrastive learning |
Also Published As
| Publication number | Publication date |
|---|---|
| CN116403011B (en) | 2025-11-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Xiang et al. | Automatic registration of optical and SAR images via improved phase congruency model | |
| CN108921799B (en) | A method for removing thin clouds from remote sensing images based on multi-scale collaborative learning convolutional neural networks | |
| CN104574347B (en) | Satellite in orbit image geometry positioning accuracy evaluation method based on multi- source Remote Sensing Data data | |
| WO2019042232A1 (en) | Fast and robust multimodal remote sensing image matching method and system | |
| CN104361590B (en) | High-resolution remote sensing image registration method with control points distributed in adaptive manner | |
| CN110570440A (en) | Image automatic segmentation method and device based on deep learning edge detection | |
| WO2016106950A1 (en) | Zonal underground structure detection method based on sun illumination and shade compensation | |
| CN103971115A (en) | Automatic extraction method for newly-increased construction land image spots in high-resolution remote sensing images based on NDVI and PanTex index | |
| CN110532953B (en) | SAR image glacier identification method based on texture feature assistance | |
| CN101923711A (en) | SAR Image Change Detection Method Based on Neighborhood Similarity and Mask Enhancement | |
| CN112200854B (en) | A three-dimensional phenotypic measurement method of leafy vegetables based on video images | |
| CN118968237A (en) | An adaptive flood inundation range extraction method based on multi-source remote sensing data | |
| CN107590782B (en) | High-resolution optical image thick cloud removing method based on full convolution network | |
| CN113724381B (en) | Dynamic three-dimensional scene rapid reconstruction method based on high-resolution remote sensing image | |
| CN102622738A (en) | Method for recovering spectral information of hill shade area of Landsat thematic mapper/enhanced thematic mapper plus (TM/ETM+) image | |
| CN115861409B (en) | Soybean leaf area measuring and calculating method, system, computer equipment and storage medium | |
| CN114463642A (en) | A method for extracting cultivated land plots based on deep learning | |
| CN109376641A (en) | A moving vehicle detection method based on UAV aerial video | |
| CN116403011A (en) | Establishment Method of Effective Data Sample Group Based on SAR-Optical Image Matching | |
| CN106296717A (en) | Multiband SAR images coupling object localization method | |
| CN112906719A (en) | Standing tree factor measuring method based on consumption-level depth camera | |
| CN114494897A (en) | High-resolution remote sensing image road extraction method fused with patch shape index | |
| CN114565653B (en) | A Matching Method for Heterogeneous Remote Sensing Images with Rotation Variation and Scale Difference | |
| CN115147613B (en) | A method for infrared small target detection based on multi-directional fusion | |
| CN117611996A (en) | Grape planting area remote sensing image change detection method based on depth feature fusion |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |