CN115184876A - 2FSK signal parameter estimation method based on wavelet transformation and waveform shaping - Google Patents
2FSK signal parameter estimation method based on wavelet transformation and waveform shaping Download PDFInfo
- Publication number
- CN115184876A CN115184876A CN202210747177.2A CN202210747177A CN115184876A CN 115184876 A CN115184876 A CN 115184876A CN 202210747177 A CN202210747177 A CN 202210747177A CN 115184876 A CN115184876 A CN 115184876A
- Authority
- CN
- China
- Prior art keywords
- wavelet
- pulse width
- signal
- sequence
- pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及信号处理技术领域,具体为一种基于小波变换及波形整形的2FSK信号参数估计方法。The invention relates to the technical field of signal processing, in particular to a 2FSK signal parameter estimation method based on wavelet transform and waveform shaping.
背景技术Background technique
低截获概率(Low Probability of Interception,LPI)是现代雷达应满足的一种重要的战术需求。目前还没有专门的标准对其进行定义,研究者们通常将LPI一词认为是雷达由于具备低发射功率、低旁瓣、大带宽以及频率变化等信号特征而具有的使敌方接收机难以截获检测到的一种特性。通过雷达波形设计,使信号获得大的时宽带宽积,能够对提高雷达低截获性能起到很好的效果。频率编码(Frequency Shift Keying,FSK)信号是LPI雷达常用的一种调制样式,它是一种脉冲压缩信号,这种信号由于运用了伪随机序列,能量较为分散,且在不同频率间跳变,因而具有较好的低截获概率性能。Low Probability of Interception (LPI) is an important tactical requirement that modern radars should meet. At present, there is no specific standard to define it. Researchers usually regard the term LPI as a signal characteristic of radar, such as low transmit power, low side lobes, large bandwidth and frequency variation, which makes it difficult for enemy receivers to intercept. A detected feature. Through the design of radar waveform, the signal can obtain a large time-width-bandwidth product, which can have a good effect on improving the low-acquisition performance of the radar. Frequency coding (Frequency Shift Keying, FSK) signal is a commonly used modulation style of LPI radar, it is a kind of pulse compression signal, this kind of signal uses pseudo-random sequence, the energy is relatively scattered, and jumps between different frequencies, Therefore, it has better performance with low probability of interception.
长期以来,对于2FSK信号参数的准确快速估计,一直是雷达侦察领域的一个技术难点。常用的是基于相位差分的参数估计方法,但该方法的抗噪声性能较差,很难对码元的跳变时刻进行准确的检测,也就很难获得准确的码元宽度和码元个数估计结果。For a long time, the accurate and rapid estimation of 2FSK signal parameters has been a technical difficulty in the field of radar reconnaissance. The parameter estimation method based on phase difference is commonly used, but the anti-noise performance of this method is poor, and it is difficult to accurately detect the transition moment of the symbol, and it is difficult to obtain the accurate symbol width and number of symbols. estimated results.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提出一种基于小波变换及波形整形的2FSK信号参数估计方法,综合运用Morlet小波变换、频谱波形整形、小波脊线波形整形处理技术,实现了在低至0dB情况下的2FSK信号脉冲宽度、频率、码元宽度、码元个数、带宽的准确估计。The purpose of the present invention is to propose a 2FSK signal parameter estimation method based on wavelet transform and waveform shaping, and comprehensively use Morlet wavelet transform, spectrum waveform shaping, wavelet ridge waveform shaping processing technology, and realize the 2FSK signal under the condition as low as 0dB. Accurate estimation of pulse width, frequency, symbol width, number of symbols, and bandwidth.
为实现上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
一种基于小波变换及波形整形的2FSK信号参数估计方法,包括如下步骤:A 2FSK signal parameter estimation method based on wavelet transform and waveform shaping, comprising the following steps:
1)输入包含脉内调制信息的2FSK信号序列;1) Input the 2FSK signal sequence containing the intrapulse modulation information;
2)将步骤1)中的信号序列进行脉宽估计,并根据脉宽将该序列分割成单个脉冲信号;2) Estimate the pulse width of the signal sequence in step 1), and divide the sequence into a single pulse signal according to the pulse width;
3)将步骤2)中的单个脉冲信号均进行FFT变换,对频谱进行整形处理,估计得到2FSK信号的频率和带宽;3) FFT transformation is carried out to the single pulse signal in step 2), and the frequency spectrum is shaped to obtain the frequency and bandwidth of the 2FSK signal;
4)将步骤2)中的单个脉冲信号进行Morlet小波变换,并进行滤波处理,得到小波脊线;4) Morlet wavelet transform is performed on the single pulse signal in step 2), and filter processing is performed to obtain a wavelet ridge;
5)将小波脊线进行整形,估计得到自脉冲宽度和码元个数;5) Shaping the wavelet ridge to obtain the self-pulse width and the number of symbols;
6)输出估计的2FSK信号频率、带宽、脉宽、子脉冲宽度和码元个数。6) Output the estimated 2FSK signal frequency, bandwidth, pulse width, sub-pulse width and number of symbols.
所述将步骤1)中的信号序列进行脉宽估计,并根据脉宽将该序列分割成单个脉冲信号的具体做法是:The specific method of performing pulse width estimation on the signal sequence in step 1) and dividing the sequence into a single pulse signal according to the pulse width is:
S21:对截获到的信号进行分选和调制识别,得到包含脉内调制信息的2FSK信号序列,表示为x(k),k=1,2,…,K,K为采样点数,采样频率为fs;对x(k)进行幅度归一化处理,处理后的信号序列表示为 S21: Sort and modulate the intercepted signal to obtain a 2FSK signal sequence containing intrapulse modulation information, which is expressed as x(k), k=1,2,...,K, where K is the number of sampling points, and the sampling frequency is f s ; perform amplitude normalization processing on x(k), and the processed signal sequence is expressed as
S22:对进行脉冲宽度估计,估计的脉宽表示为PW1,PW2,…,PWN,其中1,2,…,N表示脉冲序号;将截取为单个脉冲宽度的信号序列,表示为其中1,2,…,N表示脉冲序号,每个脉冲的时长都是一个脉冲宽度。S22: yes Pulse width estimation is performed, and the estimated pulse widths are expressed as PW 1 , PW 2 , . . . , PW N , where 1, 2, . A signal sequence truncated to a single pulse width, expressed as Among them, 1, 2, ..., N represents the pulse number, and the duration of each pulse is a pulse width.
所述将步骤2)中的单个脉冲信号均进行FFT变换,对频谱进行整形处理,估计得到2FSK信号的频率和带宽的具体做法是:The single pulse signal in step 2) is all subjected to FFT transformation, and the frequency spectrum is subjected to shaping processing to estimate the frequency and bandwidth of the 2FSK signal. The specific method is:
S31:以为例进行后续的参数估计工作,其他单个脉冲参数估计与此相同,针对进行FFT变换并求绝对值,表示为F1,其中FFT点数表示为NFFT,取为最靠近0的2的T次幂的值,T为1个脉冲宽度的采样点数;设maxd1为F1的最大值,Id为最大值所对应的横坐标序号,寻找F1从1到个取值范围内等于maxd1的值,表示为Ke;2FSK信号的两个频率值中的一个,表示为f1,S31: with As an example, the subsequent parameter estimation work is performed, and other single pulse parameter estimation is the same. Perform FFT transformation and find the absolute value, which is expressed as F 1 , and the number of FFT points is expressed as NFFT, which is the value of the T power of 2 closest to 0, and T is the number of sampling points of 1 pulse width; let maxd1 be the value of F 1 Maximum value, I d is the abscissa number corresponding to the maximum value, find F 1 from 1 to A value equal to maxd1 within a range of values, denoted as Ke; one of the two frequency values of the 2FSK signal, denoted as f 1 ,
S32:对F1按照下式进行对数计算:S32: Perform logarithmic calculation on F 1 according to the following formula:
F1d=10log10(F1)F 1d = 10log 10 (F 1 )
求F1d的最大值,表示为maxd2=max(F1d),找出F1d取值序列中不小于maxd2-3的序列点,统计这些点的数量,表示为L;Find the maximum value of F 1d , expressed as maxd2=max(F 1d ), find out the sequence points that are not less than maxd2-3 in the value sequence of F 1d , and count the number of these points, expressed as L;
S33:针对F1序列,进行频谱整形;遍历F1所有横坐标,当横坐标的序号处于范围时,令F1的纵坐标取值为零,得到新的序列表示为F2;其中ceil(·)表示向上取整,fix(·)表示靠近0取整;针对序列F2,按照步骤S31所示方法估计2FSK信号的另一个频率点,表示为f2;2FSK信号的带宽可通过下式计算:S33: Perform spectrum shaping for the F 1 sequence; traverse all the abscissas of F 1 , when the sequence number of the abscissa is in the In the range, let the ordinate value of F 1 be zero, and a new sequence is obtained as F 2 ; where ceil(·) means rounding up, and fix(·) means rounding close to 0; for the sequence F 2 , follow the steps The method shown in S31 estimates another frequency point of the 2FSK signal, expressed as f 2 ; the bandwidth of the 2FSK signal can be calculated by the following formula:
BW=f2-f1 BW=f 2 -f 1
所述将步骤2)中的单个脉冲信号进行Morlet小波变换,并进行滤波处理,得到小波脊线的具体做法是:The single pulse signal in step 2) is subjected to Morlet wavelet transform, and filtering is performed to obtain the specific method of wavelet ridge:
S41:针对采用快速Morlet小波变换估计码元宽度和码元个数;对进行小波变换,表示为cwt函数表示基于Morlet的连续小波函数,1表示小波变换的尺度,cmor3-3表示小波基函数的名称;S41: For Use fast Morlet wavelet transform to estimate symbol width and number of symbols; Perform wavelet transform, which is expressed as The cwt function represents the continuous wavelet function based on Morlet, 1 represents the scale of the wavelet transform, and cmor3-3 represents the name of the wavelet basis function;
S42:针对y1,通过相空间重构和奇异值分解进行滤波处理,重构的行数为M,可根据y1的点数进行设置,列数为即的采样点数,采样间隔τ=1;重构及滤波后的信号取绝对值,表示为yy1;针对yy1,计算其相位,通过相位差分法计算相位差,得到小波脊线。S42: For y 1 , perform filtering processing through phase space reconstruction and singular value decomposition, the number of reconstructed rows is M, which can be set according to the number of points of y 1 , and the number of columns is which is The number of sampling points of , sampling interval τ=1; the reconstructed and filtered signal takes the absolute value, expressed as yy 1 ; for yy 1 , calculate its phase, calculate the phase difference by the phase difference method, and obtain the wavelet ridge.
所述将小波脊线进行整形,估计得到自脉冲宽度和码元个数的具体做法是:The specific method of shaping the wavelet ridge to obtain the self-pulse width and the number of symbols by estimation is as follows:
S51:针对小波脊线Mdiff1,进行均值滤波和中值滤波,滤波窗的大小可根据小波脊线点数而设置;滤波后的小波脊线表示为Mdiff1,其横坐标为每个频率点对应的出现时间,纵坐标为2FSK信号随时间变化的频率值;S51: For the wavelet ridge line Mdiff1, perform mean value filtering and median filtering, and the size of the filter window can be set according to the number of wavelet ridge line points; the filtered wavelet ridge line is represented as Mdiff1, and its abscissa is the occurrence corresponding to each frequency point. Time, the ordinate is the frequency value of the 2FSK signal changing with time;
S52:根据估计得到的2FSK信号频率f1和f2,对滤波后的小波脊线Mdiff1进行整形处理;设fm=min(f1,f2),遍历小波脊线的所有纵坐标取值,当其值大于等于1.1fm时,令这些取值置1,否则置零,得到一个新的序列Mdiff2;Mdiff2的横坐标仍然是采样时刻,纵坐标是随采样时间而变化的0或1取值;S52: According to the estimated 2FSK signal frequencies f 1 and f 2 , shape the filtered wavelet ridge line Mdiff1; set f m =min(f 1 , f 2 ), traverse all the ordinate values of the wavelet ridge line , when its value is greater than or equal to 1.1f m , set these values to 1, otherwise set them to zero, and get a new sequence Mdiff2; the abscissa of Mdiff2 is still the sampling time, and the ordinate is 0 or 1 that changes with the sampling time value;
S53:针对Mdiff2再次进行整形处理,消除噪声干扰;舍弃的小脉冲的脉宽阈值可设置为单个脉冲宽度的整形后的序列表示为Mdiff3;S53: Perform shaping processing again for Mdiff2 to eliminate noise interference; the pulse width threshold of the discarded small pulses can be set to the width of a single pulse width The reshaped sequence is represented as Mdiff3;
S54:针对Mdiff3,通过盲源分离的雷达脉冲重复间隔估计方法,实现子脉冲宽度估计,估计的子脉冲宽度按照宽度大小降序排列,表示为y_pw(i),i=1,2,…,p,p为子脉冲宽度的个数;S54: For Mdiff3, the radar pulse repetition interval estimation method of blind source separation is used to estimate the sub-pulse width, and the estimated sub-pulse widths are arranged in descending order of width, expressed as y_pw(i), i=1,2,...,p , p is the number of sub-pulse widths;
S55:通过ypw(i),i=1,2,…,p估计得到一个脉冲的子脉冲宽度;S55: Estimate a pulse by y pw (i), i=1,2,...,p The sub-pulse width of ;
若p=1,则子脉冲宽度估计值为τe=ypw(1);若p>1,则子脉冲宽度按下述方法估计:If p=1, the estimated sub-pulse width is τ e =y pw (1); if p>1, the sub-pulse width is estimated as follows:
令j=1:p-1,子脉冲宽度估计值为其中round(·)表示按照四舍五入规则取整;Let j=1:p-1, The estimated sub-pulse width is where round( ) means rounding according to the rounding rules;
S56:估计得到码元个数,Ne=round(PW1/τe)。S56: Estimate the number of symbols, Ne =round(PW 1 /τ e ).
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
一种基于小波变换及波形整形的2FSK信号参数估计方法,综合运用Morlet小波变换、频谱波形整形、小波脊线波形整形处理技术,实现了在低至0dB情况下的2FSK信号脉冲宽度、频率、码元宽度、码元个数、带宽的准确估计;解决了传统常用的基于相位差分的参数估计方法,所引发的抗噪声性能较差,很难对码元的跳变时刻进行准确的检测,也就很难获得准确的码元宽度和码元个数估计结果的问题。A 2FSK signal parameter estimation method based on wavelet transform and waveform shaping, which comprehensively uses Morlet wavelet transform, spectrum waveform shaping, and wavelet ridge waveform shaping processing technology to realize the 2FSK signal pulse width, frequency, code under the condition as low as 0dB. Accurate estimation of element width, number of symbols, and bandwidth; it solves the problem of the traditional parameter estimation method based on phase difference, which causes poor anti-noise performance, and it is difficult to accurately detect the transition time of symbols. It is difficult to obtain the accurate estimation result of the symbol width and the number of symbols.
附图说明Description of drawings
图1为2FSK信号参数估计处理流程图;Fig. 1 is a flowchart of 2FSK signal parameter estimation processing;
图2为信号小波变换后的小波系数模值绝对值波形图;Fig. 2 is the waveform diagram of the absolute value of the wavelet coefficient modulus value after wavelet transformation of the signal;
图3为相空间重构和奇异值分解滤波后的小波系数模值绝对值波形图;Fig. 3 is the waveform diagram of the absolute value of wavelet coefficient modulus value after phase space reconstruction and singular value decomposition filtering;
图4为小波脊线波形图;Fig. 4 is a wavelet ridge waveform diagram;
图5为均值滤波后的小波脊线波形图;Fig. 5 is the wavelet ridge waveform diagram after mean filtering;
图6为中值滤波后的小波脊线波形图;Fig. 6 is the wavelet ridge waveform diagram after median filtering;
图7为进行第一次整形后的小波脊线整形波形;Fig. 7 is the wavelet ridge shaping waveform after the first shaping;
图8为舍弃由于噪声造成的极窄干扰脉冲后的小波脊线整形波形。Fig. 8 is the wavelet ridge shaping waveform after the extremely narrow interference pulse caused by noise is discarded.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
请参阅图1-8,本发明提供一种基于小波变换及波形整形的2FSK信号参数估计方法,包括如下步骤:1-8, the present invention provides a 2FSK signal parameter estimation method based on wavelet transform and waveform shaping, including the following steps:
1)输入包含脉内调制信息的2FSK信号序列;1) Input the 2FSK signal sequence containing the intrapulse modulation information;
2)将步骤1)中的信号序列进行脉宽估计,并根据脉宽将该序列分割成单个脉冲信号;2) Estimate the pulse width of the signal sequence in step 1), and divide the sequence into a single pulse signal according to the pulse width;
S21:对截获到的信号进行分选和调制识别,得到包含脉内调制信息的2FSK信号序列,表示为x(k),k=1,2,…,K,K为采样点数,采样频率为fs;对x(k)进行幅度归一化处理,处理后的信号序列表示为 S21: Sort and modulate the intercepted signal to obtain a 2FSK signal sequence containing intrapulse modulation information, which is expressed as x(k), k=1,2,...,K, where K is the number of sampling points, and the sampling frequency is f s ; perform amplitude normalization processing on x(k), and the processed signal sequence is expressed as
S22:对进行脉冲宽度估计,估计的脉宽表示为PW1,PW2,…,PWN,其中1,2,…,N表示脉冲序号;将截取为单个脉冲宽度的信号序列,表示为其中1,2,…,N表示脉冲序号,每个脉冲的时长都是一个脉冲宽度。S22: yes Pulse width estimation is performed, and the estimated pulse widths are expressed as PW 1 , PW 2 , . . . , PW N , where 1, 2, . A signal sequence truncated to a single pulse width, expressed as Among them, 1, 2, ..., N represents the pulse number, and the duration of each pulse is a pulse width.
3)将步骤2)中的单个脉冲信号均进行FFT变换,对频谱进行整形处理,估计得到2FSK信号的频率和带宽;3) FFT transformation is carried out to the single pulse signal in step 2), and the frequency spectrum is shaped to obtain the frequency and bandwidth of the 2FSK signal;
S31:以为例进行后续的参数估计工作,其他单个脉冲参数估计与此相同,针对进行FFT变换并求绝对值,表示为F1,其中FFT点数表示为NFFT,取为最靠近0的2的T次幂的值(在Matlab中可用2nextpow2(T)获得),T为1个脉冲宽度的采样点数;设maxd1为F1的最大值,Id为最大值所对应的横坐标序号,寻找F1从1到个取值范围内等于maxd1的值,表示为Ke;2FSK信号的两个频率值中的一个,表示为f1,S31: with As an example, the subsequent parameter estimation work is performed, and other single pulse parameter estimation is the same. Perform FFT transformation and find the absolute value, denoted as F 1 , where the number of FFT points is denoted as NFFT, which is the value of the T power of 2 closest to 0 (available in Matlab by 2 nextpow2(T) ), T is 1 The number of sampling points of the pulse width; let maxd1 be the maximum value of F 1 , I d be the abscissa number corresponding to the maximum value, and find F 1 from 1 to A value equal to maxd1 within a range of values, denoted as Ke; one of the two frequency values of the 2FSK signal, denoted as f 1 ,
S32:对F1按照下式进行对数计算:S32: Perform logarithmic calculation on F 1 according to the following formula:
F1d=10log10(F1)F 1d = 10log 10 (F 1 )
求F1d的最大值,表示为maxd2=max(F1d),找出F1d取值序列中不小于maxd2-3的序列点,统计这些点的数量,表示为L;Find the maximum value of F 1d , expressed as maxd2=max(F 1d ), find out the sequence points that are not less than maxd2-3 in the value sequence of F 1d , and count the number of these points, expressed as L;
S33:针对F1序列,进行频谱整形;遍历F1所有横坐标,当横坐标的序号处于范围时,令F1的纵坐标取值为零,得到新的序列表示为F2;其中ceil(·)表示向上取整,fix(·)表示靠近0取整;针对序列F2,按照步骤S31所示方法估计2FSK信号的另一个频率点,表示为f2;2FSK信号的带宽可通过下式计算:S33: Perform spectrum shaping for the F 1 sequence; traverse all the abscissas of F 1 , when the sequence number of the abscissa is in the In the range, let the ordinate value of F 1 be zero, and a new sequence is obtained as F 2 ; where ceil(·) means rounding up, and fix(·) means rounding close to 0; for the sequence F 2 , follow the steps The method shown in S31 estimates another frequency point of the 2FSK signal, expressed as f 2 ; the bandwidth of the 2FSK signal can be calculated by the following formula:
BW=f2-f1 BW=f 2 -f 1
4)将步骤2)中的单个脉冲信号进行Morlet小波变换,并进行滤波处理,得到小波脊线;4) Morlet wavelet transform is performed on the single pulse signal in step 2), and filter processing is performed to obtain a wavelet ridge;
S41:针对采用快速Morlet小波变换估计码元宽度和码元个数;对进行小波变换,表示为cwt函数表示基于Morlet的连续小波函数,1表示小波变换的尺度,cmor3-3表示小波基函数的名称,除了cmor3-3之外,也可以采用其他小波基函数。S41: For Use fast Morlet wavelet transform to estimate symbol width and number of symbols; Perform wavelet transform, which is expressed as The cwt function represents the continuous wavelet function based on Morlet, 1 represents the scale of the wavelet transform, and cmor3-3 represents the name of the wavelet basis function. In addition to cmor3-3, other wavelet basis functions can also be used.
S42:针对y1,通过相空间重构和奇异值分解进行滤波处理,重构的行数为M,可根据y1的点数进行设置,列数为即的采样点数,采样间隔τ=1;重构及滤波后的信号取绝对值,表示为yy1;针对yy1,计算其相位,通过相位差分法计算相位差,得到小波脊线。S42: For y 1 , perform filtering processing through phase space reconstruction and singular value decomposition, the number of reconstructed rows is M, which can be set according to the number of points of y 1 , and the number of columns is which is The number of sampling points of , sampling interval τ=1; the reconstructed and filtered signal takes the absolute value, expressed as yy 1 ; for yy 1 , calculate its phase, calculate the phase difference by the phase difference method, and obtain the wavelet ridge.
5)将小波脊线进行整形,估计得到自脉冲宽度和码元个数;5) Shaping the wavelet ridge to obtain the self-pulse width and the number of symbols;
S51:针对小波脊线Mdiff1,进行均值滤波和中值滤波,滤波窗的大小可根据小波脊线点数而设置,一般可取滤波窗为20;滤波后的小波脊线表示为Mdiff1,其横坐标为每个频率点对应的出现时间,纵坐标为2FSK信号随时间变化的频率值;S51: Perform mean filtering and median filtering for the wavelet ridge line Mdiff1. The size of the filter window can be set according to the number of wavelet ridge line points. Generally, the filter window can be set to 20; the filtered wavelet ridge line is represented as Mdiff1, and its abscissa is The appearance time corresponding to each frequency point, the ordinate is the frequency value of the 2FSK signal changing with time;
S52:根据估计得到的2FSK信号频率f1和f2,对滤波后的小波脊线Mdiff1进行整形处理;设fm=min(f1,f2),遍历小波脊线的所有纵坐标取值,当其值大于等于1.1fm时,令这些取值置1,否则置零,得到一个新的序列Mdiff2;Mdiff2的横坐标仍然是采样时刻,纵坐标是随采样时间而变化的0或1取值;S52: According to the estimated 2FSK signal frequencies f 1 and f 2 , shape the filtered wavelet ridge line Mdiff1; set f m =min(f 1 , f 2 ), traverse all the ordinate values of the wavelet ridge line , when its value is greater than or equal to 1.1f m , set these values to 1, otherwise set them to zero, and get a new sequence Mdiff2; the abscissa of Mdiff2 is still the sampling time, and the ordinate is 0 or 1 that changes with the sampling time value;
S53:针对Mdiff2再次进行整形处理,消除噪声干扰;舍弃的小脉冲的脉宽阈值可设置为单个脉冲宽度的因为2FSK信号所用的Barker码编码长度至多为13,整形后的序列表示为Mdiff3;S53: Perform shaping processing again for Mdiff2 to eliminate noise interference; the pulse width threshold of the discarded small pulses can be set to the width of a single pulse width Because the coding length of the Barker code used by the 2FSK signal is at most 13, the reshaped sequence is represented as Mdiff3;
S54:针对Mdiff3,通过盲源分离的雷达脉冲重复间隔估计方法,实现子脉冲宽度估计,估计的子脉冲宽度按照宽度大小降序排列,表示为y_pw(i),i=1,2,…,p,p为子脉冲宽度的个数;S54: For Mdiff3, the radar pulse repetition interval estimation method of blind source separation is used to estimate the sub-pulse width, and the estimated sub-pulse widths are arranged in descending order of width, expressed as y_pw(i), i=1,2,...,p , p is the number of sub-pulse widths;
S55:通过ypw(i),i=1,2,…,p估计得到一个脉冲的子脉冲宽度;S55: Estimate a pulse by y pw (i), i=1,2,...,p The sub-pulse width of ;
若p=1,则子脉冲宽度估计值为τe=ypw(1);若p>1,则子脉冲宽度按下述方法估计:If p=1, the estimated sub-pulse width is τ e =y pw (1); if p>1, the sub-pulse width is estimated as follows:
令j=1:p-1,子脉冲宽度估计值为其中round(·)表示按照四舍五入规则取整;Let j=1:p-1, The estimated sub-pulse width is where round( ) means rounding according to the rounding rules;
S56:估计得到码元个数,Ne=round(PW1/τe)。S56: Estimate the number of symbols, Ne =round(PW 1 /τ e ).
6)输出估计的2FSK信号频率、带宽、脉宽、子脉冲宽度和码元个数。6) Output the estimated 2FSK signal frequency, bandwidth, pulse width, sub-pulse width and number of symbols.
下面结合实验测试图对本发明做进一步的描述。The present invention will be further described below in conjunction with the experimental test chart.
1、实验条件设置:1. Experimental condition settings:
本发明的实验验证是在计算机的仿真条件下进行的,仿真软件采用MATLABR2010a。为了充分验证本发明的有效性,应用本发明技术方案开展三组实验测试。The experimental verification of the present invention is carried out under computer simulation conditions, and the simulation software adopts MATLABR2010a. In order to fully verify the effectiveness of the present invention, three groups of experimental tests are carried out by applying the technical solution of the present invention.
实施例1:Example 1:
采样频率为fs=150MHz,2FSK两个频率点的频率分别为14MHz和19MHz,信号带宽为5MHz,编码方式为十三位Barker码,码元宽度为1.2μs,脉冲宽度15.6μs。在不同信噪比条件下,通过本专利方案,估计的信号参数如表1所示。The sampling frequency is f s =150MHz, the frequencies of the two frequency points of 2FSK are 14MHz and 19MHz respectively, the signal bandwidth is 5MHz, the encoding method is thirteen-bit Barker code, the symbol width is 1.2μs, and the pulse width is 15.6μs. Under the conditions of different signal-to-noise ratios, the estimated signal parameters are shown in Table 1 through the patent scheme.
表1十三位Barker码情况下的2FSK信号参数估计结果Table 1 Parameter estimation results of 2FSK signal in the case of thirteen-digit Barker codes
-2dB情况下,对应于步骤1)至步骤6)中所进行处理的部分关键波形如附图2-8所示,可以辅助用于对小波脊线整形处理的理解。In the case of -2dB, some key waveforms corresponding to the processing in steps 1) to 6) are shown in Fig. 2-8, which can be used to assist the understanding of wavelet ridge shaping processing.
实施例2:Example 2:
采样频率为fs=100MHz,2FSK两个频率点的频率分别为11MHz和15MHz,信号带宽为4MHz,编码方式为七位Barker码,码元宽度为0.8μs,脉冲宽度5.6μs。在不同信噪比条件下,通过本专利方案,估计的信号参数如表2所示。The sampling frequency is f s =100 MHz, the frequencies of the two frequency points of 2FSK are 11 MHz and 15 MHz respectively, the signal bandwidth is 4 MHz, the encoding method is seven-bit Barker code, the symbol width is 0.8 μs, and the pulse width is 5.6 μs. Under the conditions of different signal-to-noise ratios, the estimated signal parameters are shown in Table 2 through the patented solution.
表2七位Barker码情况下的2FSK信号参数估计结果Table 2 Parameter estimation results of 2FSK signal in the case of seven-digit Barker code
实施例3:Example 3:
采样频率为fs=200MHz,2FSK两个频率点的频率分别为18MHz和23MHz,信号带宽为5MHz,编码方式为五位Barker码,码元宽度为1.5μs,脉冲宽度7.5μs。在不同信噪比条件下,通过本专利方案,估计的信号参数如表3所示。The sampling frequency is f s =200MHz, the frequencies of the two frequency points of 2FSK are 18MHz and 23MHz respectively, the signal bandwidth is 5MHz, the encoding method is five-bit Barker code, the symbol width is 1.5μs, and the pulse width is 7.5μs. Under the conditions of different signal-to-noise ratios, the estimated signal parameters are shown in Table 3 through the patent scheme.
表3五位Barker码情况下的2FSK信号参数估计结果Table 3 Estimation results of 2FSK signal parameters in the case of five-digit Barker codes
综合上述实验结果表明,本发明能够在低至0dB甚至-2dB的条件下准确地估计得到2FSK信号的脉宽、子脉冲宽度、码元个数、频率及带宽参数。The above experimental results show that the present invention can accurately estimate the pulse width, sub-pulse width, number of symbols, frequency and bandwidth parameters of the 2FSK signal under conditions as low as 0dB or even -2dB.
尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。Although the present invention has been described in detail with reference to the foregoing embodiments, for those skilled in the art, it is still possible to modify the technical solutions described in the foregoing embodiments, or to perform equivalent replacements for some of the technical features. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
注:Note:
1、在步骤S22中,对进行脉冲宽度估计,估计方法参考申请日为2021.04.28,申请号:202110466533.9的发明专利“一种基于盲源分离的雷达脉冲重复间隔估计方法。1. In step S22, correct Pulse width estimation is performed, and the estimation method refers to the invention patent with the application date of 2021.04.28 and the application number: 202110466533.9 "A radar pulse repetition interval estimation method based on blind source separation.
2、在步骤S42中,通过相位差分法计算相位差,参考文献[姚文杨.雷达信号脉内分析与识别[D].哈尔滨:哈尔滨工程大学硕士论文,2012.]。2. In step S42, the phase difference is calculated by the phase difference method. Reference [Yao Wenyang. Intrapulse Analysis and Recognition of Radar Signals [D]. Harbin: Harbin Engineering University Master Thesis, 2012.].
3、在步骤S54中使用了“通过盲源分离的雷达脉冲重复间隔估计方法”,具体可以参考申请日为2021.04.28,申请号:202110466533.9、发明名称为“一种基于盲源分离的雷达脉冲重复间隔估计方法”。3. In step S54, "a radar pulse repetition interval estimation method by blind source separation" is used. For details, please refer to the application date of 2021.04.28, application number: 202110466533.9, and the name of the invention is "a radar pulse based on blind source separation". Methods for Estimating Repeat Intervals".
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210747177.2A CN115184876B (en) | 2022-06-28 | 2022-06-28 | A 2FSK signal parameter estimation method based on wavelet transform and waveform shaping |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210747177.2A CN115184876B (en) | 2022-06-28 | 2022-06-28 | A 2FSK signal parameter estimation method based on wavelet transform and waveform shaping |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115184876A true CN115184876A (en) | 2022-10-14 |
| CN115184876B CN115184876B (en) | 2025-05-09 |
Family
ID=83514793
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210747177.2A Active CN115184876B (en) | 2022-06-28 | 2022-06-28 | A 2FSK signal parameter estimation method based on wavelet transform and waveform shaping |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115184876B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116032709A (en) * | 2022-12-06 | 2023-04-28 | 中国电子科技集团公司第三十研究所 | Method and device for blind demodulation and modulation feature analysis of FSK signal without priori knowledge |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5946359A (en) * | 1996-04-01 | 1999-08-31 | Advantest Corporation | Parameter measuring apparatus for digital quadrature modulation signals |
| WO2016086699A1 (en) * | 2014-12-01 | 2016-06-09 | 中国科学院电子学研究所 | Wavelet domain insar interferometric phase filtering method in combination with local frequency estimation |
| CN106371070A (en) * | 2016-08-30 | 2017-02-01 | 电子信息系统复杂电磁环境效应国家重点实验室 | Improved underdetermined blind source separation source number estimation method based on wavelet analysis |
| CN109120562A (en) * | 2018-08-06 | 2019-01-01 | 电子科技大学 | One kind is added up matched MFSK signal frequency estimation method based on frequency spectrum |
| CN109597041A (en) * | 2018-11-09 | 2019-04-09 | 西安电子科技大学 | Piecewise linearity fm waveform design method based on relevant FDA |
| CN110971550A (en) * | 2019-10-31 | 2020-04-07 | 西安电子科技大学 | FSK signal parameter joint estimation method under alpha stable distribution noise |
| CN113109784A (en) * | 2021-04-28 | 2021-07-13 | 中国人民解放军63892部队 | Radar pulse repetition interval estimation method based on blind source separation |
-
2022
- 2022-06-28 CN CN202210747177.2A patent/CN115184876B/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5946359A (en) * | 1996-04-01 | 1999-08-31 | Advantest Corporation | Parameter measuring apparatus for digital quadrature modulation signals |
| WO2016086699A1 (en) * | 2014-12-01 | 2016-06-09 | 中国科学院电子学研究所 | Wavelet domain insar interferometric phase filtering method in combination with local frequency estimation |
| CN106371070A (en) * | 2016-08-30 | 2017-02-01 | 电子信息系统复杂电磁环境效应国家重点实验室 | Improved underdetermined blind source separation source number estimation method based on wavelet analysis |
| CN109120562A (en) * | 2018-08-06 | 2019-01-01 | 电子科技大学 | One kind is added up matched MFSK signal frequency estimation method based on frequency spectrum |
| CN109597041A (en) * | 2018-11-09 | 2019-04-09 | 西安电子科技大学 | Piecewise linearity fm waveform design method based on relevant FDA |
| CN110971550A (en) * | 2019-10-31 | 2020-04-07 | 西安电子科技大学 | FSK signal parameter joint estimation method under alpha stable distribution noise |
| CN113109784A (en) * | 2021-04-28 | 2021-07-13 | 中国人民解放军63892部队 | Radar pulse repetition interval estimation method based on blind source separation |
Non-Patent Citations (1)
| Title |
|---|
| 高勇;黄振;陆建华;: "基于小波变换的MFSK信号符号率估计算法", 装备指挥技术学院学报, no. 03, 28 June 2009 (2009-06-28) * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116032709A (en) * | 2022-12-06 | 2023-04-28 | 中国电子科技集团公司第三十研究所 | Method and device for blind demodulation and modulation feature analysis of FSK signal without priori knowledge |
| CN116032709B (en) * | 2022-12-06 | 2024-04-12 | 中国电子科技集团公司第三十研究所 | Method and device for blind demodulation and modulation feature analysis of FSK signal without priori knowledge |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115184876B (en) | 2025-05-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Duk et al. | Target detection in sea-clutter using stationary wavelet transforms | |
| CN114428230A (en) | Sub-band frequency coding slice interference suppression method | |
| CN114545342B (en) | Radar pulse signal parameter measurement method using multichannel reconnaissance receiver | |
| CN113884992B (en) | Self-adaptive anti-interference method of frequency agile radar | |
| CN110794374A (en) | Parameter identification method for intermittent sampling forwarding interference | |
| CN114578296B (en) | Intermittent sampling interference suppression method based on phase coding signal | |
| CN103323819A (en) | SAR time-varying narrow-band interference suppression method based on time-frequency spectrogram decomposition | |
| CN114114194A (en) | Phased array radar main lobe interference identification method | |
| CN115184876A (en) | 2FSK signal parameter estimation method based on wavelet transformation and waveform shaping | |
| CN109061626B (en) | Method for detecting low signal-to-noise ratio moving target by step frequency coherent processing | |
| CN107864020B (en) | Transform domain extraction method of underwater small target single-component acoustic scattering echo | |
| CN117318853A (en) | Burst signal detection method under low signal-to-noise ratio | |
| CN113702922B (en) | Interference suppression method based on multidimensional cooperation | |
| CN116660840A (en) | True and false identification method based on fast-slow time domain joint characteristics under false target sample lack condition | |
| CN116257729A (en) | Wignerhoff Transform Algorithm Based on S-G Filter and Switch Median Filter | |
| CN103915102A (en) | Method for noise abatement of LFM underwater sound multi-path signals | |
| CN114994616B (en) | Waveform design method for resisting intermittent sampling direct forwarding interference with intra-pulse segment protection | |
| Wang et al. | LFM signal perception based on Wavelet transform and Time-Frequency Technology | |
| CN115480228B (en) | Nanosecond time difference estimation method based on integrated time difference and phase difference analysis | |
| CN115166652B (en) | Intermittent sampling and forwarding interference identification and suppression method based on differential characteristics | |
| CN118199757A (en) | Data link signal detection method based on high-order correlation | |
| CN112929053B (en) | Frequency hopping signal feature extraction and parameter estimation method | |
| CN206573720U (en) | A kind of interference rejection unit of gps system | |
| CN116299276A (en) | A Method for Eliminating False Peaks in Target Range Image Based on Slice Modulation Design | |
| CN115097395A (en) | An Intermittent Sampling Forwarding Interference Suppression Method Based on Multi-channel Singular Spectrum Analysis |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |