CN114926635A - 与深度学习方法相结合的多焦图像中目标分割方法 - Google Patents
与深度学习方法相结合的多焦图像中目标分割方法 Download PDFInfo
- Publication number
- CN114926635A CN114926635A CN202210427559.7A CN202210427559A CN114926635A CN 114926635 A CN114926635 A CN 114926635A CN 202210427559 A CN202210427559 A CN 202210427559A CN 114926635 A CN114926635 A CN 114926635A
- Authority
- CN
- China
- Prior art keywords
- target
- image
- segmentation
- contour
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/33—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
- G06T7/337—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/42—Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/46—Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
- G06V10/469—Contour-based spatial representations, e.g. vector-coding
- G06V10/473—Contour-based spatial representations, e.g. vector-coding using gradient analysis
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/56—Extraction of image or video features relating to colour
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/766—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using regression, e.g. by projecting features on hyperplanes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210427559.7A CN114926635B (zh) | 2022-04-21 | 2022-04-21 | 与深度学习方法相结合的多焦图像中目标分割方法 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210427559.7A CN114926635B (zh) | 2022-04-21 | 2022-04-21 | 与深度学习方法相结合的多焦图像中目标分割方法 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114926635A true CN114926635A (zh) | 2022-08-19 |
| CN114926635B CN114926635B (zh) | 2024-06-11 |
Family
ID=82806541
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210427559.7A Active CN114926635B (zh) | 2022-04-21 | 2022-04-21 | 与深度学习方法相结合的多焦图像中目标分割方法 |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114926635B (zh) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115578734A (zh) * | 2022-09-23 | 2023-01-06 | 神州数码系统集成服务有限公司 | 一种基于金字塔特征的单一字符图像匹配识别方法 |
| CN119863370A (zh) * | 2025-03-24 | 2025-04-22 | 西安高商智能科技有限责任公司 | 用于红外成像目标模拟系统的成像焦距校正方法 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112529791A (zh) * | 2020-11-16 | 2021-03-19 | 中国海洋大学 | 基于浮游生物数字全息图像的自适应性多焦点复原方法 |
| KR102254198B1 (ko) * | 2020-03-03 | 2021-05-20 | 인천대학교 산학협력단 | 다중 초점 이미지 융합 방법 |
| CN112950645A (zh) * | 2021-03-24 | 2021-06-11 | 中国人民解放军国防科技大学 | 一种基于多任务深度学习的图像语义分割方法 |
-
2022
- 2022-04-21 CN CN202210427559.7A patent/CN114926635B/zh active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102254198B1 (ko) * | 2020-03-03 | 2021-05-20 | 인천대학교 산학협력단 | 다중 초점 이미지 융합 방법 |
| CN112529791A (zh) * | 2020-11-16 | 2021-03-19 | 中国海洋大学 | 基于浮游生物数字全息图像的自适应性多焦点复原方法 |
| CN112950645A (zh) * | 2021-03-24 | 2021-06-11 | 中国人民解放军国防科技大学 | 一种基于多任务深度学习的图像语义分割方法 |
Non-Patent Citations (1)
| Title |
|---|
| 青晨等: "深度卷积神经网络图像语义分割研究进展", 《中国图象图形学报》, no. 06, 16 June 2020 (2020-06-16), pages 1070 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115578734A (zh) * | 2022-09-23 | 2023-01-06 | 神州数码系统集成服务有限公司 | 一种基于金字塔特征的单一字符图像匹配识别方法 |
| CN119863370A (zh) * | 2025-03-24 | 2025-04-22 | 西安高商智能科技有限责任公司 | 用于红外成像目标模拟系统的成像焦距校正方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114926635B (zh) | 2024-06-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Khan et al. | An efficient contour based fine-grained algorithm for multi category object detection | |
| CN115731257B (zh) | 基于图像的叶片形态信息提取方法 | |
| JP6710135B2 (ja) | 細胞画像の自動分析方法及びシステム | |
| CN104751187B (zh) | 抄表图像自动识别方法 | |
| CN113240623B (zh) | 一种路面病害检测方法及装置 | |
| CN104156693B (zh) | 一种基于多模态序列融合的动作识别方法 | |
| CN111461039B (zh) | 基于多尺度特征融合的地标识别方法 | |
| CN103093201B (zh) | 车标定位识别方法及系统 | |
| CN105261017A (zh) | 基于路面约束的图像分割法提取行人感兴趣区域的方法 | |
| CN111145209A (zh) | 一种医学图像分割方法、装置、设备及存储介质 | |
| Türkyılmaz et al. | License plate recognition system using artificial neural networks | |
| CN106650553A (zh) | 车牌识别方法及系统 | |
| Thalji et al. | Iris Recognition using robust algorithm for eyelid, eyelash and shadow avoiding | |
| CN101859382A (zh) | 一种基于最大稳定极值区域的车牌检测与识别的方法 | |
| CN111695373B (zh) | 斑马线的定位方法、系统、介质及设备 | |
| CN107730515A (zh) | 基于区域增长和眼动模型的全景图像显著性检测方法 | |
| CN106127735B (zh) | 一种设施蔬菜边缘清晰类叶面病斑分割方法及装置 | |
| Wang et al. | Nucleus segmentation of cervical cytology images based on depth information | |
| Wazalwar et al. | A design flow for robust license plate localization and recognition in complex scenes | |
| CN104299009A (zh) | 基于多特征融合的车牌字符识别方法 | |
| CN113763404B (zh) | 基于优化标记和边缘约束分水岭算法的泡沫图像分割方法 | |
| CN110458019B (zh) | 稀缺认知样本条件下的排除倒影干扰的水面目标检测方法 | |
| CN106446925A (zh) | 一种基于图像处理的海豚身份识别的方法 | |
| CN110176020A (zh) | 一种融合2d和3d图像的燕窝杂质分拣方法 | |
| WO2022061922A1 (zh) | 材料微结构的分析方法和装置 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20241223 Address after: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province Patentee after: Shenzhen Wanzhida Technology Co.,Ltd. Country or region after: China Address before: 100124 No. 100 Chaoyang District Ping Tian Park, Beijing Patentee before: Beijing University of Technology Country or region before: China |
|
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20250627 Address after: 518107 Guangdong Province, Shenzhen City, Guangming District, Gongming Street, Xiaocun Community, First Industrial Zone, Building A No. 5, 101st Floor Patentee after: Shenzhen Haofeng Precision Products Co.,Ltd. Country or region after: China Address before: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province Patentee before: Shenzhen Wanzhida Technology Co.,Ltd. Country or region before: China |
|
| TR01 | Transfer of patent right |