CN115543942A - Wind generating set operation data processing method and device based on cloud computing service - Google Patents
Wind generating set operation data processing method and device based on cloud computing service Download PDFInfo
- Publication number
- CN115543942A CN115543942A CN202110733982.5A CN202110733982A CN115543942A CN 115543942 A CN115543942 A CN 115543942A CN 202110733982 A CN202110733982 A CN 202110733982A CN 115543942 A CN115543942 A CN 115543942A
- Authority
- CN
- China
- Prior art keywords
- compressed file
- file
- generating set
- operation data
- cloud computing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/10—File systems; File servers
- G06F16/17—Details of further file system functions
- G06F16/174—Redundancy elimination performed by the file system
- G06F16/1744—Redundancy elimination performed by the file system using compression, e.g. sparse files
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/10—File systems; File servers
- G06F16/16—File or folder operations, e.g. details of user interfaces specifically adapted to file systems
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/10—File systems; File servers
- G06F16/18—File system types
- G06F16/182—Distributed file systems
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- Water Supply & Treatment (AREA)
- Tourism & Hospitality (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Primary Health Care (AREA)
- Marketing (AREA)
- Human Resources & Organizations (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Human Computer Interaction (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本公开涉及风力发电领域,更具体地说,涉及一种基于云计算服务的风力发电机组运行数据处理方法及装置。The present disclosure relates to the field of wind power generation, and more specifically, to a method and device for processing operation data of a wind power generating set based on cloud computing services.
背景技术Background technique
近年来,风力发电技术持续快速发展,并且风电并网装机容量迅速增长。风电场SCADA(Supervisory Control And Data Acquisition,数据采集与监视控制)系统能够实现风电场全系统风机监控以及风力发电机组和风电场故障等数据的收集,并且能够不断实时更新这些数据。数据处理系统通过对风力发电机组和风电场时序或者离线地采集数据,并且对数据进行存储和控制处理,以满足远程监控或者利用历史数据进行算法开发的需求。In recent years, wind power technology has continued to develop rapidly, and wind power grid-connected installed capacity has grown rapidly. The wind farm SCADA (Supervisory Control And Data Acquisition, data acquisition and monitoring control) system can realize the wind farm system-wide fan monitoring and the collection of data such as wind turbine and wind farm faults, and can continuously update these data in real time. The data processing system collects data from wind turbines and wind farms sequentially or offline, and stores and controls the data to meet the needs of remote monitoring or algorithm development using historical data.
随着风力发电机组接入数量的增加,数据频率高、数据采集量大、数据采集渠道不唯一的特征逐渐显露。目前的风力发电机组数据处理系统仍然采用非分布式的时序数据库为核心的方式,这样的方式存储成本高且不易扩展,并且风力发电机组数据处理系统的性能可能受数据量的影响而严重劣化。With the increase in the number of wind turbines connected, the characteristics of high data frequency, large amount of data collection, and non-unique data collection channels are gradually revealed. The current wind turbine data processing system still uses a non-distributed time-series database as the core method, which has high storage costs and is not easy to expand, and the performance of the wind turbine data processing system may be seriously degraded due to the impact of data volume.
发明内容Contents of the invention
为了解决上述问题,本公开提出一种基于云计算服务的风力发电机组运行数据处理方法及装置。In order to solve the above problems, the present disclosure proposes a cloud computing service-based method and device for processing operation data of a wind power generating set.
根据本公开的一方面,提供一种基于云计算服务的风力发电机组运行数据处理方法,所述基于云计算服务的风力发电机组运行数据处理方法可包括:从云端服务器获取包含风力发电机组运行数据的原始压缩文件;根据预设筛选条件对所述原始压缩文件进行筛选,得到有效压缩文件;将所述有效压缩文件转换为目标格式的压缩文件,所述目标格式包括列式存储;将所述目标格式的压缩文件发送到云端服务器。According to an aspect of the present disclosure, there is provided a cloud computing service-based wind power generating set operating data processing method, the cloud computing service-based wind power generating set operating data processing method may include: obtaining from a cloud server including wind power generating set operating data the original compressed file; filter the original compressed file according to preset filter conditions to obtain an effective compressed file; convert the effective compressed file into a compressed file in a target format, and the target format includes columnar storage; The compressed file in the target format is sent to the cloud server.
可选地,所述将所述有效压缩文件转换为目标格式的压缩文件的步骤可包括:提取所述有效压缩文件的文件路径以及文件名称;将所述文件路径和所述文件名称进行关联操作,得到中间变量;将所述中间变量输入至预设的格式转换函数,得到所述目标格式的压缩文件。Optionally, the step of converting the effective compressed file into a compressed file in the target format may include: extracting the file path and file name of the effective compressed file; associating the file path and the file name , to obtain an intermediate variable; input the intermediate variable to a preset format conversion function to obtain a compressed file in the target format.
可选地,所述将所述有效压缩文件转换为目标格式的压缩文件的步骤还可包括:在将所述有效压缩文件转换为目标格式的压缩文件失败的情况下,将所述有效压缩文件中的数据转换为预定格式的数据;将所述预定格式的数据进行压缩处理,得到中间压缩文件;根据所述中间压缩文件,返回执行所述提取所述有效压缩文件的文件路径以及文件名称的步骤。Optionally, the step of converting the valid compressed file into a compressed file in the target format may further include: in the case of failure to convert the valid compressed file into a compressed file in the target format, converting the valid compressed file Convert the data in the predetermined format into data in a predetermined format; compress the data in the predetermined format to obtain an intermediate compressed file; return and execute the method of extracting the file path and file name of the effective compressed file according to the intermediate compressed file step.
可选地,所述预设筛选条件可包括:所述原始压缩文件的格式为预设格式和/或所述原始压缩文件的文件名称包含风机编号;并且所述根据预设筛选条件对所述原始压缩文件进行筛选得到有效压缩文件的步骤可包括:从所述原始压缩文件中去除不符合所述预设筛选条件中任一项的原始压缩文件,得到有效压缩文件。Optionally, the preset filtering conditions may include: the format of the original compressed file is a preset format and/or the file name of the original compressed file includes a fan number; The step of filtering original compressed files to obtain valid compressed files may include: removing original compressed files that do not meet any of the preset filtering conditions from the original compressed files to obtain valid compressed files.
可选地,所述根据预设筛选条件对所述原始压缩文件进行筛选得到有效压缩文件的步骤可包括:根据所述原始压缩文件的文件名确定风机编号和文件日期;针对风机编号和文件日期均相同的所述原始压缩文件,读取所述原始压缩文件中的风力发电机组运行数据;保留列数、行数或数值最大的风力发电机组运行数据所对应的所述原始压缩文件,得到所述有效压缩文件。Optionally, the step of filtering the original compressed file according to preset filtering conditions to obtain a valid compressed file may include: determining the fan number and file date according to the file name of the original compressed file; The original compressed files are all the same, read the wind power generating set operating data in the original compressed file; retain the original compressed file corresponding to the wind generating set operating data with the largest number of columns, rows or numerical values, and obtain the effectively compresses the files described above.
可选地,所述根据预设筛选条件对所述原始压缩文件进行筛选得到有效压缩文件的步骤可包括:对所述原始压缩文件进行解压;将解压失败的原始压缩文件筛除,保留解压成功的原始压缩文件,得到所述有效压缩文件。Optionally, the step of filtering the original compressed files according to preset filtering conditions to obtain valid compressed files may include: decompressing the original compressed files; screening out the original compressed files that failed to decompress, and retaining the successfully decompressed files. the original compressed file to obtain the effective compressed file.
可选地,所述将所述有效压缩文件转换为目标格式的压缩文件的步骤可包括:从所述有效压缩文件的数据中去除质量列数据,所述质量列数据为指示风机制造商的数据。Optionally, the step of converting the effective compressed file into a compressed file in the target format may include: removing quality column data from the data in the effective compressed file, and the quality column data is data indicating a fan manufacturer .
可选地,所述目标格式可包括以下任意一项:Parquet、ORC、CarbonData。Optionally, the target format may include any one of the following: Parquet, ORC, CarbonData.
可选地,所述基于云计算服务的风力发电机组运行数据处理方法还可包括:根据所述目标格式的压缩文件在云端服务器中的存储路径的记录,确定风力发电机组在预设周期内的数据完整度,所述数据完整度用于表征在所述预设周期内的针对每个风机发电机组的所述目标格式的压缩文件的数量与所述预设周期包括的天数的比值。Optionally, the cloud computing service-based wind power generating set operation data processing method may further include: according to the record of the storage path of the compressed file in the target format in the cloud server, determine the wind power generating set within a preset period. Data integrity, the data integrity is used to characterize the ratio of the number of compressed files in the target format for each wind turbine generating set within the preset period to the number of days included in the preset period.
可选地,所述基于云计算服务的风力发电机组运行数据处理方法还可包括:从所述目标格式的压缩文件中提取风力发电机组运行数据;将所述风力发电机组运行数据输入至风力发电机组部件预警模型,得到预警结果,所述预警结果用于指示风力发电机组部件的异常情况。Optionally, the method for processing operating data of a wind power generating set based on a cloud computing service may further include: extracting the operating data of a wind generating set from the compressed file in the target format; The unit component early warning model obtains an early warning result, and the early warning result is used to indicate the abnormal condition of the wind power generation unit component.
根据本公开的另一方面,提供一种基于云计算服务的风力发电机组运行数据处理装置,所述基于云计算服务的风力发电机组运行数据处理装置包括:获取单元,被配置为从云端服务器获取包含风力发电机组运行数据的原始压缩文件;筛选单元,被配置为根据预设筛选条件对所述原始压缩文件进行筛选,得到有效压缩文件;格式转换单元,被配置为将所述有效压缩文件转换为目标格式的压缩文件,所述目标格式包括列式存储;发送单元,被配置为将所述目标格式的压缩文件发送到云端服务器。According to another aspect of the present disclosure, a cloud computing service-based wind power generating set operation data processing device is provided, and the cloud computing service-based wind power generating set operating data processing device includes: an acquisition unit configured to obtain from a cloud server The original compressed file containing the operating data of the wind power generating set; the filtering unit is configured to filter the original compressed file according to preset filtering conditions to obtain an effective compressed file; the format conversion unit is configured to convert the effective compressed file It is a compressed file in a target format, and the target format includes columnar storage; a sending unit configured to send the compressed file in the target format to a cloud server.
可选地,所述格式转换单元可被配置为:提取所述有效压缩文件的文件路径以及文件名称;将所述文件路径和所述文件名称进行关联操作,得到中间变量;将所述中间变量输入至预设的格式转换函数,得到所述目标格式的压缩文件。Optionally, the format conversion unit may be configured to: extract the file path and file name of the effective compressed file; associate the file path with the file name to obtain an intermediate variable; convert the intermediate variable to input to a preset format conversion function to obtain a compressed file in the target format.
可选地,所述格式转换单元还可被配置为:在将所述有效压缩文件转换为目标格式的压缩文件失败的情况下,将所述有效压缩文件中的数据转换为预定格式的数据;将所述预定格式的数据进行压缩处理,得到中间压缩文件;根据所述中间压缩文件,返回执行所述提取所述有效压缩文件的文件路径以及文件名称的步骤。Optionally, the format converting unit may also be configured to: convert the data in the valid compressed file into data in a predetermined format when converting the valid compressed file into a target format compressed file fails; Compressing the data in the predetermined format to obtain an intermediate compressed file; returning to the step of extracting the file path and file name of the effective compressed file according to the intermediate compressed file.
可选地,所述预设筛选条件可包括所述原始压缩文件的格式为预设格式和/或所述原始压缩文件的文件名称包含风机编号;并且所述筛选单元可被配置为:从所述原始压缩文件中去除不符合所述预设筛选条件中任一项的原始压缩文件,得到有效压缩文件。Optionally, the preset filtering condition may include that the format of the original compressed file is a preset format and/or the file name of the original compressed file includes a fan number; and the filtering unit may be configured to: select from the removing original compressed files that do not meet any of the preset filtering conditions from the original compressed files to obtain a valid compressed file.
可选地,所述筛选单元可被配置为:根据所述原始压缩文件的文件名确定风机编号和文件日期;针对风机编号和文件日期均相同的所述原始压缩文件,读取所述原始压缩文件中的风力发电机组运行数据;保留列数、行数或数值最大的风力发电机组运行数据所对应的所述原始压缩文件,得到所述有效压缩文件。Optionally, the screening unit may be configured to: determine the fan number and file date according to the file name of the original compressed file; read the original compressed file for the original compressed file whose fan number and file date are the same The operating data of the wind power generating set in the file; the original compressed file corresponding to the operating data of the wind generating set with the largest number of columns, rows or numerical values is retained to obtain the effective compressed file.
可选地,所述筛选单元可被配置为:对所述原始压缩文件进行解压;将解压失败的原始压缩文件筛除,保留解压成功的原始压缩文件,得到所述有效压缩文件。Optionally, the filtering unit may be configured to: decompress the original compressed files; filter out the original compressed files that fail to be decompressed, keep the original compressed files that are successfully decompressed, and obtain the effective compressed files.
可选地,所述格式转换单元可被配置为:从所述有效压缩文件的数据中去除质量列数据,所述质量列数据为指示风机制造商的数据。Optionally, the format conversion unit may be configured to: remove quality column data from the data of the effective compressed file, where the quality column data is data indicating a fan manufacturer.
可选地,所述目标格式可包括以下任意一项:Parquet、ORC、CarbonData。Optionally, the target format may include any one of the following: Parquet, ORC, CarbonData.
可选地,所述基于云计算服务的风力发电机组运行数据处理装置还可包括:数据完整度确定单元,被配置为根据所述目标格式的压缩文件在云端服务器中的存储路径的记录,确定风力发电机组在预设周期内的数据完整度,所述数据完整度用于表征在所述预设周期内的针对每个风机发电机组的所述目标格式的压缩文件的数量与所述预设周期包括的天数的比值。Optionally, the cloud computing service-based wind power generating set operation data processing device may further include: a data integrity determination unit configured to determine, according to the storage path record of the compressed file in the target format in the cloud server, The data integrity of the wind power generating set within a preset period, the data integrity is used to characterize the number of compressed files in the target format for each wind generating set within the preset period and the preset The ratio of the number of days included in the period.
可选地,所述基于云计算服务的风力发电机组运行数据处理装置还可包括:数据提取单元,被配置为从所述目标格式的压缩文件中提取风力发电机组运行数据;预警单元,被配置为将所述风力发电机组运行数据输入至风力发电机组部件预警模型,得到预警结果,所述预警结果用于指示风力发电机组部件的异常情况。Optionally, the cloud computing service-based wind power generating set operation data processing device may further include: a data extraction unit configured to extract wind power generating set operating data from the compressed file in the target format; an early warning unit configured to In order to input the operation data of the wind generating set into the early warning model of the components of the wind generating set to obtain the early warning result, the early warning result is used to indicate the abnormal condition of the components of the wind generating set.
根据本公开的另一方面,提供一种包括至少一个计算装置和至少一个存储指令的存储装置的系统,其中,所述指令在被所述至少一个计算装置运行时,促使所述至少一个计算装置执行如上所述的基于云计算服务的风力发电机组运行数据处理方法。According to another aspect of the present disclosure, there is provided a system comprising at least one computing device and at least one storage device storing instructions, wherein the instructions, when executed by the at least one computing device, cause the at least one computing device to Executing the above-mentioned cloud computing service-based wind power generating set operation data processing method.
根据本公开的另一方面,提供一种存储指令的计算机可读存储介质,其中,当所述指令被至少一个计算装置运行时,促使所述至少一个计算装置执行如上所述的基于云计算服务的风力发电机组运行数据处理方法。According to another aspect of the present disclosure, there is provided a computer-readable storage medium storing instructions, wherein, when the instructions are executed by at least one computing device, the at least one computing device is caused to execute the cloud-based computing service as described above. The method for processing the operation data of the wind power generating set.
通过采用本公开,能够降低风力发电机组运行数据的存储成本和提高风力发电机组运行数据的读取效率。By adopting the present disclosure, it is possible to reduce the storage cost of the operating data of the wind generating set and improve the reading efficiency of the operating data of the wind generating set.
附图说明Description of drawings
通过下面结合附图描述实施例,本公开的上述和/或其他目的和优点将变得更加清楚,其中:The above and/or other objects and advantages of the present disclosure will become more apparent by describing the embodiments below in conjunction with the accompanying drawings, wherein:
图1是示出根据本公开的示例性实施例的基于云计算服务的风力发电机组运行数据处理方法的流程图;Fig. 1 is a flow chart showing a method for processing operating data of a wind power generating set based on a cloud computing service according to an exemplary embodiment of the present disclosure;
图2是示出根据本公开的示例性实施例的基于云计算服务的风力发电机组运行数据处理装置的结构框图;Fig. 2 is a structural block diagram showing a cloud computing service-based wind power generating set operation data processing device according to an exemplary embodiment of the present disclosure;
图3示出了根据本公开的实施例的包括至少一个计算装置和至少一个存储指令的存储装置的系统的结构示意图。Fig. 3 shows a schematic structural diagram of a system including at least one computing device and at least one storage device storing instructions according to an embodiment of the present disclosure.
具体实施方式detailed description
现将详细描述本公开的示例性实施例,所述实施例的示例在附图中示出,其中,相同的标号指示相同的部分。以下将通过参照附图来说明所述实施例,以便解释本公开。Exemplary embodiments of the present disclosure will now be described in detail, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like parts. The embodiments are described below in order to explain the present disclosure by referring to the figures.
根据本公开的示例性实施例的系统可包括风力发电机组、SCADA系统、用于存储数据的云端服务器(例如,S3(Simple Storage Service)云端服务器或其他用于存储数据的云端服务器)、能够实现数据处理功能的云计算服务(例如,Lambda服务或其他具有类似功能的云计算服务)。可选地,根据本公开的示例性实施例的系统还可包括通过云计算服务或者本地计算装置实现的预警单元。SCADA系统作为风机状态监测的重要组成部分,能够提供监测风机状态与风机部件运行状态的数据,当SCADA数据充足的情况下,能够通过预警单元实现对风机部件的故障预警。A system according to an exemplary embodiment of the present disclosure may include a wind turbine, a SCADA system, a cloud server for storing data (for example, an S3 (Simple Storage Service) cloud server or other cloud servers for storing data), capable of realizing Cloud computing services with data processing functions (for example, Lambda services or other cloud computing services with similar functions). Optionally, the system according to the exemplary embodiment of the present disclosure may further include an early warning unit implemented by a cloud computing service or a local computing device. As an important part of wind turbine status monitoring, the SCADA system can provide data for monitoring the status of the wind turbine and the operation status of the wind turbine components. When the SCADA data is sufficient, the early warning unit can be used to realize the early warning of the failure of the wind turbine components.
在示例中,可首先通过例如SCADA系统实时获取、离线拷贝等方式获得风力发电机组运行数据。在对风力发电机组运行数据进行压缩处理以得到包含风力发电机组运行数据的压缩文件之后,可将压缩文件上传到云端服务器。另外,可通过云计算服务从云端服务器获取包含风力发电机组运行数据的原始压缩文件,并对获取的原始压缩文件和/或其中包含的数据进行各种数据处理,随后可将处理后的压缩文件和/或数据发送到云端服务器以进行存储(稍后将描述该步骤的具体细节)。在该示例中,通过云计算服务或者本地计算装置实现的预警单元可从云端服务器获取原始压缩文件或者经由云计算服务处理过的压缩文件,并利用多种算法(例如,神经网络、线性回归、决策树、支持向量机、贝叶斯分类器、强化学习、概率图模型、聚类等)基于获取的文件中的数据来预测风力发电机组或风力发电机组的部件的运行状态或故障。例如,当预警单元确定风力发电机组的部件存在故障风险时,将向风力发电机组的主控制器发送预警信息,从而风力发电机组的主控制器可执行相应的处理(例如,停机等)以避免故障的发生,或者发出报警信息以通知相应的人员确认和处理可能发生的故障状况。In an example, firstly, the operation data of the wind power generating set may be obtained through, for example, real-time acquisition by a SCADA system, offline copying, and the like. After compressing the operating data of the wind generating set to obtain a compressed file containing the operating data of the wind generating set, the compressed file can be uploaded to the cloud server. In addition, the original compressed file containing the operating data of the wind power generation unit can be obtained from the cloud server through the cloud computing service, and various data processing can be performed on the obtained original compressed file and/or the data contained therein, and then the processed compressed file can be And/or the data is sent to the cloud server for storage (the specific details of this step will be described later). In this example, the early warning unit realized by the cloud computing service or the local computing device can obtain the original compressed file from the cloud server or the compressed file processed by the cloud computing service, and use various algorithms (for example, neural network, linear regression, Decision Trees, Support Vector Machines, Bayesian Classifiers, Reinforcement Learning, Probabilistic Graphical Models, Clustering, etc.) to predict the operating state or failure of a wind turbine or a component of a wind turbine based on the data in the acquired files. For example, when the early warning unit determines that there is a risk of failure of the components of the wind power generating set, it will send early warning information to the main controller of the wind generating set, so that the main controller of the wind generating set can perform corresponding processing (such as shutting down, etc.) to avoid The occurrence of faults, or send out alarm information to notify the corresponding personnel to confirm and deal with possible fault conditions.
图1是示出根据本公开的示例性实施例的基于云计算服务的风力发电机组运行数据处理方法的流程图。Fig. 1 is a flowchart illustrating a method for processing operating data of a wind power generating set based on a cloud computing service according to an exemplary embodiment of the present disclosure.
如图1所示,在步骤S101,从云端服务器获取包含风力发电机组运行数据的原始压缩文件。如上所述,原始压缩文件中包含的风力发电机组运行数据可以是从SCADA系统实时获取或离线拷贝的数据,每个原始压缩文件可仅对应于一个风机发电机组以及日期,并且可在原始压缩文件的文件名中包括压缩文件所包含的风力发电机组运行数据所对应的风力发电机组的编号信息以及获取风力发电机组运行数据的时间信息。As shown in Fig. 1, in step S101, the original compressed file containing the operation data of the wind power generating set is obtained from the cloud server. As mentioned above, the operating data of the wind turbine generator contained in the original compressed file can be obtained from the SCADA system in real time or data copied offline, each original compressed file can only correspond to one wind turbine generator and date, and can be included in the original compressed file The file name of the compressed file includes the number information of the wind power generating set corresponding to the running data of the wind generating set contained in the compressed file and the time information of obtaining the running data of the wind generating set.
在步骤S102,可根据预设筛选条件对原始压缩文件进行筛选,得到有效压缩文件。在一个示例中,预设筛选条件可包括:原始压缩文件的格式为预设格式和/或原始压缩文件的文件名称包含风机编号,并且根据预设筛选条件对所述原始压缩文件进行筛选得到有效压缩文件的步骤可包括:从原始压缩文件中去除不符合所述预设筛选条件中任一项的原始压缩文件,得到有效压缩文件。具体地,例如,预设格式可包括arc格式、goldwind格式(一种用于风电行业的压缩格式)和zip格式,在从云端服务器获取原始压缩文件之后,可检验原始压缩文件的文件名后缀以确定原始压缩文件的文件名后缀是否为预设的后缀中的一种,如果确定原始压缩文件的文件名后缀不是预设的后缀(例如,arc、goldwind和zip)中的一种,则可将该原始压缩文件筛除。此外,可根据原始压缩文件的文件名获取风机编号。在一个示例中,可根据风机编号的位数是否满足预定位数的限制来确定是否筛除与该风机编号所对应的文件名的原始压缩文件,例如,在已规定风机编号具有特定数量的位数(例如,9)的情况下,如果通过原始压缩文件的文件名确定的风机编号具有不等于该特定数量的位数(例如,8或10),则可将该该风机编号所对应的文件名的原始压缩文件筛除。在一个示例中,也可根据风机编号中的指示风力发电机组的编号(例如,可限定风机编号中的特定位次的数字(例如,风机编号中的前三位数字或后三位数字)表示风力发电机组的编号)与实际的风力发电机组的总数的比较结果来确定是否筛除相应的原始压缩文件,例如,当实际的风力发电机组的总数为400时,如果通过原始压缩文件的文件名获取的风机编号指示该原始文件对应的风力发电机组为第401号(超过实际的风力发电机组的总数),则可将该原始压缩文件筛除。此外,根据预设筛选条件对原始压缩文件进行筛选得到有效压缩文件的步骤还可包括:根据原始压缩文件的文件名确定风机编号和文件日期;针对风机编号和文件日期均相同的原始压缩文件,读取原始压缩文件中的风力发电机组运行数据;保留列数、行数或数值最大的风力发电机组运行数据所对应的原始压缩文件,从而得到有效压缩文件。通过上述针对风机编号和文件日期均相同的原始压缩文件的处理步骤,可确保同一风力发电机组在同一天的运行数据的压缩文件的唯一性,从而提高风力发电机组运行数据的有效性。另外,根据预设筛选条件对原始压缩文件进行筛选得到有效压缩文件可包括:对原始压缩文件进行解压;将解压失败的原始压缩文件筛除,保留解压成功的原始压缩文件,得到所述有效压缩文件。In step S102, the original compressed files may be filtered according to preset filtering conditions to obtain valid compressed files. In an example, the preset filter conditions may include: the format of the original compressed file is a preset format and/or the file name of the original compressed file contains a fan number, and the original compressed file is filtered according to the preset filter conditions to obtain an effective The step of compressing the files may include: removing original compressed files that do not meet any of the preset filtering conditions from the original compressed files to obtain a valid compressed file. Specifically, for example, the preset format may include arc format, goldwind format (a compression format used in the wind power industry) and zip format. After the original compressed file is obtained from the cloud server, the filename suffix of the original compressed file may be verified to be Determine whether the file name suffix of the original compressed file is one of the preset suffixes, if it is determined that the file name suffix of the original compressed file is not one of the preset suffixes (for example, arc, goldwind and zip), you can set the The original archive is filtered out. In addition, the fan number can be obtained from the filename of the original compressed file. In one example, it may be determined whether to filter out the original compressed file of the file name corresponding to the fan number according to whether the number of digits of the fan number satisfies the limit of predetermined digits, for example, if the fan number has a specified number of digits number (for example, 9), if the fan number determined by the file name of the original compressed file has a number of digits not equal to the specified number (for example, 8 or 10), the file corresponding to the fan number can be Named raw archives are filtered out. In one example, it can also be indicated according to the number of the wind turbine number indicating the wind power generating set (for example, a number that can define a specific position in the wind turbine number (for example, the first three digits or the last three digits in the wind turbine number) number of wind power generating units) and the actual total number of wind power generating units to determine whether to screen out the corresponding original compressed file, for example, when the actual total number of wind power generating units is 400, if the file name of the original compressed file The obtained wind turbine number indicates that the wind power generating set corresponding to the original file is No. 401 (exceeding the actual total number of wind generating sets), and the original compressed file can be filtered out. In addition, the step of filtering the original compressed file according to preset filtering conditions to obtain an effective compressed file may also include: determining the fan number and file date according to the file name of the original compressed file; for the original compressed file with the same fan number and file date, Read the operating data of the wind power generating set in the original compressed file; retain the original compressed file corresponding to the operating data of the wind generating set with the largest number of columns, rows or values, so as to obtain an effective compressed file. Through the above-mentioned processing steps for the original compressed files with the same fan number and file date, the uniqueness of the compressed files of the operating data of the same wind generating set on the same day can be ensured, thereby improving the validity of the operating data of the wind generating set. In addition, filtering the original compressed files according to preset filtering conditions to obtain effective compressed files may include: decompressing the original compressed files; filtering out the original compressed files that failed to be decompressed, and retaining the original compressed files that were successfully decompressed, so as to obtain the effective compressed files. document.
在步骤S103,可将有效压缩文件转换为目标格式的压缩文件,所述目标格式包括列式存储。例如,目标格式可包括以下任意一项:Parquet、ORC、CarbonData。在示例中,将有效压缩文件转换为目标格式的压缩文件的步骤可包括:提取有效压缩文件的文件路径以及文件名称;将文件路径和文件名称进行关联操作,得到中间变量;将中间变量输入至预设的格式转换函数,得到目标格式的压缩文件。在另一示例中,将有效压缩文件转换为目标格式的压缩文件的步骤还可包括:在将有效压缩文件转换为目标格式的压缩文件失败的情况下,将有效压缩文件中的数据转换为预定格式的数据;将预定格式的数据进行压缩处理,得到中间压缩文件;根据中间压缩文件,返回执行提取有效压缩文件的文件路径以及文件名称的步骤。具体地,以将有效压缩文件转换为Parquet格式的压缩文件为例,例如可以利用python或spark SQL命令(例如,函数dataFrame.to_parquet(resultOutputPath),其中该函数的输入为有效文件中的数据,输出为Parquet文件的存储路径)来实现Parquet格式的转换,在将有效压缩文件转换为Parquet格式的压缩文件的过程中,如果格式转换失败,则可将有效压缩文件中的数据的格式转换为预定格式(例如,string格式),并且重新利用python或spark SQL命令对其中数据的格式转换为预定格式的有效压缩文件进行Parquet格式转换。另外,可将转换为目标格式的压缩文件的schema信息记录在云端服务器中的第一数据库表(例如,关系型数据库表)中,并且将转换为目标格式的压缩文件在云端服务中的存储路径记录在云端服务器中的第二数据库表(例如,关系型数据库表)中。此外,将有效压缩文件转换为目标格式的压缩文件的步骤还可包括:从有效压缩文件的数据中去除质量列数据,所述质量列数据为指示风机制造商的数据。并且将有效压缩文件转换为目标格式的压缩文件的步骤还可包括将有效压缩文件中的数据中的true和false分别修改为1和0,以满足后端开发的过程(例如,在使用Java语言的情况下)中可能存在的对压缩文件中的数据的具体需求。In step S103, the effective compressed file may be converted into a compressed file in a target format, and the target format includes columnar storage. For example, target formats can include any of the following: Parquet, ORC, CarbonData. In an example, the step of converting a valid compressed file into a compressed file in a target format may include: extracting a file path and a file name of a valid compressed file; associating the file path with the file name to obtain an intermediate variable; inputting the intermediate variable to Preset format conversion function to get the compressed file in the target format. In another example, the step of converting the valid compressed file into the compressed file of the target format may further include: converting the data in the valid compressed file into a predetermined format data; compress the data in the predetermined format to obtain an intermediate compressed file; return and execute the step of extracting the file path and file name of the effective compressed file according to the intermediate compressed file. Specifically, taking converting a valid compressed file into a compressed file in Parquet format as an example, for example, python or spark SQL commands can be used (for example, the function dataFrame.to_parquet(resultOutputPath), wherein the input of this function is the data in the valid file, and the output The storage path of the Parquet file) to realize the conversion of the Parquet format. In the process of converting the effective compressed file into the compressed file of the Parquet format, if the format conversion fails, the format of the data in the effective compressed file can be converted to a predetermined format. (for example, string format), and reuse python or spark SQL commands to convert the format of the data into a valid compressed file of a predetermined format to perform Parquet format conversion. In addition, the schema information of the compressed file converted into the target format can be recorded in the first database table (for example, a relational database table) in the cloud server, and the storage path of the compressed file converted into the target format in the cloud service Recorded in a second database table (for example, a relational database table) in the cloud server. In addition, the step of converting the valid compressed file into a compressed file of the target format may further include: removing quality column data from the data of the valid compressed file, the quality column data being data indicating a fan manufacturer. And the step of converting the effective compressed file into the compressed file of the target format can also include modifying true and false in the data in the effective compressed file to 1 and 0 respectively, so as to satisfy the process of back-end development (for example, when using the Java language In the case of ), there may be specific requirements for the data in the compressed file.
在完成将有效压缩文件转换为目标格式的压缩文件之后,可在步骤S104将目标格式的压缩文件发送到云端服务器。此外,所述基于云计算服务的风力发电机组运行数据处理方法还可包括:根据目标格式的压缩文件在云端服务器中的存储路径的记录,确定风力发电机组在预设周期内的数据完整度,所述数据完整度用于表征在预设周期内的针对每个风机发电机组的目标格式的压缩文件的数量与预设周期包括的天数的比值。在示例中,预设周期可以是年或者月。在预设周期为年的情况下,针对每个风力发电机组,根据其所对应的目标格式的压缩文件在云端服务器中的存储路径的记录(例如,如上所述的第二数据库表)确定一年内的目标格式的压缩文件的数量,并计算该数量与当年的天数的比值,该比值即为对应的风力发电机组在该年内的数据完整度。此外,也可计算多个风力发电机组的数据完整度之间的平均值。After converting the valid compressed file into the compressed file in the target format, the compressed file in the target format can be sent to the cloud server in step S104. In addition, the method for processing the operation data of the wind power generating set based on the cloud computing service may further include: according to the record of the storage path of the compressed file in the target format in the cloud server, determining the data integrity of the wind generating set within a preset period, The data integrity is used to characterize the ratio of the number of compressed files in the target format for each wind turbine generator set within a preset period to the number of days included in the preset period. In an example, the preset period may be a year or a month. In the case that the preset period is a year, for each wind power generating set, according to the record of the storage path of the compressed file in the cloud server corresponding to the target format (for example, the second database table as mentioned above) determine a The number of compressed files in the target format in the year, and calculate the ratio of the number to the number of days in the year, and the ratio is the data integrity of the corresponding wind power generating set in the year. Furthermore, an average value between the data completeness of several wind parks can also be calculated.
在一个示例,基于云计算服务的风力发电机组运行数据处理方法还可包括:从目标格式的压缩文件中提取风力发电机组运行数据;将风力发电机组运行数据输入至风力发电机组部件预警模型,得到用于指示风力发电机组部件的异常情况的预警结果。在另一示例中,也可在本地构建用于请求风力发电机组运行数据的应用程序接口(API)(例如,GETAPI或POST API),并将获取的风力发电机组运行数据输入至风力发电机组部件预警模型(例如,利用人工神经网络算法构建的预警模型),得到用于指示风力发电机组部件的异常情况(例如,风机齿轮箱发生故障、风机发电机轴承发生故障等)的预警结果。其中,风力发电机组部件预警模型可以是针对风力发电机组整体的预警模型(例如,用于预测风力发电机组性能劣化(包括劣化的类型和/或劣化的起始时间等)或健康度的预警模型),也可以是针对单个部件(例如,发电机绕组、网侧电抗器、网侧逆变器、网侧变流控制器、电机侧整流器、变桨电容等)的预警模型。并且风机故障预警的方式可以是基于单变量阈值的预警,例如,可以在温度超过50度情况下发出预警。具体地,针对主控系统,可监控发电机绕组的温度;针对变流系统,可监控网侧电抗器、网侧逆变器、网侧变流控制器、电机侧整流器、电机侧控制器柜的温度;针对变桨系统,可监控变桨电机、变桨电容、变桨控制柜、变桨逆变器的温度。由于经过上述数据处理的以目标格式存储的压缩文件中的风力发电机组运行数据的有效性得到提高,因此当将经过上述数据处理的以目标格式存储的压缩文件中的风力发电机组运行数据作为风力发电机组部件预警模型的输入时,能够提高风力发电机组部件预警的准确率。In one example, the method for processing wind turbine operating data based on cloud computing services may further include: extracting wind turbine operating data from a compressed file in a target format; inputting the wind turbine operating data into a wind turbine component early warning model to obtain Early warning results for indicating abnormal conditions of wind turbine components. In another example, an application program interface (API) (e.g., GETAPI or POST API) for requesting wind turbine operating data may also be constructed locally, and the acquired wind turbine operating data may be input to wind turbine components The early warning model (for example, the early warning model constructed by using the artificial neural network algorithm) obtains the early warning results used to indicate the abnormal conditions of the wind turbine components (for example, the failure of the wind turbine gearbox, the failure of the wind turbine generator bearing, etc.). Wherein, the early warning model of the components of the wind power generating set may be an early warning model for the whole wind generating set (for example, an early warning model for predicting the performance degradation of the wind generating set (including the type of degradation and/or the start time of the degradation, etc.) or the health degree ), it can also be an early warning model for a single component (eg, generator winding, grid-side reactor, grid-side inverter, grid-side converter controller, motor-side rectifier, pitch capacitor, etc.). In addition, the wind turbine failure early warning method may be based on a single variable threshold value, for example, an early warning may be issued when the temperature exceeds 50 degrees. Specifically, for the main control system, the temperature of the generator winding can be monitored; for the converter system, the grid-side reactor, grid-side inverter, grid-side converter controller, motor-side rectifier, and motor-side controller cabinet can be monitored temperature; for the pitch system, it can monitor the temperature of the pitch motor, pitch capacitor, pitch control cabinet, and pitch inverter. Since the effectiveness of the wind turbine operating data in the compressed file stored in the target format after the above data processing is improved, when the wind turbine operating data in the compressed file stored in the target format after the above data processing is used as wind power When the early warning model of the generator set is input, the accuracy of the early warning of the wind turbine component can be improved.
上述步骤S101至S104均可由云计算服务(例如,Lambda服务或其他具有类似功能的云计算服务)来执行。The above steps S101 to S104 can all be performed by cloud computing services (for example, Lambda services or other cloud computing services with similar functions).
图2是示出根据本公开的示例性实施例的基于云计算服务的风力发电机组运行数据处理装置的结构框图。Fig. 2 is a structural block diagram showing a cloud computing service-based wind power generating set operation data processing device according to an exemplary embodiment of the present disclosure.
如图2所示,根据本公开的实施例的基于云计算服务的风力发电机组运行数据处理装置200可包括:获取单元201,被配置为从云端服务器获取包含风力发电机组运行数据的原始压缩文件;筛选单元202,被配置为根据预设筛选条件对所述原始压缩文件进行筛选,得到有效压缩文件;格式转换单元203,被配置为将所述有效压缩文件转换为目标格式的压缩文件,所述目标格式包括列式存储;发送单元204,被配置为将所述目标格式的压缩文件发送到云端服务器。As shown in FIG. 2 , according to an embodiment of the present disclosure, the cloud computing service-based wind power generating set operating
在一个示例中,格式转换单元203可被配置为:提取所述有效压缩文件的文件路径以及文件名称;将所述文件路径和所述文件名称进行关联操作,得到中间变量;将所述中间变量输入至预设的格式转换函数,得到所述目标格式的压缩文件。在该示例中,格式转换单元203还可被配置为:在将所述有效压缩文件转换为目标格式的压缩文件失败的情况下,将所述有效压缩文件中的数据转换为预定格式的数据;将所述预定格式的数据进行压缩处理,得到中间压缩文件;根据所述中间压缩文件,返回执行所述提取所述有效压缩文件的文件路径以及文件名称的步骤。In one example, the
在一个示例中,所述预设筛选条件可包括原始压缩文件的格式为预设格式和/或原始压缩文件的文件名称包含风机编号,并且筛选单元202可被配置为:从所述原始压缩文件中去除不符合所述预设筛选条件中任一项的原始压缩文件,得到有效压缩文件。In an example, the preset filter condition may include that the format of the original compressed file is a preset format and/or the file name of the original compressed file contains a fan number, and the
在一个示例中,筛选单元202可被配置为:根据所述原始压缩文件的文件名确定风机编号和文件日期;针对风机编号和文件日期均相同的所述原始压缩文件,读取所述原始压缩文件中的风力发电机组运行数据;保留列数、行数或数值最大的风力发电机组运行数据所对应的所述原始压缩文件,得到所述有效压缩文件。在另一示例中,筛选单元202可被配置为:对原始压缩文件进行解压;将解压失败的原始压缩文件筛除,保留解压成功的原始压缩文件,得到有效压缩文件。In an example, the
在一个示例中,格式转换单元203可被配置为:从所述有效压缩文件的数据中去除质量列数据,所述质量列数据为指示风机制造商的数据。此外,目标格式可包括以下任意一项:Parquet、ORC、CarbonData。In an example, the
在一个示例中,基于云计算服务的风力发电机组运行数据处理装置200还可包括:数据完整度确定单元205,被配置为根据所述目标格式的压缩文件在云端服务器中的存储路径的记录,确定风力发电机组在预设周期内的数据完整度,所述数据完整度用于表征在所述预设周期内的针对每个风机发电机组的所述目标格式的压缩文件的数量与所述预设周期包括的天数的比值。在另一示例中,基于云计算服务的风力发电机组运行数据处理装置200还可包括:数据提取单元206,被配置为从所述目标格式的压缩文件中提取风力发电机组运行数据;预警单元207,被配置为将所述风力发电机组运行数据输入至风力发电机组部件预警模型,得到预警结果,所述预警结果用于指示风力发电机组部件的异常情况。In an example, the cloud computing service-based wind power generating set operation
根据本公开的示例性实施例的基于云计算服务的风力发电机组运行数据处理装置所包括的各单元可被分别配置为执行特定功能的软件、硬件、固件或上述项的任意组合。例如,这些装置可对应于专用的集成电路,也可对应于纯粹的软件代码,还可对应于软件与硬件相结合的模块。此外,这些装置所实现的一个或更多个功能也可由物理实体设备(例如,处理器、客户端或服务器等)中的组件来统一执行。以上结合图1示出的具体操作可分别由图2所示的装置中的相应单元来执行,这里,对于具体操作细节将不再赘述。Each unit included in the cloud computing service-based wind power generating set operation data processing device according to an exemplary embodiment of the present disclosure may be respectively configured as software, hardware, firmware or any combination of the above-mentioned items to perform specific functions. For example, these devices may correspond to dedicated integrated circuits, may also correspond to pure software codes, and may also correspond to modules combining software and hardware. In addition, one or more functions implemented by these devices may also be uniformly performed by components in a physical entity device (for example, a processor, a client or a server, etc.). The specific operations shown above in conjunction with FIG. 1 may be performed by corresponding units in the device shown in FIG. 2 , and details of the specific operations will not be repeated here.
图3示出了根据本公开的实施例的包括至少一个计算装置和至少一个存储指令的存储装置的系统的结构示意图。Fig. 3 shows a schematic structural diagram of a system including at least one computing device and at least one storage device storing instructions according to an embodiment of the present disclosure.
如图3所示,根据本公开的实施例提供的系统300可包括至少一个计算装置(例如,处理器)301和至少一个存储指令的存储装置302,其中,所述指令在被所述至少一个计算装置301运行时,促使所述至少一个计算装置301执行前述任一实施例所述的基于云计算服务的风力发电机组运行数据处理方法。As shown in FIG. 3 , a
所述计算装置可以部署在服务器或客户端中,也可以部署在分布式网络环境中的节点装置上。此外,所述计算装置可以是PC计算机、平板装置、个人数字助理、智能手机、web应用或其他能够执行上述指令集合的装置。这里,所述计算装置并非必须是单个的计算装置,还可以是任何能够单独或联合执行上述指令(或指令集)的装置或电路的集合体。计算装置还可以是集成控制系统或系统管理器的一部分,或者可被配置为与本地或远程(例如,经由无线传输)以接口互联的便携式电子装置。在所述计算装置中,处理器可包括中央处理器(CPU)、图形处理器(GPU)、可编程逻辑装置、专用处理器系统、微控制器或微处理器。作为示例而非限制,处理器还可包括模拟处理器、数字处理器、微处理器、多核处理器、处理器阵列、网络处理器等。The computing device can be deployed in a server or client, or on a node device in a distributed network environment. In addition, the computing device may be a PC computer, a tablet device, a personal digital assistant, a smart phone, a web application, or other devices capable of executing the above-mentioned set of instructions. Here, the computing device does not necessarily have to be a single computing device, but may also be any collection of devices or circuits capable of individually or jointly executing the above-mentioned instructions (or instruction sets). The computing device may also be part of an integrated control system or system manager, or may be configured as a portable electronic device that interfaces with local or remote (eg, via wireless transmission). In the computing device, a processor may include a central processing unit (CPU), a graphics processing unit (GPU), a programmable logic device, a special purpose processor system, a microcontroller, or a microprocessor. Processors may also include, by way of example and not limitation, analog processors, digital processors, microprocessors, multi-core processors, processor arrays, network processors, and the like.
根据本公开的示例性实施例的基于云计算服务的风力发电机组运行数据处理方法中所描述的一些操作可通过软件方式来实现,一些操作可通过硬件方式来实现,此外,还可通过软硬件结合的方式来实现这些操作。处理器可运行存储在存储部件之一中的指令或代码,其中,所述存储部件还可以存储数据。指令和数据还可经由网络接口装置而通过网络被发送和接收,其中,所述网络接口装置可采用任何已知的传输协议。存储部件可与处理器集成为一体,例如,将RAM或闪存布置在集成电路微处理器等之内。此外,存储部件可包括独立的装置,诸如,外部盘驱动、存储阵列或任何数据库系统可使用的其他存储装置。存储部件和处理器可在操作上进行耦合,或者可例如通过I/O端口、网络连接等互相通信,使得处理器能够读取存储在存储部件中的文件。此外,所述计算装置还可包括视频显示器(诸如,液晶显示器)和用户交互接口(诸如,键盘、鼠标、触摸输入装置等)。计算装置的所有组件可经由总线和/或网络而彼此连接。Some of the operations described in the cloud computing service-based wind power generation unit operating data processing method according to an exemplary embodiment of the present disclosure can be implemented by software, and some operations can be implemented by hardware. In addition, software and hardware can also be used. Combined methods to achieve these operations. The processor can execute instructions or codes stored in one of the memory components, which can also store data. Instructions and data may also be sent and received over a network via a network interface device, which may employ any known transport protocol. The storage unit may be integrated with the processor, for example, RAM or flash memory disposed within an integrated circuit microprocessor or the like. Additionally, the storage component may comprise a separate device, such as an external disk drive, storage array, or any other storage device usable by the database system. The storage component and the processor can be operatively coupled or can communicate with each other, eg, via an I/O port, network connection, etc., such that the processor can read files stored in the storage component. Additionally, the computing device may also include a video display (such as a liquid crystal display) and a user interaction interface (such as a keyboard, mouse, touch input device, etc.). All components of the computing device may be connected to each other via a bus and/or network.
根据本公开的示例性实施例的基于云计算服务的风力发电机组运行数据处理方法所涉及的操作可被描述为各种互联或耦合的功能块或功能示图。然而,这些功能块或功能示图可被均等地集成为单个的逻辑装置或按照非确切的边界进行操作。Operations involved in the cloud computing service-based wind power generating set operating data processing method according to an exemplary embodiment of the present disclosure may be described as various interconnected or coupled functional blocks or functional diagrams. However, these functional blocks or functional diagrams may equally be integrated into a single logical device or operate along imprecise boundaries.
例如,如上所述,提供一种包括至少一个计算装置和至少一个存储指令的存储装置的系统,其中,所述指令在被所述至少一个计算装置运行时,促使所述至少一个计算装置执行如参照图1描述的步骤S101至S104。也就是说,可由上述的计算装置来执行图1所示的基于云计算服务的风力发电机组运行数据处理方法。由于上述在图1中已经对基于云计算服务的风力发电机组运行数据处理方法进行了详细介绍,本公开对此部分的内容不再赘述。For example, as described above, there is provided a system comprising at least one computing device and at least one storage device storing instructions, wherein the instructions, when executed by the at least one computing device, cause the at least one computing device to perform Steps S101 to S104 described with reference to FIG. 1 . That is to say, the above-mentioned computing device can execute the method for processing the operation data of the wind power generating set based on the cloud computing service shown in FIG. 1 . Since the method for processing the operation data of the wind power generating set based on the cloud computing service has been introduced in detail in FIG. 1 above, the content of this part will not be repeated in this disclosure.
另外,根据本公开的实施例还提供一种存储指令的计算机可读存储介质,其中,当所述指令被至少一个计算装置运行时,促使所述至少一个计算装置执行前述任一实施例所述的基于云计算服务的风力发电机组运行数据处理方法。In addition, embodiments according to the present disclosure also provide a computer-readable storage medium storing instructions, wherein, when the instructions are executed by at least one computing device, the at least one computing device is prompted to execute the program described in any one of the preceding embodiments. A cloud computing service-based wind turbine operation data processing method.
通过采用本公开,能够降低风力发电机组运行数据的存储成本和提高风力发电机组运行数据的读取效率。By adopting the present disclosure, it is possible to reduce the storage cost of the operating data of the wind generating set and improve the reading efficiency of the operating data of the wind generating set.
尽管本公开包括具体示例,但是对本领域普通技术人员来说将明显的是,在不脱离权利要求及其等同物的精神和范围的情况下,可在这些示例中做出形式上和细节上的各种改变。在此描述的示例将仅被认为是描述性的意义,而不是出于限制的目的。每个示例中的特征或方面的描述将被认为是可适用于其他示例中的类似的特征或方面。如果按照不同的顺序执行描述的技术,和/或如果以不同的方式组合描述的系统、架构、装置或电路中的组件和/或用其他组件或它们的等同物替换或补充描述的系统、架构、装置或电路中的组件,则可获得合适的结果。因此,本公开的范围不由具体实施方式限定,而是由权利要求及其等同物来限定,并且在权利要求及其等同物的范围内的所有变型将被解释为包括在本公开中。Although this disclosure includes specific examples, it will be apparent to one of ordinary skill in the art that changes in form and details may be made in these examples without departing from the spirit and scope of the claims and their equivalents. Various changes. The examples described herein are to be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each example should be considered as available for similar features or aspects in other examples. If the described techniques are performed in a different order, and/or if components in a described system, architecture, device, or circuit are combined in a different manner and/or are replaced or supplemented with other components or their equivalents, the described system, architecture , a device or a component in a circuit, suitable results can be obtained. Therefore, the scope of the present disclosure is defined not by the specific embodiments but by the claims and their equivalents, and all modifications within the scope of the claims and their equivalents will be construed as being included in the present disclosure.
Claims (13)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110733982.5A CN115543942A (en) | 2021-06-30 | 2021-06-30 | Wind generating set operation data processing method and device based on cloud computing service |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110733982.5A CN115543942A (en) | 2021-06-30 | 2021-06-30 | Wind generating set operation data processing method and device based on cloud computing service |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115543942A true CN115543942A (en) | 2022-12-30 |
Family
ID=84716895
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110733982.5A Pending CN115543942A (en) | 2021-06-30 | 2021-06-30 | Wind generating set operation data processing method and device based on cloud computing service |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115543942A (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120089579A1 (en) * | 2010-10-08 | 2012-04-12 | Sandeep Ranade | Compression pipeline for storing data in a storage cloud |
| CN103186592A (en) * | 2011-12-29 | 2013-07-03 | 盛乐信息技术(上海)有限公司 | Compressed package updating method and system |
| CN103899482A (en) * | 2014-04-16 | 2014-07-02 | 姜炳芳 | Method for compressing data of status monitoring system of wind turbine generator system |
| CN106131200A (en) * | 2016-07-20 | 2016-11-16 | 深圳市瑞云科技有限公司 | The file transfer means of cloud rendering system |
| CN111352912A (en) * | 2020-03-10 | 2020-06-30 | Oppo广东移动通信有限公司 | Compressed file processing method, device, storage medium, terminal and server |
-
2021
- 2021-06-30 CN CN202110733982.5A patent/CN115543942A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120089579A1 (en) * | 2010-10-08 | 2012-04-12 | Sandeep Ranade | Compression pipeline for storing data in a storage cloud |
| CN103186592A (en) * | 2011-12-29 | 2013-07-03 | 盛乐信息技术(上海)有限公司 | Compressed package updating method and system |
| CN103899482A (en) * | 2014-04-16 | 2014-07-02 | 姜炳芳 | Method for compressing data of status monitoring system of wind turbine generator system |
| CN106131200A (en) * | 2016-07-20 | 2016-11-16 | 深圳市瑞云科技有限公司 | The file transfer means of cloud rendering system |
| CN111352912A (en) * | 2020-03-10 | 2020-06-30 | Oppo广东移动通信有限公司 | Compressed file processing method, device, storage medium, terminal and server |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7524440B2 (en) | Apparatus for storing data to be stored | |
| CN106383766B (en) | System monitoring method and apparatus | |
| WO2023241406A1 (en) | Small-disturbance primary frequency modulation control system for thermal power generating unit | |
| CN112052296A (en) | Wind power fault diagnosis knowledge base construction method | |
| CN117744387A (en) | Digital twin-based hospital clinical guarantee and electromechanical equipment intelligent diagnosis method | |
| CN108073582A (en) | A kind of Computational frame selection method and device | |
| CN115543942A (en) | Wind generating set operation data processing method and device based on cloud computing service | |
| US12229083B2 (en) | Long term and short term data management of a file based time series database populated with data collected by an energy sensor for a power generating device or from another data source | |
| CN114385399B (en) | A method for discovering root causes of failures based on storage device model | |
| CN119195992A (en) | A method and system for monitoring wind turbine faults | |
| CN119062630A (en) | Hydraulic press fault monitoring device | |
| CN114610234B (en) | Storage system parameter recommendation method and related device | |
| JP2021052263A (en) | Data compression device and data compression method | |
| CN116658381A (en) | A Wind Turbine Condition Monitoring Method Based on GUR and Attention Mechanism | |
| CN114691769A (en) | Unstructured data processing method and device for power monitoring system | |
| CN115408390A (en) | A data processing method, device and electronic equipment | |
| CN114492947A (en) | Aging prediction method, equipment and electronic medium for household electrical circuit based on current fingerprint technology | |
| CN117312780B (en) | Data enhancement method and device for air compression station, storage medium and computer equipment | |
| CN120088347B (en) | Lossless compression method and system for medical image data | |
| CN120274369B (en) | Method and device for monitoring operation failure of HVAC system based on data analysis | |
| CN117995374B (en) | Intelligent data platform for medical waste management and equipment monitoring | |
| CN119026088B (en) | Power equipment diagnosis method and system based on artificial intelligence | |
| KR102134656B1 (en) | Monitoring and Diagnosis Operation System for USC Power Plant | |
| CN120744474A (en) | Electric energy meter abnormality identification method and device based on LSTM model | |
| CN118134066A (en) | Enterprise energy management method and device and electronic equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB02 | Change of applicant information | ||
| CB02 | Change of applicant information |
Address after: 830026 No. 107, Shanghai Road, Urumqi economic and Technological Development Zone, the Xinjiang Uygur Autonomous Region Applicant after: Jinfeng Technology Co.,Ltd. Address before: 830026 No. 107, Shanghai Road, Urumqi economic and Technological Development Zone, the Xinjiang Uygur Autonomous Region Applicant before: XINJIANG GOLDWIND SCIENCE & TECHNOLOGY Co.,Ltd. |