CN115564706A - Method and device for automatic identification of rock composition - Google Patents
Method and device for automatic identification of rock composition Download PDFInfo
- Publication number
- CN115564706A CN115564706A CN202210908032.6A CN202210908032A CN115564706A CN 115564706 A CN115564706 A CN 115564706A CN 202210908032 A CN202210908032 A CN 202210908032A CN 115564706 A CN115564706 A CN 115564706A
- Authority
- CN
- China
- Prior art keywords
- image
- rock
- region
- polarization
- images
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/40—Image enhancement or restoration using histogram techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/194—Segmentation; Edge detection involving foreground-background segmentation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
- G06T2207/10061—Microscopic image from scanning electron microscope
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20021—Dividing image into blocks, subimages or windows
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30132—Masonry; Concrete
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明提出了一种岩石成分自动识别方法和装置,涉及石油技术领域,包括:制备岩石薄片样本;得到正交偏光下和单偏光全域显微图像;得到QEMSCAN输出图像;进行图像对齐;进行同步切片和编号;统计所有单偏光子图像中孔缝位置和孔缝占比;进行超像素区域分割,将分割得到的包含岩石矿物颗粒的岩石矿物颗粒图像单独保存,将剩下的图像按照编号拼接后作为背景图像;对岩石成分自动识别模型进行训练;采用训练后的岩石成分自动识别模型对待测岩石薄片图像进行识别,得到待测岩石薄片的岩石成分;通过QEMSCAN输出图像获取背景图像中相应胶结物和杂基部分的成分及含量。本发明较大的提高了工作效率,并极大地提高了岩石成分分析的准确性。
The present invention proposes a method and device for automatic identification of rock components, which relate to the field of petroleum technology, including: preparing rock thin section samples; obtaining full-field microscopic images under orthogonal polarized light and single polarized light; obtaining QEMSCAN output images; performing image alignment; and performing synchronization Slicing and numbering; counting the position and proportion of pores and pores in all single polarized sub-images; performing superpixel region segmentation, saving the segmented images of rock mineral particles containing rock mineral particles separately, and splicing the remaining images according to the number Finally, it is used as the background image; the automatic identification model of rock composition is trained; the image of the rock thin section to be tested is recognized by the trained automatic identification model of rock composition, and the rock composition of the rock thin section to be tested is obtained; the corresponding cementation in the background image is obtained through the output image of QEMSCAN The composition and content of the substance and the heterogeneous part. The invention greatly improves the working efficiency and greatly improves the accuracy of rock composition analysis.
Description
技术领域technical field
本发明涉及石油技术领域,特别涉及一种岩石成分自动识别方法和装置。The invention relates to the field of petroleum technology, in particular to a method and device for automatic identification of rock components.
背景技术Background technique
目前,岩石薄片鉴定是重要的石油地质研究实验。该实验是把岩石样本磨至0.03mm制成岩石薄片,实验人员在偏光显微镜下通过矿物的光学特征进行人工鉴定,获取岩石矿物和填隙物成分及其含量数据,并依据相关标准进行岩石命名。但是岩石矿物种类繁多且易蚀变溶蚀,因而岩石薄片鉴定耗时长且难度大,要求鉴定人员具有较高的专业能力。另外,岩石薄片鉴定是实验人员在偏光显微镜下进行多视域的估算,其鉴定结果存在主观差异性。At present, rock thin section identification is an important petroleum geological research experiment. In this experiment, the rock samples were ground to 0.03mm to make rock thin slices. The experimenters manually identified the optical characteristics of the minerals under a polarizing microscope, obtained the composition and content data of rock minerals and interstitials, and named the rocks according to relevant standards. . However, there are many kinds of rock minerals and they are easy to be altered and dissolved. Therefore, the identification of rock thin sections is time-consuming and difficult, requiring the identification personnel to have high professional ability. In addition, the identification of rock thin sections is the estimation of multi-fields by experimenters under a polarizing microscope, and there are subjective differences in the identification results.
为提升岩石薄片鉴定的准确性和实验鉴定效率,QEMSCAN实验可对 0.03mm的岩石薄片进行岩石矿物及填隙物的成分识别并进行含量预估,但其对同质多晶的矿物颗粒无法进行区分,所以在矿物颗粒成分的识别准确性存在不足。In order to improve the accuracy of identification of rock thin sections and the efficiency of experimental identification, the QEMSCAN experiment can identify the composition of rock minerals and interstitials and estimate the content of 0.03mm rock thin sections, but it cannot be used for homogeneous and polycrystalline mineral particles. Therefore, there is a lack of accuracy in the identification of mineral particle components.
发明内容Contents of the invention
本发明提出一种岩石成分自动识别方法和装置,其结合QEMSCAN与岩石薄片显微图像,能够提高岩石成分识别的准确率和效率。The invention proposes a method and device for automatic identification of rock components, which can improve the accuracy and efficiency of rock component identification by combining QEMSCAN and microscopic images of rock thin sections.
本发明提供了一种岩石成分自动识别方法,包括:The invention provides a method for automatic identification of rock composition, comprising:
获取岩石薄片样本的不同位置处的单偏光显微图像和所述岩石薄片在不同位置处、不同角度下的正交偏光显微图像;采用QEMSCAN方法获取岩石薄片样本的QEMSCAN输出图像;Obtaining single polarized light microscopic images at different positions of the rock thin section sample and crossed polarized light microscopic images of the rock thin section at different positions and at different angles; using the QEMSCAN method to obtain the QEMSCAN output image of the rock thin section sample;
对所述单偏光显微图像、所述正交偏光显微图像和所述QEMSCAN输出图像分别进行预处理,得到预处理后的单偏光全域显微图像、预处理后的正交偏光全域显微图像和预处理后的QEMSCAN输出图像;所述预处理包括对所述单偏光全域显微图像、所述正交偏光全域显微图像和所述QEMSCAN输出图像进行对齐;Preprocessing the single polarized light microscopic image, the crossed polarized light microscopic image and the QEMSCAN output image respectively to obtain a preprocessed single polarized light full field microscopic image and a preprocessed crossed polarized light full field microscopic image Image and the preprocessed QEMSCAN output image; the preprocessing includes aligning the single polarized full-field microscopic image, the crossed polarized full-field microscopic image and the QEMSCAN output image;
将预处理后的单偏光全域显微图像和预处理后的正交偏光全域显微图像进行同步切片和编号,得到多个编号后的正交偏光子图像和多个编号后的单偏光子图像;Synchronously slice and number the preprocessed single-polarized full-field microscopic image and the preprocessed crossed-polarized full-field microscopic image to obtain multiple numbered cross-polarized sub-images and multiple numbered single-polarized sub-images ;
确定编号后的所述单偏光子图像中的孔缝位置信息和孔缝占比;Determine the aperture position information and aperture ratio in the numbered single-polarized sub-image;
结合所述孔缝位置信息将编号后的所述单偏光子图像和编号后的所述正交偏光子图像进行超像素分割,得到包含岩石颗粒的岩石颗粒图像,将除所述岩石颗粒图像以外的图像按编号进行拼接,得到背景图像;Perform superpixel segmentation on the numbered single-polarized light sub-image and the numbered cross-polarized light sub-image in combination with the hole position information to obtain a rock grain image containing rock grains, except for the rock grain image The images of are spliced according to the numbers to obtain the background image;
将所述岩石颗粒图像作为训练样本数据集,以训练待训练的岩石成分自动识别模型,得到训练后的岩石成分自动识别模型;Using the rock particle image as a training sample data set to train an automatic identification model of rock components to be trained to obtain a trained automatic identification model for rock components;
获取待测岩石薄片图像;Obtain the image of the rock thin section to be tested;
将所述待测岩石薄片图像输入至训练后的岩石成分自动识别模型,输出待测岩石薄片的岩石成分;The image of the rock thin section to be tested is input to the trained rock composition automatic identification model, and the rock composition of the rock thin section to be tested is output;
结合对齐结果,通过QEMSCAN输出图像确定背景图像中胶结物成分和背景图像中杂基成分。Combined with the alignment results, the cement components in the background image and the heterogeneous components in the background image were determined through the output image of QEMSCAN.
在可选的实施方式中,对所述单偏光显微图像、所述正交偏光显微图像和所述QEMSCAN输出图像分别进行预处理,得到预处理后的单偏光全域显微图像、预处理后的正交偏光全域显微图像和预处理后的QEMSCAN输出图像;所述预处理包括对所述单偏光全域显微图像、所述正交偏光全域显微图像和所述 QEMSCAN输出图像进行对齐,包括:In an optional embodiment, the single polarized light microscopic image, the crossed polarized light microscopic image and the QEMSCAN output image are respectively preprocessed to obtain the preprocessed single polarized light full field microscopic image, and the preprocessed The final cross-polarized full-field microscopic image and the preprocessed QEMSCAN output image; the preprocessing includes aligning the single-polarized full-field microscopic image, the crossed crossed polarized full-field microscopic image and the QEMSCAN output image ,include:
对同一样本、同一角度下的单偏光显微图像和正交偏光显微图像分别进行拼接,分别得到单偏光全域显微图像和正交偏光全域显微图像;The single-polarized light microscopic images and crossed-polarized light microscopic images of the same sample and at the same angle are spliced separately to obtain single-polarized light full-field microscopic images and cross-polarized full-field microscopic images respectively;
结合QEMSCAN输出图像,将所述单偏光全域显微图像和所述正交偏光全域显微图像进行对齐,得到对齐后的单偏光全域显微图像和对齐后的正交偏光全域显微图像。Combining the QEMSCAN output image, aligning the single-polarized global microscopic image and the orthogonal polarized global microscopic image to obtain the aligned single-polarized global microscopic image and the aligned orthogonal polarized global microscopic image.
在可选的实施方式中,确定编号后的所述单偏光子图像中的孔缝位置和孔缝占比,包括:In an optional implementation manner, determining the aperture position and aperture ratio in the numbered single-polarized sub-image includes:
对多个编号后的单偏光子图像分别进行预处理后转化至HSV颜色空间,得到与每张编号后的单偏光子图像对应的HSV颜色空间下的单偏光子图像;Preprocessing the multiple numbered single-polarized sub-images respectively and then converting them to the HSV color space to obtain a single-polarized sub-image under the HSV color space corresponding to each numbered single-polarized sub-image;
确定每张HSV颜色空间下的单偏光子图像中蓝色像素点的占比并记录所述蓝色像素点的位置信息,其中,所述蓝色像素点的占比为所述孔缝占比,所述蓝色像素点的位置信息为所述孔缝位置信息。Determining the proportion of blue pixels in each single-polarized light sub-image under the HSV color space and recording the position information of the blue pixels, wherein the proportion of the blue pixels is the proportion of the aperture , the position information of the blue pixel is the position information of the aperture.
在可选的实施方式中,结合所述孔缝位置信息将编号后的所述单偏光子图像和编号后的所述正交偏光子图像进行超像素分割,得到包含岩石颗粒的岩石颗粒图像,将除所述岩石颗粒图像以外的图像按编号进行拼接,得到背景图像,包括:In an optional embodiment, superpixel segmentation is performed on the numbered single-polarization sub-image and the numbered cross-polarization sub-image in combination with the hole position information to obtain a rock particle image containing rock particles, The images other than the rock particle image are spliced according to the number to obtain the background image, including:
步骤S1,结合所述孔缝位置信息去除编号后的单偏光子图像中的孔缝,得到去除孔缝后的单偏光子图像;对去除孔缝后的单偏光子图像进行初始化分割,得到单偏光子图像的多个初始分割区域;Step S1, combining the perforation position information to remove the perforations in the numbered single-polarized photon sub-images to obtain the single-polarized photon sub-images after the perforations are removed; initialize and segment the single-polarized photon sub-images after the perforations are removed to obtain single-polarized photon sub-images multiple initially segmented regions of polarized sub-images;
步骤S2,在编号后的正交偏光子图像中获取与单偏光子图像的多个初始分割区域相对应的A个第一分割区域图像数据,将所述第一分割区域图像数据在 RGB彩色空间下的每个通道分别量化为B个等级,得到N个特征维度;统计像素在N个特征维度中的分布并进行特征空间归一化,得到A个根据所述第一分割区域图像数据生成的颜色直方图和根据所述第一分割区域图像数据生成的颜色均值;Step S2, in the numbered orthogonally polarized sub-images, obtain A first segmented area image data corresponding to a plurality of initial segmented areas of the single-polarized sub-image, and convert the first segmented area image data in the RGB color space Each channel below is quantified into B levels respectively, and N feature dimensions are obtained; the distribution of statistical pixels in the N feature dimensions is performed and the feature space is normalized, and A is generated according to the image data of the first segmented region. A color histogram and a color mean value generated according to the image data of the first segmented region;
步骤S3,获取去除孔缝后的单偏光子图像的多个初始分割区域对应的第二分割区域图像数据,确定每个根据所述第二分割区域图像数据生成的灰度直方图;Step S3, acquiring second segmented region image data corresponding to multiple initial segmented regions of the single-polarized light sub-image after the holes are removed, and determining each grayscale histogram generated according to the second segmented region image data;
步骤S4,按照多个初始分割区域间的相邻关系生成相对应的区域邻接图,其中,所述区域邻接图中每个区域均包括相对应的区域邻接图图像数据,所述区域邻接图图像数据包括根据所述第一分割区域图像数据生成的颜色直方图、根据所述第一分割区域图像数据生成的颜色均值和相对应的根据所述第二分割区域图像数据生成的灰度直方图;Step S4, generating a corresponding region adjacency graph according to the adjacency relationship between multiple initially segmented regions, wherein each region in the region adjacency graph includes corresponding region adjacency graph image data, and the region adjacency graph image The data includes a color histogram generated according to the image data of the first segmented region, a color mean value generated according to the image data of the first segmented region, and a corresponding grayscale histogram generated according to the image data of the second segmented region;
步骤S5,根据下述算式(1)确定正交偏光子图像的相似度hc:Step S5, determine the similarity h c of the orthogonally polarized sub-images according to the following formula (1):
其中,Hm表示区域邻接图中根据区域m对应的第一区域邻接图图像数据生成的颜色直方图,Hm(i)表示区域邻接图中区域m对应的第一区域邻接图图像数据在第i个特征维度对应的归一化结果;Hn表示区域邻接图中根据区域n对应的第二区域邻接图图像数据生成的颜色直方图;Hn(i)表示区域邻接图中区域n对应的第二区域邻接图图像数据在第i个特征维度对应的归一化结果;区域邻接图中区域n为区域m的邻接节点;Among them, H m represents the color histogram generated from the image data of the first region adjacency graph corresponding to region m in the region adjacency graph, and H m (i) represents the image data of the first region adjacency graph corresponding to region m in the region adjacency graph. The normalization results corresponding to i feature dimensions; H n represents the color histogram generated from the image data of the second region adjacency graph corresponding to region n in the region adjacency graph; H n (i) represents the color histogram corresponding to region n in the region adjacency graph The normalization result corresponding to the image data of the second region adjacency graph in the i-th feature dimension; region n in the region adjacency graph is an adjacent node of region m;
步骤S6,根据下述算式(2)确定区域邻接图中区域m对应的第一区域邻接图图像数据和区域n对应的第二区域邻接图图像数据的边界距离he:Step S6, determine the boundary distance h e between the image data of the first region adjacency graph corresponding to region m in the region adjacency graph and the image data of the second region adjacency graph corresponding to region n according to the following formula (2):
he=||um-un||2, (2);h e =||u m -u n || 2 , (2);
其中,um表示区域m的颜色均值;un表示区域n的颜色均值;Among them, u m represents the color mean value of area m; u n represents the color mean value of area n;
步骤S7,在正交偏光子图像中,根据下述算式(3)确定区域邻接图中区域 m对应的第一区域邻接图图像数据与区域n对应的第二区域邻接图图像数据的距离度量值D:Step S7, in the cross-polarized sub-image, according to the following formula (3), determine the distance metric value of the first region adjacency graph image data corresponding to region m in the region adjacency graph and the second region adjacency graph image data corresponding to region n D:
D=p×hc+(1-p)×he, (3);D=p*hc+(1-p)*he, (3);
其中,p为0-1之间的常数;Among them, p is a constant between 0-1;
步骤S8,根据下述算式(4)确定去除孔缝后的单偏光子图像的灰度相似性 ha:Step S8, according to the following formula (4), determine the gray similarity h a of the single polarized sub-image after removing the holes:
其中,Fm表示区域邻接图中区域m对应的第一区域邻接图图像数据的灰度直方图;Fm(j)表示区域邻接图中区域m对应的第一区域邻接图图像数据在第j 个强度值下的灰度直方图;Fn表示区域邻接图中区域n对应的第二区域邻接图图像数据的灰度直方图;Fn(j)表示区域邻接图中区域n对应的第二区域邻接图图像数据在第j个强度值下的灰度直方图;Among them, F m represents the grayscale histogram of the image data of the first region adjacency graph corresponding to region m in the region adjacency graph; F m (j) represents the image data of the first region adjacency graph corresponding to region m in the region adjacency graph at jth gray histogram under intensity values; F n represents the gray histogram of the second region adjacency graph image data corresponding to region n in the region adjacency graph; F n (j) represents the second region adjacency graph image data corresponding to region n The gray histogram of the region adjacency graph image data under the jth intensity value;
步骤S9,根据下述算式(5)确定区域邻接图中区域m和区域n的相似度合并至h:Step S9, according to the following formula (5), it is determined that the similarity between the region m and the region n in the region adjacency graph is merged into h:
其中,K表示编号后的正交偏光显微图像在同一位置处的拍摄角度数量,D(k)表示在第k个拍摄角度下的正交偏光子图像区域邻接图中区域m 对应的图像数据和与区域n对应的图像数据的距离度量值;b为常数;Among them, K represents the number of shooting angles of the numbered cross-polarized light microscopic image at the same position, and D(k) represents the image data corresponding to area m in the cross-polarized sub-image area adjoining figure at the kth shooting angle and the distance metric of the image data corresponding to region n; b is a constant;
步骤S10,判断相似度合并至是否大于预设阈值,若是则将区域m和区域n 合并为第三区域,将区域m对应的第一区域邻接图图像数据和区域n对应的第二区域邻接图图像数据合并为第三图像数据;确定第三区域对应的颜色直方图、颜色均值和灰度直方图;根据所述第三区域更新所述区域邻接图;Step S10, judging whether the degree of similarity merged is greater than the preset threshold, if so, merge the region m and region n into a third region, and combine the image data of the first region adjacency graph corresponding to region m and the second region adjacency graph corresponding to region n The image data is merged into the third image data; the color histogram, color mean value and grayscale histogram corresponding to the third area are determined; the area adjacency graph is updated according to the third area;
步骤S11,重复步骤S5至步骤S10直至没有第三图像数据需要合并为止,得到合并后的总分割区域;Step S11, repeating step S5 to step S10 until there is no third image data to be merged to obtain the combined total segmented area;
步骤S12,在正交偏光图像下,对合并后的所述总分割区域对应的总图像数据进行二类别标注,得到前景岩石颗粒图像和背景其他杂质图像;将所述前景岩石颗粒图像和所述背景其他杂质图像作为待训练的岩石成分自动识别模型的输入进行训练,得到训练后的岩石成分自动识别模型;Step S12, under the crossed polarized image, perform two-category labeling on the total image data corresponding to the merged total segmented area to obtain the foreground rock particle image and the background image of other impurities; combine the foreground rock particle image and the Other impurity images in the background are used as the input of the rock composition automatic recognition model to be trained for training, and the trained rock composition automatic recognition model is obtained;
步骤S13,采用训练后的岩石成分自动识别模型对待测岩石薄片图像进行分类,得到岩石颗粒的分割区域,根据岩石颗粒的分割区域在正交偏光子图像上抠出对应的第一分割区域图像数据包含岩石颗粒的岩石颗粒图像,将包含岩石颗粒图像的正交偏光子图像按照编号进行拼接,得到背景图像。Step S13, using the trained rock composition automatic recognition model to classify the rock thin section image to be tested to obtain the segmented area of rock particles, and extract the corresponding first segmented area image data on the orthogonal polarized sub-image according to the segmented area of rock particles The rock particle image containing the rock particle, the orthogonally polarized sub-images containing the rock particle image are spliced according to the numbers to obtain the background image.
在可选的实施方式中,所述岩石成分自动识别模型为EfficientDet模型。In an optional embodiment, the rock composition automatic identification model is an EfficientDet model.
在可选的实施方式中,采用QEMSCAN方法获取岩石薄片样本的 QEMSCAN输出图像,包括:In an optional embodiment, adopt the QEMSCAN method to obtain the QEMSCAN output image of the rock thin section sample, including:
通过QEMSCAN方法对岩石薄片样本进行扫描,得到岩石薄片背散射图和矿物成分含量图。The rock thin section sample is scanned by QEMSCAN method, and the backscattering map and mineral composition content map of the rock thin section are obtained.
在可选的实施方式中,,结合对齐结果,通过QEMSCAN输出图像确定背景图像中胶结物成分和背景图像中杂基成分,包括:In an optional embodiment, combined with the alignment results, the cement components in the background image and the heterogeneous components in the background image are determined through the QEMSCAN output image, including:
获取背景图像中剩余数据的位置;Get the position of the remaining data in the background image;
根据对齐结果将矿物成分含量图中在背景图像中除去孔缝位置和分割结果位置的剩余数据位置作为胶结物和杂基,在矿物成分含量图中统计剩余数据位置的各个像素值的数量,得到胶结物和杂基的成分及含量。According to the alignment results, the remaining data positions in the background image except for the positions of pores and fractures and the segmentation results in the mineral composition content map are regarded as cement and matrix, and the number of each pixel value in the remaining data positions is counted in the mineral composition content map to obtain The composition and content of cement and heterogeneous groups.
第二方面,本发明提供一种岩石成分自动识别装置,包括:In a second aspect, the present invention provides a device for automatic identification of rock composition, comprising:
第一获取模块,用于获取岩石薄片样本的不同位置处的单偏光显微图像和所述岩石薄片在不同位置处、不同角度下的正交偏光显微图像;采用QEMSCAN 方法获取岩石薄片样本的QEMSCAN输出图像;The first acquisition module is used to acquire single polarized light microscopic images at different positions of the rock thin section and crossed polarized light microscopic images of the rock thin section at different positions and angles; the QEMSCAN method is used to acquire the rock thin section samples QEMSCAN output image;
预处理模块,用于对所述单偏光显微图像、所述正交偏光显微图像和所述QEMSCAN输出图像分别进行预处理,得到预处理后的单偏光全域显微图像、预处理后的正交偏光全域显微图像和预处理后的QEMSCAN输出图像;所述预处理包括对所述单偏光全域显微图像、所述正交偏光全域显微图像和所述 QEMSCAN输出图像进行对齐;The preprocessing module is used to preprocess the single polarized light microscopic image, the crossed polarized light microscopic image and the QEMSCAN output image respectively, to obtain the preprocessed single polarized light global microscopic image, the preprocessed Orthogonal polarization global microscopic image and the preprocessed QEMSCAN output image; the preprocessing includes aligning the single polarized global microscopic image, the orthogonal polarized global microscopic image and the QEMSCAN output image;
切片模块,用于将预处理后的单偏光全域显微图像和预处理后的正交偏光全域显微图像进行同步切片和编号,得到多个编号后的正交偏光子图像和多个编号后的单偏光子图像;The slicing module is used for synchronously slicing and numbering the preprocessed single polarized global microscopic image and the preprocessed orthogonal polarized global microscopic image to obtain multiple numbered orthogonal polarized sub-images and multiple numbered The single polarized photon image of ;
孔缝信息确定模块,用于确定编号后的所述单偏光子图像中的孔缝位置信息和孔缝占比;Aperture information determination module, configured to determine the perforation position information and perforation ratio in the numbered single-polarized sub-image;
超像素分割模块,用于结合所述孔缝位置信息将编号后的所述单偏光子图像和编号后的所述正交偏光子图像进行超像素分割,得到包含岩石颗粒的岩石颗粒图像,将除所述岩石颗粒图像以外的图像按编号进行拼接,得到背景图像;The superpixel segmentation module is used to perform superpixel segmentation on the numbered single-polarized light sub-image and the numbered orthogonally polarized light sub-image in combination with the hole position information to obtain a rock particle image containing rock particles, and Images other than the rock particle images are spliced according to numbers to obtain a background image;
训练模块,用于将所述岩石颗粒图像作为训练样本数据集,以训练待训练的岩石成分自动识别模型,得到训练后的岩石成分自动识别模型;The training module is used to use the rock particle image as a training sample data set to train the rock composition automatic recognition model to be trained, and obtain the trained rock composition automatic recognition model;
第二获取模块,用于获取待测岩石薄片图像;The second acquisition module is used to acquire images of rock thin sections to be measured;
第一岩石成分确定模块,用于将所述待测岩石薄片图像输入至训练后的岩石成分自动识别模型,输出待测岩石薄片的岩石成分;The first rock composition determination module is used to input the image of the rock thin section to be tested into the trained rock composition automatic recognition model, and output the rock composition of the rock thin section to be tested;
第二岩石成分确定模块,用于结合对齐结果,通过QEMSCAN输出图像确定背景图像中胶结物成分和背景图像中杂基成分。The second rock composition determination module is used to combine the alignment results to determine the cement composition in the background image and the matrix composition in the background image through the QEMSCAN output image.
本发明的岩石成分自动识别方法和装置具有如下有益效果:The rock composition automatic identification method and device of the present invention have the following beneficial effects:
1、将显微图像智能识别与QEMSCAN方法相结合,解决了传统岩石薄片图像智能识别无法识别填隙物的问题,实现岩石薄片成分精准识别,降低专家时间的同时大大提升了准确率;1. Combining the microscopic image intelligent recognition with the QEMSCAN method solves the problem that the traditional rock thin section image intelligent recognition cannot identify the interstitial objects, realizes the accurate identification of rock thin section components, and greatly improves the accuracy while reducing the time for experts;
2、本发明以提高砂岩薄片的矿物颗粒及填隙物成分自动识别的准确率,实现砂岩薄片成分的全部识别以及定量输出,并最终实现岩石分类定名;2. The present invention improves the accuracy of automatic identification of mineral particles and interstitial components of sandstone slices, realizes all identification and quantitative output of sandstone slice components, and finally realizes rock classification and naming;
3、本发明分割流程中对超像素区域的合并方式,综合了偏光序列图像的特征信息,可以较好地解决初始分割(SLIC)时的过分割现象,实现同一颗粒内不同超像素分割区域的合并,并利用分类模型分出前景与背景,达到对矿物颗粒的理想分割效果。3. The merging method of the superpixel regions in the segmentation process of the present invention integrates the characteristic information of the polarized sequence images, which can better solve the over-segmentation phenomenon during the initial segmentation (SLIC), and realize the segmentation of different superpixel regions in the same particle. Merge, and use the classification model to separate the foreground and background, to achieve the ideal segmentation effect on mineral particles.
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点在说明书以及附图中所特别指出的结构来实现和获得。Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and appended drawings.
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。In order to make the above-mentioned objects, features and advantages of the present invention more comprehensible, preferred embodiments will be described in detail below together with the accompanying drawings.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific implementation of the present invention or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the specific implementation or description of the prior art. Obviously, the accompanying drawings in the following description The drawings show some implementations of the present invention, and those skilled in the art can obtain other drawings based on these drawings without any creative work.
图1为本发明的岩石成分自动识别方法的流程图;Fig. 1 is the flow chart of rock component automatic identification method of the present invention;
图2为本发明的同一位置处单偏光和正交偏光不同角度下拍摄的图像;Fig. 2 is the image taken under different angles of single polarized light and crossed polarized light at the same position of the present invention;
图3为本发明的QEMSCAN输出图像示意图;Fig. 3 is the QEMSCAN output image schematic diagram of the present invention;
图4为本发明的正交偏光下的全域显微图像和单偏光下的全域显微图像对齐示意图;Fig. 4 is a schematic diagram of the alignment of the global microscopic image under crossed polarized light and the global microscopic image under single polarized light according to the present invention;
图5为本发明的EfficientDet模型的结构示意图;Fig. 5 is the structural representation of EfficientDet model of the present invention;
图6为本发明的岩石成分自动识别装置的结构原理图。Fig. 6 is a schematic diagram of the structure of the automatic identification device for rock composition of the present invention.
在图中:10-第一获取模块;20-预处理模块;30-切片模块;40-孔缝信息确定模块;50-超像素分割模块;60-训练模块;70-第二获取模块;80-第一岩石成分确定模块;90-第二岩石成分确定模块。In the figure: 10-first acquisition module; 20-preprocessing module; 30-slicing module; 40-perforation information determination module; 50-superpixel segmentation module; 60-training module; 70-second acquisition module; 80 - a first rock composition determination module; 90 - a second rock composition determination module.
具体实施方式detailed description
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions of the present invention will be clearly and completely described below in conjunction with the accompanying drawings. Obviously, the described embodiments are part of the embodiments of the present invention, not all of them. the embodiment. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
为便于对本实施例进行理解,下面通过实施例对本发明所公开的一种岩石成分自动识别方法进行详细介绍。In order to facilitate the understanding of this embodiment, a method for automatically identifying rock components disclosed in the present invention will be described in detail below through an embodiment.
参照图1,本实施例提供了一种岩石成分自动识别方法,包括如下步骤:Referring to Fig. 1, the present embodiment provides a method for automatic identification of rock composition, comprising the following steps:
步骤S10,获取岩石薄片样本的不同位置处的单偏光显微图像和岩石薄片在不同位置处、不同角度下的正交偏光显微图像;采用QEMSCAN方法获取岩石薄片样本的QEMSCAN输出图像。Step S10, obtaining single polarized light microscopic images at different positions of the rock thin section sample and crossed polarized light microscopic images of the rock thin section at different positions and angles; using the QEMSCAN method to obtain the QEMSCAN output image of the rock thin section sample.
具体地,制备岩石薄片样本;获取岩石薄片样本不同位置处的单偏光显微图像,获取岩石薄片样本在不同位置处、不同角度下的正交偏光显微图像。如图2所示,具体方法为:将岩石薄片样本放置在光学显微镜下,通过显微镜摄像系统分别在单偏光和正交偏光下拍摄图像,其中同一位置下单偏光的拍摄角度为0度,如图2(a)所示,正交偏光图像共拍摄5张,角度分别为:0度36度、72度、108度、144度,如图2(b1)~(b5)所示,得到岩石薄片样本同一位置处的单偏光显微图像、正交偏光显微图像共六张;其中,(b1)为正交偏光(0度),(b2)为正交偏光(36度),(b3)为正交偏光(72度),(b4) 为正交偏光(108度),(b5)为正交偏光(144度)。移动预设的步长,重复以上操作,获得下一位置处的单偏光显微图像、正交偏光显微图像共六张,直至将岩石薄片样本的矿物区域全部摄取完毕。Specifically, rock thin section samples are prepared; single polarized light microscopic images at different positions of the rock thin section samples are obtained, and crossed polarized light microscopic images of the rock thin section samples are obtained at different positions and angles. As shown in Figure 2, the specific method is: place the rock thin section sample under an optical microscope, and take images under single polarized light and crossed polarized light through the microscope camera system, where the shooting angle of single polarized light at the same position is 0 degrees, as As shown in Figure 2(a), a total of 5 cross-polarized images were taken, and the angles were: 0°36°, 72°, 108°, and 144°, as shown in Figure 2(b1)-(b5), the rock There are six single polarized light microscopic images and crossed polarized light microscopic images at the same position of the sheet sample; among them, (b1) is the crossed polarized light (0 degree), (b2) is the crossed polarized light (36 degree), (b3 ) is crossed polarized light (72 degrees), (b4) is crossed polarized light (108 degrees), (b5) is crossed polarized light (144 degrees). Move the preset step length and repeat the above operations to obtain a total of six single polarized light microscopic images and crossed polarized light microscopic images at the next position until all the mineral regions of the rock thin section sample are taken.
采用QEMSCAN方法对岩石薄片样本进行扫描,得到QEMSCAN输出图像, QEMSCAN输出图像包括岩石薄片背散射图与矿物成分含量图。矿物成分含量图如图3所示。由于目前的QEMSCAN方法有如下缺点:无法将每个颗粒单独划分,精确度不够,对于制片过程中,有杂基覆盖在颗粒表面会让QEMSCAN 识别错误。所以在本实例的后续步骤中不采纳QEMSCAN对岩石颗粒的分析结果,故后续步骤使用到的有效信息为QEMSCAN对胶结物和杂基部分的成分及含量的分析结果。The QEMSCAN method is used to scan the rock thin section samples, and the QEMSCAN output image is obtained. The QEMSCAN output image includes the rock thin section backscattering map and the mineral composition content map. The mineral composition content map is shown in Figure 3. Because the current QEMSCAN method has the following disadvantages: it is impossible to divide each particle separately, and the accuracy is not enough. For the production process, there are impurities covering the surface of the particles, which will cause QEMSCAN to identify errors. Therefore, in the subsequent steps of this example, the analysis results of rock particles by QEMSCAN are not adopted, so the effective information used in the subsequent steps is the analysis results of QEMSCAN on the composition and content of cement and matrix.
步骤S20,对单偏光显微图像、正交偏光显微图像和QEMSCAN输出图像分别进行预处理,得到预处理后的单偏光全域显微图像、预处理后的正交偏光全域显微图像和预处理后的QEMSCAN输出图像;预处理包括对单偏光全域显微图像、正交偏光全域显微图和QEMSCAN输出图像进行对齐。Step S20, preprocessing the single polarized light microscopic image, the crossed polarized light microscopic image and the QEMSCAN output image respectively, to obtain the preprocessed single polarized light full field microscopic image, the preprocessed crossed polarized light full field microscopic image and the preprocessed Processed QEMSCAN output image; preprocessing includes aligning single-polarization full-field micrographs, crossed-polarization full-field micrographs, and QEMSCAN output images.
具体地,本实施例中的预处理至少包括拼接和对齐,即:对属于同一样本、同一角度下的单偏光显微图像、正交偏光显微图像分别进行拼接,对应得到单偏光全域显微图像和正交偏光全域显微图像;然后,将单偏光全域显微图像和正交偏光全域显微图像及QEMSCAN输出图像进行对齐;如图4所示,图4左边上下两张图片分别为对齐后的局部展示。具体方法可以是:Specifically, the preprocessing in this embodiment at least includes splicing and alignment, that is, splicing the single-polarized light microscopic images and cross-polarized light microscopic images belonging to the same sample and at the same angle to obtain the corresponding single-polarized light full-field microscopic images. Image and cross-polarized full-field microscopic image; then, align the single-polarized full-field microscopic image, crossed-polarized full-field microscopic image and QEMSCAN output image; as shown in Figure 4, the upper and lower pictures on the left side of Figure 4 are aligned Later partial display. The specific method can be:
对单偏光全域显微图像、正交单偏光全域显微图像及岩石薄片背散射图进行平滑去噪及光照均衡化处理,分别得到预处理后的单偏光全域显微图像、预处理后的正交偏光全域显微图像和预处理后的岩石薄片背散射图;The single-polarized full-field microscopic image, the orthogonal single-polarized full-field microscopic image, and the backscattering image of the rock thin section are smoothed, denoised, and illuminated to equalize. Cross-polarized full-field microscopic image and preprocessed backscattered image of rock thin section;
采用FAST算法分别对三种预处理后的图像进行特征点提取,并通过Brief 算法对特征点进行描述,得到对应的描述特征点;The FAST algorithm is used to extract the feature points of the three preprocessed images, and the feature points are described by the Brief algorithm to obtain the corresponding description feature points;
分别对单偏光全域显微图像、正交偏光全域显微图像及岩石薄片背散射图所对应的描述特征点进行相似度匹配,得到特征点的粗匹配结果;Perform similarity matching on the descriptive feature points corresponding to the single-polarization full-field microscopic image, cross-polarized full-field microscopic image, and rock thin section backscattering image, and obtain the rough matching results of the feature points;
基于粗匹配结果,利用RANSAC方法获得用于像素映射的单应性矩阵;Based on the rough matching results, a homography matrix for pixel mapping is obtained using the RANSAC method;
基于单应性矩阵,将正交偏光全域显微图像和岩石薄片背散射图像中的所有像素映射到单偏光全域显微图像,完成对齐。Based on the homography matrix, all pixels in the cross-polarized full-field microscopic image and the backscattered image of the rock thin section are mapped to the single-polarized full-field microscopic image to complete the alignment.
步骤S30,将预处理后的单偏光全域显微图像和预处理后的正交偏光全域显微图像进行同步切片和编号,得到多个编号后的单偏光子图像和多个编号后的正交偏光子图像。Step S30, synchronously slice and number the preprocessed single-polarized global microscopic image and the preprocessed orthogonal polarized global microscopic image to obtain multiple numbered single-polarized sub-images and multiple numbered orthogonal Polarized subimages.
具体地,将对齐后的单偏光全域显微图像和正交偏光全域显微图像进行同步切片,按照“原图名称-行数-列数”的方式从左到右、从上到下的顺序对切片后的子图像进行编号,分别得到若干切片后单偏光下子图像和正交偏光下子图像;例如:“img_num1&num2”,其中img为进行切片的原图名称,num1为所属行数,num2为所属列数。其中每个切片后的子图像大小小于等于1024*1024。同步切片是指不同图像在同一个位置处的切片方式及大小相同。Specifically, the aligned single-polarized global microscopic images and cross-polarized global microscopic images are sliced synchronously, in the order of "original image name-row number-column number" from left to right and from top to bottom Number the sub-images after slicing, and obtain several sub-images under single-polarization and cross-polarization respectively; for example: "img_num1&num2", where img is the name of the original image for slicing, num1 is the number of rows to which it belongs, and num2 is the sub-image to which it belongs number of columns. The size of each sliced sub-image is less than or equal to 1024*1024. Synchronous slicing means that different images have the same slicing method and size at the same location.
将若干切片后正交偏光下子图像和若干切片后的单偏光下子图像分别进行编号,得到多个编号后的正交偏光子图像和多个编号后的单偏光子图像。The sub-images under the cross-polarized light after several slices and the sub-images under the single-polarized light after several slices are numbered respectively, to obtain multiple numbered cross-polarized light sub-images and multiple numbered single-polarized light sub-images.
步骤S40,确定编号后的单偏光子图像中的孔缝位置信息和孔缝占比。Step S40, determining the aperture position information and aperture ratio in the numbered single-polarized sub-images.
在这里,由于在单偏光图像下,铸体液呈蓝色部分,且岩石颗粒不会呈现出蓝色,因此本步骤的具体方法为:对单偏光下子图像进行平滑滤波处理去噪后转化为HSV颜色空间;统计出蓝色像素点的个数,并将蓝色像素点占比作为该切片后单偏光下子图像的孔缝占比;保存蓝色像素点的位置信息并将其作为孔缝位置,然后将单偏光下子图像转为RGB颜色空间。其中蓝色在HSV空间的取值为:H(100-124),S(43-255),V(46-255)。Here, under the single polarized light image, the casting liquid is blue, and the rock particles will not appear blue, so the specific method of this step is: smoothing and filtering the sub-image under single polarized light and then converting it into HSV Color space; count the number of blue pixels, and take the proportion of blue pixels as the proportion of apertures in the sub-image under single polarized light after the slice; save the position information of blue pixels and use it as the aperture position , and then convert the sub-image under single polarized light into RGB color space. Among them, the value of blue in HSV space is: H(100-124), S(43-255), V(46-255).
步骤S50,结合孔缝位置将编号后的单偏光子图像和编号后的正交偏光子图像进行超像素分割,得到包含岩石颗粒的岩石颗粒图像,将除岩石颗粒图像以外的图像按编号进行拼接,得到背景图像。Step S50, combining the numbered single-polarization sub-image and the numbered orthogonal-polarization sub-image with superpixel segmentation to obtain the rock particle image containing rock particles, and splicing the images other than the rock particle image according to the number , to get the background image.
本实施例通过使用超像素分割,缩短像素点至像素点的距离,为后续处理直方图等的处理速度提供保障。本实施例的具体步骤为:In this embodiment, by using superpixel segmentation, the distance from pixel to pixel is shortened, which guarantees the processing speed of the subsequent processing of the histogram and the like. The concrete steps of this embodiment are:
步骤N1,结合孔缝位置信息去除编号后的单偏光子图像中的孔缝,得到去除孔缝后的单偏光子图像;对去除孔缝后的单偏光子图像进行初始化分割,得到单偏光子图像的多个初始分割区域;Step N1, remove the apertures in the numbered single-polarized photon images in combination with the aperture position information, and obtain the single-polarized photon images after the apertures are removed; initialize and segment the single-polarized photon images after removing the apertures, and obtain single-polarized photons multiple initially segmented regions of the image;
在这里,对去除孔缝后的单偏光子图像通过SLIC算法进行初始分割。Here, the SLIC algorithm is used to initially segment the single-polarized photon sub-image after removing the holes.
步骤N2,在编号后的正交偏光子图像中获取与单偏光子图像的多个初始分割区域相对应的A个第一分割区域图像数据,将第一分割区域图像数据在RGB 彩色空间下的每个通道分别量化为B个等级,得到N个特征维度;统计像素在 N个特征维度中的分布并进行特征空间归一化,得到A个根据第一分割区域图像数据生成的颜色直方图和根据第一分割区域图像数据生成的颜色均值;Step N2, acquire A first segmented region image data corresponding to a plurality of initial segmented regions of the single polarized sub-image in the numbered orthogonally polarized sub-image, and convert the first segmented region image data in the RGB color space Each channel is quantified into B levels respectively, and N feature dimensions are obtained; the distribution of pixels in the N feature dimensions is counted and the feature space is normalized, and A color histogram generated based on the image data of the first segmented area and A color mean value generated according to the image data of the first segmented region;
在这里,B的值为16,N的值为4096。Here, the value of B is 16 and the value of N is 4096.
步骤N3,获取去除孔缝后的单偏光子图像的多个初始分割区域对应的第二分割区域图像数据,确定每个根据第二分割区域图像数据生成的灰度直方图;Step N3, acquiring second segmented area image data corresponding to a plurality of initial segmented areas of the single-polarized light sub-image after the holes are removed, and determining each grayscale histogram generated according to the second segmented area image data;
步骤N4,按照多个初始分割区域间的相邻关系生成相对应的区域邻接图,其中,区域邻接图中每个区域均包括相对应的区域邻接图图像数据,区域邻接图图像数据包括根据第一分割区域图像数据生成的颜色直方图、据第一分割区域图像数据生成的颜色均值和相对应的根据第二分割区域图像数据生成的灰度直方图;Step N4, generate a corresponding region adjacency graph according to the adjacency relationship between multiple initially segmented regions, wherein each region in the region adjacency graph includes corresponding region adjacency graph image data, and the region adjacency graph image data includes A color histogram generated from the image data of the segmented area, a color mean value generated from the image data of the first segmented area, and a corresponding grayscale histogram generated from the image data of the second segmented area;
步骤N5,根据下述算式(1)确定正交偏光子图像的相似度hc:Step N5, determine the similarity h c of the orthogonally polarized sub-images according to the following formula (1):
其中,Hm表示区域邻接图中根据区域m对应的第一区域邻接图图像数据生成的颜色直方图,Hm(i)表示区域邻接图中区域m对应的第一区域邻接图图像数据在第i个特征维度对应的归一化结果;Hn表示区域邻接图中根据区域n对应的第二区域邻接图图像数据生成的颜色直方图;Hn(i)表示区域邻接图中区域n对应的第二区域邻接图图像数据在第i个特征维度对应的归一化结果;区域邻接图中区域n为区域m的邻接节点;Among them, H m represents the color histogram generated from the image data of the first region adjacency graph corresponding to region m in the region adjacency graph, and H m (i) represents the image data of the first region adjacency graph corresponding to region m in the region adjacency graph. The normalization results corresponding to i feature dimensions; H n represents the color histogram generated from the image data of the second region adjacency graph corresponding to region n in the region adjacency graph; H n (i) represents the color histogram corresponding to region n in the region adjacency graph The normalization result corresponding to the image data of the second region adjacency graph in the i-th feature dimension; region n in the region adjacency graph is an adjacent node of region m;
在这里,区域邻接图图像数据按所分割的区域m、n等包括第一区域邻接图图像数据、第二区域邻接图图像数据等。Here, the region adjacency graph image data includes first region adjacency graph image data, second region adjacency graph image data, and the like for each of the divided regions m, n, and the like.
步骤N6,根据下述算式(2)确定区域邻接图中区域m对应的第一区域邻接图图像数据和区域n对应的第二区域邻接图图像数据的边界距离he:Step N6, determine the boundary distance h e between the image data of the first region adjacency graph corresponding to region m in the region adjacency graph and the image data of the second region adjacency graph corresponding to region n according to the following formula (2):
he=||um-un||2, (2);h e =||u m -u n || 2 , (2);
其中,um表示区域m的颜色均值;un表示区域n的颜色均值;Among them, u m represents the color mean value of area m; u n represents the color mean value of area n;
步骤N7,在正交偏光子图像中,根据下述算式(3)确定区域邻接图中区域m对应的第一区域邻接图图像数据与区域n对应的第二区域邻接图图像数据的距离度量值D:Step N7, in the cross-polarized sub-image, determine the distance metric value of the first region adjacency graph image data corresponding to region m in the region adjacency graph and the second region adjacency graph image data corresponding to region n according to the following formula (3) D:
D=p×hc+(1-p)×he, (3);D=p*hc+(1-p)*he, (3);
其中,p为0-1之间的常数;Among them, p is a constant between 0-1;
步骤N8,根据下述算式(4)确定去除孔缝后的单偏光子图像的灰度相似性ha:Step N8, according to the following formula (4), determine the gray similarity h a of the single polarized sub-image after removing the holes:
其中,Fm表示区域邻接图中区域m对应的第一区域邻接图图像数据的灰度直方图;Fm(j)表示区域邻接图中区域m对应的第一区域邻接图图像数据在第j 个强度值下的灰度直方图;Fn表示区域邻接图中区域n对应的第二区域邻接图图像数据的灰度直方图;Fn(j)表示区域邻接图中区域n对应的第二区域邻接图图像数据在第j个强度值下的灰度直方图;Among them, F m represents the grayscale histogram of the image data of the first region adjacency graph corresponding to region m in the region adjacency graph; F m (j) represents the image data of the first region adjacency graph corresponding to region m in the region adjacency graph at jth gray histogram under intensity values; F n represents the gray histogram of the second region adjacency graph image data corresponding to region n in the region adjacency graph; F n (j) represents the second region adjacency graph image data corresponding to region n The gray histogram of the region adjacency graph image data under the jth intensity value;
步骤N9,根据下述算式(5)确定区域邻接图中区域m和区域n的相似度合并至h:Step N9, according to the following formula (5), determine the similarity between region m and region n in the region adjacency graph and merge them into h:
其中,K表示编号后的正交偏光显微图像在同一位置处的拍摄角度数量,D(k)表示在第k个拍摄角度下的正交偏光子图像区域邻接图中区域m 对应的图像数据和与区域n对应的图像数据的距离度量值;b为常数;Among them, K represents the number of shooting angles of the numbered cross-polarized light microscopic image at the same position, and D(k) represents the image data corresponding to area m in the cross-polarized sub-image area adjoining figure at the kth shooting angle and the distance metric of the image data corresponding to region n; b is a constant;
步骤S10,判断相似度合并至是否大于预设阈值,若是则将区域m和区域n 合并为第三区域,将区域m对应的第一区域邻接图图像数据和区域n对应的第二区域邻接图图像数据合并为第三图像数据;确定第三区域对应的颜色直方图、颜色均值和灰度直方图;根据第三区域更新区域邻接图;Step S10, judging whether the degree of similarity merged is greater than the preset threshold, if so, merge the region m and region n into a third region, and combine the image data of the first region adjacency graph corresponding to region m and the second region adjacency graph corresponding to region n The image data is merged into the third image data; the color histogram, color mean value and grayscale histogram corresponding to the third area are determined; the area adjacency graph is updated according to the third area;
步骤N11,重复步骤N5至步骤N10直至没有第三图像数据需要合并为止,得到合并后的总分割区域;Step N11, repeating step N5 to step N10 until there is no third image data to be merged, and the combined total segmented area is obtained;
步骤N12,在正交偏光图像下,对合并后的总分割区域对应的总图像数据进行二类别标注,得到前景岩石颗粒图像和背景其他杂质图像;将前景岩石颗粒图像和背景其他杂质图像作为待训练的岩石成分自动识别模型的输入进行训练,得到训练后的岩石成分自动识别模型;Step N12, under the crossed polarized image, perform two-category labeling on the total image data corresponding to the merged total segmented area to obtain the foreground rock particle image and the background other impurity image; the foreground rock particle image and the background other impurity image are used as the The input of the trained rock composition automatic recognition model is trained to obtain the trained rock composition automatic recognition model;
步骤N13,采用训练后的岩石成分自动识别模型对待测岩石薄片图像进行分类,得到岩石颗粒的分割区域,根据岩石颗粒的分割区域在正交偏光子图像上抠出对应的第一分割区域图像数据包含岩石颗粒的岩石颗粒图像,将包含岩石颗粒图像的正交偏光子图像按照编号进行拼接,得到K张正交偏光下的背景图像。Step N13, using the trained rock composition automatic recognition model to classify the rock thin section image to be tested to obtain the segmented area of rock particles, and extract the corresponding first segmented area image data on the orthogonal polarized sub-image according to the segmented area of rock particles For the rock particle image containing the rock particle, the orthogonally polarized sub-images containing the rock particle image are spliced according to the numbers to obtain K background images under the orthogonally polarized light.
在这里,如图5所示,岩石成分自动识别模型为EfficientDet模型。图5中 A部分为图像的多通道特征提取部分,使用EfficientNet网络作为骨干网络,选择EfficientNet-B0网络的骨干类型,设置训练网络的超参数、学习率、Batch size、训练的轮数(Epochs)、优化器(如SGD、Adam)等。EfficientNet-B0包括1个 Conv(3×3)、1个MBConv1(3×3)、2个MBConv6(3×3)、2个MBConv6(5×5)、 3个MBConv6(3×3)、3个MBConv6(5×5)、4个MBConv6(5×5)、一个MBConv6(3×3)、一个Conv(1×1)、一个Pooling层,一个FC层。其中MBConv 包含残差结构,先使用1×1的卷积进行升维操作,再进行3×3或5×5的卷积,此后增加关于通道的注意力机制,在使用1×1的卷积进行降维操作,再与残差结构进行堆叠,MBConv的激活函数使用的是Swish函数,并使用Batch Normalization进行标准化。Here, as shown in Fig. 5, the automatic identification model of rock composition is the EfficientDet model. Part A in Figure 5 is the multi-channel feature extraction part of the image. Use the EfficientNet network as the backbone network, select the backbone type of the EfficientNet-B0 network, and set the hyperparameters, learning rate, Batch size, and training rounds (Epochs) of the training network. , optimizers (such as SGD, Adam), etc. EfficientNet-B0 includes 1 Conv(3×3), 1 MBConv1(3×3), 2 MBConv6(3×3), 2 MBConv6(5×5), 3 MBConv6(3×3), 3 One MBConv6(5×5), four MBConv6(5×5), one MBConv6(3×3), one Conv(1×1), one Pooling layer, one FC layer. Among them, MBConv contains the residual structure, first use the 1×1 convolution to perform the dimension-up operation, and then perform the 3×3 or 5×5 convolution, and then add the attention mechanism about the channel, and then use the 1×1 convolution The dimensionality reduction operation is performed, and then stacked with the residual structure. The activation function of MBConv uses the Swish function and is standardized using Batch Normalization.
EfficientDet模型的B部分为多通道特征融合部分,由多个BiFPN网络构成,BiFPN网络可以学习来自不同输入特征的重要性,同时重复应用自顶向下和自底向上的多大小特征融合,融合了FPN和PANet的多级特征融合思想,使得信息能够在自上而下和自下而上的方向流动,同时使用规则和高效的连接。BiFPN 每个输入添加额外的权重,并让网络了解每个输入特征的重要性。BiFPN使用 Fast normalized fusion(快速归一化融合),实现特征的进一步提取与融合。Part B of the EfficientDet model is a multi-channel feature fusion part, which is composed of multiple BiFPN networks. The BiFPN network can learn the importance of different input features, and at the same time repeatedly apply top-down and bottom-up multi-size feature fusion. The multi-level feature fusion idea of FPN and PANet enables information to flow in both top-down and bottom-up directions while using rules and efficient connections. BiFPN adds additional weights to each input and lets the network learn how important each input feature is. BiFPN uses Fast normalized fusion (fast normalized fusion) to realize further extraction and fusion of features.
步骤S60,将岩石颗粒图像作为训练样本数据集,以训练待训练的岩石成分自动识别模型,得到训练后的岩石成分自动识别模型。In step S60, the rock particle image is used as a training sample data set to train the automatic recognition model of rock composition to be trained, and the trained automatic recognition model of rock composition is obtained.
步骤S70,获取待测岩石薄片图像。Step S70, acquiring the image of the rock thin section to be tested.
步骤S80,将待测岩石薄片图像输入至训练后的岩石成分自动识别模型,输出待测岩石薄片的岩石成分。Step S80, inputting the image of the rock thin section to be tested into the trained rock composition automatic identification model, and outputting the rock composition of the rock thin section to be tested.
步骤S90,结合对齐结果,通过QEMSCAN输出图像确定背景图像中胶结物成分和背景图像中杂基成分。Step S90, combining the alignment results, determining the cement components in the background image and the heterogeneous components in the background image through the QEMSCAN output image.
具体的,获取背景图像中剩余数据的位置,根据对齐结果将矿物成分含量图中在背景图像中除去孔缝位置和分割结果位置的剩余数据位置作为胶结物和杂基部分,在矿物成分含量图中统计剩余数据位置的各个像素值的数量,即可得胶结物和杂基部分的成分及含量。Specifically, the position of the remaining data in the background image is obtained, and according to the alignment result, the remaining data positions in the background image except for the positions of pores and fractures and the positions of the segmentation results in the mineral composition content map are used as cement and matrix parts, and in the mineral composition content map Count the number of each pixel value in the remaining data position in , and then get the composition and content of the cement and the matrix.
本实施例的最终的输出即包含目标岩石的类别、胶结物和杂基部分的成分及含量,以及孔缝占比。The final output of this embodiment includes the type of target rock, the composition and content of cement and matrix, and the proportion of pores and fractures.
在具体实施过程中,目标岩石可以采用与岩石薄片样本相同的处理方式,得到对应的各类图像,然后将目标岩石合并后的分割区域对应的正交偏光图像数据作为训练后的二分类模型的输入,即可得到岩石颗粒分割区域,将目标岩石对应的包含岩石颗粒的正交偏光图像作为训练后的多分类模型的输入,即可得到岩石颗粒的成分。In the specific implementation process, the target rock can be processed in the same way as the rock thin section sample to obtain the corresponding types of images, and then the orthogonal polarized image data corresponding to the segmented area after the target rock is merged is used as the binary classification model after training. Input, the rock particle segmentation area can be obtained, and the orthogonal polarized image containing the rock particle corresponding to the target rock can be used as the input of the trained multi-classification model to obtain the composition of the rock particle.
在本发明的一个实施例中,制备岩石薄片样本的具体步骤为:In one embodiment of the present invention, the concrete steps of preparing rock thin section sample are:
①、把准备好的岩石标本按需要的方位用切片机切成薄板,如果岩石足够坚硬致密,可切成长宽均3~5cm的岩石切片;①. Cut the prepared rock specimens into thin plates with a slicer according to the required orientation. If the rocks are hard and dense enough, they can be cut into rock slices with an average length and width of 3-5 cm;
②、将切下的岩石切片经水冲洗干净后,放在磨片机的铁磨盘上经粗磨、中磨、细磨,达到0.1mm后,到璃板上用极细的金刚粉(800号)净磨,达到约0.03mm后,进行抛光使磨光面非常光滑完整,再用清水冲洗,并把烘箱温度调至47℃烘烤12小时;②. After the cut rock slices are rinsed with water, put them on the iron grinding disc of the grinder for rough grinding, medium grinding, and fine grinding. After reaching 0.1mm, use very fine diamond powder (800 No.) net grinding, after reaching about 0.03mm, polish to make the polished surface very smooth and complete, then rinse with clean water, and adjust the oven temperature to 47°C for 12 hours;
③、将光面用加拿大树胶粘贴在载玻片上,固结后继续对试片的另一面进行研磨,将玻璃片磨制成半透明;③. Paste the smooth surface on the glass slide with Canadian gum, and continue to grind the other side of the test piece after solidification, and grind the glass piece to become translucent;
④、将已磨制平整、光滑、半透明的放到玻璃板上,用最细的金刚砂(800 号),用指肚按压摩擦,至0.03mm厚左右,把适当厚的岩石薄片洗干净、烘干,得到岩石薄片样本。④. Put the ground flat, smooth and translucent rock on the glass plate, use the finest corundum (No. 800), press and rub it with the belly of your finger until it is about 0.03mm thick, and wash the rock slices with an appropriate thickness. Dry to obtain rock thin slice samples.
本实施例具有如下的有益效果:This embodiment has the following beneficial effects:
1、对获取的单偏光显微图像、正交偏光显微图像和QEMSCAN输出图像分别进行预处理,然后将预处理后的单偏光显微图像和正交偏光显微图像进行同步切片和编号,计算编号后的单偏光子图像中的孔缝位置信息和孔缝占比,同时结合孔缝位置信息将编号后的单偏光子图像和正交偏光子图像进行超像素分割,得到包含岩石颗粒的岩石颗粒图像;采用岩石颗粒图像对待训练的岩石成分自动识别模型进行训练;然后采用训练后的岩石成分自动识别模型识别待测岩石薄片的岩石成分;再结合QEMSCAN确定背景图像中胶结物成分和背景图像中杂基成分;本实施例将显微图像智能识别与QEMSCAN方法相结合,解决了传统岩石薄片图像智能识别无法识别填隙物的问题,实现岩石薄片成分精准识别,降低专家时间的同时大大提升了准确率;1. Preprocess the acquired single polarized light microscopic image, crossed polarized light microscopic image and QEMSCAN output image respectively, and then slice and number the preprocessed single polarized light microscopic image and crossed polarized light microscopic image synchronously, Calculate the position information and proportion of pores and fractures in the numbered single-polarization sub-images, and combine the position information of pores and fractures to perform superpixel segmentation on the numbered single-polarization sub-images and orthogonal polarization sub-images to obtain the Rock particle image; use the rock particle image to train the rock composition automatic recognition model to be trained; then use the trained rock composition automatic recognition model to identify the rock composition of the rock thin section to be tested; combined with QEMSCAN to determine the cement composition and background in the background image Impurity components in the image; this embodiment combines the intelligent recognition of microscopic images with the QEMSCAN method, which solves the problem that the traditional intelligent recognition of rock slice images cannot identify interstitial objects, realizes accurate identification of rock slice components, and greatly reduces the time spent by experts. Improved accuracy;
2、本实施例以提高砂岩薄片的矿物颗粒及填隙物成分自动识别的准确率,实现砂岩薄片成分的全部识别以及定量输出,并最终实现岩石分类定名;2. In this embodiment, the accuracy rate of automatic identification of mineral particles and interstitial components of sandstone slices is improved, and all identification and quantitative output of sandstone slice components are realized, and rock classification and naming are finally realized;
3、本实施例分割流程中对超像素区域的合并方式,综合了偏光序列图像的特征信息,可以较好地解决初始分割(SLIC,即线性迭代聚类超像素算法)时的过分割现象,实现同一颗粒内不同超像素分割区域的合并,并利用分类模型分出前景与背景,达到对矿物颗粒的理想分割效果。3. The merging method of the superpixel regions in the segmentation process of this embodiment integrates the characteristic information of the polarized sequence images, which can better solve the over-segmentation phenomenon during the initial segmentation (SLIC, that is, the linear iterative clustering superpixel algorithm), Realize the merging of different superpixel segmentation regions in the same particle, and use the classification model to separate the foreground and background, so as to achieve the ideal segmentation effect on mineral particles.
综上,本发明实现了岩石成分自动识别,大大提升了实验准确性且节约了实验时间,可以在短时间内有效辅助专家进行岩石成分的分析,较大的提高了工作效率,并极大地提高了岩石成分分析的准确性。To sum up, the present invention realizes the automatic identification of rock composition, greatly improves the accuracy of the experiment and saves the experiment time, and can effectively assist experts in the analysis of rock composition in a short time, which greatly improves the work efficiency and greatly improves the The accuracy of rock composition analysis is improved.
参照图6,本实施例提供的一种岩石成分自动识别装置,包括如下模块:Referring to Fig. 6, a kind of rock component automatic identification device provided in the present embodiment comprises the following modules:
第一获取模块10,用于获取岩石薄片样本的不同位置处的单偏光显微图像和岩石薄片在不同位置处、不同角度下的正交偏光显微图像;采用QEMSCAN 方法获取岩石薄片样本的QEMSCAN输出图像;The
预处理模块20,用于对单偏光显微图像、正交偏光显微图像和QEMSCAN 输出图像分别进行预处理,得到预处理后的单偏光全域显微图像、预处理后的正交偏光全域显微图像和预处理后的QEMSCAN输出图像;预处理包括对单偏光全域显微图像、正交偏光全域显微图和QEMSCAN输出图像进行对齐;The
切片模块30,用于将预处理后的单偏光全域显微图像和预处理后的正交偏光全域显微图像进行同步切片和编号,得到多个编号后的正交偏光子图像和多个编号后的单偏光子图像;Slicing
孔缝信息确定模块40,用于确定编号后的单偏光子图像中的孔缝位置信息和孔缝占比;Aperture
超像素分割模块50,用于结合孔缝位置信息将编号后的单偏光子图像和编号后的正交偏光子图像进行超像素分割,得到包含岩石颗粒的岩石颗粒图像,将除岩石颗粒图像以外的图像按编号进行拼接,得到背景图像;The
训练模块60,用于将岩石颗粒图像作为训练样本数据集,以训练待训练的岩石成分自动识别模型,得到训练后的岩石成分自动识别模型;The
第二获取模块70,用于获取待测岩石薄片图像;The second acquiring
第一岩石成分确定模块80,用于将待测岩石薄片图像输入至训练后的岩石成分自动识别模型,输出待测岩石薄片的岩石成分;The first rock
第二岩石成分确定模块90,用于结合对齐结果,通过QEMSCAN输出图像确定背景图像中胶结物成分和背景图像中杂基成分。The second rock
本发明实施例所提供的装置,其实现原理及产生的技术效果和前述方法实施例相同,为简要描述,装置实施例部分未提及之处,可参考前述方法实施例中相应内容。本发明实施例提供的岩石成分自动识别装置,与上述实施例提供的岩石成分自动识别方法具有相同的技术特征,所以也能解决相同的技术问题,达到相同的技术效果。The implementation principles and technical effects of the device provided by the embodiment of the present invention are the same as those of the foregoing method embodiment. For brief description, for the parts not mentioned in the device embodiment, reference may be made to the corresponding content in the foregoing method embodiment. The rock composition automatic recognition device provided by the embodiment of the present invention has the same technical features as the rock composition automatic recognition method provided by the above embodiment, so it can also solve the same technical problem and achieve the same technical effect.
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。Finally, it should be noted that: the above-described embodiments are only specific implementations of the present invention, used to illustrate the technical solutions of the present invention, rather than limiting them, and the scope of protection of the present invention is not limited thereto, although referring to the foregoing The embodiment has described the present invention in detail, and those skilled in the art should understand that any person familiar with the technical field can still modify the technical solutions described in the foregoing embodiments within the technical scope disclosed in the present invention Changes can be easily thought of, or equivalent replacements are made to some of the technical features; and these modifications, changes or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention, and should be included in the scope of the present invention within the scope of protection.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210908032.6A CN115564706B (en) | 2022-07-29 | 2022-07-29 | Method and device for automatic identification of rock composition |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210908032.6A CN115564706B (en) | 2022-07-29 | 2022-07-29 | Method and device for automatic identification of rock composition |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115564706A true CN115564706A (en) | 2023-01-03 |
| CN115564706B CN115564706B (en) | 2025-08-22 |
Family
ID=84739133
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210908032.6A Active CN115564706B (en) | 2022-07-29 | 2022-07-29 | Method and device for automatic identification of rock composition |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115564706B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024252180A1 (en) * | 2023-06-07 | 2024-12-12 | Cgg Services Sas | Method and system for identifying grain boundaries and mineral phases in sample |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105115874A (en) * | 2015-08-18 | 2015-12-02 | 中国石油天然气股份有限公司 | Multi-component 3D digital core construction method based on multi-source information fusion |
| US20190318467A1 (en) * | 2018-04-17 | 2019-10-17 | Saudi Arabian Oil Company | Automated analysis of petrographic thin section images using advanced machine learning techniques |
| CN112784894A (en) * | 2021-01-18 | 2021-05-11 | 西南石油大学 | Automatic labeling method for rock slice microscopic image |
| CN113222071A (en) * | 2021-06-04 | 2021-08-06 | 嘉应学院 | Rock classification method based on rock slice microscopic image deep learning |
| CN113609696A (en) * | 2021-08-16 | 2021-11-05 | 中国地质大学(北京) | Multi-scale and multi-component digital core construction method and system based on image fusion |
| CN113933331A (en) * | 2021-09-24 | 2022-01-14 | 数岩科技股份有限公司 | Method, device and storage medium for determining diagenetic stage |
-
2022
- 2022-07-29 CN CN202210908032.6A patent/CN115564706B/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105115874A (en) * | 2015-08-18 | 2015-12-02 | 中国石油天然气股份有限公司 | Multi-component 3D digital core construction method based on multi-source information fusion |
| US20190318467A1 (en) * | 2018-04-17 | 2019-10-17 | Saudi Arabian Oil Company | Automated analysis of petrographic thin section images using advanced machine learning techniques |
| CN112784894A (en) * | 2021-01-18 | 2021-05-11 | 西南石油大学 | Automatic labeling method for rock slice microscopic image |
| CN113222071A (en) * | 2021-06-04 | 2021-08-06 | 嘉应学院 | Rock classification method based on rock slice microscopic image deep learning |
| CN113609696A (en) * | 2021-08-16 | 2021-11-05 | 中国地质大学(北京) | Multi-scale and multi-component digital core construction method and system based on image fusion |
| CN113933331A (en) * | 2021-09-24 | 2022-01-14 | 数岩科技股份有限公司 | Method, device and storage medium for determining diagenetic stage |
Non-Patent Citations (2)
| Title |
|---|
| 吴拥;苏桂芬;滕奇志;何小海;郭亮;: "岩石薄片正交偏光图像的颗粒分割方法", 科学技术与工程, no. 31, 8 November 2013 (2013-11-08) * |
| 张欣;张栋;杨倬;高世臣;张艳;: "基于正交偏光序列消光特征的岩石薄片颗粒分割与孔隙提取", 岩石矿物学杂志, no. 01, 25 January 2020 (2020-01-25) * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024252180A1 (en) * | 2023-06-07 | 2024-12-12 | Cgg Services Sas | Method and system for identifying grain boundaries and mineral phases in sample |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115564706B (en) | 2025-08-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN109829914B (en) | Method and device for detecting product defects | |
| CN109145830B (en) | Intelligent water gauge identification method | |
| CN113160136B (en) | Wood defect identification and segmentation method based on improved Mask R-CNN | |
| CN108596038B (en) | Method for identifying red blood cells in excrement by combining morphological segmentation and neural network | |
| CN107665492A (en) | Colon and rectum panorama numeral pathological image tissue segmentation methods based on depth network | |
| CN114359235A (en) | Wood surface defect detection method based on improved YOLOv5l network | |
| CN110853006B (en) | A method for quality assessment of digital pathological images obtained by using a scanner | |
| CN116503391A (en) | Tunnel face rock mass joint crack identification method and identification device | |
| CN109815974A (en) | A kind of cell pathology slide classification method, system, equipment, storage medium | |
| CN111210447B (en) | A method and terminal for hierarchical segmentation of hematoxylin-eosin stained pathological images | |
| CN112784894B (en) | Automatic labeling method for rock slice microscopic image | |
| CN110796716B (en) | An Image Colorization Method Based on Multiple Residual Networks and Regularized Transfer Learning | |
| CN117496276B (en) | Lung cancer cell morphology analysis and identification method and computer readable storage medium | |
| CN114612415A (en) | Surface defect classification method based on deep residual network and multi-channel image fusion | |
| CN115564706A (en) | Method and device for automatic identification of rock composition | |
| CN114972246A (en) | A deep learning-based surface defect detection method for die-cutting products | |
| CN109741351A (en) | A class-sensitive edge detection method based on deep learning | |
| CN115546536B (en) | Ivory product identification method and system | |
| CN114743042B (en) | A Longjing tea quality identification method based on deep features and TrAdaBoost | |
| CN110991434A (en) | Self-service terminal certificate identification method and device | |
| CN115578333A (en) | Domestic ceramic surface defect detection method based on region division and yolo5 | |
| CN116051966A (en) | Graptolite image recognition method and its model training method based on deep learning network | |
| CN110400320B (en) | A segmentation method of electrowetting defect pixels | |
| CN110443811B (en) | A fully automatic segmentation method for leaf images with complex background | |
| CN118982544A (en) | A method and system for evaluating and managing metallographic image analysis software |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |