CN116128999A - Image processing method, device, electronic device and storage medium - Google Patents
Image processing method, device, electronic device and storage medium Download PDFInfo
- Publication number
- CN116128999A CN116128999A CN202310115703.8A CN202310115703A CN116128999A CN 116128999 A CN116128999 A CN 116128999A CN 202310115703 A CN202310115703 A CN 202310115703A CN 116128999 A CN116128999 A CN 116128999A
- Authority
- CN
- China
- Prior art keywords
- image
- semantic
- region
- noise
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/60—Editing figures and text; Combining figures or text
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
- G06V10/267—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/80—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
- G06V10/803—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of input or preprocessed data
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Editing Of Facsimile Originals (AREA)
Abstract
本公开涉及一种图像处理方法、装置、电子设备和存储介质,涉及计算机视觉、深度学习技术领域。其中的方法包括:获取原图和底图,其中,原图包括第一对象,底图包括第二对象;分别对原图和底图进行语义分割,得到原图对应的第一语义布局图像和底图对应的第二语义布局图像;将第一语义布局图像中的第一区域与第二语义布局图像中的第二区域进行融合,得到融合语义布局图像,其中,第一区域不同于第二区域;基于原图、底图以及融合语义布局图像,得到原图对应的目标图像。应用本公开可以将原图的第一区域与底图的第二区域融合,得到自然的转换图像。
The disclosure relates to an image processing method, device, electronic equipment, and storage medium, and relates to the technical fields of computer vision and deep learning. The method includes: obtaining an original image and a base image, wherein the original image includes a first object, and the base image includes a second object; performing semantic segmentation on the original image and the base image respectively, to obtain a first semantic layout image corresponding to the original image and The second semantic layout image corresponding to the base map; the first region in the first semantic layout image is fused with the second region in the second semantic layout image to obtain a fused semantic layout image, wherein the first region is different from the second Region: Based on the original image, base image and fused semantic layout image, the target image corresponding to the original image is obtained. By applying the present disclosure, the first area of the original image can be fused with the second area of the base image to obtain a natural converted image.
Description
技术领域technical field
本申请涉及计算机技术领域,具体涉及计算机视觉、深度学习技术领域,尤其涉及一种图像处理方法、装置、电子设备和存储介质。The present application relates to the field of computer technology, specifically to the field of computer vision and deep learning technology, and in particular to an image processing method, device, electronic equipment and storage medium.
背景技术Background technique
随着科技的发展,越来越多的应用软件走进了用户的生活,逐渐丰富了用户的业余生活,例如短视频APP等。用户可以采用视频、照片等方式记录生活,并上传到短视频APP上。With the development of science and technology, more and more application software has entered the life of users, gradually enriching the leisure life of users, such as short video APP and so on. Users can use video, photos, etc. to record their lives and upload them to the short video APP.
短视频APP上有许多基于图像算法与渲染技术的特效玩法,其中图像合成算法因为其新颖性和逼真感非常受用户欢迎。例如,基于特定对象的两张图片,合成具有一个对象头部和另一个对象身体的目标对象的相关特效。There are many special effects gameplay based on image algorithms and rendering technologies on the short video APP, among which the image synthesis algorithm is very popular with users because of its novelty and realism. For example, based on two pictures of a specific object, a relevant special effect of a target object having a head of one object and a body of another object is synthesized.
发明内容Contents of the invention
本公开的实施例提供了一种图像处理方法、装置、电子设备和存储介质。Embodiments of the present disclosure provide an image processing method, device, electronic equipment, and storage medium.
第一方面,本公开的实施例提供了一种图像处理方法,包括:获取原图和底图,其中,原图包括第一对象,底图包括第二对象;分别对原图和底图进行语义分割,得到原图对应的第一语义布局图像和底图对应的第二语义布局图像;将第一语义布局图像中的第一区域与第二语义布局图像中的第二区域进行融合,得到融合语义布局图像,其中,第一区域不同于第二区域;基于原图、底图以及融合语义布局图像,得到原图对应的目标图像。In a first aspect, an embodiment of the present disclosure provides an image processing method, including: acquiring an original image and a base image, wherein the original image includes a first object, and the base image includes a second object; Semantic segmentation, to obtain the first semantic layout image corresponding to the original image and the second semantic layout image corresponding to the base image; the first region in the first semantic layout image is fused with the second region in the second semantic layout image to obtain The semantic layout image is fused, wherein the first area is different from the second area; based on the original image, the base image, and the fused semantic layout image, a target image corresponding to the original image is obtained.
第二方面,本公开的实施例提供了一种图像处理装置,包括:图像获取单元,被配置成获取原图和底图,其中,原图包括第一对象,底图包括第二对象;语义分割单元,被配置成分别对原图和底图进行语义分割,得到原图对应的第一语义布局图像和底图对应的第二语义布局图像;语义融合单元,被配置成将第一语义布局图像中的第一区域与第二语义布局图像中的第二区域进行融合,得到融合语义布局图像,其中,第一区域不同于第二区域;图像处理单元,被配置成基于原图、底图以及融合语义布局图像,得到原图对应的目标图像。In a second aspect, an embodiment of the present disclosure provides an image processing device, including: an image acquisition unit configured to acquire an original image and a base image, wherein the original image includes a first object, and the base image includes a second object; the semantic The segmentation unit is configured to perform semantic segmentation on the original image and the base image respectively to obtain the first semantic layout image corresponding to the original image and the second semantic layout image corresponding to the base image; the semantic fusion unit is configured to convert the first semantic layout The first area in the image is fused with the second area in the second semantic layout image to obtain a fused semantic layout image, wherein the first area is different from the second area; the image processing unit is configured to be based on the original image and the base image And fuse the semantic layout image to get the target image corresponding to the original image.
第三方面,本公开的实施例提供了一种电子设备,包括存储器、处理器、总线及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所描述的图像处理方法。In a third aspect, an embodiment of the present disclosure provides an electronic device, including a memory, a processor, a bus, and a computer program stored in the memory and operable on the processor. When the processor executes the computer program, the The image processing method as described in the first aspect.
第四方面,本公开的实施例提供了一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如第一方面所描述的图像处理方法。In a fourth aspect, embodiments of the present disclosure provide a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the image processing method as described in the first aspect is implemented.
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。It should be understood that what is described in this section is not intended to identify key or important features of the embodiments of the present disclosure, nor is it intended to limit the scope of the present disclosure. Other features of the present disclosure will be readily understood through the following description.
附图说明Description of drawings
附图用于更好地理解本方案,不构成对本公开的限定。其中:The accompanying drawings are used to better understand the present solution, and do not constitute a limitation to the present disclosure. in:
图1为本公开的图像处理方法的一个实施例可以应用于其中的示例性系统架构图;FIG. 1 is an exemplary system architecture diagram to which an embodiment of the image processing method of the present disclosure can be applied;
图2为本公开的图像处理方法的一个实施例的流程示意图;FIG. 2 is a schematic flow diagram of an embodiment of the image processing method of the present disclosure;
图3为本公开的图像处理方法的一个应用场景的示意图;FIG. 3 is a schematic diagram of an application scenario of the image processing method of the present disclosure;
图4为本公开的图像处理方法的又一个实施例的流程示意图;FIG. 4 is a schematic flowchart of another embodiment of the image processing method of the present disclosure;
图5a和图5b是本公开的图像处理方法的图像处理示意图;5a and 5b are schematic diagrams of image processing of the image processing method of the present disclosure;
图6为本公开的图像处理装置的一个实施例的结构示意图;FIG. 6 is a schematic structural diagram of an embodiment of an image processing device of the present disclosure;
图7为本公开的电子设备的一个实施例的结构示意图。FIG. 7 is a schematic structural diagram of an embodiment of the electronic device of the present disclosure.
具体实施方式Detailed ways
应该指出,以下详细说明都是示例性的,旨在对本公开提供进一步的说明。除非另有指明,本文中使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the present disclosure. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used herein is only for describing specific embodiments, and is not intended to limit the exemplary embodiments according to the present disclosure. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural, and it should also be understood that when the terms "comprising" and/or "comprising" are used in this specification, they mean There are features, steps, operations, means, components and/or combinations thereof.
在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。In the case of no conflict, the embodiments in the present disclosure and the features in the embodiments can be combined with each other.
为使本公开的技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本公开作进一步详细的说明。In order to make the technical solutions and advantages of the present disclosure clearer, the present disclosure will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
需要说明的是,本公开中获取的涉及用户的数据都是在已征得用户同意或者得到用户的充分授权后获取的,本公开中所获取的参与模型训练的图像来自于公开数据集或者已征得图像版权方的充分授权。另外,本公开中所涉及到的融合的图像仅为示意性的表明两个图像的融合结果,不表示任何实体对象。此外,本公开中所涉及的合成服务,如果可能导致公众混淆或者误认的,均已在生成或者编辑的信息内容的合理位置、区域进行显著标识。It should be noted that the data related to the user obtained in this disclosure is obtained after obtaining the consent of the user or obtaining the full authorization of the user. The images participating in the model training obtained in the disclosure come from public data sets or have Obtain full authorization from the copyright owner of the image. In addition, the fused image mentioned in this disclosure is only a schematic representation of the fusion result of the two images, and does not represent any physical object. In addition, if the synthesized services involved in this disclosure may cause confusion or misidentification by the public, they have been marked prominently in the reasonable position and area of the generated or edited information content.
图1示出了可以应用本公开的图像处理方法或图像处理装置的实施例的示例性系统架构100。FIG. 1 shows an
如图1所示,系统架构100可以包括终端设备101、102、103,网络104和服务器105。网络104用以在终端设备101、102、103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。As shown in FIG. 1 , a
用户可以使用终端设备101、102、103通过网络104与服务器105交互,以接收或发送消息等。终端设备101、102、103上可以安装有各种通讯客户端应用,例如短视频类应用、图像处理类应用等。Users can use
终端设备101、102、103可以是硬件,也可以是软件。当终端设备101、102、103为硬件时,可以是各种电子设备,包括但不限于智能手机、平板电脑、车载电脑、膝上型便携计算机和台式计算机等等。当终端设备101、102、103为软件时,可以安装在上述所列举的电子设备中。其可以实现成多个软件或软件模块(例如用来提供分布式服务),也可以实现成单个软件或软件模块。在此不做具体限定。The
服务器105可以是提供各种服务的服务器,例如为终端设备101、102、103上安装的短视频类应用提供支持的后台服务器。后台服务器可以获取用户通过终端设备101、102、103输入的原图和底图,并将原图的人头换到底图的身体之上,并将得到的换头图像反馈给终端设备101、102、103。The
需要说明的是,服务器105可以是硬件,也可以是软件。当服务器105为硬件时,可以实现成多个服务器组成的分布式服务器集群,也可以实现成单个服务器。当服务器105为软件时,可以实现成多个软件或软件模块(例如用来提供分布式服务),也可以实现成单个软件或软件模块。在此不做具体限定。It should be noted that the
需要说明的是,本公开实施例所提供的图像处理方法一般可以由终端设备101、102、103执行,也可以由服务器105执行。相应地,图像处理装置可以设置于终端设备101、102、103中,也可以设置于服务器105中。It should be noted that, generally, the image processing method provided by the embodiment of the present disclosure may be executed by the
应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。It should be understood that the numbers of terminal devices, networks and servers in Fig. 1 are only illustrative. According to the implementation needs, there can be any number of terminal devices, networks and servers.
图2示出了本公开的图像处理方法的一个实施例的流程200。如图2所示,本实施例的图像处理方法可以包括以下步骤:FIG. 2 shows a
步骤201,获取原图和底图。
本实施例中,图像处理方法的执行主体(例如图1所示的终端设备101、102、103或服务器105)可以为从用户处获取原图和底图。其中,原图中包括第一对象,底图中包括第二对象。第一对象与第二对象可以属于同种类型,例如都为人像,或者都为某一动物。在一些具体的应用中,第一对象和第二对象都为人体。原图可以是用户通过终端中安装的图像采集装置拍摄的包含人头的图像,底图可以是用户通过网络爬取的或者本地存储的包含人体的图像。In this embodiment, the execution subject of the image processing method (such as the
步骤202,分别对原图和底图进行语义分割,得到原图对应的第一语义布局图像和底图对应的第二语义布局图像。In
执行主体在获取到原图和底图后,可以分别对原图和底图进行语义分割,得到原图对应的第一语义布局图像和底图对应的第二语义布局图像。具体的,执行主体可以采用预先训练的语义分割网络实现上述语义分割,语义分割网络可以包括但不限于:全卷积网络、用于图像分割的深度卷积编码-解码网络。After the execution subject obtains the original image and the base image, it can perform semantic segmentation on the original image and the base image respectively to obtain the first semantic layout image corresponding to the original image and the second semantic layout image corresponding to the base image. Specifically, the executive body can use a pre-trained semantic segmentation network to implement the above semantic segmentation, and the semantic segmentation network can include but not limited to: a full convolutional network, a deep convolutional encoding-decoding network for image segmentation.
上述第一语义布局图像和第二语义布局图像中可以包括表示不同语义的区域。例如,第一语义布局图像中可以包括表示头部的区域、表示颈部的区域、表示身体的区域等等,第二语义布局图像中可以包括表示颈部的区域、表示身体的区域和表示四肢的区域等等。不同语义的区域可以采用不同的颜色来表示。The first semantic layout image and the second semantic layout image may include regions representing different semantics. For example, the first semantic layout image may include regions representing the head, regions representing the neck, regions representing the body, etc., and the second semantic layout image may include regions representing the neck, regions representing the body and limbs area etc. Regions with different semantics can be represented by different colors.
步骤203,将第一语义布局图像中的第一区域与第二语义布局图像中的第二区域进行融合,得到融合语义布局图像。In
执行主体在得到第一语义布局图像和第二语义布局图像后,可以提取第一语义布局图像中的第一区域和第二语义布局图像中的第二区域。这里,第一区域可以是第一对象中的至少一个部位,例如可以包括头部和头发。第二区域可以是第二对象中的至少一个部位,例如可以包括身体。After obtaining the first semantic layout image and the second semantic layout image, the execution subject may extract the first area in the first semantic layout image and the second area in the second semantic layout image. Here, the first region may be at least one part of the first object, for example, may include the head and hair. The second area may be at least one part of the second object, for example, may include the body.
然后,执行主体可以将上述第一区域与第二区域融合,得到的图像称为融合语义布局图像。具体的,执行主体可以将第一语义布局图像和第二语义布局图像输入预先训练的模型中,得到融合语义布局图像。或者,执行主体可以将第二语义布局图像中的第二区域与第一语义布局图像中的第一区域直接拼接。或者,执行主体可以将第二语义布局图像中第二区域之外的部分去除,将第一语义布局图像的第一区域移动到第二语义布局图像中。Then, the execution subject can fuse the above-mentioned first area with the second area, and the obtained image is called a fused semantic layout image. Specifically, the execution subject may input the first semantic layout image and the second semantic layout image into a pre-trained model to obtain a fused semantic layout image. Alternatively, the execution subject may directly join the second region in the second semantic layout image with the first region in the first semantic layout image. Or, the execution subject may remove the part outside the second area in the second semantic layout image, and move the first area of the first semantic layout image into the second semantic layout image.
步骤204,基于原图、底图以及融合语义布局图像,得到原图对应的目标图像。
执行主体在得到融合语义布局图像后,可以将原图的第一区域移到上述融合语义布局图像中,将底图的第二区域移到上述融合语义布局图像中。这样处理后的图像作为原图对应的目标图像。在一些具体的实践中,原图和底图均为人像,第一区域为头部区域和头发区域,第二区域为身体区域。执行主体可以在执行上述处理后,还可以对原图的头部区域和底图的身体区域的连接处,以及原图的头发区域和底图的身体区域的连接处,进行模糊或渐变处理,以使得处理后图像更自然。After obtaining the fused semantic layout image, the execution subject can move the first area of the original image to the fused semantic layout image, and move the second area of the base image to the fused semantic layout image. The image processed in this way is used as the target image corresponding to the original image. In some specific practices, both the original image and the base image are portraits, the first area is the head area and the hair area, and the second area is the body area. After performing the above processing, the execution subject can also perform blurring or gradient processing on the connection between the head area of the original image and the body area of the base image, and the connection between the hair area of the original image and the body area of the base image. In order to make the processed image more natural.
可以理解的是,上述目标图像可以理解为底图的换部位图像,即将原图的第一区域换到底图的第二区域之上,实现转换效果。It can be understood that the above-mentioned target image can be understood as a replacement part image of the base image, that is, the first area of the original image is replaced on the second area of the base image to achieve a conversion effect.
本公开的上述实施例提供的图像处理方法,可以将原图中的第一区域与底图中的第二区域结合,从而可以实现转换特效,提升用户体验。The image processing method provided by the above-mentioned embodiments of the present disclosure can combine the first area in the original image with the second area in the base image, so as to realize special conversion effects and improve user experience.
继续参见图3,其示出了根据本公开的图像处理方法的一个应用场景的示意图。在图3的应用场景中,用户在短视频应用中,输入原图301和底图302之后,就可以得到原图的换头图像303,得到的换头图像303真实自然,提高了娱乐性。Continue to refer to FIG. 3 , which shows a schematic diagram of an application scenario of the image processing method according to the present disclosure. In the application scenario of FIG. 3 , after the user enters the
继续参见图4,其示出了根据本公开的图像处理方法的另一个实施例的流程400。如图4所示,本实施例中的方法可以包括以下步骤:Continue referring to FIG. 4 , which shows a
步骤401,获取原图和底图。
步骤402,分别对原图和底图进行语义分割,得到原图对应的第一语义布局图像和底图对应的第二语义布局图像。In
步骤403,根据第一语义布局图像、第二语义布局图像以及预先训练的融合模型,确定融合语义布局图像。Step 403: Determine the fused semantic layout image according to the first semantic layout image, the second semantic layout image and the pre-trained fusion model.
本实施例中,执行主体在得到第一语义布局图像和第二语义布局图像后,可以将其输入到预先训练的融合模型中,该模型的输出即为融合语义布局图像。在这里,融合模型用于将第一语义布局图像中的第一区域与第二语义布局图像中的第二区域融合。融合模型可以是各种算法,例如可以是深度神经网络、卷积神经网络等。In this embodiment, after the execution subject obtains the first semantic layout image and the second semantic layout image, it can input them into a pre-trained fusion model, and the output of the model is the fusion semantic layout image. Here, the fusion model is used to fuse the first region in the first semantic layout image with the second region in the second semantic layout image. The fusion model can be various algorithms, for example, it can be a deep neural network, a convolutional neural network, and the like.
本实施例中,融合模型可以通过图4中未示出的以下步骤得到:获取多张对象图像,其中,对象图像包括与第一对象或第二对象类型相同的第三对象;对各对象图像进行随机破损,得到多张样本对象图像;根据各样本对象图像进行自监督学习,得到融合模型。In this embodiment, the fusion model can be obtained through the following steps not shown in FIG. 4: acquiring a plurality of object images, wherein the object images include a third object of the same type as the first object or the second object; for each object image Perform random damage to obtain multiple sample object images; perform self-supervised learning according to each sample object image to obtain a fusion model.
首先,执行主体需要获取多张对象图像。这里,每张对象图像中包括第一对象或第二对象类型相同的第三对象。即,如果第一对象为人体,第二对象为动物体,则第三对象可以为人体,也可以为动物体。需要说明的是,第三对象的动物体与第二对象的动物体类型相同,例如都为狗。First, the execution body needs to obtain multiple object images. Here, each object image includes a third object of the same type as the first object or the second object. That is, if the first object is a human body and the second object is an animal body, then the third object may be a human body or an animal body. It should be noted that the animal body of the third object is of the same type as the animal body of the second object, for example, both are dogs.
执行主体可以对各对象图像进行随机破损,得到多张样本对象图像。这里,考虑到对象图像中可能存在部分区域被遮挡,在融合不同的对象图像时需要扩大某些区域的情况,为了在训练的时候模拟这种场景,可以在训练时对获取的对象图像进行随机破损,这样可以让模型学会补全由于遮挡形成的空洞,或者重新生成某些区域,实现数据增强。以对象图像为人体图像来举例说明,有时会发生头发遮挡身体、衣服遮挡头部以及脖子区域需要重新扩大等情况,为了在训练的时候模拟这种场景,可以在训练时对获取的人体图像进行随机破损,这样可以让模型学会补全头发遮挡形成的空洞,或者重新生成脖子区域,实现数据增强。The execution subject can randomly destroy each object image to obtain multiple sample object images. Here, considering that some areas in the object image may be occluded, some areas need to be expanded when merging different object images, in order to simulate this scene during training, the acquired object images can be randomized during training. Damage, so that the model can learn to fill in the holes formed due to occlusion, or regenerate certain areas to achieve data enhancement. Taking the object image as a human body image as an example, sometimes hair covers the body, clothes cover the head, and the neck area needs to be re-expanded. In order to simulate this scene during training, the acquired human body image can be processed during training Random damage, so that the model can learn to fill in the holes formed by hair occlusion, or regenerate the neck area to achieve data enhancement.
执行主体可以根据各样本对象图像进行自监督学习,训练得到融合模型。自监督学习是一种非常有效的特征学习方法。自监督学习假设训练数据的类别标签未知,在此前提下通过训练数据本身的结构性假设对训练数据的特征进行学习。利用自监督学习方法对深度网络进行无监督预训练后,深度网络往往能够在下游的分类、监测、分割等计算机视觉任务上取得非常好的效果。具体的,执行主体可以使用自监督学习方法融合同一张对象图像的第一区域和第二区域。如果对象图像为人体图像,则可以使用自监督学习方法融合人体图像的头部区域、头发区域与身体区域。或者,执行主体可以将对象图像的各语义区域分割开,然后利用自监督学习方法融合同一张图像的各区域。根据融合后的图像与原始图像,确定损失函数。根据损失函数值对模型进行迭代更新,得到最终的融合模型。The execution subject can perform self-supervised learning according to each sample object image, and train to obtain a fusion model. Self-supervised learning is a very effective feature learning method. Self-supervised learning assumes that the category labels of the training data are unknown, and under this premise, the characteristics of the training data are learned through the structural assumptions of the training data itself. After unsupervised pre-training of deep networks using self-supervised learning methods, deep networks can often achieve very good results in downstream computer vision tasks such as classification, monitoring, and segmentation. Specifically, the execution subject may use a self-supervised learning method to fuse the first region and the second region of the same object image. If the object image is a human body image, a self-supervised learning method can be used to fuse the head region, hair region, and body region of the human body image. Or, the execution subject can separate the semantic regions of the object image, and then use the self-supervised learning method to fuse the regions of the same image. According to the fused image and the original image, determine the loss function. The model is iteratively updated according to the value of the loss function to obtain the final fusion model.
需要说明的是,训练融合模型的执行主体与本实施例的执行主体可以为同一电子设备,也可以不是同一电子设备。如果不是同一电子设备,则训练融合模型的执行主体可以将训练好的融合模型发送给本实施例的执行主体。It should be noted that the execution subject for training the fusion model and the execution subject of this embodiment may or may not be the same electronic device. If it is not the same electronic device, the executive body training the fusion model may send the trained fusion model to the execution body of this embodiment.
在本实施例的一些可选的实现方式中,训练融合模型的执行主体可以通过以下步骤对融合模型进行训练:对各样本对象图像进行语义分割,确定样本语义分割图像;将样本语义分割图像的第一区域与第二区域融合,根据融合后的图像与样本对象图像,对初始融合模型进行迭代更新,得到融合模型。In some optional implementations of this embodiment, the executive body of training the fusion model can train the fusion model through the following steps: perform semantic segmentation on each sample object image, determine the sample semantic segmentation image; The first region is fused with the second region, and the initial fusion model is iteratively updated according to the fused image and the image of the sample object to obtain the fusion model.
本实现方式中,可以首先对各样本对象图像进行语义分割,确定样本语义分割图像。具体的,执行主体可以利用现有的语义分割算法对各样本对象图像进行语义分割,得到各样本语义分割图像。然后,执行主体可以将样本样本语义分割图像的第一区域与第二区域融合,得到融合后的图像。然后,根据融合后的图像与样本对象图像,确定损失函数。然后根据损失函数值对初始融合模型的参数进行迭代更新。直至训练条件终止,得到最终的融合模型。In this implementation manner, each sample object image may first be semantically segmented to determine the sample semantically segmented image. Specifically, the execution subject can use the existing semantic segmentation algorithm to perform semantic segmentation on each sample object image to obtain each sample semantic segmentation image. Then, the execution subject may fuse the first region and the second region of the sample semantically segmented image to obtain a fused image. Then, according to the fused image and the sample object image, a loss function is determined. The parameters of the initial fusion model are then iteratively updated according to the loss function value. Until the training conditions are terminated, the final fusion model is obtained.
步骤404,分别对原图和底图中的不同语义区域多次加入噪声。
执行主体可以分别对原图和底图的不同语义区域多次加入噪声。具体的,执行主体可以每次对原图和底图的不同语义区域加入不同的噪声,例如加入随机高斯噪声。或者,对原图和底图的不同语义区域加入相同的噪声,或者每次只对一个语义区域加入噪声等等。The execution subject can add noise multiple times to different semantic regions of the original image and the base image. Specifically, the execution subject can add different noises to different semantic regions of the original image and the base image each time, such as adding random Gaussian noise. Or, add the same noise to different semantic regions of the original image and the base image, or add noise to only one semantic region at a time, etc.
在本实施例的一些可选的实现方式中,执行主体可以对原图的第一区域以及底图的第二区域多次加入随机高斯噪声,得到分别对应于原图和底图的噪声图像。In some optional implementations of this embodiment, the execution subject may add random Gaussian noise to the first area of the original image and the second area of the base image multiple times to obtain noise images respectively corresponding to the original image and the base image.
本实现方式中,执行主体可以根据语义分割图像,确定出原图的第一区域和底图的第二区域。然后分别对原图的第一区域以及底图的第二区域多次加入随机高斯噪声,得到分别对应于原图和底图的噪声图像。可以理解的是,原图对应的噪声图像为噪声图像集合,该集合中的每张噪声图像对应每次加入的噪声。In this implementation manner, the execution subject may segment the image semantically, and determine the first area of the original image and the second area of the base image. Then, random Gaussian noise is added to the first region of the original image and the second region of the base image for multiple times to obtain noise images respectively corresponding to the original image and the base image. It can be understood that the noise image corresponding to the original image is a noise image set, and each noise image in the set corresponds to the added noise each time.
步骤405,根据融合语义布局图像,对加入噪声后得到的噪声图像进行多次去噪处理,生成目标图像。
执行主体可以将加噪后的原图和底图中的不同语义区域按照融合语义布局图像中的各语义布局进行融合,得到融合后的加噪图像。最后,执行主体可以对上述融合后的加噪图像进行多次去噪。执行主体可以利用预先训练的去噪网络实现上述去噪。执行主体可以进一步将去噪后的图像直接作为目标图像,或者,对去噪后的图像进行进一步操作(例如平滑处理等)最终得到目标图像。The execution subject can fuse different semantic regions in the original image after noise addition and the base image according to each semantic layout in the fused semantic layout image to obtain a fused image with noise added. Finally, the execution subject may denoise the above-mentioned fused noised image multiple times. The execution subject can use the pre-trained denoising network to achieve the above denoising. The execution subject may further directly use the denoised image as the target image, or perform further operations on the denoised image (such as smoothing processing, etc.) to finally obtain the target image.
或者,执行主体可以将多次加噪后得到的原图中的第一区域和多次加噪后得到的底图中的第二区域,按照融合语义布局图像中的各语义区域进行拼接。然后对拼接后的图像进行多次去噪,将去噪后的图像直接作为处理后图像。Alternatively, the execution subject may splice the first region in the original image obtained after multiple noise additions and the second region in the base image obtained after multiple noise additions according to the semantic regions in the fused semantic layout image. Then denoise the spliced image multiple times, and use the denoised image directly as the processed image.
在本实施例的一些可选的实现方式中,执行主体可以通过以下步骤实现去噪:在每次去噪处理前,将原图对应的噪声图像中的第一区域与底图对应的噪声图像中的第二区域进行合成,得到合成噪声图像;对合成噪声图像进行去噪处理,以及在去噪的过程中生成融合语义布局图像中除第一区域以及第二区域之外的区域,直至去噪次数达到阈值,得到目标图像。In some optional implementations of this embodiment, the executive body can implement denoising through the following steps: Before each denoising process, the first area in the noise image corresponding to the original image is compared with the noise image corresponding to the base image Synthesize the second region in the image to obtain a synthetic noise image; perform denoising processing on the synthetic noise image, and generate regions other than the first region and the second region in the fusion semantic layout image during the denoising process until the denoising process When the number of noise reaches the threshold, the target image is obtained.
本实现方式中,在每次去噪处理前,可以首先合成原图对应的噪声图像中的第一区域与底图对应的噪声图像中的第二区域。具体的,执行主体可以对最后一次加噪得到的两个噪声图像进行合成处理,得到合成噪声图像。然后可以对合成噪声图像进行去噪处理。并在去噪的过程中生成融合语义布局图像中除第一区域以及第二区域之外的区域。直至去噪次数达到阈值,得到目标图像。需要说明的是,这里,除第一区域以及第二区域之外的区域的生成是由去噪处理直接得到的,即去噪处理的过程中会直接生成上述除第一区域以及第二区域之外的区域。In this implementation manner, before each denoising process, the first region in the noise image corresponding to the original image and the second region in the noise image corresponding to the base image may first be synthesized. Specifically, the execution subject may synthesize the two noise images obtained by the last noise addition to obtain a synthesized noise image. The synthetic noisy image can then be denoised. And in the process of denoising, generate regions other than the first region and the second region in the fused semantic layout image. Until the number of times of denoising reaches the threshold, the target image is obtained. It should be noted that, here, the generation of the regions other than the first region and the second region is directly obtained by the denoising process, that is, the above-mentioned regions except the first region and the second region will be directly generated during the denoising process. outside area.
在进一步的处理中,执行主体在每次去噪处理前还可以考虑特定的加噪图像。例如,加入噪声的总次数为M,在第N次去噪处理时,需要考虑上次去噪处理得到的去噪图像和第M-N次加噪处理得到的两个噪声图像。具体的,执行主体可以在第N次去噪处理前,将第N-1次去噪处理得到的图像与第M-N次加噪处理得到的分别与原图和底图对应的噪声图像进行合成,得到合成噪声图像。然后对上述合成噪声图像进行第N次去噪处理。In further processing, the execution subject may also consider a specific noise-added image before each denoising process. For example, the total number of noise additions is M, and in the N denoising process, the denoised image obtained in the last denoising process and the two noise images obtained in the M-N denoising processes need to be considered. Specifically, before the Nth denoising process, the execution subject can synthesize the image obtained by the N-1th denoising process and the noise image corresponding to the original image and the base image respectively obtained by the M-Nth denoising process, Get a synthetic noise image. Then, the Nth denoising process is performed on the above-mentioned synthesized noise image.
在本实施例的一些可选的实现方式中,第二对象也包括第一区域。在进行上述合成时,可以直接将原图对应的噪声图像中的第一区域替换底图对应的噪声图像中的第一区域。In some optional implementation manners of this embodiment, the second object also includes the first area. When performing the above synthesis, the first region in the noise image corresponding to the original image may be directly replaced with the first region in the noise image corresponding to the base image.
本实现方式中,在第二对象也包括第一区域时,执行主体可以直接将原图对应的噪声图像中的第一区域替换底图对应的噪声图像中的第一区域,提高处理效率。In this implementation, when the second object also includes the first region, the execution subject can directly replace the first region in the noise image corresponding to the original image with the first region in the noise image corresponding to the base image, so as to improve processing efficiency.
在进一步的实现方式中,在第N次去噪处理前,将第N-1次去噪处理得到的与原图对应的噪声图像中的第一区域替换第N-1次去噪处理得到的与底图对应的噪声图像中的第一区域,得到合成噪声图像,其中,N≥2。In a further implementation, before the Nth denoising process, the first area in the noise image corresponding to the original image obtained by the N-1th denoising process is replaced with the first region obtained by the N-1th denoising process The first area in the noise image corresponding to the base image is obtained to obtain a synthetic noise image, where N≥2.
本实现方式中,执行主体在第N次去噪处理前,可以首先确定第N-1次去噪处理得到的与原图对应的噪声图像和与底图对应的噪声图像。然后,可以将前者中的第一区域替换后者中的第一区域,得到合成噪声图像。这样可以保证目标图像中第一区域的效果和第二区域的效果一致。In this implementation manner, before the N denoising process, the execution subject may first determine the noise image corresponding to the original image and the noise image corresponding to the base image obtained by the N-1 denoising process. Then, the first region in the former can be replaced with the first region in the latter to obtain a synthetic noise image. This can ensure that the effect of the first area in the target image is consistent with the effect of the second area.
在对象图像为人体图像时,执行主体可以向原图的的头部区域、头发区域以及底图的身体区域多次加入随机高斯噪声,得到分别对应于原图和底图的噪声图像。然后,在为两张加噪后的图像去噪前,可以首先将原图对应的噪声图像中头部区域和头发区域和底图对应的噪声图像中的身体区域进行融合,在融合时需要考虑融合语义区域图像中各语义区域的轮廓等信息。融合得到的图像可以称为合成噪声图像。然后,执行主体可以对合成噪声图像进行去噪处理,直至去噪次数达到阈值,得到目标图像。When the object image is a human body image, the execution subject can add random Gaussian noise to the head region, hair region of the original image and body region of the base image multiple times to obtain noise images respectively corresponding to the original image and the base image. Then, before denoising the two noised images, you can first fuse the head area and hair area in the noise image corresponding to the original image with the body area in the noise image corresponding to the base image, which needs to be considered during fusion Information such as the contour of each semantic region in the semantic region image is fused. The fused image can be called a synthetic noise image. Then, the execution subject can perform denoising processing on the synthesized noise image until the number of times of denoising reaches a threshold to obtain the target image.
本实施例中,在去噪的过程中保留了原图的头部区域和头发区域的噪声,同时保留了底图的身体区域的噪声,从而能够实现处理后图像中头部区域、头发区域以及身体区域的完美重建,实现了头部、头发和服装的细节保留。In this embodiment, the noise of the head region and hair region of the original image is preserved during the denoising process, while the noise of the body region of the base image is retained, so that the head region, hair region and Flawless reconstruction of body regions with detail preservation of heads, hair and clothing.
结合图5a和图5b理解该实施例,在图5a中用户输入原图和底图。经语义分割后,可得到原图对应的语义布局图像和底图对应的语义布局图像。将两语义分割图像融合,可得到融合语义布局图像。在图5b中,将原图、底图以及融合语义布局图像输入预先训练的模型中,可以得到目标图像。This embodiment is understood in conjunction with Fig. 5a and Fig. 5b, in Fig. 5a, the user enters the original image and the base image. After semantic segmentation, the semantic layout image corresponding to the original image and the semantic layout image corresponding to the base image can be obtained. By fusing the two semantically segmented images, a fused semantic layout image can be obtained. In Figure 5b, the target image can be obtained by inputting the original image, the base image, and the fused semantic layout image into the pre-trained model.
本公开的上述实施例提供的图像处理方法,首先使用融合模型将两个不同人的语义区域结合起来,这可以看做是语义层面的融合。然后,利用预先训练的模型,并保留原始头部、头发和服装的细节,生成最终的头部交换结果,这可以看做是像素级的融合。通过这两个阶段,可以得到效果自然的换头图像。In the image processing method provided by the above-mentioned embodiments of the present disclosure, first, the fusion model is used to combine the semantic regions of two different people, which can be regarded as fusion at the semantic level. Then, using the pre-trained model and preserving the details of the original head, hair, and clothing, the final head-swapped result is generated, which can be viewed as a pixel-level fusion. Through these two stages, a natural head-changing image can be obtained.
进一步参考图6,作为对上述各图所示方法的实现,本公开提供了一种图像处理装置的一个实施例,该装置实施例与图2所示的方法实施例相对应,该装置具体可以应用于各种电子设备中。Further referring to FIG. 6 , as an implementation of the methods shown in the above figures, the present disclosure provides an embodiment of an image processing device. The device embodiment corresponds to the method embodiment shown in FIG. 2 , and the device can specifically Used in various electronic equipment.
如图6所示,本实施例的图像处理装置600包括:图像获取单元601、语义分割单元602、语义融合单元603和图像处理单元604。As shown in FIG. 6 , the image processing device 600 of this embodiment includes: an image acquisition unit 601 , a semantic segmentation unit 602 , a semantic fusion unit 603 and an image processing unit 604 .
图像获取单元601,被配置成获取原图和底图。其中,原图包括第一对象,底图包括第二对象。The image acquiring unit 601 is configured to acquire the original image and the base image. Wherein, the original image includes the first object, and the base image includes the second object.
语义分割单元602,被配置成分别对原图和底图进行语义分割,得到原图对应的第一语义布局图像和底图对应的第二语义布局图像。The semantic segmentation unit 602 is configured to perform semantic segmentation on the original image and the base image respectively, to obtain a first semantic layout image corresponding to the original image and a second semantic layout image corresponding to the base image.
语义融合单元603,被配置成将第一语义布局图像中的第一区域与第二语义布局图像中的第二区域进行融合,得到融合语义布局图像。其中,所述第一区域不同于第二区域。The semantic fusion unit 603 is configured to fuse the first region in the first semantic layout image with the second region in the second semantic layout image to obtain a fused semantic layout image. Wherein, the first area is different from the second area.
图像处理单元604,被配置成基于原图、底图以及融合语义布局图像,得到原图对应的目标图像。The image processing unit 604 is configured to obtain a target image corresponding to the original image based on the original image, the base image and the fused semantic layout image.
另外,在本申请的技术方案中,还提出了一种电子设备。In addition, in the technical solution of the present application, an electronic device is also proposed.
图7示出了本公开一实施例提供的一种电子设备的结构示意图。Fig. 7 shows a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
如图7所示,该电子设备可以包括处理器701、存储器702、总线703以及存储在存储器702上并可在处理器701上运行的计算机程序,其中,处理器701和存储器702通过总线703完成相互间的通信。所述处理器701执行所述计算机程序时实现上述方法的步骤,例如包括:获取原图和底图,其中,原图包括第一对象,底图包括第二对象;分别对原图和底图进行语义分割,得到原图对应的第一语义布局图像和底图对应的第二语义布局图像;将第一语义布局图像中的第一区域与第二语义布局图像中的第二区域进行融合,得到融合语义布局图像,其中,第一区域不同于第二区域;基于原图、底图以及融合语义布局图像,得到原图对应的目标图像。As shown in FIG. 7 , the electronic device may include a
另外,本公开一实施例中还提供了一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述方法的步骤,例如包括:获取原图和底图,其中,原图包括第一对象,底图包括第二对象;分别对原图和底图进行语义分割,得到原图对应的第一语义布局图像和底图对应的第二语义布局图像;将第一语义布局图像中的第一区域与第二语义布局图像中的第二区域进行融合,得到融合语义布局图像,其中,第一区域不同于第二区域;基于原图、底图以及融合语义布局图像,得到原图对应的目标图像。In addition, an embodiment of the present disclosure also provides a non-transitory computer-readable storage medium, on which a computer program is stored. When the computer program is executed by a processor, the steps of the above method are implemented, for example, including: acquiring the original image and A base image, wherein the original image includes a first object, and the base image includes a second object; the original image and the base image are respectively semantically segmented to obtain a first semantic layout image corresponding to the original image and a second semantic layout image corresponding to the base image ; The first region in the first semantic layout image is fused with the second region in the second semantic layout image to obtain a fusion semantic layout image, wherein the first region is different from the second region; based on the original image, the base map and The semantic layout image is fused to obtain the target image corresponding to the original image.
综上所述,在本公开的技术方案中,可以将原图中的第一区域与底图中的第二区域结合,从而可以实现转换特效,提升用户体验。To sum up, in the technical solution of the present disclosure, the first area in the original image can be combined with the second area in the base image, so as to realize conversion effects and improve user experience.
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开保护的范围之内。The above descriptions are only preferred embodiments of the present disclosure, and are not intended to limit the present disclosure. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present disclosure shall be included in the present disclosure within the scope of protection.
Claims (12)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310115703.8A CN116128999A (en) | 2023-02-01 | 2023-02-01 | Image processing method, device, electronic device and storage medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310115703.8A CN116128999A (en) | 2023-02-01 | 2023-02-01 | Image processing method, device, electronic device and storage medium |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN116128999A true CN116128999A (en) | 2023-05-16 |
Family
ID=86311516
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310115703.8A Pending CN116128999A (en) | 2023-02-01 | 2023-02-01 | Image processing method, device, electronic device and storage medium |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN116128999A (en) |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20200134834A1 (en) * | 2018-10-31 | 2020-04-30 | Adobe Inc. | Automatic object replacement in an image |
| US20200329187A1 (en) * | 2019-04-09 | 2020-10-15 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method of Image Processing Based on Plurality of Frames of Images, Electronic Device, and Storage Medium |
| CN112037142A (en) * | 2020-08-24 | 2020-12-04 | 腾讯科技(深圳)有限公司 | Image denoising method and device, computer and readable storage medium |
| CN112184886A (en) * | 2020-09-28 | 2021-01-05 | 北京乐学帮网络技术有限公司 | Image processing method and device, computer equipment and storage medium |
| CN112200889A (en) * | 2020-10-30 | 2021-01-08 | 上海商汤智能科技有限公司 | Sample image generation, image processing, intelligent driving control method and device |
| CN112419328A (en) * | 2019-08-22 | 2021-02-26 | 北京市商汤科技开发有限公司 | Image processing method and device, electronic equipment and storage medium |
| CN113344832A (en) * | 2021-05-28 | 2021-09-03 | 杭州睿胜软件有限公司 | Image processing method and device, electronic equipment and storage medium |
| CN113689373A (en) * | 2021-10-21 | 2021-11-23 | 深圳市慧鲤科技有限公司 | Image processing method, device, equipment and computer readable storage medium |
| WO2022135490A1 (en) * | 2020-12-25 | 2022-06-30 | 百果园技术(新加坡)有限公司 | Facial image synthesis method, system, electronic device, and storage medium |
| CN115222630A (en) * | 2022-08-09 | 2022-10-21 | 中国科学院自动化研究所 | Image generation method, image denoising model training method and device |
-
2023
- 2023-02-01 CN CN202310115703.8A patent/CN116128999A/en active Pending
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20200134834A1 (en) * | 2018-10-31 | 2020-04-30 | Adobe Inc. | Automatic object replacement in an image |
| US20200329187A1 (en) * | 2019-04-09 | 2020-10-15 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method of Image Processing Based on Plurality of Frames of Images, Electronic Device, and Storage Medium |
| CN112419328A (en) * | 2019-08-22 | 2021-02-26 | 北京市商汤科技开发有限公司 | Image processing method and device, electronic equipment and storage medium |
| CN112037142A (en) * | 2020-08-24 | 2020-12-04 | 腾讯科技(深圳)有限公司 | Image denoising method and device, computer and readable storage medium |
| CN112184886A (en) * | 2020-09-28 | 2021-01-05 | 北京乐学帮网络技术有限公司 | Image processing method and device, computer equipment and storage medium |
| CN112200889A (en) * | 2020-10-30 | 2021-01-08 | 上海商汤智能科技有限公司 | Sample image generation, image processing, intelligent driving control method and device |
| WO2022135490A1 (en) * | 2020-12-25 | 2022-06-30 | 百果园技术(新加坡)有限公司 | Facial image synthesis method, system, electronic device, and storage medium |
| CN113344832A (en) * | 2021-05-28 | 2021-09-03 | 杭州睿胜软件有限公司 | Image processing method and device, electronic equipment and storage medium |
| CN113689373A (en) * | 2021-10-21 | 2021-11-23 | 深圳市慧鲤科技有限公司 | Image processing method, device, equipment and computer readable storage medium |
| CN115222630A (en) * | 2022-08-09 | 2022-10-21 | 中国科学院自动化研究所 | Image generation method, image denoising model training method and device |
Non-Patent Citations (2)
| Title |
|---|
| QINGHE WANG等: "HS-Diffusion: Semantic-Mixing Diffusion for Head Swapping", HTTPS://ARXIV.ORG/PDF/2212.06458V1, 13 December 2022 (2022-12-13), pages 1 - 4 * |
| 白瑞君;李众;张启尧;刘方涛;: "一种改进的深度卷积神经网络图像去噪算法", 科学技术与工程, no. 36, 28 December 2019 (2019-12-28) * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Jo et al. | SC-FEGAN: Face editing generative adversarial network with user's sketch and color | |
| CN111553267B (en) | Image processing method, image processing model training method and device | |
| CN110070483B (en) | Portrait cartoon method based on generation type countermeasure network | |
| KR102646293B1 (en) | Image-to-image transformation using unpaired data for supervised learning | |
| JP2022503647A (en) | Cross-domain image conversion | |
| CN114187165B (en) | Image processing method and device | |
| CN117252791A (en) | Image processing method, device, electronic equipment and storage medium | |
| US12340440B2 (en) | Adaptive convolutions in neural networks | |
| WO2022022043A1 (en) | Head image generation method, apparatus, server, and storage medium | |
| CN110263872B (en) | Training data processing method and device | |
| CN113177892A (en) | Method, apparatus, medium, and program product for generating image inpainting model | |
| CN116109733A (en) | Text-driven image editing method, device, electronic equipment and storage medium | |
| WO2022178975A1 (en) | Noise field-based image noise reduction method and apparatus, device, and storage medium | |
| CN114331894A (en) | A face image inpainting method based on latent feature reconstruction and mask perception | |
| CN116977195A (en) | Adjustment method, device, equipment and storage medium for restoration model | |
| CN113033677A (en) | Video classification method and device, electronic equipment and storage medium | |
| CN118823153A (en) | Image generation method, device, equipment and storage medium | |
| US20220101145A1 (en) | Training energy-based variational autoencoders | |
| CN114399668A (en) | Method and device for generating natural images based on hand-drawn sketches and image sample constraints | |
| CN117576265A (en) | Method, device, computer equipment and storage medium for generating style image | |
| CN113223128B (en) | Method and apparatus for generating image | |
| CN110753264A (en) | Video generation method, device and device | |
| CN116128999A (en) | Image processing method, device, electronic device and storage medium | |
| CN118887076A (en) | Image processing method, device, electronic device and storage medium | |
| CN118736074A (en) | Video generation method, device, equipment and storage medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |