CN115227504B - An automatic raising and lowering hospital bed system based on EEG signal - Google Patents
An automatic raising and lowering hospital bed system based on EEG signal Download PDFInfo
- Publication number
- CN115227504B CN115227504B CN202210842339.0A CN202210842339A CN115227504B CN 115227504 B CN115227504 B CN 115227504B CN 202210842339 A CN202210842339 A CN 202210842339A CN 115227504 B CN115227504 B CN 115227504B
- Authority
- CN
- China
- Prior art keywords
- electroencephalogram
- data set
- sickbed
- data
- sample library
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G7/00—Beds specially adapted for nursing; Devices for lifting patients or disabled persons
- A61G7/002—Beds specially adapted for nursing; Devices for lifting patients or disabled persons having adjustable mattress frame
- A61G7/018—Control or drive mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/372—Analysis of electroencephalograms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/398—Electrooculography [EOG], e.g. detecting nystagmus; Electroretinography [ERG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient; User input means
- A61B5/746—Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G7/00—Beds specially adapted for nursing; Devices for lifting patients or disabled persons
- A61G7/002—Beds specially adapted for nursing; Devices for lifting patients or disabled persons having adjustable mattress frame
- A61G7/012—Beds specially adapted for nursing; Devices for lifting patients or disabled persons having adjustable mattress frame raising or lowering of the whole mattress frame
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/015—Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/12—Computing arrangements based on biological models using genetic models
- G06N3/126—Evolutionary algorithms, e.g. genetic algorithms or genetic programming
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G2203/00—General characteristics of devices
- A61G2203/10—General characteristics of devices characterised by specific control means, e.g. for adjustment or steering
- A61G2203/18—General characteristics of devices characterised by specific control means, e.g. for adjustment or steering by patient's head, eyes, facial muscles or voice
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Theoretical Computer Science (AREA)
- Surgery (AREA)
- Pathology (AREA)
- General Engineering & Computer Science (AREA)
- Physiology (AREA)
- General Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Psychiatry (AREA)
- Nursing (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Ophthalmology & Optometry (AREA)
- Genetics & Genomics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Human Computer Interaction (AREA)
- Dermatology (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
Abstract
Description
技术领域technical field
本发明属于康复医疗领域,尤其涉及一种基于脑电眼电信号的自动升降病床系统。The invention belongs to the field of rehabilitation medicine, and in particular relates to an automatic raising and lowering sickbed system based on electroencephalogram-oculogram signals.
背景技术Background technique
对于长期卧床的患者,特别是肢体不便,需要在护理人员的帮助下调整病床的状态,增加了护理人员的劳动强度,患者无法自主实现调节病床状态、呼叫医生等。尽管现有的病床可以通过简单的按钮自动实现升降、报警等功能,但其仅适用于能够进行简单活动的患者,对于肢体不便的完全卧床患者,其不具备任何行动能力,普通的智能病床无法满足要求。For long-term bedridden patients, especially those with inconvenient limbs, it is necessary to adjust the state of the bed with the help of the nursing staff, which increases the labor intensity of the nursing staff, and the patient cannot independently adjust the state of the bed or call a doctor. Although the existing hospital beds can automatically realize functions such as lifting and alarming through simple buttons, they are only suitable for patients who can perform simple activities. For patients who are completely bedridden with physical inconvenience, they do not have any mobility. Ordinary intelligent hospital beds cannot fulfil requirements.
随着科学技术的不断发展,人类对大脑的科学研究手段多种多样,其中脑机接口方法采用脑电、眼电信号与眼睛及眼附属器运动构成对应关系,利用这些对应关系,设计一种不依赖肢体的病床系统,帮助卧床患者可以起身、主动呼叫和智能报警,成为康复医疗工程的研究热点。With the continuous development of science and technology, human beings have a variety of scientific research methods on the brain. Among them, the brain-computer interface method uses EEG, electro-oculogram signals to form a corresponding relationship with the movement of the eyes and eye appendages. Using these corresponding relationships, a The bed system that does not rely on limbs can help bedridden patients get up, actively call and intelligently alarm, which has become a research hotspot in rehabilitation medical engineering.
发明内容Contents of the invention
为了解决上述技术问题,本发明提出了一种基于脑电眼电信号的自动升降病床系统,能够通过实时监控脑电信号实现患者卧床状态下进行升降、主动呼叫和智能报警。In order to solve the above technical problems, the present invention proposes an automatic lifting hospital bed system based on EEG signals, which can realize lifting, active calling and intelligent alarming when patients are lying in bed through real-time monitoring of EEG signals.
本发明采用如下技术方案:The present invention adopts following technical scheme:
一种基于脑电眼电信号的自动升降病床系统,包括脑电波传感器、病床控制系统和病床本体,病床本体具有升降、主动呼叫和报警功能;An automatic raising and lowering hospital bed system based on EEG signals, including an EEG sensor, a bed control system and a bed body, the bed body has the functions of lifting, active calling and alarming;
所述的脑电波传感器与病床控制系统连接,用于采集患者的脑电眼电融合信号并传输至病床控制系统;所述的病床控制系统根据患者的脑电眼电融合信号发送控制指令,所述的控制指令用于控制病床本体升起、放平、主动呼叫和报警,病床本体根据控制指令作出响应;The brainwave sensor is connected with the bed control system for collecting the patient's EEG fusion signal and transmitting it to the bed control system; the hospital bed control system sends control instructions according to the patient's EEG fusion signal, and the The control command is used to control the raising, leveling, active calling and alarm of the bed body, and the bed body responds according to the control command;
所述的病床控制系统包括:The hospital bed control system includes:
脑电眼电融合信号滤噪模块,其用于对脑电眼电融合信号进行滤噪处理;EEG fusion signal noise filtering module, which is used for noise filtering processing on EEG fusion signal;
脑电眼电融合信号分割窗模块,其用于将滤噪处理后的脑电眼电融合信号分割成长度一致的不同组;EEG-oculo-fusion signal segmentation window module, which is used to divide the EEG-oculo-fusion signals after noise filtering into different groups with the same length;
脑电眼电融合信号模式识别模块,其用于识别每一组的脑电眼电融合信号的所属特征类型,根据所属特征类型发送指令。The EEG-oculofusion signal pattern recognition module is used to identify the characteristic type of each group of EEG-oculofusion signals, and send instructions according to the characteristic type.
作为本发明的优选,所述的脑电波传感器与病床控制系统无线连接。As a preference of the present invention, the brain wave sensor is wirelessly connected with the bed control system.
作为本发明的优选,所述的病床控制系统根据患者的脑电眼电融合信号发送控制指令,包括:As a preference of the present invention, the hospital bed control system sends control instructions according to the patient's EEG fusion signal, including:
S1,对脑电眼电融合信号进行滤噪处理,获得滤噪后的脑电眼电数据;S1, performing noise filtering processing on the EEG fusion signal to obtain noise-filtered EEG data;
S2,将滤噪后的脑电眼电数据分割成组,获得脑电眼电数据组,计算各个脑电眼电数据组的波形特征,所述的脑电眼电数据组的波形特征包括平均值、绝对平均值、均方差和标准差;S2, dividing the noise-filtered EEG data into groups, obtaining EEG data groups, and calculating the waveform characteristics of each EEG data group, the waveform characteristics of the EEG data groups include average value and absolute average value, mean square and standard deviation;
S3,采用K近邻算法,将各个脑电眼电数据组的波形特征相对于样本库数据组的波形特征进行分类,获得各个脑电眼电数据组的所属特征类型;根据各个脑电眼电数据组的所属特征类型发送控制指令。S3, using the K-nearest neighbor algorithm to classify the waveform characteristics of each EEG data group relative to the waveform characteristics of the sample database data group, and obtain the characteristic type of each EEG data group; according to the affiliation of each EEG data group Characteristic types send control commands.
作为本发明的优选,所述的各个脑电眼电数据组的所属特征类型包括一次眨眼、二次眨眼、眼球转动和脑电异常,对应的控制指令分别为病床升起、放平、主动呼叫和报警。As a preference of the present invention, the characteristic types of each EEG data group include one blink, two blinks, eyeball rotation and EEG abnormalities, and the corresponding control instructions are respectively bed raising, laying down, active calling and Call the police.
作为本发明的优选,所述的步骤S3包括:As a preference of the present invention, said step S3 includes:
计算待测试的脑电眼电数据组的波形特征与样本库数据组中各个脑电眼电数据组之间的距离,得到距离集合D={d1,1,d1,2,…,d1,m1,d2,1,d2,2,…,d2,m2,…,d4,1,d4,2,…,d4,m4},其中,m1表示样本库数据组中的属于一次眨眼类型的脑电眼电数据组的数量,m2表示样本库数据组中的属于二次眨眼类型的脑电眼电数据组的数量,m3表示样本库数据组中的属于眼球转动类型的脑电眼电数据组的数量,m4表示样本库数据组中的属于脑电异常类型的脑电眼电数据组的数量,d1,m1表示待测试的脑电眼电数据组的波形特征与第m1个一次眨眼类型的脑电眼电数据组的波形特征之间的距离,d2,m2表示待测试的脑电眼电数据组的波形特征与第m2个二次眨眼类型的脑电眼电数据组的波形特征之间的距离,d3,m3表示待测试的脑电眼电数据组的波形特征与第m3个眼球转动类型的脑电眼电数据组的波形特征之间的距离,d4,m4表示待测试的脑电眼电数据组的波形特征与第m4个脑电异常类型的脑电眼电数据组的波形特征之间的距离;Calculate the distance between the waveform feature of the EEG data group to be tested and each EEG data group in the sample library data group, and obtain the distance set D={d 1,1 ,d 1,2 ,...,d 1, m1 ,d 2,1 ,d 2,2 ,…,d 2,m2 ,…,d 4,1 ,d 4,2 ,…,d 4,m4 }, where m1 represents the data group in the sample library that belongs to The number of EEG data sets of the one-blink type, m2 represents the number of EEG data sets belonging to the double-blink type in the sample database data set, and m3 represents the EEG data sets of the eye movement type in the sample library data set The number of data groups, m4 represents the number of EEG data groups belonging to the EEG abnormal type in the sample library data group, d1 , m1 represents the waveform characteristics of the EEG data group to be tested and the m1th eye blink type The distance between the waveform features of the EEG data set, d 2, m2 represents the distance between the waveform features of the EEG data set to be tested and the m2 second blink type of the EEG data set Distance, d 3, m3 represent the distance between the waveform feature of the EEG data set to be tested and the waveform feature of the m3 eyeball movement type EEG data set, d 4, m4 represent the EEG data set to be tested The distance between the waveform feature of the data set and the waveform feature of the m4th EEG abnormal type EEG data set;
对距离集合D中的数值进行升序排列,取前K个距离,判断前K个距离对应的样本库数据组中的四种特征类型的数量,取数量最多的特征类型作为待测试的脑电眼电数据组的所属特征类型。Arrange the values in the distance set D in ascending order, take the first K distances, judge the number of four feature types in the sample library data group corresponding to the first K distances, and take the feature type with the largest number as the EEG to be tested The feature type to which the data group belongs.
作为本发明的优选,所述的样本库数据组的构建方法包括:As a preference of the present invention, the method for constructing the sample library data set includes:
S31,通过脑电波传感器采集不同患者在一次眨眼、二次眨眼、眼球转动和脑电异常情况下的脑电眼电融合信号,对脑电眼电融合信号进行滤噪处理并分割成组,提取每一个数据组的波形特征,得到总数据量为p组的数据库;S31, collect the EEG fusion signals of different patients in the case of one blink, two blinks, eyeball rotation and EEG abnormalities through the EEG sensor, perform noise filtering processing on the EEG fusion signals and divide them into groups, and extract each Waveform characteristics of the data group to obtain a database with a total data volume of p groups;
S32,从所述的总数据量为p组的数据库中随机产生m个样本库数据组、r个训练库数据组和s个测试库数据组;所述的样本库数据组、训练库数据组和测试库数据组中均包含一次眨眼、二次眨眼、眼球转动和脑电异常四类数据且不重复;S32, randomly generate m sample database data groups, r training database data groups, and s test database data groups from the database whose total data volume is p groups; the sample database data groups, training database data groups Both the test database and the test library data set contain four types of data, namely one blink, two blinks, eye movement and EEG abnormalities, and are not repeated;
S33,重复步骤S32,初始化若干数据集合,每一个数据集合均由随机初始化的样本库数据组、训练库数据组、测试库数据组、K近邻算法的K值参数构成;S33, repeating step S32, initializing several data sets, each data set is composed of randomly initialized sample database data set, training database data set, test database data set, K value parameter of the K nearest neighbor algorithm;
计算每一个训练库数据组的波形特征与各个样本库数据组的波形特征之间的距离集合,采用K近邻算法对一个训练库数据组进行特征分类,以识别率和误判率构建目标函数,选取最优的数据集合;Calculate the distance set between the waveform features of each training database data group and the waveform features of each sample database data group, use the K nearest neighbor algorithm to classify the characteristics of a training database data group, and construct the objective function with the recognition rate and misjudgment rate, Select the best data set;
S34,以步骤S33中获得的最优的数据集合中的样本库数据组为最优样本库数据组,计算最优的数据集合中的测试库数据组的波形特征与各个样本库数据组的波形特征之间的距离集合,采用K近邻算法对一个测试库数据组进行特征分类,以识别率和误判率构建目标函数,判断是否满足预设要求;S34, taking the sample library data group in the optimal data set obtained in step S33 as the optimal sample library data group, calculating the waveform characteristics of the test library data group in the optimal data set and the waveforms of each sample library data group For the distance set between features, the K-nearest neighbor algorithm is used to classify the features of a test library data group, and the objective function is constructed based on the recognition rate and misjudgment rate to judge whether it meets the preset requirements;
若满足,则将步骤S33中获得的最优的数据集合中的样本库数据组为最终的最优样本库数据组;If satisfied, the sample library data set in the optimal data set obtained in step S33 is the final optimal sample library data set;
若不满足,返回步骤S32,重新初始化若干数据集合。If not, return to step S32 to re-initialize several data sets.
作为本发明的优选,所述的步骤S33中,还包括采用遗传算法对初始化的若干数据集合中的数据组进行选择、交叉和变异处理的步骤,将得到的新数据集合代替原数据集合。As a preference of the present invention, the step S33 further includes the steps of selecting, crossing and mutating the data groups in the initialized data sets by genetic algorithm, and replacing the original data sets with the new data sets obtained.
与现有技术相比,本发明的优势在于:Compared with the prior art, the present invention has the advantages of:
1)本发明提出的病床系统通过监测患者的脑电眼电信号实现自动升降、主动呼叫和智能报警,采用K近邻方法识别脑电眼电信号的特征类型,运算速度快,保证了病床系统的及时相应;1) The hospital bed system proposed by the present invention realizes automatic lifting, active calling and intelligent alarm by monitoring the EEG signal of the patient, and adopts the K nearest neighbor method to identify the characteristic type of the EEG signal, and the calculation speed is fast, which ensures the timely response of the hospital bed system ;
2)本发明提出了一种基于嵌入式AI算法的样本库构建方法,保证了样本库的准确性,提高了脑电眼电信号的特征类型识别的准确率。2) The present invention proposes a sample library construction method based on an embedded AI algorithm, which ensures the accuracy of the sample library and improves the accuracy of feature type recognition of EEG signals.
附图说明Description of drawings
图1是本发明实施例示出一种基于脑电眼电信号的自动升降病床系统的整体示意图;Fig. 1 is the overall schematic diagram showing a kind of automatic raising and lowering hospital bed system based on EEG signal according to the embodiment of the present invention;
图2是本发明实施例示出的病床控制系统的数据处理示意图;Fig. 2 is a schematic diagram of data processing of the hospital bed control system shown in the embodiment of the present invention;
图3是本发明实施例示出的脑电眼电融合信号模式识别流程示意图;Fig. 3 is a schematic flow chart of pattern recognition of EEG fusion signals shown in an embodiment of the present invention;
图4是本发明实施例示出的基于嵌入式AI算法的样本库构建流程示意图。Fig. 4 is a schematic diagram of a sample library construction process based on an embedded AI algorithm shown in an embodiment of the present invention.
具体实施方式Detailed ways
下面通过实施例,结合附图对本发明进一步详细说明。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应,可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。The present invention will be further described in detail below by means of embodiments in conjunction with the accompanying drawings. The following examples are only used to illustrate the technical solution of the present invention more clearly, but not to limit the protection scope of the present invention. Some block diagrams shown in the accompanying drawings are functional entities, which do not necessarily correspond to physically or logically independent entities, and these functional entities may be implemented in the form of software, or implemented in one or more hardware modules or integrated circuits functional entities, or implement these functional entities in different networks and/or processor devices and/or microcontroller devices.
附图中所示的流程图仅是示例性说明,不是必须包括所有的步骤。例如,有的步骤还可以分解,而有的步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。The flowcharts shown in the figures are illustrative only and do not necessarily include all steps. For example, some steps can be decomposed, and some steps can be combined or partly combined, so the actual execution sequence may be changed according to the actual situation.
图1是本发明实施例示出一种基于脑电眼电信号的自动升降病床系统的整体示意图,所述的自动升降病床系统,包括脑电波传感器、病床控制系统和病床本体,病床本体具有升起、放平、主动呼叫和报警功能,可通过实现不同功能的运动模块或报警模块实现,四种功能通过病床控制系统发送控制指令进行控制。Fig. 1 is an overall schematic diagram showing an automatic lifting hospital bed system based on EEG signals according to an embodiment of the present invention. The automatic lifting hospital bed system includes an electroencephalogram sensor, a hospital bed control system and a hospital bed body. The hospital bed body has lifting, The functions of leveling, active calling and alarming can be realized through motion modules or alarming modules that realize different functions, and the four functions are controlled by sending control commands from the bed control system.
所述的脑电波传感器用于脑电信号、眼电信号的采集与传输,与病床控制系统连接,将采集患者的脑电眼电融合信号并传输至病床控制系统;在信号采集过程中,脑电信号和眼电信号是融合在一起输出的。本实施例中,所述的脑电波传感器与病床控制系统无线连接,例如采用蓝牙、wifi等无线通讯方式。The electroencephalogram sensor is used for the collection and transmission of EEG signals and electrooculogram signals, and is connected with the bed control system to collect the patient's EEG fusion signals and transmit them to the bed control system; during the signal acquisition process, the EEG The signal and the electro-ocular signal are fused together for output. In this embodiment, the brainwave sensor is wirelessly connected to the hospital bed control system, for example, by using wireless communication methods such as bluetooth and wifi.
所述的病床控制系统用于对患者的脑电眼电融合信号进行滤噪、特征提取、模式识别,并将其转换为病床控制指令,即根据患者的脑电眼电融合信号发送控制指令,所述的控制指令用于控制病床本体升起、放平、主动呼叫和报警,病床本体根据控制指令作出响应。所述的病床控制系统包括:The hospital bed control system is used to perform noise filtering, feature extraction, and pattern recognition on the patient's EEG fusion signal, and convert it into a bed control instruction, that is, send a control instruction according to the patient's EEG fusion signal. The control instructions of the hospital bed are used to control the raising and lowering of the bed body, active calls and alarms, and the bed body responds according to the control instructions. The hospital bed control system includes:
脑电眼电融合信号滤噪模块,其用于对脑电眼电融合信号进行滤噪处理;EEG fusion signal noise filtering module, which is used for noise filtering processing on EEG fusion signal;
脑电眼电融合信号分割窗模块,其用于将滤噪处理后的脑电眼电融合信号分割成长度一致的不同组,例如取数据段长度n为一组脑电眼电数据组。The EEG-oculo-fusion signal segmentation window module is used to divide the EEG-oculo-fusion signals after noise filtering into different groups with the same length.
脑电眼电融合信号模式识别模块,其用于提取脑电眼电融合信号的波形特征并识别每一组的脑电眼电融合信号的所属特征类型,根据所属特征类型发送指令。本实施例中,如图2所示,所述的各个脑电眼电数据组的所属特征类型包括一次眨眼、二次眨眼、眼球转动和脑电异常,对应的控制指令分别为病床升起、放平、主动呼叫和报警。所述的脑电异常指的是在患者处于急性脑梗死、脑供血不足、癫痫等情况下采集到的脑电眼电信号;波形特征包括平均值、绝对平均值、样本均方差、样本标准差等。The EEG-oculo-fusion signal pattern recognition module is used to extract the waveform features of the EEG-oculo-fusion signals and identify the feature type of each group of EEG-oculo-fusion signals, and send instructions according to the feature type. In this embodiment, as shown in Figure 2, the characteristic types of each EEG data group include one blink, two blinks, eyeball rotation and EEG abnormality, and the corresponding control instructions are bed raising, lowering, etc. Ping, active call and alarm. The EEG abnormality refers to the EEG signal collected when the patient is in acute cerebral infarction, cerebral insufficiency, epilepsy, etc.; waveform features include average value, absolute average value, sample mean square deviation, sample standard deviation, etc. .
如图3所示,采用K近邻算法,将各个脑电眼电数据组相对于样本库,进行分类判定,获得各个脑电眼电数据组的特征类型;根据各个脑电眼电数据组的特征类型,病床控制系统发出病床控制指令。As shown in Figure 3, the K-nearest neighbor algorithm is used to classify and judge each EEG data group relative to the sample library, and obtain the feature type of each EEG data group; according to the feature type of each EEG data group, the hospital bed The control system issues a bed control command.
在本发明的一项具体实施中,针对某一个脑电眼电数据组,首先计算其波形特征;之后采用距离函数,例如欧式距离,计算该脑电眼电数据组的波形特征与样本库数据组中各个脑电眼电数据组的波形特征之间的距离集合,记为距离集合D={d1,1,d1,2,…,d1,m1,d2,1,d2,2,…,d2,m2,…,d4,1,d4,2,…,d4,m4},其中,m1表示样本库数据组中的属于一次眨眼类型的脑电眼电数据组的数量,m2表示样本库数据组中的属于二次眨眼类型的脑电眼电数据组的数量,m3表示样本库数据组中的属于眼球转动类型的脑电眼电数据组的数量,m4表示样本库数据组中的属于脑电异常类型的脑电眼电数据组的数量,d1,m1表示待测试的脑电眼电数据组的波形特征与第m1个一次眨眼类型的脑电眼电数据组的波形特征之间的距离,d2,m2表示待测试的脑电眼电数据组的波形特征与第m2个二次眨眼类型的脑电眼电数据组的波形特征之间的距离,d3,m3表示待测试的脑电眼电数据组的波形特征与第m3个眼球转动类型的脑电眼电数据组的波形特征之间的距离,d4,m4表示待测试的脑电眼电数据组的波形特征与第m4个脑电异常类型的脑电眼电数据组的波形特征之间的距离;最后,对距离集合D中的数值进行升序排列,获得的距离新集合,例如,获得的距离新集合为D’={d2,1,d1,1,d2,4,…,d2,m2,d3,1,d4,1,…,d4,m4},取前K个距离{d2,1,d1,1,d2,4,…,d2,m2},判断前K个距离对应的样本库数据组中的二次眨眼类型的数量最多,因此该脑电眼电数据组属于二次眨眼类型。In a specific implementation of the present invention, for a certain EEG data set, first calculate its waveform features; then use a distance function, such as Euclidean distance, to calculate the waveform features of the EEG data set and the sample database data set The distance set between the waveform features of each EEG data group is recorded as the distance set D={d 1,1 ,d 1,2 ,...,d 1,m1 ,d 2,1 ,d 2,2 ,... , d 2, m2 ,..., d 4,1 , d 4,2 ,..., d 4, m4 }, wherein, m1 represents the number of EEG data groups belonging to one blink type in the sample library data group, m2 Represents the number of EEG data groups belonging to the double blink type in the sample library data group, m3 represents the number of EEG data groups belonging to the eye movement type in the sample library data group, m4 represents the number of EEG data groups in the sample library data group The number of EEG data sets belonging to the abnormal type of EEG, d 1, m1 represents the distance between the waveform feature of the EEG data set to be tested and the waveform feature of the m1th one-blink type EEG data set , d 2, m2 represent the distance between the waveform feature of the EEG data set to be tested and the waveform feature of the m2 second blink type EEG data set, d 3, m3 represent the EEG data set to be tested The distance between the waveform feature of the data set and the waveform feature of the m3 eyeball movement type EEG data set, d 4, m4 represents the waveform feature of the EEG data set to be tested and the m4th EEG abnormal type The distance between the waveform features of the EEG data set; finally, the values in the distance set D are sorted in ascending order to obtain a new set of distances, for example, the new set of distances obtained is D'={d 2,1 , d 1,1 ,d 2,4 ,…,d 2,m2 ,d 3,1 ,d 4,1 ,…,d 4,m4 }, take the first K distances {d 2,1 ,d 1,1 , d 2,4 ,..., d 2,m2 }, it is judged that the number of secondary blink types in the sample library data set corresponding to the first K distances is the largest, so this EEG data set belongs to the secondary blink type.
在本发明的一项具体实施中,本发明采用嵌入式AI算法构建样本库,其目的是快速地寻找出最优的样本库数据组,将最优的样本库数据组用于脑电眼电信号特征分类,进一步提高信号识别率。In a specific implementation of the present invention, the present invention uses an embedded AI algorithm to construct a sample library, the purpose of which is to quickly find the optimal sample library data set, and use the optimal sample library data set for EEG signals Feature classification to further improve the signal recognition rate.
如图4所示,基于嵌入式AI算法的样本库构建过程为:As shown in Figure 4, the sample library construction process based on the embedded AI algorithm is as follows:
一、构建约束条件:1. Construction constraints:
1.1)为增加样本库的多样性,避免陷入局部极值,采用随机产生一次眨眼数据组、二次眨眼数据组、眼球转动数据组、脑电异常数据组,构成样本库数据组。1.1) In order to increase the diversity of the sample library and avoid falling into local extremums, the data set of the sample library is formed by randomly generating a blink data set, a double blink data set, an eyeball movement data set, and an abnormal EEG data set.
s.t.rand(m1个一次眨眼数据组)s.t.rand (m1 blink data sets)
rand(m2个二次眨眼数据组)rand(m2 secondary blink data sets)
rand(m3个眼球转动数据组)rand(m3 eyeball movement data sets)
rand(m4个脑电异常数据组)rand (m4 abnormal EEG data sets)
1.2)采用K近邻算法、距离函数,对脑电眼电数据组的波形特征进行计算,并判断其特征分类。所述的K近邻算法中的K值参数取较小值或较大值,都将导致特征识别率、特征误判率的偏差大,为取得适合的K值,采用随机产生K值的方式,避免陷入局部极值。1.2) Using the K-nearest neighbor algorithm and the distance function, the waveform features of the EEG data set are calculated, and the feature classification is judged. The K value parameter in the K nearest neighbor algorithm takes a smaller value or a larger value, which will lead to large deviations in the feature recognition rate and feature misjudgment rate. In order to obtain a suitable K value, the method of randomly generating the K value is adopted. Avoid getting stuck in local extrema.
s.t.rand(K)s.t.rand (K)
1.3)同理,为避免陷入局部极值,随机产生训练库数据组。1.3) Similarly, in order to avoid falling into local extremum, the training database data set is randomly generated.
s.t.rand(r个训练库数据组)s.t.rand (r training database data sets)
1.4)K值应小于样本库数据组的个数。1.4) The K value should be less than the number of sample library data groups.
s.t.K<ms.t.K<m
1.5)样本库数据组、训练库数据组的个数应小于脑电眼电数据组的个数。1.5) The number of sample database data groups and training database data groups should be less than the number of EEG data groups.
s.t.m<ps.t.m<p
r<pr<p
m+r<pm+r<p
m1+m2+m3+m4=mm1+m2+m3+m4=m
二、构建多目标函数:Second, build a multi-objective function:
采用特征识别率、特征误判率表征脑电眼电数据组的特征分类准确率、误判率。针对脑电眼电数据组的特征分类结果,特征识别率越大越优,特征误判率越小越优。因此,以最大特征识别率、最小特征误判率为多目标函数。The feature recognition rate and feature misjudgment rate are used to characterize the feature classification accuracy and misjudgment rate of the EEG data set. For the feature classification results of the EEG data set, the higher the feature recognition rate, the better, and the smaller the feature misjudgment rate, the better. Therefore, the multi-objective function is based on the maximum feature recognition rate and the minimum feature misjudgment rate.
Max{特征识别率}Max{feature recognition rate}
Min{特征误判率}Min{feature misjudgment rate}
三、优化样本库数据组3. Optimizing the sample library data set
样本库构建模型,即为线性规划问题。样本库构建模型的求解过程,实际上就是线性规划问题的求解过程,为快速准确地求解样本库构建模型,采用嵌入式AI算法进行计算。The sample library construction model is a linear programming problem. The solution process of the sample library construction model is actually the solution process of the linear programming problem. In order to quickly and accurately solve the sample library construction model, the embedded AI algorithm is used for calculation.
以基本遗传算法为例,按照种群选取、交叉算法、变异算法之后,更新当前最优染色体的进化循环过程,其基本步骤为:Taking the basic genetic algorithm as an example, after population selection, crossover algorithm, and mutation algorithm, update the evolutionary cycle process of the current optimal chromosome. The basic steps are:
3.1)随机产生样本库数据组(一次眨眼数据、二次眨眼数据、眼球转动数据、脑电异常数据)、K值、训练库数据组,剩余的脑电波数据组为测试库数据组(在p个脑电眼电数据组中,除样本库数据组、训练库数据组之外的剩余数据组),构成一个数据集合,并进行可行性检查;3.1) Randomly generate sample library data sets (first blink data, second eye blink data, eyeball movement data, EEG abnormal data), K value, training library data sets, and the remaining brainwave data sets are test library data sets (at p In each EEG data group, the remaining data groups except the sample database data group and the training database data group) form a data set, and carry out feasibility check;
3.2)重复3.1)步骤,随机产生POP_SIZE个数据集合,每个数据集合都包括样本库数据组、K值、训练库数据组、测试库数据组;3.2) Repeat 3.1) step to randomly generate POP_SIZE data sets, each data set includes sample database data set, K value, training database data set, test database data set;
3.3)在一个数据集合中,计算一个训练库数据组的波形特征与各个样本库数据组的波形特征之间的距离集合,采用K近邻算法对一个训练库数据组进行特征分类,以此类推,对该数据集合中的每一个训练库数据组进行特征分类,计算出该数据集合的特征识别率和特征误判率;3.3) In a data set, calculate the distance set between the waveform feature of a training library data set and the waveform feature of each sample library data set, adopt the K nearest neighbor algorithm to carry out feature classification to a training library data set, and so on, Carry out feature classification for each training library data group in the data set, and calculate the feature recognition rate and feature misjudgment rate of the data set;
3.4)将POP_SIZE个数据集合,按照数据集合的特征识别率和特征误判率升序或降序排列,并交换其对应的数据集合内容(样本库数据组、K值),保存当前最好的数据集合;3.4) Arrange the POP_SIZE data sets in ascending or descending order according to the feature recognition rate and feature misjudgment rate of the data sets, and exchange the corresponding data set content (sample library data group, K value), and save the current best data set ;
3.5)采用轮盘赌选择、交叉算法、变异算法更新数据集合,产生新的POP_SIZE个数据集合;3.5) Use roulette selection, crossover algorithm, and mutation algorithm to update the data set to generate new POP_SIZE data sets;
3.6)重复第3.3)至3.4)步,产生当前最好的数据集合,与上一代的最好数据集合比较,保存更优的数据集合;3.6) Repeat steps 3.3) to 3.4) to generate the current best data set, compare it with the best data set of the previous generation, and save a better data set;
3.7)重复第3.5)步至3.6)步,直至终止条件满足,输出当前最好的数据集合作为最优解,当前最好数据集合中的样本库数据组为最优样本库;3.7) Steps 3.5) to 3.6) are repeated until the termination condition is satisfied, and the current best data set is output as the optimal solution, and the sample library data group in the current best data set is the optimal sample library;
3.8)在当前最好的数据集合中,计算一个测试库数据组的波形特征与各个样本库数据组的波形特征之间的距离集合,采用K近邻算法对一个测试库数据组进行特征分类,以此类推,对该数据集合中的每一个测试库数据组进行特征分类,计算出测试库数据组的特征识别率和特征误判率。若达到目标,测试库数据组的特征识别率为85%以上,特征误判率为8‰以下,当前最好数据集合中的最优样本库数据组是可行的。若没达成目标,重复第3.1)步至3.8)步,重新训练样本库数据组,直至输出满足目标的最优样本库。3.8) In the current best data set, calculate the distance set between the waveform features of a test library data set and the waveform features of each sample library data set, and use the K nearest neighbor algorithm to carry out feature classification for a test library data set, with By analogy, feature classification is performed on each test library data group in the data set, and the feature recognition rate and feature misjudgment rate of the test library data group are calculated. If the goal is achieved, the feature recognition rate of the test library data set is above 85%, and the feature misjudgment rate is below 8‰, and the optimal sample library data set in the current best data set is feasible. If the goal is not achieved, repeat steps 3.1) to 3.8) to retrain the sample library data set until the optimal sample library that meets the target is output.
本实施例中,获得最优的样本库数据组,在脑电眼电数据组的特征分类中,进一步将特征识别率提高至85%以上,特征误判率降低至8‰以下。In this embodiment, the optimal sample library data set is obtained, and in the feature classification of the EEG data set, the feature recognition rate is further increased to over 85%, and the feature misjudgment rate is reduced to below 8‰.
本发明的自动升降病床系统在使用时,首先通过脑电波传感器采集一定长度的患者脑电眼电融合信号进行滤噪处理,提取波形特征,将波形特征与优化后的样本库数据组进行比对,采用K近邻算法对待识别的波形特征进行分类,根据分类结果发送控制指令至病床本体,病床本体根据控制指令作出响应。病床控制方案为:一次眨眼对应病床升起,二次眨眼对应病床放平,眼球转动对应主动呼叫,脑电异常对应智能报警。When the automatic lifting hospital bed system of the present invention is in use, firstly, the brain wave sensor collects a certain length of patient's EEG fusion signal for noise filtering, extracts the waveform features, and compares the waveform features with the optimized sample library data group, The K-nearest neighbor algorithm is used to classify the waveform features to be recognized, and the control command is sent to the bed body according to the classification result, and the bed body responds according to the control command. The hospital bed control scheme is as follows: one blink corresponds to the raising of the hospital bed, two blinks corresponds to the leveling of the hospital bed, eye rotation corresponds to the active call, and EEG abnormality corresponds to the intelligent alarm.
本发明提出的病床系统通过监测患者的脑电眼电信号实现自动升降、主动呼叫和智能报警,采用K近邻方法识别脑电眼电信号的类型,运算速度快,保证了病床系统的及时相应;优化后的样本库保证了脑电眼电信号的类型识别的准确率。The hospital bed system proposed by the present invention realizes automatic lifting, active calling and intelligent alarm by monitoring the EEG signal of the patient, adopts the K nearest neighbor method to identify the type of the EEG signal, and has a fast operation speed, which ensures the timely response of the hospital bed system; after optimization The sample library ensures the accuracy of the type recognition of EEG signals.
以上列举的仅是本发明的具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。What are listed above are only specific embodiments of the present invention. Obviously, the present invention is not limited to the above embodiments, and many variations are possible. All deformations that can be directly derived or associated by those skilled in the art from the content disclosed in the present invention should be considered as the protection scope of the present invention.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210842339.0A CN115227504B (en) | 2022-07-18 | 2022-07-18 | An automatic raising and lowering hospital bed system based on EEG signal |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210842339.0A CN115227504B (en) | 2022-07-18 | 2022-07-18 | An automatic raising and lowering hospital bed system based on EEG signal |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115227504A CN115227504A (en) | 2022-10-25 |
| CN115227504B true CN115227504B (en) | 2023-05-26 |
Family
ID=83672650
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210842339.0A Active CN115227504B (en) | 2022-07-18 | 2022-07-18 | An automatic raising and lowering hospital bed system based on EEG signal |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115227504B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116849942A (en) * | 2023-07-28 | 2023-10-10 | 中国医学科学院生物医学工程研究所 | Brain-control intelligent lifting and turning-over multifunctional medical care bed |
| CN119367148A (en) * | 2024-10-28 | 2025-01-28 | 山东大学 | Intelligent nursing bed control system and method based on multimodal information |
| CN119908913A (en) * | 2024-12-31 | 2025-05-02 | 河南翔宇医疗设备股份有限公司 | New medical cervical vertebra control bed transmission device |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110162182A (en) * | 2019-05-28 | 2019-08-23 | 深圳市宏智力科技有限公司 | Brain electric control module device and its method for controlling controlled plant |
| CN216168407U (en) * | 2021-10-20 | 2022-04-05 | 科大讯飞华南有限公司 | Hospital bed control system based on brain waves |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6674908B1 (en) * | 2002-05-04 | 2004-01-06 | Edward Lasar Aronov | Method of compression of binary data with a random number generator |
| US7689268B2 (en) * | 2002-08-05 | 2010-03-30 | Infraredx, Inc. | Spectroscopic unwanted signal filters for discrimination of vulnerable plaque and method therefor |
| US8688208B2 (en) * | 2007-08-27 | 2014-04-01 | Microsoft Corporation | Method and system for meshing human and computer competencies for object categorization |
| WO2010030794A1 (en) * | 2008-09-10 | 2010-03-18 | Digital Infuzion, Inc. | Machine learning methods and systems for identifying patterns in data |
| CN104063645B (en) * | 2014-07-01 | 2017-08-04 | 清华大学深圳研究生院 | A kind of personal identification method based on the dynamic self refresh sample of electrocardiosignal |
| CN106709572B (en) * | 2015-11-16 | 2019-11-08 | 阿里巴巴集团控股有限公司 | A kind of data processing method and equipment |
| CN106200984A (en) * | 2016-07-21 | 2016-12-07 | 天津大学 | Mental imagery brain-computer interface model modelling approach |
| CN109165615A (en) * | 2018-08-31 | 2019-01-08 | 中国人民解放军军事科学院军事医学研究院 | A kind of parameter training algorithm under multi-categorizer single channel mode towards EEG signals |
| CN109284004B (en) * | 2018-10-29 | 2022-01-04 | 中国矿业大学 | Intelligent nursing system based on brain-computer interface |
| CN110969108B (en) * | 2019-11-25 | 2023-04-07 | 杭州电子科技大学 | Limb action recognition method based on autonomic motor imagery electroencephalogram |
| CN112370017B (en) * | 2020-11-09 | 2022-03-18 | 腾讯科技(深圳)有限公司 | Training method and device of electroencephalogram classification model and electronic equipment |
| CN113269217A (en) * | 2020-12-14 | 2021-08-17 | 北方信息控制研究院集团有限公司 | Radar target classification method based on Fisher criterion |
| CN112890834B (en) * | 2021-03-01 | 2022-05-13 | 福建脉行人生医疗科技有限公司 | Attention-recognition-oriented machine learning-based eye electrical signal classifier |
| CN113095511A (en) * | 2021-04-16 | 2021-07-09 | 广东电网有限责任公司 | Method and device for judging in-place operation of automatic master station |
| CN113269201A (en) * | 2021-04-25 | 2021-08-17 | 浙江师范大学 | Hyperspectral image band selection method and system based on potential feature fusion |
| CN113850192A (en) * | 2021-09-26 | 2021-12-28 | 杭州电子科技大学 | Blink artifact detection method based on EMD-CSP EEG feature learning and intelligent fusion |
| CN113842118B (en) * | 2021-12-01 | 2022-03-25 | 浙江大学 | Epileptic seizure real-time detection monitoring system for epileptic video electroencephalogram examination |
-
2022
- 2022-07-18 CN CN202210842339.0A patent/CN115227504B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110162182A (en) * | 2019-05-28 | 2019-08-23 | 深圳市宏智力科技有限公司 | Brain electric control module device and its method for controlling controlled plant |
| CN216168407U (en) * | 2021-10-20 | 2022-04-05 | 科大讯飞华南有限公司 | Hospital bed control system based on brain waves |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115227504A (en) | 2022-10-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN115227504B (en) | An automatic raising and lowering hospital bed system based on EEG signal | |
| CN110852382B (en) | Behavior recognition system based on space-time multi-feature extraction and working method thereof | |
| CN108937972A (en) | A kind of medical user emotion monitoring method of multiple features fusion | |
| Hatamikia et al. | Recognition of emotional states induced by music videos based on nonlinear feature extraction and som classification | |
| CN101332136A (en) | Electric prosthetic hand controlled by brain-electricity-myoelectricity and control method | |
| CN113146618B (en) | Control method and system of mechanical arm, electronic equipment and storage medium | |
| CN108814567A (en) | A kind of family endowment intelligently guards robot system | |
| US20220051586A1 (en) | System and method of generating control commands based on operator's bioelectrical data | |
| CN113869179B (en) | Intelligent monitoring method and system for home-based elderly care based on multimodal feature attention fusion | |
| CN117542474A (en) | Remote nursing monitoring system and method based on big data | |
| CN114145755B (en) | Household epileptic seizure interactive intelligent monitoring system and method | |
| CN105739444A (en) | Manipulator multiparameter controlling brain-computer interface | |
| CN114849063B (en) | Extracorporeal charger, program-controlled system, and computer-readable storage medium | |
| CN105982643B (en) | Sleep event detection method and system | |
| CN109284004A (en) | An intelligent nursing system based on brain-computer interface | |
| CN118629612A (en) | Cardiac rehabilitation equipment control method based on multi-data fusion | |
| CN114694245A (en) | Method and system for real-time behavior recognition and physical state monitoring based on Capsule and GRU | |
| CN115758119A (en) | Paralytic patient monitoring system based on brain-computer interface and motion recognition | |
| CN119367148A (en) | Intelligent nursing bed control system and method based on multimodal information | |
| CN110955152A (en) | Intelligent home control method and system based on brain-computer interface | |
| CN109363668A (en) | Brain Disease Prediction System | |
| CN115857595B (en) | Functional environment adjusting method, system and device based on user mood | |
| Ibrahim et al. | Smart Homes for Disabled People: A Review Study | |
| CN110362201A (en) | Brain-computer interaction structured environment control method, system and medium based on environmental understanding | |
| CN111199793A (en) | Citizen-benefitting community disease prevention and control information interaction system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |