CN114366037A - Spectral diagnostic system for intraoperative guidance of brain cancer and its working method - Google Patents
Spectral diagnostic system for intraoperative guidance of brain cancer and its working method Download PDFInfo
- Publication number
- CN114366037A CN114366037A CN202210140944.3A CN202210140944A CN114366037A CN 114366037 A CN114366037 A CN 114366037A CN 202210140944 A CN202210140944 A CN 202210140944A CN 114366037 A CN114366037 A CN 114366037A
- Authority
- CN
- China
- Prior art keywords
- data
- warning
- light source
- intraoperative
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003595 spectral effect Effects 0.000 title claims abstract description 34
- 208000003174 Brain Neoplasms Diseases 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 12
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 54
- 238000003745 diagnosis Methods 0.000 claims abstract description 35
- 238000012545 processing Methods 0.000 claims abstract description 24
- 239000000523 sample Substances 0.000 claims abstract description 17
- 238000001228 spectrum Methods 0.000 claims abstract description 12
- 230000005284 excitation Effects 0.000 claims description 39
- 230000003902 lesion Effects 0.000 claims description 32
- 230000003287 optical effect Effects 0.000 claims description 22
- 238000002189 fluorescence spectrum Methods 0.000 claims description 13
- 239000000835 fiber Substances 0.000 claims description 12
- 239000013307 optical fiber Substances 0.000 claims description 9
- 238000010801 machine learning Methods 0.000 claims description 8
- 238000000985 reflectance spectrum Methods 0.000 claims description 6
- 238000013135 deep learning Methods 0.000 claims description 5
- 238000011161 development Methods 0.000 claims description 5
- 230000010354 integration Effects 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000013145 classification model Methods 0.000 claims description 3
- 238000012549 training Methods 0.000 claims description 3
- 210000005013 brain tissue Anatomy 0.000 abstract description 10
- 238000001727 in vivo Methods 0.000 abstract description 10
- 238000001514 detection method Methods 0.000 abstract description 9
- 231100000915 pathological change Toxicity 0.000 abstract 1
- 230000036285 pathological change Effects 0.000 abstract 1
- 206010018338 Glioma Diseases 0.000 description 7
- 208000032612 Glial tumor Diseases 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 208000035346 Margins of Excision Diseases 0.000 description 2
- 208000005017 glioblastoma Diseases 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000029824 high grade glioma Diseases 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 201000011614 malignant glioma Diseases 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0075—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
技术领域technical field
本发明涉及光电检测的技术领域,尤其涉及一种用于脑癌术中引导的光谱诊断系统,以及这种用于脑癌术中引导的光谱诊断系统的工作方法。The present invention relates to the technical field of photoelectric detection, in particular to a spectral diagnosis system used for intraoperative guidance of brain cancer, and a working method of the spectral diagnosis system used for intraoperative guidance of brain cancer.
背景技术Background technique
脑胶质瘤是一种临床中十分常见的脑肿瘤,其特点是:1)胶质瘤没有明确的肿瘤边界;2)胶质瘤具有很强的渗透性,恶性胶质瘤会渗透进周围的正常组织;3)胶质瘤的生长速度十分快,其生存期约为12-15个月。根据世界卫生组织的胶质瘤分级标准,可以将胶质瘤分为四个级别,其中恶性胶质母细胞瘤(GBM)具有很高的渗透性和生长速度,需要尽快切除或治疗,以延长患者的生存期。在颅内外科手术中,外科医生为了保证最大化切缘,只能凭借经验和术前医学影像,并结合术中冰冻切片的结果来决定对于肿瘤切缘的范围。传统的冰冻切片比较耗时,还可能存在取样误差。外科医生急需一种具备以下特点的术中诊断方法:1)诊断设备需要实现术中对脑组织的快速检测,能够实时或者接近实时给出正常及病变的诊断结果;2)诊断设备尤其是设备的检测探头能够小型化,使得检测探头能轻易达到手术区域,满足术中在体诊断需求;3)在体使用时,对脑组织没有损伤。Glioma is a very common clinical brain tumor, which is characterized by: 1) glioma has no clear tumor boundary; 2) glioma has strong permeability, and malignant glioma will penetrate into the surrounding 3) The growth rate of glioma is very fast, and its survival period is about 12-15 months. According to the World Health Organization's glioma grading standards, gliomas can be divided into four grades, among which glioblastoma (GBM) has high permeability and growth rate and needs to be removed or treated as soon as possible to prolong the patient survival. In intracranial surgery, in order to maximize the resection margin, the surgeon can only decide the extent of the tumor resection margin based on experience and preoperative medical images, combined with the results of intraoperative frozen section. Traditional frozen sections are time-consuming and may have sampling errors. Surgeons urgently need an intraoperative diagnosis method with the following characteristics: 1) The diagnostic equipment needs to realize the rapid detection of brain tissue during the operation, and can give the diagnosis results of normal and lesions in real time or near real time; 2) The diagnostic equipment, especially the equipment The detection probe can be miniaturized, so that the detection probe can easily reach the surgical area and meet the needs of intraoperative in vivo diagnosis; 3) When used in vivo, there is no damage to the brain tissue.
发明内容SUMMARY OF THE INVENTION
为克服现有技术的缺陷,本发明要解决的技术问题是提供了一种用于脑癌术中引导的光谱诊断系统,其能够实时或者接近实时给出正常及病变的诊断结果,检测探头能轻易达到手术区域而满足术中在体诊断需求,在体使用时对脑组织没有损伤。In order to overcome the defects of the prior art, the technical problem to be solved by the present invention is to provide a spectral diagnosis system for intraoperative guidance of brain cancer, which can provide the diagnosis results of normal and lesions in real time or near real time, and the detection probe can It can easily reach the surgical area to meet the needs of intraoperative in vivo diagnosis, and there is no damage to brain tissue when used in vivo.
本发明的技术方案是:这种用于脑癌术中引导的光谱诊断系统,其包括:The technical scheme of the present invention is: this kind of spectral diagnosis system for brain cancer intraoperative guidance, which comprises:
激发光源单元、光谱采集单元、控制单元、数据处理单元、术中警示单元;Excitation light source unit, spectrum acquisition unit, control unit, data processing unit, intraoperative warning unit;
控制单元控制激光光源单元与光谱采集单元协同工作采集光谱数据,数据处理单元与术中预警单元相结合为术中外科医生做出肿瘤级别预警;数据处理单元与控制单元和术中警示单元相连接,控制单元将光谱数据输入到数据处理单元中,数据处理单元对数据进行分析后,将结果输出到术中警示单元;The control unit controls the laser light source unit and the spectral acquisition unit to work together to collect spectral data, and the data processing unit is combined with the intraoperative early warning unit to make tumor grade early warning for the intraoperative surgeon; the data processing unit is connected with the control unit and the intraoperative warning unit , the control unit inputs the spectral data into the data processing unit, and after the data processing unit analyzes the data, the result is output to the intraoperative warning unit;
数据处理单元包括深度学习开发板(5),其通过蒙特卡洛的反演运算分别从3组漫反射光谱数据中计算出3组不同光源-探测器距离的织光学参数;将3组组织光学参数与3组相同光源-探测器距离的内源性荧光光谱数据输入到荧光定量算法中得到3组荧光定量数据;The data processing unit includes a deep learning development board (5), which calculates three groups of tissue optical parameters with different light source-detector distances from the three groups of diffuse reflectance spectral data respectively through Monte Carlo inversion operation; The parameters and the endogenous fluorescence spectrum data with the same light source-detector distance of the three groups are input into the fluorescence quantitative algorithm to obtain three groups of fluorescence quantitative data;
分别将3组组织光学参数和3组荧光定量数据输入多层感知机模型得到肿瘤分级预测,多层感知机模型可以将数据集分级为高级别肿瘤、低级别肿瘤、正常组织;数据处理单元每次执行将得到3组组织光学参数和3组荧光定量数据的预测结果。The three groups of tissue optical parameters and three groups of fluorescence quantitative data are respectively input into the multilayer perceptron model to obtain tumor grade prediction. The multilayer perceptron model can classify the data set into high-grade tumors, low-grade tumors, and normal tissues; The second execution will get the prediction results of 3 sets of tissue optical parameters and 3 sets of fluorescence quantitative data.
本发明能够将漫反射光谱与内源性荧光光谱相结合,探测目标病灶的组织光学特性和内源性荧光信息,使用机器学习算法对目标病灶进行肿瘤分级,从而能够实时或者接近实时给出正常及病变的诊断结果,检测探头能轻易达到手术区域而满足术中在体诊断需求,在体使用时对脑组织没有损伤。The invention can combine the diffuse reflection spectrum with the endogenous fluorescence spectrum, detect the tissue optical characteristics and endogenous fluorescence information of the target lesion, and use the machine learning algorithm to grade the tumor of the target lesion, so that the normal or near real time can be given. And the diagnosis results of lesions, the detection probe can easily reach the surgical area to meet the needs of intraoperative in vivo diagnosis, and there is no damage to brain tissue when used in vivo.
还提供了一种用于脑癌术中引导的光谱诊断系统的工作方法,其包括以下步骤:Also provided is a working method of a spectroscopic diagnostic system for intraoperative guidance of brain cancer, which includes the following steps:
(1)数据采集:将多模光纤与光谱仪、激发光源相连接,使用USB控制器将光谱仪、激发光源与计算机相连接。将多模光纤探头对准目标病灶,使用基于LabVIEW系统的数据采集软件进行漫反射光谱和内源性荧光光谱的采集;(1) Data acquisition: Connect the multimode fiber to the spectrometer and the excitation light source, and use the USB controller to connect the spectrometer, the excitation light source and the computer. The multimode fiber probe was aimed at the target lesion, and the data acquisition software based on LabVIEW system was used to collect the diffuse reflectance spectrum and endogenous fluorescence spectrum;
(2)计算组织光学参数和荧光定量数据:利用步骤(1)得到的漫反射光谱数据,提取出目标病灶的组织光学参数,利用步骤(1)得到的内源性荧光的光谱数据,进行荧光定量运算得到荧光定量数据;(2) Calculation of tissue optical parameters and fluorescence quantitative data: using the diffuse reflectance spectral data obtained in step (1), the tissue optical parameters of the target lesion are extracted, and the endogenous fluorescence spectral data obtained in step (1) is used to perform fluorescence. Quantitative operation to obtain fluorescence quantitative data;
(3)机器学习模型训练:利用步骤(2)得到的组织光学参数和荧光定量数据作为数据集,将数据集输入机器学习模型进行模型的训练,确定分类模型的最优阈值,将目标病灶分为以下三级别:正常组织、低级别肿瘤、高级别肿瘤;(3) Machine learning model training: using the tissue optical parameters and fluorescence quantitative data obtained in step (2) as a data set, input the data set into the machine learning model to train the model, determine the optimal threshold of the classification model, and classify the target lesions into The following three grades are: normal tissue, low-grade tumor, and high-grade tumor;
(4)系统根据步骤(3)得到的目标病灶的级别,对术中的临床外科医生做出警示性提示。(4) The system makes a warning prompt to the clinical surgeon during the operation according to the grade of the target lesion obtained in step (3).
附图说明Description of drawings
图1示出了根据本发明的用于脑癌术中引导的光谱诊断系统的结构示意图。FIG. 1 shows a schematic structural diagram of a spectroscopic diagnosis system for intraoperative guidance of brain cancer according to the present invention.
图2示出了根据本发明的用于脑癌术中引导的光谱诊断系统的激发光源与光谱仪的主视图。FIG. 2 shows the front view of the excitation light source and the spectrometer of the spectroscopic diagnosis system for intraoperative guidance of brain cancer according to the present invention.
图3示出了根据本发明的用于脑癌术中引导的光谱诊断系统的激发光源与光谱仪的纵向截面剖视图。FIG. 3 shows a longitudinal cross-sectional view of the excitation light source and the spectrometer of the spectroscopic diagnosis system for intraoperative guidance of brain cancer according to the present invention.
图4示出了根据本发明的用于脑癌术中引导的光谱诊断系统的多模光纤探头的示例图。FIG. 4 shows an example diagram of a multimode fiber optic probe for a brain cancer intraoperative guided spectroscopic diagnosis system according to the present invention.
图5示出了根据本发明的用于脑癌术中引导的光谱诊断系统的控制单元界面的示例图。FIG. 5 shows an example diagram of a control unit interface of a spectroscopic diagnosis system for brain cancer intraoperative guidance according to the present invention.
图6示出了根据本发明的用于脑癌术中引导的光谱诊断系统的术中警示界面的示意图。FIG. 6 shows a schematic diagram of an intraoperative warning interface of the spectral diagnosis system for brain cancer intraoperative guidance according to the present invention.
图7示出了根据本发明的用于脑癌术中引导的光谱诊断系统的光谱数据分析的流程图。FIG. 7 shows a flow chart of spectral data analysis for the intraoperative guided spectral diagnosis system for brain cancer according to the present invention.
图8示出了根据本发明的用于脑癌术中引导的光谱诊断系统在术中引导脑癌手术诊断的示意图。FIG. 8 shows a schematic diagram of the intraoperative guidance of the spectroscopic diagnosis system for brain cancer intraoperative guidance according to the present invention in guiding brain cancer surgery diagnosis.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to make those skilled in the art better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only Embodiments are part of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“包括”以及任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、装置、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其他步骤或单元。It should be noted that the term "comprising" and any modification in the description and claims of the present invention and the above drawings are intended to cover non-exclusive inclusion, for example, a process, method, device including a series of steps or units , products or devices are not necessarily limited to those steps or units expressly listed, but may include other steps or units not expressly listed or inherent to these processes, methods, products or devices.
如图1-6所示,这种用于脑癌术中引导的光谱诊断系统,其包括:As shown in Figures 1-6, this spectroscopic diagnosis system for brain cancer intraoperative guidance includes:
激发光源单元、光谱采集单元、控制单元、数据处理单元、术中警示单元;Excitation light source unit, spectrum acquisition unit, control unit, data processing unit, intraoperative warning unit;
控制单元控制激光光源单元与光谱采集单元协同工作采集光谱数据,数据处理单元与术中预警单元相结合为术中外科医生做出肿瘤级别预警;数据处理单元与控制单元和术中警示单元相连接,控制单元将光谱数据输入到数据处理单元中,数据处理单元对数据进行分析后,将结果输出到术中警示单元;The control unit controls the laser light source unit and the spectral acquisition unit to work together to collect spectral data, and the data processing unit is combined with the intraoperative early warning unit to make tumor grade early warning for the intraoperative surgeon; the data processing unit is connected with the control unit and the intraoperative warning unit , the control unit inputs the spectral data into the data processing unit, and after the data processing unit analyzes the data, the result is output to the intraoperative warning unit;
数据处理单元包括深度学习开发板5,其通过蒙特卡洛的反演运算分别从3组漫反射光谱数据中计算出3组不同光源-探测器距离的织光学参数;将3组组织光学参数与3组相同光源-探测器距离的内源性荧光光谱数据输入到荧光定量算法中得到3组荧光定量数据;分别将3组组织光学参数和3组荧光定量数据输入多层感知机模型得到肿瘤分级预测,多层感知机模型可以将数据集分级为高级别肿瘤、低级别肿瘤、正常组织;数据处理单元每次执行将得到3组组织光学参数和3组荧光定量数据的预测结果。The data processing unit includes a deep
本发明能够将漫反射光谱与内源性荧光光谱相结合,探测目标病灶的组织光学特性和内源性荧光信息,使用机器学习算法对目标病灶进行肿瘤分级,从而能够实时或者接近实时给出正常及病变的诊断结果,检测探头能轻易达到手术区域而满足术中在体诊断需求,在体使用时对脑组织没有损伤。The invention can combine the diffuse reflection spectrum with the endogenous fluorescence spectrum, detect the tissue optical characteristics and endogenous fluorescence information of the target lesion, and use the machine learning algorithm to grade the tumor of the target lesion, so that the normal or near real time can be given. And the diagnosis results of lesions, the detection probe can easily reach the surgical area to meet the needs of intraoperative in vivo diagnosis, and there is no damage to brain tissue when used in vivo.
优选地,所述激发光源单元包括:3个波长范围为300-1000nm的白光LED光源14、15、16、3个405nm紫光LED光源11、12、13、LED控制器17、激发光源面板1;LED控制器17通过数据线连接激发光源面板1,控制LED的开关、输入电流、激发时间。Preferably, the excitation light source unit comprises: 3 white
优选地,所述光谱采集单元包括:多模光纤3、光纤探头38、光谱仪2;光纤探头38的总通道数为7个,呈“一”字型排布,光纤的芯径为200μm,相邻两根光纤的中心距均为240μm;其中第一通道34连接光谱仪,第二通道35、36、37连接激发光源单元中的3个白光LED光源14、15、16,第三通道31、32、33连接激发光源单元中的3个405nm紫光LED光源11、12、13;每次采集获得3个不同光源-探测器距离的漫反射光谱数据和内源性荧光光谱数据,不同光源-探测器距离的数据具有目标病灶不同深度的组织光学信息和内源性荧光信息。Preferably, the spectrum acquisition unit includes: a multimode
优选地,所述控制单元包括:计算机4、USB控制器41和基于LabVIEW系统的数据采集单元42;使用USB控制器41将计算机4与LED控制器17、光谱仪2相连接,使用基于LabVIEW系统的数据采集单元42控制系统的开关和系统参数,系统参数包括:光源的激发顺序、光源的激发时间、光谱仪的积分时间。Preferably, the control unit includes: a
优选地,所述的术中警示单元包括:显示器6、显示界面60、警示蜂鸣器63。显示界面的内容包括:肿瘤级别预测图示61、警示灯62、漫反射光谱曲线图64、荧光光谱曲线图65;其中,Preferably, the intraoperative warning unit includes: a
当预测结果中有一组以上的预测结果为高级别肿瘤,则预测目标病灶为高级别肿瘤,警示蜂鸣器63发出高频警鸣声警示术中外科医生,肿瘤预警图示61中的箭头指向高级别肿瘤区域,警示灯62中的高级别肿瘤警示灯点亮;When more than one group of prediction results are high-grade tumors, the predicted target lesions are high-grade tumors, and the
当预测结果中有一个以上的预测结果为低级别肿瘤,则预测目标病灶为低级别肿瘤,警示蜂鸣器63发出高频警鸣声警示术中外科医生,肿瘤预警图示61中的箭头指向低级别肿瘤区域,警示灯62中的低级别肿瘤警示灯点亮;When more than one prediction result is a low-grade tumor, the predicted target lesion is a low-grade tumor, and the
当预测目标病灶为正常组织,肿瘤预警图示61中的箭头指向正常组织区域,警示灯62中的正常组织警示灯点亮。When the predicted target lesion is normal tissue, the arrow in the
如图7所示,还提供了一种用于脑癌术中引导的光谱诊断系统的工作方法,其包括以下步骤:As shown in FIG. 7 , a working method of a spectroscopic diagnosis system for intraoperative guidance of brain cancer is also provided, which includes the following steps:
(1)数据采集:将多模光纤与光谱仪、激发光源相连接,使用USB控制器将光谱仪、激发光源与计算机相连接。将多模光纤探头对准目标病灶,使用基于LabVIEW系统的数据采集软件进行漫反射光谱和内源性荧光光谱的采集;(1) Data acquisition: Connect the multimode fiber to the spectrometer and the excitation light source, and use the USB controller to connect the spectrometer, the excitation light source and the computer. The multimode fiber probe was aimed at the target lesion, and the data acquisition software based on LabVIEW system was used to collect the diffuse reflectance spectrum and endogenous fluorescence spectrum;
(2)计算组织光学参数和荧光定量数据:利用步骤(1)得到的漫反射光谱数据,提取出目标病灶的组织光学参数,利用步骤(1)得到的内源性荧光的光谱数据,进行荧光定量运算得到荧光定量数据;(2) Calculation of tissue optical parameters and fluorescence quantitative data: using the diffuse reflectance spectral data obtained in step (1), the tissue optical parameters of the target lesion are extracted, and the endogenous fluorescence spectral data obtained in step (1) is used to perform fluorescence. Quantitative operation to obtain fluorescence quantitative data;
(3)机器学习模型训练:利用步骤(2)得到的组织光学参数和荧光定量数据作为数据集,将数据集输入机器学习模型进行模型的训练,确定分类模型的最优阈值,将目标病灶分为以下三级别:正常组织、低级别肿瘤、高级别肿瘤;(3) Machine learning model training: using the tissue optical parameters and fluorescence quantitative data obtained in step (2) as a data set, input the data set into the machine learning model to train the model, determine the optimal threshold of the classification model, and classify the target lesions into The following three grades are: normal tissue, low-grade tumor, and high-grade tumor;
(4)系统根据步骤(3)得到的目标病灶的级别,对术中的临床外科医生做出警示性提示。(4) The system makes a warning prompt to the clinical surgeon during the operation according to the grade of the target lesion obtained in step (3).
以下详细说明本发明的具体实施例。Specific embodiments of the present invention will be described in detail below.
实施例1:诊断出脑组织为高级别肿瘤Example 1: Diagnosis of brain tissue as a high-grade tumor
如图8所示,本发明的工作流程为:As shown in Figure 8, the workflow of the present invention is:
(1)将多模光纤3与激发光源1、光谱仪2相连接,使用USB控制器41,将计算机4与激发光源1、光谱仪2相连接,控制激发光源1与光谱仪2协同工作,连接计算机4、深度学习开发板5、显示器6。(1) Connect the
(2)将多模光纤探头38紧贴想要测试的病灶7;(2) sticking the
(3)在控制单元界面(图5)设置激发光源激发顺序为channel01、channel02、channel03、channel04、channel05、channel06,激发时间均设置为200ms,光谱仪的积分时间为100ms,点击“开始采集”。(3) On the control unit interface (Figure 5), set the excitation sequence of the excitation light source to channel01, channel02, channel03, channel04, channel05, and channel06, the excitation time is set to 200ms, and the integration time of the spectrometer is 100ms, click "Start Acquisition".
(4)在术中警示单元中,可以看到该部位脑组织的漫反射光谱和荧光光谱的光谱曲线。术中警示单元将该部位病灶7预测分类为高级别肿瘤,肿瘤级别预测图示61将指向高级别肿瘤区域,警示灯62中的高级别肿瘤警示灯点亮,警示蜂鸣器63将发出高频蜂鸣声,以警示外科医生。(4) In the intraoperative warning unit, the spectral curves of the diffuse reflectance spectrum and the fluorescence spectrum of the brain tissue of this part can be seen. The intraoperative warning unit predicts and classifies the
实施例2:诊断出脑组织为正常组织Example 2: Diagnosis of brain tissue as normal tissue
如图8所示,本发明的工作流程为:As shown in Figure 8, the workflow of the present invention is:
(1)将多模光纤3与激发光源1、光谱仪2相连接,使用USB控制器41,将计算机4与激发光源1、光谱仪2相连接,控制激发光源1与光谱仪2协同工作,连接计算机4、深度学习开发板5、显示器6。(1) Connect the
(2)将多模光纤探头38紧贴想要测试的病灶7;(2) sticking the
(3)在控制单元界面(图5)设置激发光源激发顺序为channel01、channel02、channel03、channel04、channel05、channel06,激发时间均设置为200ms,光谱仪的积分时间为100ms,点击“开始采集”。(3) On the control unit interface (Figure 5), set the excitation sequence of the excitation light source to channel01, channel02, channel03, channel04, channel05, and channel06, the excitation time is set to 200ms, and the integration time of the spectrometer is 100ms, click "Start Acquisition".
(4)在术中警示单元中,可以看到该部位脑组织的漫反射光谱和荧光光谱的光谱曲线。术中警示单元将该部位病灶7预测分类为正常组织,肿瘤级别预测图示61将指向正常组织区域,警示灯62中的正常组织警示灯点亮。(4) In the intraoperative warning unit, the spectral curves of the diffuse reflectance spectrum and the fluorescence spectrum of the brain tissue of this part can be seen. The intraoperative warning unit predicts and classifies the
以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属本发明技术方案的保护范围。The above are only preferred embodiments of the present invention, and do not limit the present invention in any form. Any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention still belong to the present invention The protection scope of the technical solution of the invention.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210140944.3A CN114366037B (en) | 2022-02-16 | 2022-02-16 | Spectral diagnosis system for guiding in brain cancer operation and working method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210140944.3A CN114366037B (en) | 2022-02-16 | 2022-02-16 | Spectral diagnosis system for guiding in brain cancer operation and working method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114366037A true CN114366037A (en) | 2022-04-19 |
| CN114366037B CN114366037B (en) | 2023-11-24 |
Family
ID=81146563
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210140944.3A Active CN114366037B (en) | 2022-02-16 | 2022-02-16 | Spectral diagnosis system for guiding in brain cancer operation and working method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114366037B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024196329A1 (en) * | 2023-03-17 | 2024-09-26 | Bogazici Universitesi | Tumor marking and laser-induced breakdown spectroscopy (libs) feedback-based laser system for tumor recognition and destruction in oncological surgeries |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6377841B1 (en) * | 2000-03-31 | 2002-04-23 | Vanderbilt University | Tumor demarcation using optical spectroscopy |
| CN1474175A (en) * | 2002-04-15 | 2004-02-11 | 鹰 黄 | Super fine optical spectram imaging instrument or system |
| CN1890557A (en) * | 2003-11-28 | 2007-01-03 | Bc肿瘤研究所 | Multimodal detection of tissue abnormalities based on raman and background fluorescence spectroscopy |
| CN101137322A (en) * | 2005-01-21 | 2008-03-05 | 博世创医疗公司 | Method and apparatus for measuring cancerous changes from reflectance spectral measurements obtained during endoscopic imaging |
| US20130006116A1 (en) * | 2010-01-25 | 2013-01-03 | University Health Network | System and method for sub-surface fluorescence imaging |
| CN103163111A (en) * | 2013-02-25 | 2013-06-19 | 天津大学 | Early stage cervical carcinoma detection system integrating fluorescent mesoscope imaging and optical coherence tomography (OCT) |
| CN110470646A (en) * | 2019-08-23 | 2019-11-19 | 成都大象分形智能科技有限公司 | Tumor tissues identifying system based on artificial intelligence and Raman spectrum |
| CN110897593A (en) * | 2019-10-24 | 2020-03-24 | 南京航空航天大学 | Cervical cancer pre-lesion diagnosis method based on spectral characteristic parameters |
| CN111398250A (en) * | 2020-03-02 | 2020-07-10 | 北京理工大学 | Tumor diagnosis method based on molecular fragment spectrum generated by interaction of light and substance |
| CN111624191A (en) * | 2020-03-02 | 2020-09-04 | 北京理工大学 | Off-body universal brain tumor biopsy and boundary determining device |
| CN113648547A (en) * | 2021-09-01 | 2021-11-16 | 北京理工大学 | Photodynamic accurate diagnosis and treatment device under guidance of multimode image and working method thereof |
-
2022
- 2022-02-16 CN CN202210140944.3A patent/CN114366037B/en active Active
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6377841B1 (en) * | 2000-03-31 | 2002-04-23 | Vanderbilt University | Tumor demarcation using optical spectroscopy |
| CN1474175A (en) * | 2002-04-15 | 2004-02-11 | 鹰 黄 | Super fine optical spectram imaging instrument or system |
| CN1890557A (en) * | 2003-11-28 | 2007-01-03 | Bc肿瘤研究所 | Multimodal detection of tissue abnormalities based on raman and background fluorescence spectroscopy |
| CN101137322A (en) * | 2005-01-21 | 2008-03-05 | 博世创医疗公司 | Method and apparatus for measuring cancerous changes from reflectance spectral measurements obtained during endoscopic imaging |
| US20130006116A1 (en) * | 2010-01-25 | 2013-01-03 | University Health Network | System and method for sub-surface fluorescence imaging |
| CN103163111A (en) * | 2013-02-25 | 2013-06-19 | 天津大学 | Early stage cervical carcinoma detection system integrating fluorescent mesoscope imaging and optical coherence tomography (OCT) |
| CN110470646A (en) * | 2019-08-23 | 2019-11-19 | 成都大象分形智能科技有限公司 | Tumor tissues identifying system based on artificial intelligence and Raman spectrum |
| CN110897593A (en) * | 2019-10-24 | 2020-03-24 | 南京航空航天大学 | Cervical cancer pre-lesion diagnosis method based on spectral characteristic parameters |
| CN111398250A (en) * | 2020-03-02 | 2020-07-10 | 北京理工大学 | Tumor diagnosis method based on molecular fragment spectrum generated by interaction of light and substance |
| CN111624191A (en) * | 2020-03-02 | 2020-09-04 | 北京理工大学 | Off-body universal brain tumor biopsy and boundary determining device |
| CN113648547A (en) * | 2021-09-01 | 2021-11-16 | 北京理工大学 | Photodynamic accurate diagnosis and treatment device under guidance of multimode image and working method thereof |
Non-Patent Citations (1)
| Title |
|---|
| 傅楚华;陈图南;李钊;王海峰;黄立贤;谭亮;张大勇;冯华;李飞;: "漫反射光谱在体检测裸鼠胶质瘤", 中国微侵袭神经外科杂志, no. 09, pages 415 - 418 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024196329A1 (en) * | 2023-03-17 | 2024-09-26 | Bogazici Universitesi | Tumor marking and laser-induced breakdown spectroscopy (libs) feedback-based laser system for tumor recognition and destruction in oncological surgeries |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114366037B (en) | 2023-11-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8649849B2 (en) | Optical methods to intraoperatively detect positive prostate and kidney cancer margins | |
| CN105997000B (en) | A fiberscope-based Raman spectroscopy detection device and its implementation method | |
| EP2814375B1 (en) | Photonic probe apparatus with integrated tissue marking facility | |
| JP6159743B2 (en) | Instrument for determining tissue characteristics | |
| JP4602765B2 (en) | Near-infrared spectroscopic analysis of blood vessel walls | |
| US20140140594A1 (en) | Methods and systems for three-dimensional real-time intraoperative surgical margin evaluation of tumor tissues | |
| CN1870929A (en) | Automated endoscopy device, diagnostic method, and uses | |
| CN103282765B (en) | Device for optical analysis of associated tissue | |
| JP2015516847A (en) | Detection of atherosclerotic plaque | |
| CN106420041A (en) | High frequency electric operating knife with fiber probe | |
| US9498136B2 (en) | Classification of tumor tissue with a personalized threshold | |
| US20120101391A1 (en) | Blood vessel wall analyzing device and blood vessel wall analyzing method | |
| CN204909631U (en) | High frequency operation electrotome with optical fiber probe | |
| Aaboubout et al. | Intraoperative assessment of resection margins by Raman spectroscopy to guide oral cancer surgery | |
| CN114366037B (en) | Spectral diagnosis system for guiding in brain cancer operation and working method thereof | |
| EP2490586B1 (en) | System for noninvasive tissue examination | |
| CN106691549A (en) | Puncture biopsy needle with optical fiber probes | |
| CN103648424B (en) | Energy applies planning apparatus | |
| CN112004464A (en) | Tumor margin assessment | |
| RU2709830C1 (en) | Device for fluorescent-reflective spectroscopy for diagnosing focal and diffuse new growths in a fine-needle puncture-aspiration biopsy | |
| Potapova et al. | Optical percutaneous needle biopsy in oncology | |
| US9913628B2 (en) | System and method for attaching a biopsy collecting device to a spectroscopy system | |
| JP2023543756A (en) | optical spectroscopy system | |
| Liu | Development of a Hybrid Optical Biopsy Probe to Improve Prostate Cancer Diagnosis | |
| Evers | Optical sensing for tissue differentiation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |