CN116127111A - Image search method, device, electronic device and computer-readable storage medium - Google Patents
Image search method, device, electronic device and computer-readable storage medium Download PDFInfo
- Publication number
- CN116127111A CN116127111A CN202310002114.9A CN202310002114A CN116127111A CN 116127111 A CN116127111 A CN 116127111A CN 202310002114 A CN202310002114 A CN 202310002114A CN 116127111 A CN116127111 A CN 116127111A
- Authority
- CN
- China
- Prior art keywords
- picture
- style
- input
- search
- feature vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/53—Querying
- G06F16/532—Query formulation, e.g. graphical querying
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/53—Querying
- G06F16/535—Filtering based on additional data, e.g. user or group profiles
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/54—Browsing; Visualisation therefor
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
技术领域technical field
本公开涉及人工智能技术领域,尤其涉及图像处理领域和智能搜索领域。The present disclosure relates to the technical field of artificial intelligence, in particular to the field of image processing and the field of intelligent search.
背景技术Background technique
图片搜索技术的应用在互联网上已经非常广泛,基本过程是:用户通过输入查询信息表达搜索意图,搜索引擎基于用户输入的查询信息,搜索出相关的图片;在搜索引擎提供的页面上,用户通过翻页、筛选等手段,浏览并获取图片。Image search technology has been widely used on the Internet. The basic process is: the user expresses the search intention by inputting query information, and the search engine searches out relevant images based on the query information input by the user; on the page provided by the search engine, the user passes Browse and obtain pictures by means of page turning and screening.
为了提升图片搜索的效果,搜索引擎从支持文本搜图,发展到支持基于图片内容进行搜索(以图搜图),以及支持基于文本与图片结合作为查询信息的多模态搜索。然而,现有的图片搜索结果仍无法很好地满足用户需求。In order to improve the effect of image search, search engines have evolved from supporting text search to images based on image content (image search), and multimodal search based on the combination of text and images as query information. However, the existing image search results still cannot well satisfy user needs.
发明内容Contents of the invention
本公开提供了一种图片搜索方法、装置、电子设备和计算机可读存储介质。The present disclosure provides a picture search method, device, electronic equipment and computer-readable storage medium.
根据本公开的一方面,提供了一种图片搜索方法,包括:According to an aspect of the present disclosure, a method for image search is provided, including:
获取查询信息;Obtain query information;
基于查询信息,确定至少一个图片风格;Determine at least one picture style based on the query information;
基于至少一个图片风格,生成至少一个输入图片;generating at least one input image based on at least one image style;
基于至少一个输入图片,搜索至少一个目标图片。Based on at least one input picture, at least one target picture is searched.
根据本公开的另一方面,提供了一种图片搜索装置,包括:According to another aspect of the present disclosure, an image search device is provided, including:
查询获取模块,用于获取查询信息;A query acquisition module, configured to acquire query information;
风格确定模块,用于基于查询信息,确定至少一个图片风格;A style determining module, configured to determine at least one picture style based on the query information;
输入确定模块,用于基于至少一个图片风格,生成至少一个输入图片;An input determination module, configured to generate at least one input image based on at least one image style;
图片搜索模块,用于基于至少一个输入图片,搜索至少一个目标图片。An image search module, configured to search for at least one target image based on at least one input image.
根据本公开的另一方面,提供了一种电子设备,包括:According to another aspect of the present disclosure, an electronic device is provided, including:
至少一个处理器;以及at least one processor; and
与该至少一个处理器通信连接的存储器;其中,a memory communicatively coupled to the at least one processor; wherein,
该存储器存储有可被该至少一个处理器执行的指令,该指令被该至少一个处理器执行,以使该至少一个处理器能够执行本公开实施例中任一的方法。The memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor can execute any method in the embodiments of the present disclosure.
根据本公开的另一方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,其中,该计算机指令用于使该计算机执行根据本公开实施例中任一的方法。According to another aspect of the present disclosure, there is provided a non-transitory computer-readable storage medium storing computer instructions, wherein the computer instructions are used to cause the computer to execute the method according to any one of the embodiments of the present disclosure.
根据本公开的另一方面,提供了一种计算机程序产品,包括计算机程序,该计算机程序在被处理器执行时实现根据本公开实施例中任一的方法。According to another aspect of the present disclosure, there is provided a computer program product, including a computer program, which, when executed by a processor, implements the method according to any one of the embodiments of the present disclosure.
根据本公开实施例的技术方案,在获取查询信息后,基于查询信息确定至少一个图片风格,并基于该图片风格生成至少一个输入图片,利用该至少一个输入图片进行目标图片的搜索。由于利用了基于查询信息确定的图片风格,生成输入图片,提高了对用户的搜索需求的表达效果以及丰富了表达多样性,从而有利于获得满足用户需求的图片搜索结果,提升用户的搜索效率。According to the technical solutions of the embodiments of the present disclosure, after the query information is acquired, at least one picture style is determined based on the query information, and at least one input picture is generated based on the picture style, and the at least one input picture is used to search for a target picture. Since the image style determined based on the query information is used to generate the input image, the expression effect of the user's search needs is improved and the expression diversity is enriched, thereby helping to obtain image search results that meet the user's needs and improving the user's search efficiency.
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。It should be understood that what is described in this section is not intended to identify key or important features of the embodiments of the present disclosure, nor is it intended to limit the scope of the present disclosure. Other features of the present disclosure will be readily understood through the following description.
附图说明Description of drawings
附图用于更好地理解本方案,不构成对本公开的限定。其中:The accompanying drawings are used to better understand the present solution, and do not constitute a limitation to the present disclosure. in:
图1是本公开实施例提供的图片搜索方法的示例性应用场景的示意图;FIG. 1 is a schematic diagram of an exemplary application scenario of a picture search method provided by an embodiment of the present disclosure;
图2是本公开一实施例提供的图片搜索方法的流程示意图;FIG. 2 is a schematic flowchart of a picture search method provided by an embodiment of the present disclosure;
图3是本公开一实施例提供的图片搜索方法中优化目标的示意图;Fig. 3 is a schematic diagram of an optimization target in an image search method provided by an embodiment of the present disclosure;
图4是本公开实施例的图片搜索方法的一个应用示例的示意图;FIG. 4 is a schematic diagram of an application example of a picture search method according to an embodiment of the present disclosure;
图5是本公开一实施例提供的图片搜索装置的示意性框图;Fig. 5 is a schematic block diagram of an image search device provided by an embodiment of the present disclosure;
图6是本公开另一实施例提供的图片搜索装置的示意性框图;Fig. 6 is a schematic block diagram of an image search device provided by another embodiment of the present disclosure;
图7是用来实现本公开实施例的图片搜索方法的电子设备的框图。FIG. 7 is a block diagram of an electronic device for implementing a picture search method according to an embodiment of the present disclosure.
具体实施方式Detailed ways
以下结合附图对本公开的示范性实施例做出说明,其中包括本公开实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本公开的范围。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。Exemplary embodiments of the present disclosure are described below in conjunction with the accompanying drawings, which include various details of the embodiments of the present disclosure to facilitate understanding, and they should be regarded as exemplary only. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope of the present disclosure. Also, descriptions of well-known functions and constructions are omitted in the following description for clarity and conciseness.
为了便于理解本公开实施例的图片搜索方法,下面先对该方法的应用场景进行介绍。图1示出了本公开实施例提供的图片搜索方法的示例性应用场景的示意图。本公开实施例提供的图片搜索方法,可以应用于图片搜索装置12。图片搜索装置12可以部署于电子设备,该电子设备例如是单机或多机的终端、服务器或其他处理设备。如图1所示,图片搜索装置可以与用户设备11进行交互,接收用户设备的搜索请求,该请求中携带查询信息(query)。图片搜索装置12基于查询信息搜索查询信息对应的目标图片。In order to facilitate the understanding of the image search method in the embodiment of the present disclosure, the application scenarios of the method are firstly introduced below. Fig. 1 shows a schematic diagram of an exemplary application scenario of a picture search method provided by an embodiment of the present disclosure. The image search method provided by the embodiment of the present disclosure may be applied to the
根据本公开实施例的图片搜索方法,在搜索目标图片的过程中,可以基于查询信息生成输入图片,以利用输入图片进行目标图片的搜索。作为示例而非限定,如图1所示,图片搜索装置12可以与AIGC(AI Generated Content,人工智能生成内容)服务器交互,通过AIGC服务器生成输入图片,从而提高对用户的搜索需求的表达效果以及丰富表达多样性,有利于搜索到满足用户的搜索需求的目标图片。According to the picture search method of the embodiment of the present disclosure, in the process of searching for a target picture, an input picture may be generated based on query information, so as to use the input picture to search for a target picture. As an example and not a limitation, as shown in Figure 1, the
图2示出了本公开一实施例提供的图片搜索方法的流程示意图。如图2所示,该方法可以包括:Fig. 2 shows a schematic flowchart of a picture search method provided by an embodiment of the present disclosure. As shown in Figure 2, the method may include:
步骤S210、获取查询信息;Step S210, obtaining query information;
步骤S220、基于查询信息,确定至少一个图片风格;Step S220, based on the query information, determine at least one picture style;
步骤S230、基于至少一个图片风格,生成至少一个输入图片;Step S230, generating at least one input picture based on at least one picture style;
步骤S240、基于至少一个输入图片,搜索至少一个目标图片。Step S240, based on at least one input picture, search for at least one target picture.
在本公开实施例中,查询信息(query)是用于表征用户的搜索需求或者说搜索意图的信息。示例性地,查询信息可以包括文本信息,例如关键词、查询词等。查询信息也可以包括图片信息,或者既包括文本信息,也包括图片信息。In the embodiments of the present disclosure, query information (query) is information used to characterize a user's search requirement or search intention. Exemplarily, the query information may include text information, such as keywords, query words, and the like. The query information may also include picture information, or both text information and picture information.
示例性地,在本公开实施例中,基于查询信息确定的至少一个图片风格可以包括动漫、素描、艺术、抽象、中国风、科技感等。该图片风格用于生成至少一个输入图片。示例性地,可以基于至少一个图片风格以及查询信息中的语义信息,生成至少一个输入图片,使得输入图片可以与查询信息中的语义信息相关。Exemplarily, in this embodiment of the present disclosure, at least one picture style determined based on the query information may include animation, sketch, art, abstraction, Chinese style, sense of science and technology, and the like. The picture style is used to generate at least one input picture. Exemplarily, at least one input picture may be generated based on at least one picture style and semantic information in the query information, so that the input picture may be related to the semantic information in the query information.
在本公开实施例中,目标图片可以是在图片库中搜索到的与查询信息对应的图片。示例性地,可以对输入图片的特征信息与图片库中的各图片的特征信息进行匹配,将匹配到的图片作为该目标图片。In the embodiment of the present disclosure, the target picture may be a picture corresponding to the query information searched in the picture library. Exemplarily, the characteristic information of the input picture may be matched with the characteristic information of each picture in the picture library, and the matched picture may be used as the target picture.
在上述图片搜索方法中,通过生成输入图片,可以丰富对用户的搜索需求的表达多样性,同时,由于输入图片的图片风格是基于查询信息确定的,因此,有利于使生成的图片与用户的搜索需求相匹配,提高了对用户的搜索需求的表达效果。基于此,上述图片搜索方法有利于获得满足用户需求的图片搜索结果,提升用户的搜索效率。In the above image search method, by generating the input image, the expression diversity of the user's search needs can be enriched. At the same time, since the image style of the input image is determined based on the query information, it is beneficial to make the generated image consistent with the user's The search requirements are matched, and the expression effect of the user's search requirements is improved. Based on this, the above image search method is conducive to obtaining image search results that meet user needs and improving user search efficiency.
在一个示例性的实施方式中,步骤S220、基于查询信息,确定至少一个图片风格,可以包括:基于查询信息中的文本信息,搜索至少一个参考图片;基于至少一个参考图片中的每个参考图片的风格标签进行聚合,得到至少一个图片风格。In an exemplary embodiment, step S220, determining at least one picture style based on the query information may include: searching for at least one reference picture based on the text information in the query information; based on each reference picture in the at least one reference picture The style tags are aggregated to obtain at least one image style.
在该实施方式中,查询信息包括文本信息。对于文本形式的查询信息,可以通过在图片库中搜索与该文本信息相关的图片作为参考图片,进而通过对参考图片的风格标签进行聚合,得到与查询信息对应的至少一个图片风格。In this embodiment, the query information includes text information. For query information in the form of text, at least one picture style corresponding to the query information can be obtained by searching for pictures related to the text information in the picture database as reference pictures, and then by aggregating the style tags of the reference pictures.
示例性地,可以根据风格标签对至少一个参考图片进行分组,从而得到至少一个风格标签分别对应的至少一组参考图片。根据每组参考图片中的图片数量,确定与查询信息对应的图片风格。例如,将图片数量最多的一组参考图片所对应的风格标签,作为与查询信息对应的图片风格。Exemplarily, the at least one reference picture may be grouped according to the style tag, so as to obtain at least one group of reference pictures respectively corresponding to the at least one style tag. According to the number of pictures in each group of reference pictures, the picture style corresponding to the query information is determined. For example, the style tags corresponding to a group of reference pictures with the largest number of pictures are used as the picture style corresponding to the query information.
采用上述实施方式,可以将文本形式的查询信息转换为与图片相关的图片风格,从而有利于利用文本形式的查询信息生成输入图片,丰富对用户搜索需求的表达多样性。By adopting the above embodiments, the query information in the form of text can be converted into a picture style related to the picture, which is beneficial to generate an input picture by using the query information in the form of text, and enriches the expression diversity of the user's search needs.
在一个示例性的实施方式中,步骤S220、基于查询信息,确定至少一个图片风格,包括:基于查询信息中的图片信息进行风格识别,得到至少一个图片风格。In an exemplary embodiment, step S220, determining at least one picture style based on the query information includes: performing style recognition based on picture information in the query information to obtain at least one picture style.
在该实施方式中,查询信息包括图片信息。对于图片形式的查询信息,可以通过对查询信息中的图片信息进行风格识别,即参考对查询信息的视觉理解,得到图片风格。In this embodiment, the query information includes picture information. For the query information in the form of a picture, the style of the picture can be obtained by performing style recognition on the picture information in the query information, that is, referring to the visual understanding of the query information.
根据该实施方式,基于查询信息中的图片信息进行风格识别,可以使得到的图片风格与用户搜索需求具有较高的匹配度,从而提高了图片风格的准确性,相应地提高了输入图片对用户搜索需求的表达效果。According to this embodiment, the style recognition based on the picture information in the query information can make the obtained picture style have a high degree of matching with the user's search requirements, thereby improving the accuracy of the picture style and correspondingly improving the input picture's effect on the user. The expression effect of search requirements.
在一些示例中,查询信息可以包括文本信息和图片信息,则该风格识别的实施方式可以与前述基于参考图片聚合得到图片风格的实施方式结合。例如,在查询信息包括文本信息和图片信息的情况下,可以基于文本信息搜索参考图片,并基于参考图片的风格标签聚合得到一部分图片风格;比并基于图片信息进行风格识别,得到另一部分图片风格。In some examples, the query information may include text information and picture information, and the style recognition implementation may be combined with the aforementioned implementation of obtaining picture style based on reference picture aggregation. For example, when the query information includes text information and picture information, you can search for reference pictures based on the text information, and get a part of the picture style based on the style tags of the reference pictures; compare and identify the style based on the picture information, and get another part of the picture style .
可选地,还可以向用户展示基于查询信息确定的至少一个图片风格,从而根据用户输入的选择指令,在聚合得到的图片风格中确定出用于生成输入图片的图片风格。Optionally, at least one picture style determined based on the query information may also be displayed to the user, so that the picture style used to generate the input picture is determined from the aggregated picture styles according to the selection instruction input by the user.
可选地,除了基于查询信息确定的图片风格或根据用户的选择指令确定的图片风格之外,还可以结合预先设置的一个或多个图片风格,得到用于生成输入图片的图片风格。Optionally, in addition to the picture style determined based on the query information or the picture style determined according to the user's selection instruction, one or more preset picture styles can also be combined to obtain the picture style used to generate the input picture.
在一个示例性的实施方式中,步骤S230、基于至少一个图片风格,生成至少一个输入图片,包括:针对至少一个图片风格中的每个图片风格,采用AIGC(人工智能生成内容)的方式,生成与查询信息中的语义信息相关且具有该图片风格的输入图片。In an exemplary embodiment, step S230, generating at least one input picture based on at least one picture style includes: for each picture style in the at least one picture style, using AIGC (Artificial Intelligence Generated Content) to generate An input image that is related to the semantic information in the query information and has the image style.
示例性地,可以采用AIGC服务器生成输入图片。AIGC可以在秒级别由计算机算法自动生成更多可能的图片,且AIGC可以有各种风格和形式(融合模式、拼接模式等)的配置,从而可生成多样化的在风格和语义层面相关的输入图片。Exemplarily, an AIGC server may be used to generate an input picture. AIGC can automatically generate more possible pictures by computer algorithms at the second level, and AIGC can be configured in various styles and forms (fusion mode, splicing mode, etc.), so that it can generate diverse input related to style and semantics picture.
根据该实施方式,采用AIGC的方式扩展输入图片的多样性,同时AIGC的方式可以基于查询信息中的语义信息以及预先确定的风格生成匹配度高的输入图片,因此也可以提高输入图片对用户搜索需求的表达准确性。According to this embodiment, the AIGC method is used to expand the diversity of input pictures, and at the same time, the AIGC method can generate input pictures with a high matching degree based on the semantic information in the query information and the predetermined style, so it can also improve the search efficiency of input pictures for users. Accuracy of expression of requirements.
可选地,在基于图片风格生成至少一个输入图片后,也可以向用户展示该输入图片,从而根据用户输入的选择指令,在生成的输入图片中确定出用于搜索目标图片的输入图片。Optionally, after at least one input picture is generated based on the style of the picture, the input picture may also be displayed to the user, so that according to a selection instruction input by the user, the input picture used for searching the target picture is determined among the generated input pictures.
在一个示例性的实施方式中,步骤S240、基于至少一个输入图片,搜索至少一个目标图片,包括:确定至少一个输入图片中的每个输入图片的特征向量;基于每个输入图片的特征向量以及图片库中的每个图片的特征向量,在图片库中搜索至少一个目标图片。In an exemplary embodiment, step S240, searching for at least one target picture based on at least one input picture includes: determining a feature vector of each input picture in at least one input picture; based on the feature vector of each input picture and The feature vector of each picture in the picture library, search for at least one target picture in the picture library.
采用该实施方式,以特征向量表征图片,从而可以利用特征向量对各图片信息进行精细化的表达和计算。基于此,可以提升在图片库中搜索目标图片的效率,且有利于控制计算资源开销。With this embodiment, the picture is represented by a feature vector, so that the feature vector can be used to perform refined expression and calculation of information of each picture. Based on this, the efficiency of searching for target pictures in the picture library can be improved, and it is beneficial to control the cost of computing resources.
在一个示例性的实施方式中,基于每个输入图片的特征向量以及图片库中的每个图片的特征向量,在图片库中搜索至少一个目标图片,包括:基于每个输入图片的特征向量与图片库中的每个图片的特征向量之间的距离,在图片库中搜索满足优化目标的至少一个目标图片;其中,优化目标包括:每个输入图片与至少一个目标图片中的每个目标图片之间的距离的总和最小。In an exemplary embodiment, based on the feature vector of each input picture and the feature vector of each picture in the picture library, searching for at least one target picture in the picture library includes: based on the feature vector of each input picture and The distance between the feature vectors of each picture in the picture library, search for at least one target picture that meets the optimization goal in the picture library; wherein, the optimization goal includes: each target picture in each input picture and at least one target picture The sum of the distances between them is the smallest.
为了更清楚地说明该实施方式中的优化目标,图3示出了该优化目标的示意图。如图3所示,假设基于至少一个图片风格生成了多个输入图片,并且经用户选择后确定输入图片1和输入图片2用于搜索目标图片,根据上述实施方式,首先获取各输入图片以及图片库中的各图片的特征向量,如图3所示的输入图片1和2对应的特征向量1和2,以及图片库中图片A至图片E对应的特征向量A至特征向量E。若预先设置目标图片的数量为3个,则搜索到的3个目标图片,需满足的优化目标为这3个目标图片的特征向量分别与特征向量1的距离以及这3个目标图片的特征向量分别与特征向量2的距离的总和最小,即最小化输入图片和目标图片之间的距离总和。换句话说,在图片库中的任意3个图片的组合所对应的距离总和中,上述3个目标图片所对应的距离总和最小。以图片A、图片D和图片E为例,该距离总和为特征向量1与特征向量A的距离、特征向量1与特征向量D的距离、特征向量1与特征向量E的距离、特征向量2与特征向量A的距离、特征向量2与特征向量D的距离、以及特征向量2与特征向量E的距离的总和。In order to illustrate the optimization goal in this embodiment more clearly, FIG. 3 shows a schematic diagram of the optimization goal. As shown in FIG. 3 , assuming that a plurality of input pictures are generated based on at least one picture style, and after selection by the user, input picture 1 and input picture 2 are determined to be used for searching target pictures. The eigenvectors of each picture in the library are the eigenvectors 1 and 2 corresponding to the input pictures 1 and 2 shown in FIG. 3 , and the eigenvectors A to E corresponding to the pictures A to E in the picture library. If the number of target pictures is set to 3 in advance, then the searched 3 target pictures need to satisfy the optimization objectives of the distances between the feature vectors of these 3 target pictures and feature vector 1 and the feature vectors of these 3 target pictures The sum of the distances from the feature vector 2 is the smallest, that is, the sum of the distances between the input image and the target image is minimized. In other words, among the sum of distances corresponding to any combination of three pictures in the picture library, the sum of distances corresponding to the above three target pictures is the smallest. Taking picture A, picture D and picture E as examples, the sum of the distances is the distance between feature vector 1 and feature vector A, the distance between feature vector 1 and feature vector D, the distance between feature vector 1 and feature vector E, the distance between feature vector 2 and The sum of the distance of eigenvector A, the distance of eigenvector 2 from eigenvector D, and the distance of eigenvector 2 from eigenvector E.
传统的基于向量输入图片的方式,一次只针对一个输入的特征向量在图片库中的各图片的特征向量中搜索距离最近的向量。而根据上述实施方式,一次向量搜索过程中,以至少一个输入图片所对应的各个距离计算总和,以输入图片整体与目标图片整体的距离最小为优化目标,从而可以通过一次搜索获得符合数量需求的目标图片,提升搜索速度且降低计算资源开销。In the traditional way of inputting pictures based on vectors, only one input feature vector is searched for the closest vector among the feature vectors of each picture in the picture library at a time. However, according to the above-mentioned embodiment, in a vector search process, the sum is calculated based on the respective distances corresponding to at least one input picture, and the optimization goal is to minimize the distance between the entire input picture and the target picture as a whole, so that the vectors that meet the quantity requirements can be obtained through one search. Target images, improve search speed and reduce computing resource overhead.
在一个示例性的实施方式中,图片搜索方法还可以包括:显示至少一个输入图片所对应的至少一个风格标签;响应于接收到对至少一个风格标签中的第一风格标签的选择指令,根据每个目标图片的特征向量与第一风格标签所对应的输入图片的特征向量之间的距离,对至少一个目标图片进行排序显示。In an exemplary embodiment, the image search method may further include: displaying at least one style tag corresponding to at least one input image; in response to receiving a selection instruction for the first style tag in the at least one style tag, according to each The distance between the feature vectors of each target picture and the feature vector of the input picture corresponding to the first style label is used to sort and display at least one target picture.
例如,在图片搜索结果页面中,首先按默认排序显示至少一个目标图片,同时提供风格筛选框,在风格筛选框中显示用于搜索目标图片的各输入图片所对应的风格标签,接收用户对风格标签的选择指令。若用户选择第一风格标签,则确定该第一风格标签所对应的输入图片,按照各目标图片的特征向量与该输入图片的特征向量之间的距离,对个目标图片进行排序显示。For example, in the picture search result page, at least one target picture is firstly displayed according to the default sorting, and a style filter box is provided at the same time, and the style labels corresponding to each input picture used to search for the target picture are displayed in the style filter box, and the user's style selection is received. Label selection command. If the user selects the first style label, the input picture corresponding to the first style label is determined, and the target pictures are sorted and displayed according to the distance between the feature vectors of each target picture and the feature vector of the input picture.
该实施方式中,根据用户选择的风格标签对目标图片进行排序显示,从而可以优化目标图片的显示效果,有利于用户快速获取符合需求的图片,提高搜索效率。In this embodiment, the target pictures are sorted and displayed according to the style tags selected by the user, so that the display effect of the target pictures can be optimized, which is beneficial for the user to quickly obtain pictures that meet the needs and improve the search efficiency.
为了更清楚地理解上述图片搜索方法,下面提供一个具体的应用示例。图4是本公开实施例的图片搜索方法的一个应用示例的示意图。如图4所示,该方法包括以下步骤:In order to understand the above image search method more clearly, a specific application example is provided below. Fig. 4 is a schematic diagram of an application example of the image search method of the embodiment of the present disclosure. As shown in Figure 4, the method includes the following steps:
步骤S401、用户输入查询信息(query),该查询信息为文本信息。Step S401, the user inputs query information (query), and the query information is text information.
步骤S402、AIGC生成输入图片,包括输入图片1至输入图片N,N为大于2的整数。具体地,可以通过以下交互过程生成输入图片:Step S402, AIGC generates input pictures, including input picture 1 to input picture N, where N is an integer greater than 2. Specifically, the input image can be generated through the following interactive process:
首次发起搜索时,默认呈现传统的图片搜索结果。When you first initiate a search, traditional image search results are presented by default.
在搜索结果页中,提供AIGC生成图片的入口,提示用户可以通过AI生成图片,再次发起搜索。On the search result page, provide an entrance for AIGC to generate pictures, prompting users to generate pictures through AI, and initiate the search again.
若用户点击入口,则弹出浮层,其中,浮层内显示有搜索引擎基于当前query的搜索结果聚合得到的风格,也有一些默认内置风格。每个风格有一个文字描述,并匹配能代表该风格图片。If the user clicks on the entry, a floating layer will pop up. The floating layer displays the styles aggregated by the search engine based on the search results of the current query, and there are also some default built-in styles. Each style has a text description and matches an image representing the style.
用户选择一个或者多个风格,并点击按钮发起AIGC图片生成。The user selects one or more styles, and clicks the button to initiate AIGC image generation.
AIGC服务器生成好图片,将生成的图片显示到浮层中。The AIGC server generates a good picture and displays the generated picture in the floating layer.
步骤S403、用户选择一个或多个输入图片。Step S403, the user selects one or more input pictures.
具体地,用户通过复选框,在上述浮层中选择一个或多个图片作为输入图片,并点击发起相关搜索。然后,关闭浮层。Specifically, the user selects one or more pictures in the floating layer as input pictures through check boxes, and clicks to initiate a related search. Then, turn off the overlay.
步骤S404、基于用户选择的输入图片,进行同步并行搜索,得到目标图片集合。Step S404, based on the input picture selected by the user, perform synchronous parallel search to obtain the target picture set.
具体地,如果用户选择了N个图片作为输入图片,则对N个图片并行提取检索特征,得到对应的特征向量。然后将N个特征向量作为一个组合,发起一次向量检索。向量检索引擎同时对该向量组合完成检索(保证每个特征向量都能搜索到一定的结果,且总量得以控制,并且检索速度不会特别慢,不会带来较大的计算资源开销),并返回向量距离最小的K个结果。Specifically, if the user selects N pictures as input pictures, the retrieval features are extracted in parallel for the N pictures to obtain corresponding feature vectors. Then use the N feature vectors as a combination to initiate a vector retrieval. The vector retrieval engine completes the retrieval of the vector combination at the same time (to ensure that each feature vector can search for a certain result, and the total amount is controlled, and the retrieval speed will not be particularly slow, and will not bring large computing resource overhead), And return the K results with the smallest vector distance.
举例而言,定义以下信息:For example, define the following information:
N:查询输入的向量总数;N: the total number of vectors input by query;
K:查询输出的向量总数;K: the total number of vectors output by the query;
Q[i]:i的范围从1到N,代表输入的第i个向量;Q[i]: i ranges from 1 to N, representing the input i-th vector;
R[j]:j的范围从1到K,代表查询输出的第j个结果的向量表示;R[j]:j ranges from 1 to K, representing the vector representation of the jth result of the query output;
Dist[Q[i],R[j]]:代表两个向量Q[i]与R[j]的距离,一般可以是两个向量的欧式距离,或者余弦距离;Dist[Q[i],R[j]]: represents the distance between two vectors Q[i] and R[j], which can generally be the Euclidean distance or cosine distance of two vectors;
best_match[i]:best_match[i]是一个数组的下标,范围是1到K,代表输入的第i个向量匹配的查询结果,使得满足优化目标。对于两个x、y,且x!=y,best_match[i]不能等于best_match[j]。best_match[i]: best_match[i] is an array subscript, ranging from 1 to K, representing the query result matched by the i-th input vector, so that the optimization goal is met. For two x, y, and x! =y, best_match[i] cannot be equal to best_match[j].
则优化目标可以表示为:min{sum(Dist[Q[i],R[best_match[j]])}i从1到N,j从1到N,即所有距离累加起来总和最小。也就是说,从图片库中找到K个结果,使得它们与查询输入向量的最近距离之和最小。Then the optimization objective can be expressed as: min{sum(Dist[Q[i],R[best_match[j]])}i from 1 to N, j from 1 to N, that is, the sum of all distances is the smallest. That is, find K results from the image library such that the sum of their closest distances to the query input vector is the smallest.
经过上述步骤,可以输出K个结果(目标图片)。在图片搜索结果页面中,可以提供一组待筛选的风格标签(tag),风格标签共有N个,每一个风格标签对应用户选择的一个AIGC生成的图片。图片搜索结果页面中默认显示全部结果,当用户点击某个风格标签时,搜索结果页面的K个图片的排序会进行调整,按照与该风格标签对应的输入图片的距离来排升序(即距离从近到远)。After the above steps, K results (target pictures) can be output. On the image search result page, a group of style tags (tags) to be screened may be provided. There are N style tags in total, and each style tag corresponds to a picture generated by AIGC selected by the user. All the results are displayed by default on the image search result page. When the user clicks on a style tag, the sorting of the K images on the search result page will be adjusted in ascending order according to the distance from the input image corresponding to the style tag (that is, the distance from near to far).
可以看到,上述应用示例采用了AIGC生成的图片,提高了用户表达搜索需求的效率,交互步骤减少,只需要用户点击选择几个图片实现多样化的输入表达。此外,通过调整搜索的优化目标,更适应于搜索需求较难清晰、唯一表达的场景,可以提供更具有多样性的搜索结果。It can be seen that the above application example uses pictures generated by AIGC, which improves the efficiency of users' expression of search needs, reduces the number of interaction steps, and only requires users to click and select a few pictures to achieve diversified input expressions. In addition, by adjusting the optimization goal of the search, it is more suitable for scenarios where the search requirements are difficult to express clearly and uniquely, and more diverse search results can be provided.
根据本公开的实施例,本公开还提供了一种图片搜索装置。图5示出了本公开一实施例提供的图片搜索装置的示意性框图。如图5所示,该装置可以包括:According to an embodiment of the present disclosure, the present disclosure also provides an image search device. Fig. 5 shows a schematic block diagram of an image search device provided by an embodiment of the present disclosure. As shown in Figure 5, the device may include:
查询获取模块510,用于获取查询信息;
风格确定模块520,用于基于查询信息,确定至少一个图片风格;A
输入确定模块530,用于基于至少一个图片风格,生成至少一个输入图片;An
图片搜索模块540,用于基于至少一个输入图片,搜索至少一个目标图片。The image search module 540 is configured to search for at least one target image based on at least one input image.
图6示出了本公开另一实施例提供的图片搜索装置的示意性框图。如图6所示,该图片搜索装置包括查询获取模块610、风格确定模块620、输入确定模块630与图片搜索模块640,其中的风格确定模块620可以包括:Fig. 6 shows a schematic block diagram of an image search device provided by another embodiment of the present disclosure. As shown in Figure 6, the picture search device includes a
参考图片搜索单元621,用于基于查询信息中的文本信息,搜索至少一个参考图片;A reference
风格聚合单元622,用于基于至少一个参考图片中的每个参考图片的风格标签进行聚合,得到至少一个图片风格。The
示例性地,如图6所示,风格确定模块还可以包括:Exemplarily, as shown in Figure 6, the style determination module may also include:
风格识别单元623,用于基于查询信息中的图片信息进行风格识别,得到至少一个图片风格。The
可选地,该图片搜索装置中的输入确定模块630具体用于:Optionally, the
针对至少一个图片风格中的每个图片风格,采用人工智能生成内容的方式,生成与查询信息中的语义信息相关且具有该图片风格的输入图片。For each picture style in the at least one picture style, an input picture related to the semantic information in the query information and having the picture style is generated by using artificial intelligence to generate content.
可选地,如图6所示,该图片搜索装置中的图片搜索模块640可以包括:Optionally, as shown in Figure 6, the image search module 640 in the image search device may include:
向量确定单元641,用于确定至少一个输入图片中的每个输入图片的特征向量;A
目标图片搜索单元642,用于基于每个输入图片的特征向量以及图片库中的每个图片的特征向量,在图片库中搜索至少一个目标图片。The target
可选地,目标图片搜索单元642具体用于:Optionally, the target
基于每个输入图片的特征向量与图片库中的每个图片的特征向量之间的距离,在图片库中搜索满足优化目标的至少一个目标图片;Based on the distance between the feature vector of each input picture and the feature vector of each picture in the picture library, at least one target picture that meets the optimization goal is searched in the picture library;
其中,优化目标包括:每个输入图片与至少一个目标图片中的每个目标图片之间的距离的总和最小。Wherein, the optimization objective includes: the sum of the distances between each input picture and each target picture in at least one target picture is the smallest.
可选地,如图6所示,该图片搜索装置还可以包括:Optionally, as shown in Figure 6, the image search device may also include:
标签显示模块650,用于显示至少一个输入图片所对应的至少一个风格标签;A label display module 650, configured to display at least one style label corresponding to at least one input picture;
排序显示模块660,用于响应于接收到对至少一个风格标签中的第一风格标签的选择指令,根据每个目标图片的特征向量与第一风格标签所对应的输入图片的特征向量之间的距离,对至少一个目标图片进行排序显示。A sorting and displaying
本公开实施例的装置的各模块、子模块的具体功能和示例的描述,可以参见上述方法实施例中对应步骤的相关描述,在此不再赘述。For descriptions of specific functions and examples of modules and sub-modules of the apparatus in the embodiments of the present disclosure, reference may be made to relevant descriptions of corresponding steps in the foregoing method embodiments, and details are not repeated here.
本公开的技术方案中,所涉及的用户个人信息的获取,存储和应用等,均符合相关法律法规的规定,且不违背公序良俗。In the technical solution of the present disclosure, the acquisition, storage and application of the user's personal information involved are in compliance with relevant laws and regulations, and do not violate public order and good customs.
根据本公开的实施例,本公开还提供了一种电子设备、一种可读存储介质和一种计算机程序产品。According to the embodiments of the present disclosure, the present disclosure also provides an electronic device, a readable storage medium, and a computer program product.
图7示出了可以用来实施本公开的实施例的示例电子设备700的示意性框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字助理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。FIG. 7 shows a schematic block diagram of an example
如图7所示,设备700包括计算单元701,其可以根据存储在只读存储器(ROM)702中的计算机程序或者从存储单元708加载到随机访问存储器(RAM)703中的计算机程序,来执行各种适当的动作和处理。在RAM703中,还可存储设备700操作所需的各种程序和数据。计算单元701、ROM702以及RAM 703通过总线704彼此相连。输入/输出(I/O)接口705也连接至总线704。As shown in FIG. 7, the
设备700中的多个部件连接至I/O接口705,包括:输入单元706,例如键盘、鼠标等;输出单元707,例如各种类型的显示器、扬声器等;存储单元708,例如磁盘、光盘等;以及通信单元709,例如网卡、调制解调器、无线通信收发机等。通信单元709允许设备700通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。Multiple components in the
计算单元701可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元701的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元701执行上文所描述的各个方法和处理,例如图片搜索方法。例如,在一些实施例中,图片搜索方法可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元708。在一些实施例中,计算机程序的部分或者全部可以经由ROM 702和/或通信单元709而被载入和/或安装到设备700上。当计算机程序加载到RAM703并由计算单元701执行时,可以执行上文描述的图片搜索方法的一个或多个步骤。备选地,在其他实施例中,计算单元701可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行图片搜索方法。The
本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。Various implementations of the systems and techniques described above herein can be implemented in digital electronic circuit systems, integrated circuit systems, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips Implemented in a system of systems (SOC), load programmable logic device (CPLD), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpreted on a programmable system including at least one programmable processor, the programmable processor Can be special-purpose or general-purpose programmable processor, can receive data and instruction from storage system, at least one input device, and at least one output device, and transmit data and instruction to this storage system, this at least one input device, and this at least one output device an output device.
用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。Program codes for implementing the methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general-purpose computer, a special purpose computer, or other programmable data processing devices, so that the program codes, when executed by the processor or controller, make the functions/functions specified in the flow diagrams and/or block diagrams Action is implemented. The program code may execute entirely on the machine, partly on the machine, as a stand-alone software package partly on the machine and partly on a remote machine or entirely on the remote machine or server.
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。In the context of the present disclosure, a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, apparatus, or device. A machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium. A machine-readable medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, apparatus, or devices, or any suitable combination of the foregoing. More specific examples of machine-readable storage media would include one or more wire-based electrical connections, portable computer discs, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入、或者触觉输入)来接收来自用户的输入。To provide for interaction with the user, the systems and techniques described herein can be implemented on a computer having a display device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user. ); and a keyboard and pointing device (eg, a mouse or a trackball) through which a user can provide input to the computer. Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and can be in any form (including Acoustic input, speech input, or tactile input) to receive input from the user.
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。The systems and techniques described herein can be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., as a a user computer having a graphical user interface or web browser through which a user can interact with embodiments of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system. The components of the system can be interconnected by any form or medium of digital data communication, eg, a communication network. Examples of communication networks include: Local Area Network (LAN), Wide Area Network (WAN) and the Internet.
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,也可以为分布式系统的服务器,或者是结合了区块链的服务器。A computer system may include clients and servers. Clients and servers are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other. The server can be a cloud server, a server of a distributed system, or a server combined with a blockchain.
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。It should be understood that steps may be reordered, added or deleted using the various forms of flow shown above. For example, each step described in the present disclosure may be executed in parallel, sequentially, or in a different order, as long as the desired result of the technical solution disclosed in the present disclosure can be achieved, no limitation is imposed herein.
上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。The specific implementation manners described above do not limit the protection scope of the present disclosure. It should be apparent to those skilled in the art that various modifications, combinations, sub-combinations and substitutions may be made depending on design requirements and other factors. Any modifications, equivalent replacements and improvements made within the principles of the present disclosure shall be included within the protection scope of the present disclosure.
Claims (17)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310002114.9A CN116127111A (en) | 2023-01-03 | 2023-01-03 | Image search method, device, electronic device and computer-readable storage medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310002114.9A CN116127111A (en) | 2023-01-03 | 2023-01-03 | Image search method, device, electronic device and computer-readable storage medium |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN116127111A true CN116127111A (en) | 2023-05-16 |
Family
ID=86302307
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310002114.9A Pending CN116127111A (en) | 2023-01-03 | 2023-01-03 | Image search method, device, electronic device and computer-readable storage medium |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN116127111A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116680425A (en) * | 2023-05-17 | 2023-09-01 | 上海芯赛云计算科技有限公司 | Processing system and method for generating image based on user text prompt word |
| CN117251615A (en) * | 2023-09-15 | 2023-12-19 | 中电信数智科技有限公司 | A system and method for introducing artificial intelligence to generate content in search engines |
| WO2025067005A1 (en) * | 2023-09-27 | 2025-04-03 | 华为技术有限公司 | Method for picture retrieval and related apparatus |
| WO2025228019A1 (en) * | 2024-04-29 | 2025-11-06 | 杭州阿里巴巴海外互联网产业有限公司 | Object matching method, object query system, electronic device, and storage medium |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103761326A (en) * | 2014-01-29 | 2014-04-30 | 百度在线网络技术(北京)有限公司 | Image search method and search engine |
| CN103793498A (en) * | 2014-01-22 | 2014-05-14 | 百度在线网络技术(北京)有限公司 | Picture searching method and device and searching engine |
| US20160364625A1 (en) * | 2015-06-10 | 2016-12-15 | Adobe Systems Incorporated | Automatically Selecting Example Stylized Images for Image Stylization Operations Based on Semantic Content |
| CN106547744A (en) * | 2015-09-16 | 2017-03-29 | 杭州海康威视数字技术股份有限公司 | A kind of image search method and system |
| KR20170096971A (en) * | 2016-02-17 | 2017-08-25 | 옴니어스 주식회사 | Method for recommending a product using style feature |
| CN109308324A (en) * | 2018-09-08 | 2019-02-05 | 中山大学 | An image retrieval method and system based on hand-drawn style recommendation |
| CN112860929A (en) * | 2021-02-09 | 2021-05-28 | 北京百度网讯科技有限公司 | Picture searching method and device, electronic equipment and storage medium |
| CN113795834A (en) * | 2019-05-09 | 2021-12-14 | 微软技术许可有限责任公司 | Techniques for modifying a query image |
| CN113806582A (en) * | 2021-11-17 | 2021-12-17 | 腾讯科技(深圳)有限公司 | Image retrieval method, image retrieval device, electronic equipment and storage medium |
-
2023
- 2023-01-03 CN CN202310002114.9A patent/CN116127111A/en active Pending
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103793498A (en) * | 2014-01-22 | 2014-05-14 | 百度在线网络技术(北京)有限公司 | Picture searching method and device and searching engine |
| CN103761326A (en) * | 2014-01-29 | 2014-04-30 | 百度在线网络技术(北京)有限公司 | Image search method and search engine |
| US20160364625A1 (en) * | 2015-06-10 | 2016-12-15 | Adobe Systems Incorporated | Automatically Selecting Example Stylized Images for Image Stylization Operations Based on Semantic Content |
| CN106547744A (en) * | 2015-09-16 | 2017-03-29 | 杭州海康威视数字技术股份有限公司 | A kind of image search method and system |
| KR20170096971A (en) * | 2016-02-17 | 2017-08-25 | 옴니어스 주식회사 | Method for recommending a product using style feature |
| CN109308324A (en) * | 2018-09-08 | 2019-02-05 | 中山大学 | An image retrieval method and system based on hand-drawn style recommendation |
| CN113795834A (en) * | 2019-05-09 | 2021-12-14 | 微软技术许可有限责任公司 | Techniques for modifying a query image |
| CN112860929A (en) * | 2021-02-09 | 2021-05-28 | 北京百度网讯科技有限公司 | Picture searching method and device, electronic equipment and storage medium |
| CN113806582A (en) * | 2021-11-17 | 2021-12-17 | 腾讯科技(深圳)有限公司 | Image retrieval method, image retrieval device, electronic equipment and storage medium |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116680425A (en) * | 2023-05-17 | 2023-09-01 | 上海芯赛云计算科技有限公司 | Processing system and method for generating image based on user text prompt word |
| CN117251615A (en) * | 2023-09-15 | 2023-12-19 | 中电信数智科技有限公司 | A system and method for introducing artificial intelligence to generate content in search engines |
| WO2025067005A1 (en) * | 2023-09-27 | 2025-04-03 | 华为技术有限公司 | Method for picture retrieval and related apparatus |
| WO2025228019A1 (en) * | 2024-04-29 | 2025-11-06 | 杭州阿里巴巴海外互联网产业有限公司 | Object matching method, object query system, electronic device, and storage medium |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112560912B (en) | Classification model training methods, devices, electronic equipment and storage media | |
| CN113378784B (en) | A training method for a video tag recommendation model and a method for determining video tags | |
| CN110162593B (en) | Search result processing and similarity model training method and device | |
| CN113656582B (en) | Training method of neural network model, image retrieval method, device and medium | |
| JP2022191412A (en) | Method for training multi-target image-text matching model and image-text retrieval method and apparatus | |
| CN111639228B (en) | Video retrieval method, device, equipment and storage medium | |
| CN116127111A (en) | Image search method, device, electronic device and computer-readable storage medium | |
| US12326867B2 (en) | Method and system of using domain specific knowledge in retrieving multimodal assets | |
| US12386891B2 (en) | Information search method and device, electronic device, and storage medium | |
| CN114547266A (en) | Training method of information generation model, method, apparatus and device for generating information | |
| KR20240052055A (en) | Cross-modal search methods and related devices | |
| CN112749300B (en) | Method, apparatus, device, storage medium and program product for video classification | |
| CN114360027A (en) | A training method, device and electronic device for feature extraction network | |
| WO2025092584A1 (en) | Method and apparatus for generating interaction component of client ui, terminal, and medium | |
| CN114429633B (en) | Text recognition method, training method and device of model, electronic equipment and medium | |
| CN114461749B (en) | Data processing method and device for conversation content, electronic equipment and medium | |
| CN112925883B (en) | Search request processing method and device, electronic equipment and readable storage medium | |
| CN113919424A (en) | Training of text processing model, text processing method, device, equipment and medium | |
| CN114880498B (en) | Event information display method and device, equipment and medium | |
| CN114595780A (en) | Image-text processing model training and graphic-text processing method, device, equipment and medium | |
| CN114595313A (en) | Information retrieval result processing method and device, server and storage medium | |
| CN117692447B (en) | Large model information processing method, device, electronic device, storage medium and computer program product | |
| CN115828915B (en) | Entity disambiguation method, device, electronic equipment and storage medium | |
| CN114444514B (en) | Semantic matching model training method, semantic matching method and related device | |
| CN113595874B (en) | Instant messaging group searching method and device, electronic equipment and storage medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20230516 |
|
| RJ01 | Rejection of invention patent application after publication |