[go: up one dir, main page]

CN115319726A - A Robot Calibration Method Based on Position and Distance Constraints - Google Patents

A Robot Calibration Method Based on Position and Distance Constraints Download PDF

Info

Publication number
CN115319726A
CN115319726A CN202210984365.7A CN202210984365A CN115319726A CN 115319726 A CN115319726 A CN 115319726A CN 202210984365 A CN202210984365 A CN 202210984365A CN 115319726 A CN115319726 A CN 115319726A
Authority
CN
China
Prior art keywords
robot
error
model
calibration
constraint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210984365.7A
Other languages
Chinese (zh)
Other versions
CN115319726B (en
Inventor
杨桂林
何建辉
陈思鲁
罗竞波
万红宇
张志辉
汤烨
陈庆盈
张驰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN202210984365.7A priority Critical patent/CN115319726B/en
Publication of CN115319726A publication Critical patent/CN115319726A/en
Application granted granted Critical
Publication of CN115319726B publication Critical patent/CN115319726B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0081Programme-controlled manipulators with leader teach-in means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

The invention discloses a robot calibration method based on position and distance constraints, which comprises the steps of establishing a kinematic model of a robot and a kinematic error model based on position constraints and distance constraints; mounting the tail end calibration device to the tail end of the robot, and mounting the geometric constraint device into a working space of the robot; dragging the robot to make the calibration ball of the tail end calibration device constrained to each ball seat on the geometric constraint device, touching each ball seat for a plurality of times in different configurations, and reading and recording joint angle data measured each time; identifying kinematic model parameters of the corresponding robot; and compensating the identified kinematic model parameter errors to a controller of the robot. The invention has the advantages of low cost, good portability, simple and convenient operation, difficult damage and the like.

Description

一种基于位置和距离约束的机器人标定方法A Robot Calibration Method Based on Position and Distance Constraints

技术领域technical field

本发明属于机器人标定技术领域,具体涉及一种基于位置和距离约束的机器人标定方法。The invention belongs to the technical field of robot calibration, and in particular relates to a robot calibration method based on position and distance constraints.

背景技术Background technique

协作机器人是一种可以与人近距离协同作业的新型工业机器人。与传统工业机器人相比,协作机器人具有自重轻、柔顺性好、安全性高、可拖动示教、易于部署实施以及支持人机协作等优点,既能满足制造业日益增长的小批量、多品种生产需求,又能应用于社会服务领域,实现安全友好的人机交互,具有极为广阔的发展前景。A collaborative robot is a new type of industrial robot that can work closely with humans. Compared with traditional industrial robots, collaborative robots have the advantages of light weight, good flexibility, high safety, draggable teaching, easy deployment and implementation, and support for human-machine collaboration. Variety production needs, but also can be applied to the field of social services, to achieve safe and friendly human-computer interaction, has a very broad development prospects.

然而,由于协作机器人在零部件加工、装配时,存在一定的误差,使得其绝对定位精度较差。因此,为提高协作机器人的绝对定位精度,常常需对机器人进行标定。However, due to certain errors in the processing and assembly of collaborative robots, the absolute positioning accuracy of collaborative robots is poor. Therefore, in order to improve the absolute positioning accuracy of the collaborative robot, it is often necessary to calibrate the robot.

对于机器人标定,国内外学者开展了富有成效的研究工作,建立了由误差建模、位姿测量、参数辨识和误差补偿四个主要步骤组成的机器人运动学标定方法,有效提高了工业机器人的绝对定位精度。然而,已有的机器人运动学标定方法大多需要依赖激光跟踪仪、臂式三坐标测量仪、拉线式测量系统等外部精密测量设备进行机器人位置或位姿测量,而这些大范围精密测量设备存在价格较为昂贵、使用和维护成本高、便捷性差、现场部署实施难等问题,难以满足协作机器人经常性的现场标定需求。For robot calibration, scholars at home and abroad have carried out fruitful research work and established a robot kinematics calibration method consisting of four main steps: error modeling, pose measurement, parameter identification, and error compensation, which effectively improves the absolute accuracy of industrial robots. positioning accuracy. However, most of the existing robot kinematics calibration methods need to rely on external precision measurement equipment such as laser trackers, arm-type three-coordinate measuring instruments, and wire-drawn measurement systems to measure the position or pose of the robot, and these large-scale precision measurement equipment has a price It is relatively expensive, high in use and maintenance costs, poor in convenience, and difficult in on-site deployment and implementation, making it difficult to meet the regular on-site calibration needs of collaborative robots.

针对上述问题,近年来,众多研究学者开始探求低成本、便携的自标定装置。CN107042528A公开的工业机器人标定装置,将固定在机器人末端的三个探测球杆接触固定于桌面的目标球体,读取三个位移传感器的读数,两次触碰同一或不同球体,利用名义距离与实际值的偏差对机器人进行标定。然而,上述装置的位移传感器在接触球体时,受力方向与位移传感器测量方向不重合,容易造成探测球杆的受力变形,进而会影响装置后续的标定精度。In response to the above problems, in recent years, many researchers have begun to explore low-cost, portable self-calibration devices. CN107042528A discloses an industrial robot calibration device. Three detection clubs fixed at the end of the robot are contacted with a target sphere fixed on the desktop, and the readings of three displacement sensors are read. The same or different spheres are touched twice, and the nominal distance and the actual distance are used. The deviation of the value calibrates the robot. However, when the displacement sensor of the above-mentioned device touches the sphere, the force direction does not coincide with the measurement direction of the displacement sensor, which easily causes force deformation of the detection club, which in turn affects the subsequent calibration accuracy of the device.

如何提供一种成本低廉、便携性好、不易损坏的协作机器人标定方案,是一个急需解决的问题。How to provide a low-cost, portable, and non-destructive collaborative robot calibration solution is an urgent problem to be solved.

发明内容Contents of the invention

本发明的主要目的在于提供一种成本低廉、便携性好、不易损坏的基于位置和距离约束的机器人标定方法,从而克服现有技术的不足。The main purpose of the present invention is to provide a robot calibration method based on position and distance constraints with low cost, good portability, and not easy to damage, so as to overcome the shortcomings of the prior art.

为实现前述发明目的,本发明采用的技术方案包括:一种基于位置和距离约束的机器人标定方法,所述方法基于一机器人标定装置实现,所述机器人标定装置包括末端标定装置和几何约束装置,所述末端标定装置包括连接座和安装于连接座一端的标定球,所述几何约束装置包括约束支撑座和设置于所述约束支撑座上的多个球座,所述方法包括:In order to achieve the aforementioned object of the invention, the technical solution adopted by the present invention includes: a robot calibration method based on position and distance constraints, the method is realized based on a robot calibration device, and the robot calibration device includes an end calibration device and a geometric constraint device, The end calibration device includes a connection base and a calibration ball installed at one end of the connection base, the geometric constraint device includes a constraint support base and a plurality of ball seats arranged on the constraint support base, and the method includes:

S1,建立模型,所述模型包括机器人的运动学模型、基于位置约束的第一运动学误差模型和基于距离约束的第二运动学误差模型;S1, establishing a model, the model including a kinematics model of the robot, a first kinematics error model based on a position constraint, and a second kinematics error model based on a distance constraint;

S2,测量安装,包括测量所述末端标定装置上的所述标定球和所述连接座之间的第一相对位姿,以及所述几何约束装置上各球座之间的第二相对位姿,测量后将所述末端标定装置安装至所述机器人的末端,将所述几何约束装置安装至机器人的工作空间内;S2, measuring installation, including measuring the first relative pose between the calibration ball on the end calibration device and the connecting seat, and the second relative pose between the ball seats on the geometric constraint device , after the measurement, install the end calibration device on the end of the robot, and install the geometric constraint device in the working space of the robot;

S3,数据采集,包括多次改变所述几何约束装置在机器人的所述工作空间中的位置,在每个位置都拖动机器人,使末端标定装置的标定球约束于几何约束装置上的各个球座,且每个球座以不同的构型触碰若干次,读取并记录每次测量操作稳定后的关节角数据;S3, data acquisition, including changing the position of the geometric constraint device in the working space of the robot multiple times, dragging the robot at each position, so that the calibration ball of the end calibration device is constrained to each ball on the geometric constraint device Seat, and each ball seat is touched several times in different configurations, and the joint angle data after each measurement operation is stabilized is read and recorded;

S4,参数辨识,包括对所述关节角数据按照不同的几何约束装置位姿分成若干组,再按照不同的球座位置分为若干小组,将同一小组的数据两两配对代入所述第一运动学误差模型中,将同一组但不同小组的数据两两配对代入所述第二运动学误差模型中,之后混合两误差模型数据,辨识相应的机器人的运动学模型参数;S4, parameter identification, including dividing the joint angle data into several groups according to different geometric constraint device poses, and then dividing them into several groups according to different ball seat positions, and substituting pairs of data from the same group into the first motion In the kinematic error model, the data of the same group but different groups are paired into the second kinematic error model, and then the two error model data are mixed to identify the corresponding kinematic model parameters of the robot;

S5,误差补偿,包括将辨识得到的所述运动学模型参数误差补偿到机器人的控制器中。S5, error compensation, including compensating the identified kinematics model parameter error to the controller of the robot.

在一优选实施例中,所述S1中,通过全局指数积公式建立机器人末端位姿与关节角、关节旋量和初始位姿之间的对应关系,构建所述运动学模型;通过伴随变换矩阵建立了位置约束误差与关节旋量误差、初始位姿误差之间的对应关系,构建所述第一运动学误差模型;通过伴随变换矩阵建立了距离约束误差与关节旋量误差、初始位姿误差之间的对应关系,构建所述第二运动学误差模型。In a preferred embodiment, in said S1, the corresponding relationship between the end pose of the robot and the joint angle, joint screw and initial pose is established through the global exponential product formula, and the kinematics model is constructed; through the adjoint transformation matrix The corresponding relationship between the position constraint error, the joint screw error and the initial pose error is established, and the first kinematics error model is constructed; the distance constraint error, the joint screw error, and the initial pose error are established through the adjoint transformation matrix The corresponding relationship among them is used to construct the second kinematics error model.

在一优选实施例中,所述全局指数积公式表示如下:In a preferred embodiment, the global exponential product formula is expressed as follows:

Figure BDA0003798288490000021
Figure BDA0003798288490000021

其中,T0,n+1表示机器人末端位姿在基坐标系下的坐标,si(i=1,2,...,n)表示机器人的关节旋量在基坐标系下的坐标,qi(i=1,2,...,n)表示机器人各关节的旋转角,即关节角,T0,n+1(0)表示机器人末端相对于基坐标系的初始位姿。Among them, T 0, n+1 represents the coordinates of the end pose of the robot in the base coordinate system, s i (i=1, 2, ..., n) represents the coordinates of the joint screw of the robot in the base coordinate system, q i (i=1, 2, ..., n) represents the rotation angle of each joint of the robot, that is, the joint angle, and T 0, n+1 (0) represents the initial pose of the end of the robot relative to the base coordinate system.

在一优选实施例中,所述第一运动学误差模型表示如下:In a preferred embodiment, the first kinematic error model is expressed as follows:

YPC=APCX;Y PC = A PC X;

其中,

Figure BDA0003798288490000031
表示两种不同构型下的末端位置误差,X表示待辨识的模型参数误差,APC表示末端位置误差与模型参数误差之间的位置约束关系矩阵,所述APC表示为:in,
Figure BDA0003798288490000031
Represents the terminal position error under two different configurations, X represents the model parameter error to be identified, A PC represents the position constraint relationship matrix between the terminal position error and the model parameter error, and the A PC is expressed as:

Figure BDA0003798288490000032
Figure BDA0003798288490000032

其中,p为名义末端位置坐标,I3表示3×3的单位矩阵,Ad(·)表示一齐次变换矩阵所对应的伴随变换矩阵,Aj(j=1,2)表示为:Among them, p is the coordinate of the nominal end position, I 3 represents the identity matrix of 3×3, Ad(·) represents the accompanying transformation matrix corresponding to the homogeneous transformation matrix, and A j (j=1, 2) is expressed as:

Figure BDA0003798288490000033
Figure BDA0003798288490000033

在一优选实施例中,所述第二运动学误差模型表示如下:In a preferred embodiment, the second kinematic error model is expressed as follows:

YDC=ADCX,;Y DC = A DC X,;

其中,

Figure BDA0003798288490000034
表示两种不同构型下的名义末端距离与实际值之间的偏差,X表示待辨识的模型参数误差,ADC表示末端距离误差与模型参数误差之间的距离约束关系矩阵,所述ADC表示为:in,
Figure BDA0003798288490000034
Represents the deviation between the nominal terminal distance and the actual value under two different configurations, X represents the model parameter error to be identified, A DC represents the distance constraint relationship matrix between the terminal distance error and the model parameter error, and the A DC Expressed as:

Figure BDA0003798288490000035
Figure BDA0003798288490000035

在一优选实施例中,由所述第一运动学误差模型和第二运动学误差模型混合形成混合误差模型,所述混合误差模型表示为:In a preferred embodiment, a mixed error model is formed by mixing the first kinematic error model and the second kinematic error model, and the mixed error model is expressed as:

Y=AX;Y = AX;

Figure BDA0003798288490000036
Figure BDA0003798288490000036

Figure BDA0003798288490000037
Figure BDA0003798288490000037

其中,Y为m1个末端位置误差与m2个末端距离误差组合而成的向量,A表示由m1个位置约束关系矩阵和m2个距离约束关系矩阵所组成的组合关系矩阵,m1和m2为大于等于1的整数。Among them, Y is a vector composed of m 1 terminal position errors and m 2 terminal distance errors, A represents the combined relationship matrix composed of m 1 position constraint relationship matrices and m 2 distance constraint relationship matrices, m 1 and m 2 are integers greater than or equal to 1.

在一优选实施例中,所述S4中,采用最小二乘法迭代对所述运动学模型参数误差进行辨识,所述最小二乘法公式表示为:In a preferred embodiment, in S4, the least squares method is used to iteratively identify the error of the kinematics model parameters, and the formula of the least squares method is expressed as:

X=(ATA)-1ATY。X=(A T A) -1 A T Y.

在一优选实施例中,所述S5中,采用直接补偿或间接补偿的方式将辨识得到的所述运动学模型参数误差补偿到机器人的控制器中。In a preferred embodiment, in said S5, the identified kinematics model parameter error is compensated to the controller of the robot by means of direct compensation or indirect compensation.

在一优选实施例中,所述直接补偿方式包括直接修改所述控制器中的运动学模型参数。In a preferred embodiment, the direct compensation method includes directly modifying kinematic model parameters in the controller.

在一优选实施例中,所述间接补偿方式包括通过辨识得到的所述运动学模型参数修正目标位姿,将修正后的所述目标位姿输入原控制器中,对原运动学模型进行误差补偿。In a preferred embodiment, the indirect compensation method includes correcting the target pose with the kinematics model parameters obtained through identification, inputting the corrected target pose into the original controller, and performing error correction on the original kinematics model. compensate.

与现有技术相比较,本发明的有益效果至少在于:Compared with the prior art, the beneficial effects of the present invention are at least:

本发明对于机器人的位置约束,通过将末端的标定球以两个不同的机器人构型拖至同一球座,利用两次计算得到的末端位置误差对机器人进行标定;对于距离约束,则将末端的标定球拖至两个不同的球座,利用两次计算得到的末端距离与实际距离之间的偏差对机器人进行标定。相比传统的外部标定装置,本发明具有成本低廉、便携性好的特点;相比现有的大多数自标定装置,本发明不含额外的传感器,具有操作简便、不易损坏等优点。For the position constraint of the robot, the present invention drags the calibration ball at the end to the same ball seat with two different robot configurations, and calibrates the robot by using the end position error obtained through two calculations; The calibration ball is dragged to two different ball seats, and the robot is calibrated by using the deviation between the calculated end distance and the actual distance. Compared with traditional external calibration devices, the present invention has the characteristics of low cost and good portability; compared with most of the existing self-calibration devices, the present invention does not contain additional sensors, and has the advantages of simple operation and not easy to be damaged.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments described in the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1是本发明实施例装置的结构示意图;Fig. 1 is the structural representation of the device of the embodiment of the present invention;

图2是本发明一实施方式中方法的流程示意图;Fig. 2 is a schematic flow chart of the method in an embodiment of the present invention;

图3是本发明末端标定装置的结构示意图;Fig. 3 is a schematic structural view of the terminal calibration device of the present invention;

图4是本发明几何约束装置的结构示意图;Fig. 4 is a schematic structural view of the geometric constraint device of the present invention;

图5是标定球定位于球座上的示意图;Fig. 5 is a schematic diagram of a calibration ball positioned on a ball seat;

图6是标定球在不同的机器人构型下定位于球座上的示意图;Fig. 6 is a schematic diagram of positioning the calibration ball on the ball seat under different robot configurations;

图7是标定球定位于不同球座上的示意图。Fig. 7 is a schematic diagram of calibration balls positioned on different ball seats.

附图标记:Reference signs:

1、机器人,2、连接座,3、标定球,4、球座,5、约束支撑座。1. Robot, 2. Connection seat, 3. Calibration ball, 4. Ball seat, 5. Constraint support seat.

具体实施方式Detailed ways

通过连同附图一起阅读以下具体实施方式将更完整地理解本发明。本文中揭示本发明的详细实施例;然而,应理解,所揭示的实施例仅具本发明的示范性,本发明可以各种形式来体现。因此,本文中所揭示的特定功能细节不应解释为具有限制性,而是仅解释为权利要求书的基础且解释为用于教示所属领域的技术人员在事实上任何适当详细实施例中以不同方式采用本发明的代表性基础。The present invention will be more fully understood by reading the following detailed description in conjunction with the accompanying drawings. Detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a teaching to one skilled in the art that, in fact, any suitably detailed embodiment may differ in any suitably detailed embodiment. The manner employs the representative basis of the present invention.

本发明所揭示的一种基于位置和距离约束的机器人标定方法,基于一机器人标定装置实现,针对现有的标定装置存在的价格昂贵、便携性差、容易损坏等问题,利用协作机器人可进行拖动示教的特性,为协作机器人的标定提供了一种成本低廉、便携性好、不易损坏的标定装置。对于一般的工业机器人,如可实现拖动示教的功能,则本发明可同样适用。A robot calibration method based on position and distance constraints disclosed by the present invention is implemented based on a robot calibration device. Aiming at the problems of expensive, poor portability, and easy damage in existing calibration devices, collaborative robots can be used to drag The teaching feature provides a low-cost, portable and non-destructive calibration device for the calibration of collaborative robots. For general industrial robots, if the function of dragging and teaching can be realized, then the present invention is equally applicable.

如图1所示,上述机器人标定装置包括末端标定装置和几何约束装置,其中,结合图3所示,末端标定装置安装于机器人1末端,其具体包括连接座2和安装于连接座2一端的标定球3;结合图4所示,几何约束装置安装于机器人1的工作空间内,其主要包括约束支撑座5和设置于约束支撑座5上的多个球座4。标定时,将末端标定装置安装于机器人1末端,具体是将连接座2安装于机器人1末端;几何约束装置安装于机器人1的工作空间内。拖动机器人1,使末端标定装置上的标定球3通过磁石(图未示)吸附于几何约束装置上的球座4中。对于位置约束,将末端的标定球3以两个不同的机器人构型拖至同一球座4,利用两次计算得到的末端位置误差对机器人1进行标定;对于距离约束,则将末端的标定球3拖至两个不同的球座4,利用两次计算得到的末端距离与实际距离之间的误差对机器人1进行标定。As shown in Figure 1, the above-mentioned robot calibration device includes a terminal calibration device and a geometric constraint device, wherein, as shown in Figure 3, the terminal calibration device is installed at the end of the robot 1, which specifically includes a connecting base 2 and a terminal mounted on one end of the connecting base 2 Calibration ball 3 ; as shown in FIG. 4 , the geometric constraint device is installed in the working space of the robot 1 , which mainly includes a constraint support base 5 and a plurality of ball seats 4 arranged on the constraint support base 5 . During calibration, the terminal calibration device is installed at the end of the robot 1, specifically, the connection base 2 is installed at the end of the robot 1; the geometric constraint device is installed in the working space of the robot 1. Drag the robot 1 so that the calibration ball 3 on the terminal calibration device is attracted to the ball seat 4 on the geometric constraint device through a magnet (not shown in the figure). For position constraints, the calibration ball 3 at the end is dragged to the same ball seat 4 in two different robot configurations, and the robot 1 is calibrated using the end position error obtained from the two calculations; for distance constraints, the calibration ball at the end is 3 is dragged to two different ball seats 4, and the robot 1 is calibrated by using the error between the end distance obtained by the two calculations and the actual distance.

如图2所示,本发明所揭示的一种基于位置和距离约束的机器人标定方法,具体包括以下步骤:As shown in Figure 2, a robot calibration method based on position and distance constraints disclosed by the present invention specifically includes the following steps:

S1,建立模型,所述模型包括机器人的运动学模型、基于位置约束的第一运动学误差模型和基于距离约束的第二运动学误差模型。S1. Establishing a model, the model including a kinematics model of the robot, a first kinematics error model based on a position constraint, and a second kinematics error model based on a distance constraint.

具体地,本发明分别基于位置和距离约束对机器人进行标定。在本实施例中,采用全局指数积公式建立机器人的运动学模型,具体是通过建立机器人末端位姿与关节角、关节旋量和初始位姿之间的对应关系,构建所述运动学模型。其中,全局指数积公式表示如下:Specifically, the present invention calibrates the robot based on position and distance constraints, respectively. In this embodiment, the global exponential product formula is used to establish the kinematics model of the robot. Specifically, the kinematics model is constructed by establishing the corresponding relationship between the end pose of the robot and the joint angle, joint screw and initial pose. Among them, the global exponential product formula is expressed as follows:

Figure BDA0003798288490000061
Figure BDA0003798288490000061

其中,T0,n+1表示机器人末端位姿在基坐标系下的坐标,si(i=1,2,...,n)表示机器人的关节旋量在基坐标系下的坐标,qi(i=1,2,...,n)表示机器人各关节的旋转角,即关节角,T0,n+1(0)表示机器人末端相对于基坐标系的初始位姿。这里的基坐标确定过程主要包括:机器人的安装位置相对于几何约束装置的位置是可以实现预知(如可以通过三维扫描仪、激光跟踪仪、三坐标测量仪等测量方式确定)。实际基坐标的位置可以利用本发明的标定装置再由本发明的标定方法标定完之后对机器人的基坐标系再做一次标定。Among them, T 0, n+1 represents the coordinates of the end pose of the robot in the base coordinate system, s i (i=1, 2, ..., n) represents the coordinates of the joint screw of the robot in the base coordinate system, q i (i=1, 2, ..., n) represents the rotation angle of each joint of the robot, that is, the joint angle, and T 0, n+1 (0) represents the initial pose of the end of the robot relative to the base coordinate system. The process of determining the base coordinates here mainly includes: the installation position of the robot relative to the position of the geometric constraint device can be predicted (for example, it can be determined by three-dimensional scanner, laser tracker, three-coordinate measuring instrument and other measurement methods). The position of the actual base coordinates can be calibrated by the calibration device of the present invention and then the base coordinate system of the robot after being calibrated by the calibration method of the present invention.

在上述机器人运动学模型中,qi(i=1,2,...,n)可通过机器人的编码器直接进行读数,而si(i=1,2,...,n)和T0,n+1则需要进行参数辨识。si(i=1,2,...,n)和T0,n+1(0)均可表示为6个待辨识的参数变量,则共有6(n+1)个待辨识的参数。将这些参数所对应的误差t1,t2,...,tn,t0表示成一个待辨识的向量

Figure BDA0003798288490000062
通过一定的公式推导,可建立两种不同构型下的末端位置误差与运动学模型参数误差之间的关系式,即第一运动学误差模型表示如下:In the above robot kinematics model, q i (i=1, 2, ..., n) can be directly read by the encoder of the robot, while s i (i = 1, 2, ..., n) and T 0, n+1 requires parameter identification. s i (i=1, 2, ..., n) and T 0, n+1 (0) can be expressed as 6 parameter variables to be identified, so there are 6 (n+1) parameters to be identified . Express the errors t 1 , t 2 ,..., t n , t 0 corresponding to these parameters as a vector to be identified
Figure BDA0003798288490000062
Through a certain formula derivation, the relationship between the terminal position error and the kinematic model parameter error under two different configurations can be established, that is, the first kinematic error model is expressed as follows:

YPC=APCX,;Y PC = A PC X,;

其中,

Figure BDA0003798288490000063
表示两种不同构型下的末端位置误差,X表示待辨识的模型参数误差,APC表示末端位置误差与模型参数误差之间的位置约束关系矩阵,所述APC表示为:in,
Figure BDA0003798288490000063
Represents the terminal position error under two different configurations, X represents the model parameter error to be identified, A PC represents the position constraint relationship matrix between the terminal position error and the model parameter error, and the A PC is expressed as:

Figure BDA0003798288490000064
Figure BDA0003798288490000064

其中,p为名义末端位置坐标,I3表示3×3的单位矩阵,Ad(·)表示一齐次变换矩阵所对应的伴随变换矩阵,Aj(j=1,2)表示为:Among them, p is the coordinate of the nominal end position, I 3 represents the identity matrix of 3×3, Ad(·) represents the accompanying transformation matrix corresponding to the homogeneous transformation matrix, and A j (j=1, 2) is expressed as:

Figure BDA0003798288490000065
Figure BDA0003798288490000065

在本实施例中,同样,也可建立基于距离的机器人运动学误差模型,即第二运动学误差模型表示如下:In this embodiment, similarly, a distance-based robot kinematics error model can also be established, that is, the second kinematics error model is expressed as follows:

YDC=ADCX,;Y DC = A DC X,;

其中,

Figure BDA0003798288490000066
表示两种不同构型下的名义末端距离与实际值之间的偏差,X同样表示待辨识的模型参数误差,ADC表示末端距离误差与模型参数误差之间的距离约束关系矩阵,所述ADC表示为:in,
Figure BDA0003798288490000066
Represents the deviation between the nominal terminal distance and the actual value under two different configurations, X also represents the model parameter error to be identified, A DC represents the distance constraint relationship matrix between the terminal distance error and the model parameter error, the A DC is expressed as:

Figure BDA0003798288490000071
Figure BDA0003798288490000071

进一步地,由上述第一运动学误差模型和第二运动学误差模型混合形成混合误差模型,混合误差模型具体综合m1个两两配对的位置约束的样本和m2个两两配对的距离约束的样本,所述混合误差模型具体表示为:Further, the above-mentioned first kinematic error model and the second kinematic error model are mixed to form a mixed error model, and the mixed error model specifically integrates m 1 pairwise paired position constraint samples and m 2 pairwise paired distance constraints samples, the mixed error model is specifically expressed as:

Y=AX;Y = AX;

Figure BDA0003798288490000072
Figure BDA0003798288490000072

Figure BDA0003798288490000073
Figure BDA0003798288490000073

其中,Y为m1个末端位置误差与m2个末端距离误差组合而成的向量,A表示由m1个位置约束关系矩阵和m2个距离约束关系矩阵所组成的组合关系矩阵,m1和m2为大于等于1的整数。Among them, Y is a vector composed of m 1 terminal position errors and m 2 terminal distance errors, A represents the combined relationship matrix composed of m 1 position constraint relationship matrices and m 2 distance constraint relationship matrices, m 1 and m 2 are integers greater than or equal to 1.

S2,测量安装,包括测量所述末端标定装置上的所述标定球和所述连接座之间的第一相对位姿,以及所述几何约束装置上各球座之间的第二相对位姿,测量后将所述末端标定装置安装至所述机器人的末端,将所述几何约束装置安装至机器人的工作空间内。S2, measuring installation, including measuring the first relative pose between the calibration ball on the end calibration device and the connecting seat, and the second relative pose between the ball seats on the geometric constraint device , after the measurement, the end calibration device is installed on the end of the robot, and the geometric constraint device is installed in the working space of the robot.

实施时,可采用三维扫描仪等设备测量第一相对位姿和第二相对位姿,这里的第一相对位姿和第二相对位姿用于作为后续参数辨识的参考数据。During implementation, equipment such as a three-dimensional scanner may be used to measure the first relative pose and the second relative pose, where the first relative pose and the second relative pose are used as reference data for subsequent parameter identification.

S3,数据采集,包括多次改变所述几何约束装置在机器人的所述工作空间中的位置,在每个位置都拖动机器人,使末端标定装置的标定球约束于几何约束装置上的各个球座,且每个球座以不同的构型触碰若干次,读取并记录每次测量操作稳定后的关节角数据。S3, data acquisition, including changing the position of the geometric constraint device in the working space of the robot multiple times, dragging the robot at each position, so that the calibration ball of the end calibration device is constrained to each ball on the geometric constraint device Seat, and each ball seat was touched several times in different configurations, and the joint angle data after each measurement operation was stabilized was read and recorded.

具体地,其中,结合图5和图6所示,基于位置约束数据采集的过程具体为:将末端标定装置的一个标定球移至几何约束装置上的任意一个球座,随后再以不同的机器人构型移至同一球座,读取并记录每次操作稳定后的关节角读数,如此便采集到了一组位置约束标定数据。为减小测量误差和非几何误差的影响,可以多次改变几何约束装置在机器人工作空间内的位姿,进行多组数据的采集。Specifically, as shown in Fig. 5 and Fig. 6, the process of data acquisition based on position constraints is as follows: moving a calibration ball of the terminal calibration device to any ball seat on the geometric constraint device, and then using different robots to The configuration is moved to the same ball seat, and the joint angle readings after each operation are stabilized are read and recorded, so that a set of position constraint calibration data is collected. In order to reduce the influence of measurement errors and non-geometric errors, the pose of the geometric constraint device in the robot workspace can be changed multiple times to collect multiple sets of data.

结合图5~图7所示,基于距离约束数据采集的过程具体为:将末端标定装置的一个标定球移至几何约束装置上的一个球座,随后再以不同的机器人构型移至不同球座,读取并记录每次操作稳定后的关节角读数,如此便采集到了一组距离约束标定数据。同样,为减小测量误差和非几何误差的影响,可以多次改变几何约束装置在机器人工作空间内的位姿,进行多组数据的采集。As shown in Figures 5 to 7, the process of data collection based on distance constraints is as follows: moving a calibration ball of the terminal calibration device to a ball seat on the geometric constraint device, and then moving to different balls with different robot configurations. Seat, read and record the joint angle readings after each operation is stable, so that a set of distance constraint calibration data is collected. Similarly, in order to reduce the impact of measurement errors and non-geometric errors, the pose of the geometric constraint device in the robot workspace can be changed multiple times to collect multiple sets of data.

在实际的数据采集过程中,位置约束和距离约束标定数据可以同时进行测量,其仅在后续的辨识计算过程中对数据的处理有少许的不同而异。如通过多次改变所述几何约束装置在机器人的所述工作空间中的位置,在每个位置都拖动机器人,使末端标定装置的标定球约束于几何约束装置上的各个球座,且每个球座以不同的构型触碰若干次,读取并记录每次测量操作稳定后的关节角数据。之后对所有关节角数据按照不同的几何约束装置位姿分成若干组,再按照不同的球座位置分为若干小组,其中,同一小组的数据两两配对的数据即为多组位置约束标定数据,同一组但不同小组的数据两两配对的数据则为多组距离约束标定数据。In the actual data collection process, the position constraint and distance constraint calibration data can be measured simultaneously, and there is only a slight difference in the data processing in the subsequent identification calculation process. For example, by changing the position of the geometric constraint device in the working space of the robot multiple times, dragging the robot at each position, so that the calibration ball of the end calibration device is constrained to each ball seat on the geometric constraint device, and each The ball seat was touched several times in different configurations, and the joint angle data after each measurement operation was stabilized was read and recorded. Afterwards, all joint angle data are divided into several groups according to different geometric constraint device poses, and then divided into several groups according to different ball seat positions. Among them, the pairwise paired data of the same group of data is multiple sets of position constraint calibration data. The paired data of the same group but different groups of data is multiple sets of distance constraint calibration data.

S4,参数辨识,包括对所述关节角数据按照不同的几何约束装置位姿分成若干组,再按照不同的球座位置分为若干小组,将同一小组的数据两两配对代入所述第一运动学误差模型中,将同一组但不同小组的数据两两配对代入所述第二运动学误差模型中,之后混合两误差模型数据,辨识相应的机器人的运动学模型参数。S4, parameter identification, including dividing the joint angle data into several groups according to different geometric constraint device poses, and then dividing them into several groups according to different ball seat positions, and substituting pairs of data from the same group into the first motion In the kinematic error model, the data of the same group but different groups are paired into the second kinematic error model, and then the data of the two error models are mixed to identify the corresponding kinematic model parameters of the robot.

具体地,本实施例中,使用最小二乘法迭代对运动学模型参数误差进行辨识。对于最小二乘法,其公式可以表示为:Specifically, in this embodiment, the least squares method is used to iteratively identify kinematics model parameter errors. For the least squares method, its formula can be expressed as:

X=(ATA)-1ATY。X=(A T A) -1 A T Y.

利用每步计算得到的模型参数误差对运动学模型参数进行修正,再利用修正后的参数代入第一运动学误差模型和第二运动学误差模型中再次进行计算,如此反复,直至运动学模型参数不再变化,停止迭代。此时的运动学模型参数即可看作为实际的模型参数。Correct the kinematic model parameters by using the model parameter error calculated in each step, and then use the corrected parameters to substitute into the first kinematic error model and the second kinematic error model to calculate again, and so on until the kinematic model parameters No more changes, stop iterating. The kinematic model parameters at this time can be regarded as the actual model parameters.

S5,误差补偿,包括将辨识得到的所述运动学模型参数误差补偿到机器人的控制器中。S5, error compensation, including compensating the identified kinematics model parameter error to the controller of the robot.

具体地,将辨识得到的运动学模型参数误差补偿到控制器中,一般有两种补偿的方式:直接补偿和间接补偿。直接补偿是直接修改控制器中的运动学模型参数,而间接补偿,则是通过标定后的运动学模型参数修正目标位姿,将修正后的目标位姿输入原控制器中,以实现对原运动学模型的误差补偿。Specifically, the identified kinematic model parameter error is compensated to the controller, and generally there are two compensation methods: direct compensation and indirect compensation. Direct compensation is to directly modify the kinematic model parameters in the controller, while indirect compensation is to correct the target pose through the calibrated kinematic model parameters, and input the corrected target pose into the original controller to realize the original control. Error compensation for kinematic models.

相比传统的外部机器人标定方案,本发明具有成本低廉、便携性好的特点;且相比现有的大多数自标定装置,本发明不含额外的传感器,具有操作简便、不易损坏等优点。Compared with the traditional external robot calibration scheme, the present invention has the characteristics of low cost and good portability; and compared with most existing self-calibration devices, the present invention does not contain additional sensors, and has the advantages of easy operation and not easy to damage.

本发明的各方面、实施例、特征及实例应视为在所有方面为说明性的且不打算限制本发明,本发明的范围仅由权利要求书界定。在不背离所主张的本发明的精神及范围的情况下,所属领域的技术人员将明了其它实施例、修改及使用。Aspects, embodiments, features and examples of the present invention are to be considered illustrative in all respects and not intended to be limiting, the scope of which is defined only by the claims. Other embodiments, modifications, and uses will be apparent to those skilled in the art without departing from the spirit and scope of the invention as claimed.

在本发明案中标题及章节的使用不意味着限制本发明;每一章节可应用于本发明的任何方面、实施例或特征。The use of headings and sections in this application is not meant to limit the invention; each section may apply to any aspect, embodiment or feature of the invention.

Claims (10)

1.一种基于位置和距离约束的机器人标定方法,其特征在于:所述方法基于一机器人标定装置实现,所述机器人标定装置包括末端标定装置和几何约束装置,所述末端标定装置包括连接座和安装于连接座一端的标定球,所述几何约束装置包括约束支撑座和设置于所述约束支撑座上的多个球座,所述方法包括:1. A robot calibration method based on position and distance constraints, characterized in that: the method is realized based on a robot calibration device, the robot calibration device includes a terminal calibration device and a geometric constraint device, and the terminal calibration device includes a connecting seat and a calibration ball installed at one end of the connection seat, the geometric constraint device includes a constraint support seat and a plurality of ball seats arranged on the constraint support seat, and the method includes: S1,建立模型,所述模型包括机器人的运动学模型、基于位置约束的第一运动学误差模型和基于距离约束的第二运动学误差模型;S1, establishing a model, the model including a kinematics model of the robot, a first kinematics error model based on a position constraint, and a second kinematics error model based on a distance constraint; S2,测量安装,包括测量所述末端标定装置上的所述标定球和所述连接座之间的第一相对位姿,以及所述几何约束装置上各球座之间的第二相对位姿,测量后将所述末端标定装置安装至所述机器人的末端,将所述几何约束装置安装至机器人的工作空间内;S2, measuring installation, including measuring the first relative pose between the calibration ball on the end calibration device and the connecting seat, and the second relative pose between the ball seats on the geometric constraint device , after the measurement, install the end calibration device on the end of the robot, and install the geometric constraint device in the working space of the robot; S3,数据采集,包括多次改变所述几何约束装置在机器人的所述工作空间中的位置,在每个位置都拖动机器人,使末端标定装置的标定球约束于几何约束装置上的各个球座,且每个球座以不同的构型触碰若干次,读取并记录每次测量操作稳定后的关节角数据;S3, data acquisition, including changing the position of the geometric constraint device in the working space of the robot multiple times, dragging the robot at each position, so that the calibration ball of the end calibration device is constrained to each ball on the geometric constraint device Seat, and each ball seat is touched several times in different configurations, and the joint angle data after each measurement operation is stabilized is read and recorded; S4,参数辨识,包括对所述关节角数据按照不同的几何约束装置位姿分成若干组,再按照不同的球座位置分为若干小组,将同一小组的数据两两配对代入所述第一运动学误差模型中,将同一组但不同小组的数据两两配对代入所述第二运动学误差模型中,之后混合两误差模型数据,辨识相应的机器人的运动学模型参数;S4, parameter identification, including dividing the joint angle data into several groups according to different geometric constraint device poses, and then dividing them into several groups according to different ball seat positions, and substituting pairs of data from the same group into the first motion In the kinematic error model, the data of the same group but different groups are paired into the second kinematic error model, and then the two error model data are mixed to identify the corresponding kinematic model parameters of the robot; S5,误差补偿,包括将辨识得到的所述运动学模型参数误差补偿到机器人的控制器中。S5, error compensation, including compensating the identified kinematics model parameter error to the controller of the robot. 2.根据权利要求1所述的一种基于位置和距离约束的机器人标定方法,其特征在于:所述S1中,通过全局指数积公式建立机器人末端位姿与关节角、关节旋量和初始位姿之间的对应关系,构建所述运动学模型;通过伴随变换矩阵建立了位置约束误差与关节旋量误差、初始位姿误差之间的对应关系,构建所述第一运动学误差模型;通过伴随变换矩阵建立了距离约束误差与关节旋量误差、初始位姿误差之间的对应关系,构建所述第二运动学误差模型。2. A robot calibration method based on position and distance constraints according to claim 1, characterized in that: in said S1, the robot terminal pose and joint angle, joint screw and initial position are established through the global exponential product formula The corresponding relationship between postures is constructed to construct the kinematics model; the corresponding relationship between the position constraint error and the joint screw error and the initial pose error is established through the adjoint transformation matrix, and the first kinematics error model is constructed; The accompanying transformation matrix establishes the corresponding relationship between the distance constraint error, the joint screw error, and the initial pose error, and constructs the second kinematic error model. 3.根据权利要求2所述的一种基于位置和距离约束的机器人标定方法,其特征在于:所述全局指数积公式表示如下:3. a kind of robot calibration method based on position and distance constraint according to claim 2, is characterized in that: described global exponential product formula is expressed as follows:
Figure FDA0003798288480000011
Figure FDA0003798288480000011
其中,T0,n+1表示机器人末端位姿在基坐标系下的坐标,si(i=1,2,...,n)表示机器人的关节旋量在基坐标系下的坐标,qi(i=1,2,...,n)表示机器人各关节的旋转角,即关节角,T0,n+1(0)表示机器人末端相对于基坐标系的初始位姿。Among them, T 0, n+1 represents the coordinates of the end pose of the robot in the base coordinate system, s i (i=1, 2, ..., n) represents the coordinates of the joint screw of the robot in the base coordinate system, q i (i=1, 2, ..., n) represents the rotation angle of each joint of the robot, that is, the joint angle, and T 0, n+1 (0) represents the initial pose of the end of the robot relative to the base coordinate system.
4.根据权利要求3所述的一种基于位置和距离约束的机器人标定方法,其特征在于:所述第一运动学误差模型表示如下:4. a kind of robot calibration method based on position and distance constraints according to claim 3, is characterized in that: described first kinematics error model is expressed as follows: YPC=APCX;Y PC = A PC X; 其中,
Figure FDA0003798288480000021
表示两种不同构型下的末端位置误差,X表示待辨识的模型参数误差,APC表示末端位置误差与模型参数误差之间的位置约束关系矩阵,所述APC表示为:
in,
Figure FDA0003798288480000021
Represents the terminal position error under two different configurations, X represents the model parameter error to be identified, A PC represents the position constraint relationship matrix between the terminal position error and the model parameter error, and the A PC is expressed as:
Figure FDA0003798288480000022
Figure FDA0003798288480000022
其中,p为名义末端位置坐标,I3表示3×3的单位矩阵,Ad(·)表示一齐次变换矩阵所对应的伴随变换矩阵,Aj(j=1,2)表示为:Among them, p is the coordinate of the nominal end position, I 3 represents the identity matrix of 3×3, Ad(·) represents the accompanying transformation matrix corresponding to the homogeneous transformation matrix, and A j (j=1, 2) is expressed as:
Figure FDA0003798288480000023
Figure FDA0003798288480000023
Figure FDA0003798288480000024
Figure FDA0003798288480000024
5.根据权利要求4所述的一种基于位置和距离约束的机器人标定方法,其特征在于:所述第二运动学误差模型表示如下:5. A kind of robot calibration method based on position and distance constraint according to claim 4, it is characterized in that: described second kinematics error model is expressed as follows: YDC=ADCX,;Y DC = A DC X,; 其中,
Figure FDA0003798288480000025
表示两种不同构型下的名义末端距离与实际值之间的偏差,X表示待辨识的模型参数误差,ADC表示末端距离误差与模型参数误差之间的距离约束关系矩阵,所述ADC表示为:
in,
Figure FDA0003798288480000025
Represents the deviation between the nominal terminal distance and the actual value under two different configurations, X represents the model parameter error to be identified, A DC represents the distance constraint relationship matrix between the terminal distance error and the model parameter error, and the A DC Expressed as:
Figure FDA0003798288480000026
Figure FDA0003798288480000026
6.根据权利要求5所述的一种基于位置和距离约束的机器人标定方法,其特征在于:由所述第一运动学误差模型和第二运动学误差模型混合形成混合误差模型,所述混合误差模型表示为:6. A robot calibration method based on position and distance constraints according to claim 5, characterized in that: a mixed error model is formed by mixing the first kinematic error model and the second kinematic error model, and the mixed The error model is expressed as: Y=AX;Y = AX;
Figure FDA0003798288480000027
Figure FDA0003798288480000027
Figure FDA0003798288480000028
Figure FDA0003798288480000028
其中,Y为m1个末端位置误差与m2个末端距离误差组合而成的向量,A表示由m1个位置约束关系矩阵和m2个距离约束关系矩阵所组成的组合关系矩阵,m1和m2为大于等于1的整数。Among them, Y is a vector composed of m 1 terminal position errors and m 2 terminal distance errors, A represents the combined relationship matrix composed of m 1 position constraint relationship matrices and m 2 distance constraint relationship matrices, m 1 and m 2 are integers greater than or equal to 1.
7.根据权利要求6所述的一种基于位置和距离约束的机器人标定方法,其特征在于:所述S4中,采用最小二乘法迭代对所述运动学模型参数误差进行辨识,所述最小二乘法公式表示为:7. A robot calibration method based on position and distance constraints according to claim 6, characterized in that: in said S4, the least squares method is used to iteratively identify the kinematics model parameter error, and the least squares The multiplication formula is expressed as: X=(ATA)-1ATY。X=(A T A) -1 A T Y. 8.根据权利要求1所述的一种基于位置和距离约束的机器人标定方法,其特征在于:所述S5中,采用直接补偿或间接补偿的方式将辨识得到的所述运动学模型参数误差补偿到机器人的控制器中。8. A robot calibration method based on position and distance constraints according to claim 1, characterized in that in said S5, the identified kinematics model parameter errors are compensated by means of direct compensation or indirect compensation to the robot controller. 9.根据权利要求8所述的一种基于位置和距离约束的机器人标定方法,其特征在于:所述直接补偿方式包括直接修改所述控制器中的运动学模型参数。9. A robot calibration method based on position and distance constraints according to claim 8, characterized in that: the direct compensation method includes directly modifying the kinematics model parameters in the controller. 10.根据权利要求8所述的一种基于位置和距离约束的机器人标定方法,其特征在于:所述间接补偿方式包括通过辨识得到的所述运动学模型参数修正目标位姿,将修正后的所述目标位姿输入原控制器中,对原运动学模型进行误差补偿。10. A robot calibration method based on position and distance constraints according to claim 8, characterized in that: the indirect compensation method includes correcting the target pose with the kinematics model parameters obtained through identification, and converting the corrected The target pose is input into the original controller to perform error compensation on the original kinematics model.
CN202210984365.7A 2022-08-15 2022-08-15 A robot calibration method based on position and distance constraints Active CN115319726B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210984365.7A CN115319726B (en) 2022-08-15 2022-08-15 A robot calibration method based on position and distance constraints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210984365.7A CN115319726B (en) 2022-08-15 2022-08-15 A robot calibration method based on position and distance constraints

Publications (2)

Publication Number Publication Date
CN115319726A true CN115319726A (en) 2022-11-11
CN115319726B CN115319726B (en) 2025-03-11

Family

ID=83922966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210984365.7A Active CN115319726B (en) 2022-08-15 2022-08-15 A robot calibration method based on position and distance constraints

Country Status (1)

Country Link
CN (1) CN115319726B (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090157226A1 (en) * 2004-11-19 2009-06-18 Dynalog ,Inc. Robot-cell calibration
CN102445923A (en) * 2010-10-09 2012-05-09 无锡南理工科技发展有限公司 Industrial robot kinematics parameter rapid low-cost calibration device and method thereof
US20150266183A1 (en) * 2012-10-19 2015-09-24 Inos Automationssoftware Gmbh Method for In-Line Calibration of an Industrial Robot, Calibration System for Performing Such a Method and Industrial Robot Comprising Such a Calibration System
CN107042528A (en) * 2017-06-01 2017-08-15 中国科学院宁波材料技术与工程研究所 A kind of Kinematic Calibration system and method for industrial robot
CN108406771A (en) * 2018-03-09 2018-08-17 江南大学 A kind of plane restriction error model and robot self-calibrating method
CN108705531A (en) * 2018-04-17 2018-10-26 上海达野智能科技有限公司 The kinematic calibration method of industrial robot, calibration system, electronic equipment
CN109676636A (en) * 2019-03-06 2019-04-26 南京航空航天大学 A kind of industrial robot kinematics calibration system and scaling method
CN109746920A (en) * 2019-03-06 2019-05-14 南京航空航天大学 A kind of industrial robot geometric parameter error calibrating method based on two-step method
CN111660295A (en) * 2020-05-28 2020-09-15 中国科学院宁波材料技术与工程研究所 Industrial robot absolute precision calibration system and calibration method
CN112847341A (en) * 2020-12-25 2021-05-28 中国科学院宁波材料技术与工程研究所 Industrial robot step-by-step calibration system and method
CN113618738A (en) * 2021-08-23 2021-11-09 上海大学 Mechanical arm kinematic parameter calibration method and system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090157226A1 (en) * 2004-11-19 2009-06-18 Dynalog ,Inc. Robot-cell calibration
CN102445923A (en) * 2010-10-09 2012-05-09 无锡南理工科技发展有限公司 Industrial robot kinematics parameter rapid low-cost calibration device and method thereof
US20150266183A1 (en) * 2012-10-19 2015-09-24 Inos Automationssoftware Gmbh Method for In-Line Calibration of an Industrial Robot, Calibration System for Performing Such a Method and Industrial Robot Comprising Such a Calibration System
CN107042528A (en) * 2017-06-01 2017-08-15 中国科学院宁波材料技术与工程研究所 A kind of Kinematic Calibration system and method for industrial robot
CN108406771A (en) * 2018-03-09 2018-08-17 江南大学 A kind of plane restriction error model and robot self-calibrating method
CN108705531A (en) * 2018-04-17 2018-10-26 上海达野智能科技有限公司 The kinematic calibration method of industrial robot, calibration system, electronic equipment
CN109676636A (en) * 2019-03-06 2019-04-26 南京航空航天大学 A kind of industrial robot kinematics calibration system and scaling method
CN109746920A (en) * 2019-03-06 2019-05-14 南京航空航天大学 A kind of industrial robot geometric parameter error calibrating method based on two-step method
CN111660295A (en) * 2020-05-28 2020-09-15 中国科学院宁波材料技术与工程研究所 Industrial robot absolute precision calibration system and calibration method
CN112847341A (en) * 2020-12-25 2021-05-28 中国科学院宁波材料技术与工程研究所 Industrial robot step-by-step calibration system and method
CN113618738A (en) * 2021-08-23 2021-11-09 上海大学 Mechanical arm kinematic parameter calibration method and system

Also Published As

Publication number Publication date
CN115319726B (en) 2025-03-11

Similar Documents

Publication Publication Date Title
CN115319727B (en) Robot calibration method based on pose constraint and force perception
CN111660295B (en) Industrial robot absolute precision calibration system and calibration method
CN107042528B (en) Kinematics calibration system and method for industrial robot
CN110421562B (en) Robotic arm calibration system and calibration method based on four-eye stereo vision
CN108297101B (en) Detection and dynamic compensation method of terminal pose error of multi-joint arm serial robot
CN102566577B (en) Method for simply and easily calibrating industrial robot
CN104608129B (en) Robot Calibration Method Based on Plane Constraints
CN104596418B (en) A kind of Multi-arm robots coordinate system is demarcated and precision compensation method
CN105865341B (en) Industrial robot spatial pose repetitive positioning accuracy measuring device and method
CN112318498B (en) Industrial robot calibration method considering parameter coupling
CN110202582A (en) A kind of robot calibration method based on three coordinates platforms
CN114406991B (en) Industrial robot calibration and spatial position measurement method based on draw-wire encoder
CN105318838B (en) Single-plane calibration method for relation between laser range finder and tail end of mechanical arm
CN114589692B (en) A robot zero point calibration method and its calibration equipment
TWI762371B (en) Automated calibration system and method for the relation between a profile scanner coordinate frame and a robot arm coordinate frame
WO2024016980A1 (en) Robot calibration method and apparatus, electronic device and storage medium
CN113211445A (en) Robot parameter calibration method, device, equipment and storage medium
CN115371564B (en) Method and system for calibrating relative pose between line laser sensor and robot flange
CN110174074A (en) A kind of measuring device and method for industrial robot thermal deformation error compensation
CN117647952A (en) Digital modeling position accuracy compensation method and system for industrial robots
CN115294198A (en) Vision-based global performance measurement system and method for mechanical arm
CN115319726A (en) A Robot Calibration Method Based on Position and Distance Constraints
CN115493616B (en) Assessment method for on-site precision of laser tracking attitude angle
CN115493617B (en) A laser tracking attitude angle on-site accuracy assessment system
CN110595416A (en) Three-dimensional decoupling calibration method and calibration device for scanning measuring head

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant