CN115330035A - 吊装路径规划模型构建方法、吊装路径规划方法及起重机 - Google Patents
吊装路径规划模型构建方法、吊装路径规划方法及起重机 Download PDFInfo
- Publication number
- CN115330035A CN115330035A CN202210908341.3A CN202210908341A CN115330035A CN 115330035 A CN115330035 A CN 115330035A CN 202210908341 A CN202210908341 A CN 202210908341A CN 115330035 A CN115330035 A CN 115330035A
- Authority
- CN
- China
- Prior art keywords
- hoisting
- data
- crane
- path planning
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
- G06Q10/047—Optimisation of routes or paths, e.g. travelling salesman problem
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/18—Control systems or devices
- B66C13/48—Automatic control of crane drives for producing a single or repeated working cycle; Programme control
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/08—Construction
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Tourism & Hospitality (AREA)
- Geometry (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Development Economics (AREA)
- General Health & Medical Sciences (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Computational Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Control And Safety Of Cranes (AREA)
Abstract
本发明提供一种吊装路径规划模型构建方法、吊装路径规划方法及起重机,吊装路径规划模型构建方法包括:建立起重机模型;基于当前作业场景和起重机模型,构建吊装系统位形空间模型,吊装系统位形空间模型包括起重机的上车数据和下车数据;针对吊装系统位形空间模型和上车数据,生成起重机的上车栅格图数据;针对吊装系统位形空间模型和下车数据,生成起重机的下车栅格图数据;利用A星算法,结合上车栅格图数据和下车栅格图数据,构建吊装路径规划模型,由于构建的吊装路径规划模型是基于上车栅格图数据和下车栅格图数据,使得通过将整个的路径划分为上车和下车两组,有效地降低了路径搜索时的数据量,提高了路径规划效率。
Description
技术领域
本发明涉及路径规划技术领域,尤其涉及一种吊装路径规划模型构建方法、吊装路径规划方法及起重机。
背景技术
随着吊装施工场地的复杂化,以及对吊装操作的安全性和准确性的要求,使得吊装作业拥有较高的难度,一次吊装工作除起重机驾驶员外,往往还需要一至多名辅助人员;同时吊装作业的质量也极度依赖驾驶员的水平。近年来,随着数字孪生、智能工地等技术的发展和应用,使得吊装路径规划有了一定的落地价值。
目前的,大多数的吊装路径规划所依赖的吊装系统数据量庞大,导致在路径搜索时的效率相对较低。
发明内容
本发明提供一种吊装路径规划模型构建方法、吊装路径规划方法及起重机,用以解决现有技术中吊装路径规划效率低的缺陷,实现通过将吊装路径分为上车路径规划和下车路径规划的方式,减小路径搜索时的数据量,提高路径规划效率。
本发明提供一种吊装路径规划模型构建方法,包括:
建立起重机模型;
基于当前作业场景和所述起重机模型,构建吊装系统位形空间模型,所述吊装系统位形空间模型包括起重机的上车数据和下车数据;
针对所述吊装系统位形空间模型和所述上车数据,生成起重机的上车栅格图数据;针对所述吊装系统位形空间模型和所述下车数据,生成起重机的下车栅格图数据;
利用A星算法,结合所述上车栅格图数据和所述下车栅格图数据,构建吊装路径规划模型。
根据本发明提供的一种吊装路径规划模型构建方法,所述上车数据包括:主臂变幅角度、上车回转角度和吊钩升降长度;
所述针对所述吊装系统位形空间模型和所述上车数据,生成起重机的上车栅格图数据,包括:
确定所述吊钩升降长度;
划分所述吊钩升降长度为预设数量的升降区间;
针对每个所述升降区间的端点,基于所述主臂变幅角度和所述上车回转角度在所述吊装系统位形空间模型内进行遍历搜索,计算上车碰撞信息,生成起重机的上车栅格图数据。
根据本发明提供的一种吊装路径规划模型构建方法,所述下车数据包括行走参数和转向参数;
所述针对所述吊装系统位形空间模型和所述下车数据,生成起重机的下车栅格图数据,包括:
基于所述行走参数和所述转向参数,在所述吊装系统位形空间模型内进行扫描遍历,得到下车碰撞信息;
根据所述下车碰撞信息,生成起重机的下车栅格图数据。
根据本发明提供的一种吊装路径规划模型构建方法,所述利用A 星算法,结合所述上车栅格图数据和所述下车栅格图数据,构建吊装路径规划模型,包括:
利用A星算法,分别对所述上车栅格图数据和所述下车栅格图数据进行路径规划,得到上车路径规划模型和下车路径规划模型;
结合所述上车路径规划模型和所述下车路径规划模型,构建吊装路径规划模型。
本发明还提供一种吊装路径规划方法,包括:
确定吊装路径的起点和终点;
输入所述起点的坐标和所述终点的坐标至吊装路径规划模型,输出吊装规划路径为最优的吊装路径,所述吊装路径规划模型为根据上述任一项所述的吊装路径规划模型构建方法得到的。
根据本发明提供的一种吊装路径规划方法,所述输出吊装规划路径之后,还包括:
分别针对上车栅格图数据和下车栅格图数据,从所述起点开始搜索上车栅格图数据节点和下车栅格图数据节点;
针对每个所述上车栅格图数据节点和所述下车栅格图数据节点,确定已行代价和预测代价;
标记所述已行代价和所述预测代价于开启列表中,在所述开启列表中搜索总代价最小的节点,作为新的起点开始搜索,直至搜索至所述终点。
根据本发明提供的一种吊装路径规划方法,所述输出吊装规划路径之后,还包括:
基于吊装系统位形空间模型,转化所述吊装规划路径为起重机的动作序列;
基于所述动作序列,生成起重机控制指令。
本发明还提供一种吊装路径规划模型构建装置,包括:
模拟模块,用于建立起重机模型;
位形空间模块,用于基于当前作业场景和所述起重机模型,构建吊装系统位形空间模型,所述吊装系统位形空间模型包括起重机的上车数据和下车数据;
分组处理模块,用于针对所述吊装系统位形空间模型和所述上车数据,生成起重机的上车栅格图数据;针对所述吊装系统位形空间模型和所述下车数据,生成起重机的下车栅格图数据;
构建模块,用于利用A星算法,结合所述上车栅格图数据和所述下车栅格图数据,构建吊装路径规划模型。
本发明还提供一种吊装路径规划装置,包括:
确定模块,用于确定吊装路径的起点和终点;
规划模块,用于输入所述起点和所述终点至吊装路径规划模型,输出吊装规划路径,所述吊装路径规划模型为根据上述任一项所述的吊装路径规划模型构建方法得到的。
本发明还提供一种起重机,所述起重机用于执行如上述任一项所述的吊装路径规划方法。
本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述吊装路径规划模型构建方法。
本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述吊装路径规划模型构建方法。
本发明还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述吊装路径规划模型构建方法。
本发明提供的一种吊装路径规划模型构建方法、吊装路径规划方法及起重机,吊装路径规划模型构建方法包括:建立起重机模型;基于当前作业场景和起重机模型,构建吊装系统位形空间模型,吊装系统位形空间模型包括起重机的上车数据和下车数据;针对吊装系统位形空间模型和上车数据,生成起重机的上车栅格图数据;针对吊装系统位形空间模型和下车数据,生成起重机的下车栅格图数据;利用A 星算法,结合上车栅格图数据和下车栅格图数据,构建吊装路径规划模型,由于构建的吊装路径规划模型是基于上车栅格图数据和下车栅格图数据,使得通过将整个的路径划分为上车和下车两组,有效地降低了路径搜索时的数据量,提高了路径规划效率。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的吊装路径规划模型构建方法的流程示意图;
图2是本发明提供的栅格图的结构示意图;
图3是本发明提供的吊装路径规划方法的流程示意图。
图4是本发明提供的吊装路径规划模型构建装置的结构示意图;
图5是本发明提供的吊装路径规划装置的结构示意图;
图6是本发明提供的电子设备的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合图1-图6描述本发明的一种吊装路径规划模型构建方法、吊装路径规划方法及起重机。
图1是本发明提供的吊装路径规划模型构建方法的流程示意图。
如图1所示,本发明实施例提供的一种吊装路径规划模型构建方法,执行主体可以是远程控制系统,具体包括以下步骤:
101、建立起重机模型。
吊装是指起重机对设备的安装、就位的统称,在检修或维修过程中利用各种起重机将设备、工件、器具、材料等吊起,使其发生位置变化。
具体的,首先要建立起重机模型,也就是模拟起重机,将起重机以数字形式表达出来,可以理解为将起重机放置于坐标系内,起重机的各个组件结构都对应着不同的坐标。在数据库内仿真起重机,从而建立起重机模型。针对不同规格的起重机,由于其自身参数不同,所有建立的起重机模型也便有所不同。
102、基于当前作业场景和起重机模型,构建吊装系统位形空间模型,吊装系统位形空间模型包括起重机的上车数据和下车数据。
确定起重机的当前作业场景,当前作业场景指的是起重机要进行作业的区域,例如,起重机在建筑工地,便可以将建筑工地作为当前作业场景。再将起重机模型放置于当前作业场景之中,构建吊装系统位形空间模型,其中,吊装系统位形空间模型可以是多维系统模型。吊装系统位形空间模型的表达式可以如(1)所示:
T=(C(p,d),U(α,β,L)) (1)
其中,C表示起重机的下车数据,U表示起重机的上车数据,p 表示起重机的笛卡尔坐标,d表示起重机的方向向量,α表示主臂变幅角度,β表示上车回转角度,L表示吊钩升降长度,此处忽略的臂架长度数据,臂架的长度预先可知,如桁架臂架,基于已知的各段臂节,通过简单的加减可计算出臂架长度,伸缩式臂架可通过安装在臂架上的长度传感器预先测出。
当起重机状态确定时,也就是起重机位置保持不变没有移动时,可以实现起重机位形坐标(α,β,L)到笛卡尔坐标(x,y,z)的相互转换。
整体来说,即吊装系统位形空间模型中展示着起重机的多种状态,包括下车数据中的行走参数、转向参数,上车数据中的主臂变幅角度、上车回转角度和吊钩升降长度等,使得吊装系统位形空间模型能够更加全面的反映出起重机的状态信息。
103、针对吊装系统位形空间模型和上车数据,生成起重机的上车栅格图数据;针对吊装系统位形空间模型和下车数据,生成起重机的下车栅格图数据。
具体的,在构建得到吊装系统位形空间模型之后,需要分别针对起重机的上车数据和下车数据进行单独的处理。根据起重机的工作特点,将其动作分成两个组合,一组为包含主臂变幅角度、上车回转角度和吊钩升降长度的上车动作,另一组为包含行走参数和转向参数的下车动作,由此将吊装系统位形空间模型的数据分为两次计算,减小了单次计算难度,也降低了耦合度。
当起重机不移动时,也就是在下车数据中的行走参数和转向参数确定的前提下,每一个U坐标代表起重机的一个位形状态,因此,便需要建立上车数据的所有上车栅格图数据,上车栅格图数据指的是主臂变幅角度、上车回转角度和吊钩升降长度所构成的栅格图。即主臂变幅角度、上车回转角度和吊钩升降长度这三个自由度,每种都有若干种大小不一的数据,然后分别将其进行排列组合,便可以构成整个的上车栅格图数据。
当起重机发生移动时,即下车数据中的行走参数和/或转向参数发生变化时,便需要计算出起重机的下车栅格图数据。其中,生成下车栅格图数据的方式与上车栅格图数据的生成方式相同,下车栅格图数据表示的为两个自由度方向的数据。
104、利用A星算法,结合上车栅格图数据和下车栅格图数据,构建吊装路径规划模型。
具体的,在得到上车栅格图数据和下车栅格图数据之后,便可以构建吊装路径规划模型。上车栅格图数据包括有若干个节点,下车栅格图数据中也包括有若干个节点,而不同的节点之后便会构成若干条线路,即若干条吊装路径。
利用A星算法,在上车栅格图数据和下车栅格图数据中进行寻优,将A星算法与上车栅格图数据和下车栅格图数据进行结合,便成功的构建出吊装路径规划模型。吊装路径规划模型的工作原理便是,在当前作业场景内得到上车栅格图数据和下车栅格图数据,然后利用 A星算法,在上车栅格图数据和下车栅格图数据中进行遍历搜寻,从而得到目标路径。而采用A星算法规划路径具有全局最优性和连续性好的优点,能够有效精简位形数据量,降低计算复杂度。
本实施例提供的一种吊装路径规划模型构建方法,包括:建立起重机模型;基于当前作业场景和起重机模型,构建吊装系统位形空间模型,吊装系统位形空间模型包括起重机的上车数据和下车数据;针对吊装系统位形空间模型和上车数据,生成起重机的上车栅格图数据;针对吊装系统位形空间模型和下车数据,生成起重机的下车栅格图数据;利用A星算法,结合上车栅格图数据和下车栅格图数据,构建吊装路径规划模型,由于构建的吊装路径规划模型是基于上车栅格图数据和下车栅格图数据,使得通过将整个的路径划分为上车和下车两组,有效地降低了路径搜索时的数据量,提高了路径规划效率。
进一步的,在上述实施例的基础上,本实施例中的上车数据包括:主臂变幅角度、上车回转角度和吊钩升降长度;对应的,针对吊装系统位形空间模型和上车数据,生成起重机的上车栅格图数据,包括:确定吊钩升降长度;划分吊钩升降长度为预设数量的升降区间;针对每个升降区间的端点,基于主臂变幅角度和上车回转角度在吊装系统位形空间模型内进行遍历搜索,计算上车碰撞信息,生成起重机的上车栅格图数据。
具体的,起重机的上车数据中主臂变幅角度、上车回转角度和吊钩升降长度三个动作,其三个动作之间的关系为:在起重机工作时,吊钩升降长度动作往往是在吊装过程的起始和结尾进行的动作,而主臂变幅角度、上车回转角度则是中间过程的动作。因此,为了进一步提高路径搜索的速度,可以选择将吊钩升降长度L作为控制参数进行上车栅格图数据的获取。
划分吊钩升降长度为预设数量的升降区间,然后获取每个升降区间的端点,即L={L0,L1,L2,L3,L4……Lm},对应的区间则是【L0,L1】、【L1,L2】、【L2,L3】……【Lm-1,Lm】。然后按主臂变幅角度α和上车回转角度β进行遍历搜索,(α,β)={(α0,β0), (α0,β1),(α0,β2)……(α1,β0),(α1,β1),(α1,β2)…… (αn,βq)},计算上车碰撞信息,针对每一个L端点数据均生成一组对应的栅格图数据。图2是本发明提供的栅格图的结构示意图。如图2所示,为栅格图示意图,其中,径向方向为主臂变幅角度相关,旋转角度为上车回转角度,因此每组栅格图数据的每个栅格中包含碰撞信息、边缘信息、载荷信息等,而每一个设定的吊钩升降长度L对应一组这样的数据,一共有m组对应的栅格图数据。所有的m组栅格图数据构成了整个的起重机上车栅格图数据。通过对m组栅格图数据进行路径规划,可得到n条有效路径(指从起点到终点具有n种路径),比较n条有效路径,选出最优的路径作为当前的结果路径。
进一步的,在上述实施例的基础上,本实施例中的下车数据包括行走参数和转向参数;对应的,针对吊装系统位形空间模型和下车数据,生成起重机的下车栅格图数据,包括:基于行走参数和转向参数,在吊装系统位形空间模型内进行扫描遍历,得到下车碰撞信息;根据下车碰撞信息,生成起重机的下车栅格图数据。
具体的,上述实施例对生成起重机的上车栅格图数据方式进行了具体说明。因此,在起重机移动时,需要先取得上车数据的碰撞结果,然后再去计算下车数据的碰撞结果,结合上车碰撞结果和下车碰撞结果,得到最终的碰撞结果。其实际意义表示起重机在下车的行走、转向和上车的变幅、回转、吊钩升降时都确保整个吊装系统不发生碰撞。
其中,生成下车栅格图数据的过程则是,首先基于行走参数和转向参数,在吊装系统位形空间模型内进行扫描遍历,得到下车碰撞信息,然后再根据下车碰撞数据,生成下车栅格图数据。下车栅格图数据指的便是起重机行走参数与转向参数的一一对应关系,下车栅格图数据则能够反映出所有的行走参数条件下对应的转向参数,同理也能够反映出所有的转向参数条件下对应的行走参数。
进一步的在上述实施例的基础上,本实施例中的利用A星算法,结合上车栅格图数据和下车栅格图数据,构建吊装路径规划模型,可以包括:利用A星算法,分别对上车栅格图数据和下车栅格图数据进行路径规划,得到上车路径规划模型和下车路径规划模型;结合上车路径规划模型和下车路径规划模型,构建吊装路径规划模型。
具体的,A星算法又称为A*搜寻算法。A星算法的特点是在检查最短路径中每个可能的节点时引入了全局信息,对当前节点距终点的距离做出估计,并作为评价该节点处于最短路线上的可能性的量度。因此,在本实施例中采用A星算法可以更好地完成路径的规划。
为了在路径规划的过程中,尽量的减少数据处理量,增加数据处理的速度。分别对上车栅格图数据和下车栅格图数据进行路径规划,通过分组处理能够降低单次计算难度,降低耦合度。通过将吊装路径规划模型分割为上车路径规划模型和下车路径规划模型,也能够使得在下车没有移动时,更加快速的完成上车路径规划,并且通过A星算法进行路径规划,能够做到全局性最优。
进一步的,在上述实施例的基础上,本实施例中的建立起重机模型,可以包括:获取起重机的结构数据,结构数据包括尺寸信息、运动参数和载荷参数;基于尺寸信息、运动参数和载荷参数,建立起重机模型。
具体的,获取起重机的结构数据的方式可以是直接读取起重机的产品说明书,也可以是人为输入关键数据,也可以是通过各种传感器测量不同的数据,只要能够准确地获取到起重机的结构数据即可。在准确的获取到起重机的尺寸信息、运动参数和载荷参数之后,将其转化为空间模型,也就是通过线条的方式模拟起重机结构进行仿真。通过准确地获取尺寸信息、运动参数和载荷参数,也能够保证模拟起重机的准确度,从而提高吊装路径规划模型的精准度。
基于同一总的发明构思,本发明还保护一种吊装路径规划方法。
图3是本发明提供的吊装路径规划方法的流程示意图。
如图3所示,本实施例提供的吊装路径规划方法,执行主体可以是车载控制器,也可以是远程控制终端等,主要包括以下步骤:
301、确定吊装路径的起点和终点。
具体的,在进行路径规划时,首先要确定出起重机工作的起点和终点,即吊装路径的起点和终点。通常,吊装起点是确定的,或者可以直接根据定位系统获取到。因此,在具体实现过程中,无需输入起点数据,可以直接输入终点数据,也就是只需确定出吊装路径的终点即可。而确定吊装终点的方式,可以是直接读取用户输入的终点数据,也可以是用户指定位置后,自动定位出终点的位置,只要能够有效地获取到吊装路径的起点和终点即可。
302、输入起点的坐标和终点的坐标至吊装路径规划模型,输出吊装规划路径为最优的吊装路径,吊装路径规划模型为根据上述任一实施例的吊装路径规划模型构建方法得到的。
具体的,在获取到吊装路径的起点和终点之后,便可以将起点数据和终点数据输入至吊装路径规划模型,吊装路径规划模型便会根据起点和终点进行路径规划计算,输出吊装规划路径。
其中,吊装路径规划模型规划起点到终点之间的吊装路径的过程,可以理解为,吊装路径规划模型首先规划出上车路径,然后再规划出下车路径,再将上车路径与下车路径结合,最终得到吊装规划路径。通过分组规划上车路径和下车路径,能够有效地降低数据处理量,提高数据处理速度。吊装路径规划指的是在起点和终点之间选择最为合适的实现路径,在当前作业场景内构建的吊装系统位形空间模型,可以理解为纵横交错的网格,通过A星算法可以快速的完成对每个网格节点的遍历,搜寻出最合适的路径,完成吊装路径规划,例如最终完成的吊装路径规划,为吊装用时最短的路径。其中,随着数据量的增长,A星算法的运算效率会有所降低。
需说明的是,在同一种起重机同一作业场景内,进行吊装路径规划时,只需要获取到吊装路径的起点和终点即可。而当起重机发生变化,或者是作业场景发生变化时,便需要重新构建吊装系统位形空间模型,以重新构建吊装路径规划模型,从而保证路径规划的准确性。
进一步的,在上述实施例的基础上,输出吊装规划路径之后,还可以包括:分别针对上车栅格图数据和下车栅格图数据,从起点开始搜索上车栅格图数据节点和下车栅格图数据节点;针对每个上车栅格图数据节点和下车栅格图数据节点,确定已行代价和预测代价;标记已行代价和预测代价于开启列表中,在开启列表中搜索总代价最小的节点,作为新的起点开始搜索,直至搜索至终点。
具体的,在完成吊装路径规划之后,还需要对吊装路径规划模型输出的吊装路径进行校准修正。修正的方式便可以是分别校准上车路径和下车路径,分别针对上车栅格图数据和下车栅格图数据,从起点开始向周围搜索,确定出每个上车栅格图数据节点和下车栅格图数据节点,然后针对每个上车栅格图数据节点和下车栅格图数据节点,确定已行代价和预测代价,并将已行代价和预测代价于开启列表中,开启列表指的是已经搜索过的节点。然后在开启列表中搜索总代价最小的节点,作为新的起点开始搜索,重复搜索操作,直至搜索至终点,然后再从开启列表中找到最优路径,作为最终的吊装规划路径,从而便完成了对吊装规划路径的优化校准。
进一步的,在上述实施例的基础上,本实施例中在输出吊装规划路径之后,还可以包括:基于吊装系统位形空间模型,转化吊装规划路径为起重机的动作序列;基于动作序列,生成起重机控制指令。
具体的,在确定出吊装规划路径之后,便需要将其吊装规划路径转化为起重机的动作序列,基于动作序列,生成起重机控制指令,从而控制起重机按照确定的吊装规划路径进行移动,起重机的控制指令控制起重机的各个部分按照吊装规划路径进行动作,最终完成吊装起点至终点的控制,起重机便完成吊装作业,由于吊装路径规划的合理性,便可以有效地提高吊装作业效率。
本发明中通过对起重机动作解耦合,灵活适用于起重机不同的工作模式,提高路径规划模块的计算效率。而且上车和下车的分层处理可以实现位形空间降维;降低了数据量并标准化起重机的位形坐标参数,提高了路径规划算法的性能。
基于同一总的发明构思,本发明还保护一种吊装路径规划模型构建装置,下面对本发明提供的吊装路径规划模型构建装置进行描述,下文描述的吊装路径规划模型构建装置与上文描述的吊装路径规划模型构建方法可相互对应参照。
图4是本发明提供的吊装路径规划模型构建装置的结构示意图。
如图4所示,本发明实施例提供的一种吊装路径规划模型构建装置,包括:
模拟模块401,用于建立起重机模型;
位形空间模块402,用于基于当前作业场景和所述起重机模型,构建吊装系统位形空间模型,所述吊装系统位形空间模型包括起重机的上车数据和下车数据;
分组处理模块403,用于针对所述吊装系统位形空间模型和所述上车数据,生成起重机的上车栅格图数据;针对所述吊装系统位形空间模型和所述下车数据,生成起重机的下车栅格图数据;
构建模块404,用于利用A星算法,结合所述上车栅格图数据和所述下车栅格图数据,构建吊装路径规划模型。
本实施例提供的一种吊装路径规划模型构建装置,包括:建立起重机模型;基于当前作业场景和起重机模型,构建吊装系统位形空间模型,吊装系统位形空间模型包括起重机的上车数据和下车数据;针对吊装系统位形空间模型和上车数据,生成起重机的上车栅格图数据;针对吊装系统位形空间模型和下车数据,生成起重机的下车栅格图数据;利用A星算法,结合上车栅格图数据和下车栅格图数据,构建吊装路径规划模型,由于构建的吊装路径规划模型是基于上车栅格图数据和下车栅格图数据,使得通过将整个的路径划分为上车和下车两组,有效地降低了路径搜索时的数据量,提高了路径规划效率。
进一步的,本实施例中的所述上车数据包括:主臂变幅角度、上车回转角度和吊钩升降长度;
分组处理模块403,具体用于:
确定所述吊钩升降长度;
划分所述吊钩升降长度为预设数量的升降区间;
针对每个所述升降区间的端点,基于所述主臂变幅角度和所述上车回转角度在所述吊装系统位形空间模型内进行遍历搜索,计算上车碰撞信息,生成起重机的上车栅格图数据。
进一步的,本实施例中的所述下车数据包括行走参数和转向参数;
分组处理模块403,具体还用于:
基于所述行走参数和所述转向参数,在所述吊装系统位形空间模型内进行扫描遍历,得到下车碰撞信息;
根据所述下车碰撞信息,生成起重机的下车栅格图数据。
进一步的,本实施例中的构建模块404,具体用于:
利用A星算法,分别对所述上车栅格图数据和所述下车栅格图数据进行路径规划,得到上车路径规划模型和下车路径规划模型;
结合所述上车路径规划模型和所述下车路径规划模型,构建吊装路径规划模型。
基于同一总的发明构思,本发明还保护一种吊装路径规划装置,下面对本发明提供的吊装路径规划装置进行描述,下文描述的吊装路径规划装置与上文描述的吊装路径规划方法可相互对应参照。
图5是本发明提供的吊装路径规划装置的结构示意图。
如图5所示,本发明提供的一种吊装路径规划装置,包括:
确定模块501,用于确定吊装路径的起点和终点;
规划模块502,用于输入所述起点的坐标和所述终点的坐标至吊装路径规划模型,输出吊装规划路径为最优的吊装路径,所述吊装路径规划模型为根据上述任一实施例的吊装路径规划模型构建方法得到的。
进一步的,在上述实施例的基础上,本实施例中还包括:修正模块,用于:
分别针对上车栅格图数据和下车栅格图数据,从所述起点开始搜索上车栅格图数据节点和下车栅格图数据节点;
针对每个所述上车栅格图数据节点和所述下车栅格图数据节点,确定已行代价和预测代价;
标记所述已行代价和所述预测代价于开启列表中,在所述开启列表中搜索总代价最小的节点,作为新的起点开始搜索,直至搜索至所述终点。
进一步的,在上述实施例的基础上,本实施例中还包括:转化模块,用于:
基于吊装系统位形空间模型,转化所述吊装规划路径为起重机的动作序列;
基于所述动作序列,生成起重机控制指令。
基于同一总的发明构思,本发明还保护一种起重机,起重机用于执行如上述任一实施例的吊装路径规划方法。
图6是本发明提供的电子设备的结构示意图。
如图6所示,该电子设备可以包括:处理器(processor)610、通信接口(Communications Interface)620、存储器(memory)630和通信总线 640,其中,处理器610,通信接口620,存储器630通过通信总线 640完成相互间的通信。处理器610可以调用存储器630中的逻辑指令,以执行吊装路径规划模型构建方法,该方法包括建立起重机模型;基于当前作业场景和所述起重机模型,构建吊装系统位形空间模型,所述吊装系统位形空间模型包括起重机的上车数据和下车数据;针对所述吊装系统位形空间模型和所述上车数据,生成起重机的上车栅格图数据;针对所述吊装系统位形空间模型和所述下车数据,生成起重机的下车栅格图数据;利用A星算法,结合所述上车栅格图数据和所述下车栅格图数据,构建吊装路径规划模型。
此外,上述的存储器630中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的吊装路径规划模型构建方法,该方法包括建立起重机模型;基于当前作业场景和所述起重机模型,构建吊装系统位形空间模型,所述吊装系统位形空间模型包括起重机的上车数据和下车数据;针对所述吊装系统位形空间模型和所述上车数据,生成起重机的上车栅格图数据;针对所述吊装系统位形空间模型和所述下车数据,生成起重机的下车栅格图数据;利用A星算法,结合所述上车栅格图数据和所述下车栅格图数据,构建吊装路径规划模型。
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的吊装路径规划模型构建方法,该方法包括建立起重机模型;基于当前作业场景和所述起重机模型,构建吊装系统位形空间模型,所述吊装系统位形空间模型包括起重机的上车数据和下车数据;针对所述吊装系统位形空间模型和所述上车数据,生成起重机的上车栅格图数据;针对所述吊装系统位形空间模型和所述下车数据,生成起重机的下车栅格图数据;利用A星算法,结合所述上车栅格图数据和所述下车栅格图数据,构建吊装路径规划模型。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (10)
1.一种吊装路径规划模型构建方法,其特征在于,包括:
建立起重机模型;
基于当前作业场景和所述起重机模型,构建吊装系统位形空间模型,所述吊装系统位形空间模型包括起重机的上车数据和下车数据;
针对所述吊装系统位形空间模型和所述上车数据,生成起重机的上车栅格图数据;针对所述吊装系统位形空间模型和所述下车数据,生成起重机的下车栅格图数据;
利用A星算法,结合所述上车栅格图数据和所述下车栅格图数据,构建吊装路径规划模型。
2.根据权利要求1所述的吊装路径规划模型构建方法,其特征在于,所述上车数据包括:主臂变幅角度、上车回转角度和吊钩升降长度;
所述针对所述吊装系统位形空间模型和所述上车数据,生成起重机的上车栅格图数据,包括:
确定所述吊钩升降长度;
划分所述吊钩升降长度为预设数量的升降区间;
针对每个所述升降区间的端点,基于所述主臂变幅角度和所述上车回转角度在所述吊装系统位形空间模型内进行遍历搜索,计算上车碰撞信息,生成起重机的上车栅格图数据。
3.根据权利要求1所述的吊装路径规划模型构建方法,其特征在于,所述下车数据包括行走参数和转向参数;
所述针对所述吊装系统位形空间模型和所述下车数据,生成起重机的下车栅格图数据,包括:
基于所述行走参数和所述转向参数,在所述吊装系统位形空间模型内进行扫描遍历,得到下车碰撞信息;
根据所述下车碰撞信息,生成起重机的下车栅格图数据。
4.根据权利要求1-3任一项所述的吊装路径规划模型构建方法,其特征在于,所述利用A星算法,结合所述上车栅格图数据和所述下车栅格图数据,构建吊装路径规划模型,包括:
利用A星算法,分别对所述上车栅格图数据和所述下车栅格图数据进行路径规划,得到上车路径规划模型和下车路径规划模型;
结合所述上车路径规划模型和所述下车路径规划模型,构建吊装路径规划模型。
5.一种吊装路径规划方法,其特征在于,包括:
确定吊装路径的起点和终点;
输入所述起点的坐标和所述终点的坐标至吊装路径规划模型,输出吊装规划路径为最优的吊装路径,所述吊装路径规划模型为根据权利要求1至4任一项所述的吊装路径规划模型构建方法得到的。
6.根据权利要求5所述的吊装路径规划方法,其特征在于,所述输出吊装规划路径之后,还包括:
分别针对上车栅格图数据和下车栅格图数据,从所述起点开始搜索上车栅格图数据节点和下车栅格图数据节点;
针对每个所述上车栅格图数据节点和所述下车栅格图数据节点,确定已行代价和预测代价;
标记所述已行代价和所述预测代价于开启列表中,在所述开启列表中搜索总代价最小的节点,作为新的起点开始搜索,直至搜索至所述终点。
7.根据权利要求5所述的吊装路径规划方法,其特征在于,所述输出吊装规划路径之后,还包括:
基于吊装系统位形空间模型,转化所述吊装规划路径为起重机的动作序列;
基于所述动作序列,生成起重机控制指令。
8.一种吊装路径规划模型构建装置,其特征在于,包括:
模拟模块,用于建立起重机模型;
位形空间模块,用于基于当前作业场景和所述起重机模型,构建吊装系统位形空间模型,所述吊装系统位形空间模型包括起重机的上车数据和下车数据;
分组处理模块,用于针对所述吊装系统位形空间模型和所述上车数据,生成起重机的上车栅格图数据;针对所述吊装系统位形空间模型和所述下车数据,生成起重机的下车栅格图数据;
构建模块,用于利用A星算法,结合所述上车栅格图数据和所述下车栅格图数据,构建吊装路径规划模型。
9.一种吊装路径规划装置,其特征在于,包括:
确定模块,用于确定吊装路径的起点和终点;
规划模块,用于输入所述起点和所述终点至吊装路径规划模型,输出吊装规划路径,所述吊装路径规划模型为根据权利要求1至4任一项所述的吊装路径规划模型构建方法得到的。
10.一种起重机,其特征在于,所述起重机用于执行如权利要求5至7任一项所述的吊装路径规划方法。
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210908341.3A CN115330035A (zh) | 2022-07-29 | 2022-07-29 | 吊装路径规划模型构建方法、吊装路径规划方法及起重机 |
| PCT/CN2023/100942 WO2024021924A1 (zh) | 2022-07-29 | 2023-06-19 | 吊装路径规划模型构建方法、吊装路径规划方法及起重机 |
| JP2024501776A JP7700357B2 (ja) | 2022-07-29 | 2023-06-19 | 揚重経路計画モデル構築方法、揚重経路計画方法及びクレーン |
| DE112023000145.6T DE112023000145T5 (de) | 2022-07-29 | 2023-06-19 | Bauweise für ein hebepfad-planungsmodell, hebepfadplanungsverfahren und kran |
| US18/409,461 US20240143859A1 (en) | 2022-07-29 | 2024-01-10 | Hoisting path planning model construction method, hoisting path planning method and crane |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210908341.3A CN115330035A (zh) | 2022-07-29 | 2022-07-29 | 吊装路径规划模型构建方法、吊装路径规划方法及起重机 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115330035A true CN115330035A (zh) | 2022-11-11 |
Family
ID=83918771
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210908341.3A Pending CN115330035A (zh) | 2022-07-29 | 2022-07-29 | 吊装路径规划模型构建方法、吊装路径规划方法及起重机 |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20240143859A1 (zh) |
| JP (1) | JP7700357B2 (zh) |
| CN (1) | CN115330035A (zh) |
| DE (1) | DE112023000145T5 (zh) |
| WO (1) | WO2024021924A1 (zh) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024021924A1 (zh) * | 2022-07-29 | 2024-02-01 | 浙江三一装备有限公司 | 吊装路径规划模型构建方法、吊装路径规划方法及起重机 |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7714100B1 (ja) * | 2024-10-24 | 2025-07-28 | アーベーベー・シュバイツ・アーゲー | 塗装システム |
| CN119783196B (zh) * | 2024-12-11 | 2025-09-09 | 国能宁夏六盘山能源发展有限公司 | 结合bim的火电工程施工吊装路径优化方法及装置 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104627842A (zh) * | 2014-12-01 | 2015-05-20 | 长安大学 | 一种臂架式起重机吊装作业防碰撞方法及系统 |
| CN105793866A (zh) * | 2013-10-08 | 2016-07-20 | 南洋理工大学 | 用于智能起重机吊装的方法和系统 |
| JP2019059593A (ja) * | 2017-09-27 | 2019-04-18 | 株式会社大林組 | クレーン操縦支援装置 |
| CN111897341A (zh) * | 2020-08-05 | 2020-11-06 | 三一专用汽车有限责任公司 | 泊车路径规划方法、装置和计算机可读存储介质 |
| CN113901611A (zh) * | 2021-10-13 | 2022-01-07 | 广州市建筑科学研究院集团有限公司 | 一种基于a*算法改进的塔机吊运路径规划方法及装置 |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05250023A (ja) * | 1991-10-23 | 1993-09-28 | Sanyo Electric Co Ltd | ロボットマニピュレータの経路自動生成法 |
| JP4848838B2 (ja) | 2006-05-24 | 2011-12-28 | トヨタ自動車株式会社 | 経路作成装置及び経路作成方法 |
| EP3408211B1 (de) | 2016-04-08 | 2022-06-08 | Liebherr-Components Biberach GmbH | Kran |
| JP7156848B2 (ja) * | 2018-08-01 | 2022-10-19 | Jfe物流株式会社 | 経路探索方法 |
| US12208996B2 (en) * | 2018-08-02 | 2025-01-28 | Tadano Ltd. | Operation assistance module, image generation application, and work machine |
| ES2914630T3 (es) * | 2018-11-08 | 2022-06-14 | Intsite Ltd | Sistema y método para la operación autónoma de maquinaria pesada |
| JP7159899B2 (ja) | 2019-02-14 | 2022-10-25 | 株式会社タダノ | クレーンおよびクレーンの経路生成システム |
| JP7184001B2 (ja) | 2019-09-11 | 2022-12-06 | コベルコ建機株式会社 | シミュレーション装置 |
| JP7156561B2 (ja) * | 2020-02-05 | 2022-10-19 | 株式会社タダノ | 性能情報サーバ、作業機表示操作アプリケーション、機種情報の提供方法、機種情報の取得方法、及び機種情報取得システム |
| CN111735470B (zh) * | 2020-07-29 | 2021-03-02 | 上海国际港务(集团)股份有限公司 | 一种动态环境下的自动导引运输车路径规划方法 |
| CN112069698B (zh) * | 2020-09-27 | 2024-04-19 | 中国化学工程第六建设有限公司 | 基于bim的吊装仿真施工方法及其系统 |
| JP7459853B2 (ja) * | 2021-09-27 | 2024-04-02 | コベルコ建機株式会社 | 作業計画支援装置および作業計画支援方法 |
| CN115330035A (zh) * | 2022-07-29 | 2022-11-11 | 浙江三一装备有限公司 | 吊装路径规划模型构建方法、吊装路径规划方法及起重机 |
-
2022
- 2022-07-29 CN CN202210908341.3A patent/CN115330035A/zh active Pending
-
2023
- 2023-06-19 DE DE112023000145.6T patent/DE112023000145T5/de active Pending
- 2023-06-19 JP JP2024501776A patent/JP7700357B2/ja active Active
- 2023-06-19 WO PCT/CN2023/100942 patent/WO2024021924A1/zh not_active Ceased
-
2024
- 2024-01-10 US US18/409,461 patent/US20240143859A1/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105793866A (zh) * | 2013-10-08 | 2016-07-20 | 南洋理工大学 | 用于智能起重机吊装的方法和系统 |
| CN104627842A (zh) * | 2014-12-01 | 2015-05-20 | 长安大学 | 一种臂架式起重机吊装作业防碰撞方法及系统 |
| JP2019059593A (ja) * | 2017-09-27 | 2019-04-18 | 株式会社大林組 | クレーン操縦支援装置 |
| CN111897341A (zh) * | 2020-08-05 | 2020-11-06 | 三一专用汽车有限责任公司 | 泊车路径规划方法、装置和计算机可读存储介质 |
| CN113901611A (zh) * | 2021-10-13 | 2022-01-07 | 广州市建筑科学研究院集团有限公司 | 一种基于a*算法改进的塔机吊运路径规划方法及装置 |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024021924A1 (zh) * | 2022-07-29 | 2024-02-01 | 浙江三一装备有限公司 | 吊装路径规划模型构建方法、吊装路径规划方法及起重机 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP7700357B2 (ja) | 2025-06-30 |
| DE112023000145T5 (de) | 2024-04-04 |
| WO2024021924A1 (zh) | 2024-02-01 |
| US20240143859A1 (en) | 2024-05-02 |
| JP2024532059A (ja) | 2024-09-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN115330035A (zh) | 吊装路径规划模型构建方法、吊装路径规划方法及起重机 | |
| CN112419775B (zh) | 基于强化学习的数字孪生智慧停车方法及系统 | |
| KR102595538B1 (ko) | 샘플 편차 데이터의 획득 방법, 장치 및 전자기기 | |
| Lei et al. | A methodology for mobile crane lift path checking in heavy industrial projects | |
| TW200931357A (en) | A crane simulation method and system | |
| JP2021138363A (ja) | 車両シミュレーション方法、装置、機器及び媒体 | |
| CN112115929A (zh) | 一种作业臂架移动位姿的确定方法、装置及存储介质 | |
| EP3975152B1 (en) | Signal light control method, apparatus, and system | |
| CN116477505A (zh) | 一种基于深度学习的塔机实时路径规划系统及方法 | |
| CN110568862A (zh) | 一种无人机飞行路径规划方法、装置及相关设备 | |
| CN117720012B (zh) | 基于扩展卡尔曼滤波的吊车系统模型预测控制方法及系统 | |
| CN113282083A (zh) | 一种基于机器人操作系统的无人车编队实验平台 | |
| WO2024124769A1 (zh) | 一种臂架防撞检测方法、电子设备及多臂架设备 | |
| CN116768062A (zh) | 一种双平臂落地抱杆吊装路径规划方法、系统和介质 | |
| CN117185140A (zh) | 双起重机协同作业的控制方法、装置以及双起重机系统 | |
| JP2020177416A (ja) | 機械の自動運転制御方法、及びシステム | |
| Zhu et al. | An innovative crane-lift path planning system for high-rise modular integrated construction | |
| CN105883623A (zh) | 一种自动规划起重机运行路线控制方法与系统 | |
| CN115026818B (zh) | 空中机械臂的控制方法、装置、设备及存储介质 | |
| Kim et al. | Automatic dual crane cooperative path planning based on multiple RRT algorithm for narrow path finding scenario | |
| CN110815226A (zh) | 一种机器人任意姿态任意位置下回初始位置的方法 | |
| CN113091743B (zh) | 机器人的室内定位方法及装置 | |
| CN114237048A (zh) | 极地船舶无人吊机智能化作业轨迹规划系统及其工作方法 | |
| Han et al. | Simulation of mobile crane operations in 3D space | |
| CN114693187B (zh) | 塔吊集群的运行分析方法、装置、存储介质及终端 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |