[go: up one dir, main page]

CN103983355A - Compressed spectrum imaging system and method based on panchromatic imaging - Google Patents

Compressed spectrum imaging system and method based on panchromatic imaging Download PDF

Info

Publication number
CN103983355A
CN103983355A CN201410228328.9A CN201410228328A CN103983355A CN 103983355 A CN103983355 A CN 103983355A CN 201410228328 A CN201410228328 A CN 201410228328A CN 103983355 A CN103983355 A CN 103983355A
Authority
CN
China
Prior art keywords
spectral
image
observation
information
panchromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410228328.9A
Other languages
Chinese (zh)
Other versions
CN103983355B (en
Inventor
石光明
李超
高大化
刘丹华
邓健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201410228328.9A priority Critical patent/CN103983355B/en
Publication of CN103983355A publication Critical patent/CN103983355A/en
Application granted granted Critical
Publication of CN103983355B publication Critical patent/CN103983355B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

本发明公开了一种基于全色成像的压缩光谱成像系统及成像方法,主要是解决现有压缩光谱成像技术中光谱图像信息利用率低,光谱图像分辨率不高的问题。其成像系统包括分束器模块(1)、压缩光谱观测模块(2)、全色观测模块(3)和图像重构处理模块(4)。被采集光谱图像的入射光束经分束器模块(1)分成信息相同、方向不同的两路光束,一路经过压缩光谱观测模块(2)实现光谱图像的压缩编码观测,另一路经过全色观测模块(3)实现光谱图像的全色观测;图像重构处理模块(4)将这两个模块的输出结果进行联立融合后完成光谱图像的重构。本发明具有光谱信息利用率高,获取光谱图像分辨率高的优点,可用于光谱图像的获取和重构。

The invention discloses a compressed spectral imaging system and imaging method based on panchromatic imaging, which mainly solves the problems of low spectral image information utilization rate and low spectral image resolution in the existing compressed spectral imaging technology. Its imaging system includes a beam splitter module (1), a compressed spectrum observation module (2), a panchromatic observation module (3) and an image reconstruction processing module (4). The incident beam of the collected spectral image is divided into two beams with the same information and different directions by the beam splitter module (1), one of which passes through the compressed spectral observation module (2) to realize the compressed and coded observation of the spectral image, and the other passes through the panchromatic observation module (3) Realize the panchromatic observation of the spectral image; the image reconstruction processing module (4) perform simultaneous fusion of the output results of these two modules to complete the reconstruction of the spectral image. The invention has the advantages of high utilization rate of spectral information and high resolution of acquired spectral images, and can be used for acquisition and reconstruction of spectral images.

Description

基于全色成像的压缩光谱成像系统及成像方法Compressed Spectral Imaging System and Imaging Method Based on Panchromatic Imaging

技术领域technical field

本发明属于图像处理技术领域,特别涉及一种压缩光谱的成像技术,可用于光谱图像的获取和重构,提高图像的空间分辨率。The invention belongs to the technical field of image processing, and in particular relates to an imaging technology of compressed spectrum, which can be used for the acquisition and reconstruction of spectral images and improve the spatial resolution of images.

背景技术Background technique

通过光谱成像,可捕获光的功率谱密度,这个功率谱密度是波长λ和空间位置(x,y)的函数。也就是说,光谱图像由相同视场下不同谱段的图像组成,其包含空间维信息和光谱维信息,而传统成像只包含空间维信息。光谱图像空间位置的光谱维信息对于表明场景中被观测物体的组成及结构有重大意义。促使光谱成像技术在地理遥感,大气环境监测,军事目标侦察、监视,气象观测,灾害预防等领域广泛应用。科研人员也一直致力于研究各种光谱成像系统和成像方法,但现有技术依然存在许多的问题,主要表现为:传统光谱成像的空间分辨率取决于探测器阵列密度,为提高空间分辨率而增加探测器阵列密度的代价是非常巨大的,且时间、空间、谱间的高分辨率往往难以同时兼得。如何利用现有的探测器来获得更高分辨率的光谱图像,是一个亟待解决的问题。With spectral imaging, the power spectral density of light is captured as a function of wavelength λ and spatial position (x,y). That is to say, the spectral image is composed of images of different spectral bands under the same field of view, which contains spatial and spectral dimensional information, while traditional imaging only contains spatial dimensional information. The spectral dimension information of the spatial position of the spectral image is of great significance for indicating the composition and structure of the observed object in the scene. Promote the wide application of spectral imaging technology in geographic remote sensing, atmospheric environment monitoring, military target reconnaissance and surveillance, meteorological observation, disaster prevention and other fields. Researchers have also been working on various spectral imaging systems and imaging methods, but there are still many problems in the existing technology, mainly as follows: the spatial resolution of traditional spectral imaging depends on the density of the detector array, in order to improve the spatial resolution The cost of increasing the density of the detector array is very high, and it is often difficult to achieve high resolution in time, space, and spectrum at the same time. How to use existing detectors to obtain higher resolution spectral images is an urgent problem to be solved.

2006年由E.J.Candes、J.Romberg、T.Tao和D.L.Donoho等人提出的压缩感知CS理论为解决上述问题带来了新的希望。该理论指出,在信号获取的同时就对数据进行适当的压缩。相比于传统的信号获取和处理过程,在压缩感知理论框架下,采样速率不再决定于信号的带宽,而是决定于信号中信息的结构与内容,这使得传感器的采样和计算成本大大降低,而信号恢复过程是一个优化重构的过程。The CS theory of compressed sensing proposed by E.J.Candes, J.Romberg, T.Tao and D.L.Donoho et al. in 2006 brought new hope to solve the above problems. The theory states that the data should be properly compressed while the signal is being acquired. Compared with the traditional signal acquisition and processing process, under the theoretical framework of compressed sensing, the sampling rate is no longer determined by the bandwidth of the signal, but by the structure and content of the information in the signal, which greatly reduces the sampling and calculation costs of the sensor , and the signal restoration process is a process of optimizing reconstruction.

设被采样信号X的长度为N,稀疏变换基为Ψ。即信号X在Ψ上的表示是稀疏的。压缩感知理论的数学模型要求设计一个与Ψ不相关的M×N维的观测矩阵Φ,其中M<N,通过Φ与X相乘得到较低维数的观测数据Y:Suppose the length of the sampled signal X is N, and the sparse transformation basis is Ψ. That is, the representation of signal X on Ψ is sparse. The mathematical model of compressed sensing theory requires the design of an M×N-dimensional observation matrix Φ that is not related to Ψ, where M<N, and the lower-dimensional observation data Y is obtained by multiplying Φ and X:

Y=ΦXY=ΦX

通过求解l1范数下的优化问题来重构原始信号X,其数学表示为:The original signal X is reconstructed by solving the optimization problem under the l1 norm, and its mathematical expression is:

min||ΨTX||1s.t.Y=ΦXmin||Ψ T X|| 1 stY=ΦX

根据上述理论,美国杜克大学的学者M.E.Gehm,R.Johm等设计并提出了CASSI(Coded Aperture Snapshot Spectral Imagers)系统,利用随机编码模板和色散元件,实现对光谱图像的观测,最后通过压缩感知理论重构出原始图像。然而,由于编码模板的选通作用,光谱图像在通过编码模板后会损失一半的有效信息,导致最终重构的光谱图像的空间分辨率不高。According to the above theory, scholars M.E.Gehm and R.Johm of Duke University in the United States designed and proposed the CASSI (Coded Aperture Snapshot Spectral Imagers) system, which uses random coded templates and dispersion elements to realize the observation of spectral images, and finally through compressed sensing Theoretically reconstruct the original image. However, due to the gating effect of the coding template, the spectral image will lose half of the effective information after passing through the coding template, resulting in a low spatial resolution of the final reconstructed spectral image.

发明内容Contents of the invention

本发明的目的在于针对现有压缩光谱成像空间分辨率低,提出一种基于全色成像的压缩光谱成像系统和成像方法,以减小有效信息的损失,提高重构光谱图像的空间分辨率。The purpose of the present invention is to propose a compressed spectral imaging system and imaging method based on panchromatic imaging to reduce the loss of effective information and improve the spatial resolution of the reconstructed spectral image for the low spatial resolution of the existing compressed spectral imaging.

本发明的技术方案是这样完成的:Technical scheme of the present invention is accomplished like this:

本发明的技术原理是借鉴M.E.Gehm,R.Johm等人提出的CASSI系统,在原有的压缩编码观测基础上增加了全色观测,组成全色成像和压缩光谱成像相结合的成像系统。The technical principle of the present invention is to learn from the CASSI system proposed by M.E.Gehm, R.Johm, etc., and add panchromatic observation on the basis of the original compressed coding observation to form an imaging system combining panchromatic imaging and compressed spectral imaging.

一.根据上述原理,本发明基于全色成像的压缩光谱成像系统,包括:One. According to the above-mentioned principles, the present invention is based on the compression spectrum imaging system of panchromatic imaging, comprising:

观测模块,图像重构处理模块,观测模块对光谱图像进行观测,获得观测图像,图像重构处理模块对观测图像进行重构,获得原始光谱图像,其特征在于,观测模块分为两个,即压缩光谱观测模块和全色观测模块,这两个观测模块的前端设有分束器模块;被采集的光谱图像的入射光束经过分束器模块分成信息相同、方向不同的两路光束,一路经过压缩光谱观测模块实现光谱图像的压缩编码观测,另一路经过全色观测模块实现光谱图像的全色观测;图像重构处理模块将这两个模块输出的光谱图像的压缩编码观测和全色观测结果进行联立融合后完成光谱图像的重构。The observation module, the image reconstruction processing module, the observation module observes the spectral image to obtain the observation image, and the image reconstruction processing module reconstructs the observation image to obtain the original spectral image, which is characterized in that the observation module is divided into two, namely The compressed spectrum observation module and the panchromatic observation module are equipped with a beam splitter module at the front end of the two observation modules; the incident beam of the collected spectral image is divided into two beams with the same information and different directions by the beam splitter module, all the way through The compressed spectral observation module realizes the compressed coding observation of the spectral image, and the other channel passes through the panchromatic observation module to realize the panchromatic observation of the spectral image; The reconstruction of the spectral image is completed after simultaneous fusion.

作为优选,所述的压缩光谱观测模块,包括第一透镜组、编码模板、色散元件和第一面阵探测器;编码模板位于第一透镜组的后端,实现对光谱图像的编码,色散元件位于编码模板的后端,用于平移光谱图像的光谱维信息,实现光谱图像的色散,第一面阵探测器位于色散元件的后端,用于观测图像,获取编码之后的图像信息。Preferably, the compressed spectrum observation module includes a first lens group, a coding template, a dispersive element and a first area array detector; the coding template is located at the rear end of the first lens group to realize coding of spectral images, and the dispersive element Located at the back end of the encoding template, it is used to translate the spectral dimension information of the spectral image to realize the dispersion of the spectral image. The first area array detector is located at the rear end of the dispersion element, used to observe the image and obtain the encoded image information.

作为优选,所述的全色观测模块,包括第二透镜组和第二面阵探测器,第二面阵探测器位于第二透镜组后端,用于观测图像,获取全色图像信息,该全色图像信息包括第一面阵探测器记录的光谱信息和丢失的光谱信息。Preferably, the panchromatic observation module includes a second lens group and a second area array detector, and the second area array detector is located at the rear end of the second lens group for observing images and obtaining panchromatic image information, the The panchromatic image information includes spectral information recorded by the first area detector and lost spectral information.

二.根据上述原理,本发明基于全色成像的压缩光谱成像方法,包括:Two. According to the above-mentioned principle, the present invention is based on the compressed spectral imaging method of panchromatic imaging, comprising:

(1)光谱图像观测步骤:(1) Spectral image observation steps:

(1a)设原始光谱信息矩阵f0的大小为M×N×L,其中M×N为光谱信息空间分辨率,L为光谱信息的光谱分辨率;(1a) Suppose the size of the original spectral information matrix f0 is M×N×L, where M×N is the spatial resolution of the spectral information, and L is the spectral resolution of the spectral information;

(1b)设任意一点的光谱信息为f0(m,n,k),其中m和n表示空间维坐标,k表示光谱维坐标,其中0≤m≤M-1,0≤n≤N-1,0≤k≤L-1;(1b) Let the spectral information of any point be f 0 (m,n,k), where m and n represent spatial dimension coordinates, k represents spectral dimension coordinates, where 0≤m≤M-1, 0≤n≤N- 1, 0≤k≤L-1;

(1c)将光谱信息按1:1的比例分成两路,其中第一路所含的信息f11(m,n,k)与第二路所含的信息f21(m,n,k)相同,即:(1c) Divide the spectral information into two paths at a ratio of 1:1, where the information f 11 (m,n,k) contained in the first path and the information f 21 (m,n,k) contained in the second path same, ie:

ff 1111 (( mm ,, nno ,, kk )) == 11 22 ff 00 (( mm ,, nno ,, kk )) ,,

ff 21twenty one (( mm ,, nno ,, kk )) == 11 22 ff 00 (( mm ,, nno ,, kk )) ;;

(1d)利用编码函数T(m,n)对第一路光谱信息进行编码,得出经过编码之后的光谱信息f12(m,n,k)为:(1d) Use the encoding function T(m,n) to encode the first spectral information, and obtain the encoded spectral information f 12 (m,n,k) as:

ff 1212 (( mm ,, nno ,, kk )) == ff 1111 (( mm ,, nno ,, kk )) TT (( mm ,, nno )) == 11 22 ff 00 (( mm ,, nno ,, kk )) TT (( mm ,, nno )) ,,

其中,T(m,n)随机地取0或1;Among them, T(m,n) randomly takes 0 or 1;

(1e)将第一路编码后的光谱信息中的第k个谱段的信息平移k个像素,即将第k个谱段第m行的信息平移到第m-k行,得出色散之后的光谱信息f13(m,n,k)为:(1e) Translate the information of the kth spectral segment in the first encoded spectral information by k pixels, that is, shift the information of the mth row of the kth spectral segment to the mkth row to obtain the spectral information after dispersion f 13 (m,n,k) is:

ff 1313 (( mm ,, nno ,, kk )) == ff 1212 (( mm -- kk ,, nno ,, kk )) == ff 1111 (( mm -- kk ,, nno ,, kk )) TT (( mm -- kk ,, nno )) == 11 22 ff 00 (( mm -- kk ,, nno ,, kk )) TT (( mm -- kk ,, nno )) ;;

(1f)对第一路和第二路的光谱信息同时进行曝光,得到第一路的观测结果y1(m,n)和第二路的观测结果y2(m,n):(1f) Simultaneously expose the spectral information of the first path and the second path, and obtain the observation result y 1 (m,n) of the first path and the observation result y 2 (m,n) of the second path:

ythe y 11 (( mm ,, nno )) == &Sigma;&Sigma; kk ff 1313 (( mm ,, nno ,, kk )) == 11 22 &Sigma;&Sigma; kk == 00 LL -- 11 ff 00 (( mm -- kk ,, nno ,, kk )) TT (( mm -- kk ,, nno )) ,,

ythe y 22 (( mm ,, nno )) == &Sigma;&Sigma; kk ff 21twenty one (( mm ,, nno ,, kk )) == 11 22 &Sigma;&Sigma; kk == 00 LL -- 11 ff 00 (( mm ,, nno ,, kk )) ,,

将这两路观测结果记为:Record the results of these two observations as:

Y=Hf,Y=Hf,

其中Y={y1(m,n),y2(m,n)}为观测图像矩阵,H为线性算子,表示系统的观测模型,f为原始光谱图像;Where Y={y 1 (m,n),y 2 (m,n)} is the observation image matrix, H is a linear operator, which represents the observation model of the system, and f is the original spectral image;

(2)光谱图像重构步骤:(2) Spectral image reconstruction steps:

(2a)将观测图像矩阵Y送至图像重构处理器;(2a) Send the observed image matrix Y to the image reconstruction processor;

(2b)设定稀疏基Ψ为小波基或DCT基或傅立叶基,使得光谱图像在稀疏基Ψ下是稀疏的;(2b) Set the sparse base Ψ as wavelet base or DCT base or Fourier base, so that the spectral image is sparse under the sparse base Ψ;

(2c)图像重构处理器根据观测图像矩阵Y和稀疏基Ψ,利用非线性优化方法重构出原始光谱图像f。(2c) The image reconstruction processor uses a nonlinear optimization method to reconstruct the original spectral image f according to the observed image matrix Y and the sparse basis Ψ.

本发明与现有技术相比具有以下优点Compared with the prior art, the present invention has the following advantages

第一:本发明比传统的单路压缩光谱成像技术,增加了全色成像,可以记录所有的光谱信息,克服了现有成像系统中光谱信息利用率低的缺点;First: Compared with the traditional single-channel compressed spectral imaging technology, the present invention adds full-color imaging, can record all spectral information, and overcomes the shortcomings of low spectral information utilization in existing imaging systems;

第二:本发明充分利用了全色成像的高空间分辨率,使得本发明具有重构精度高的优点;Second: the present invention makes full use of the high spatial resolution of panchromatic imaging, so that the present invention has the advantage of high reconstruction accuracy;

第三:本发明利用了光谱图像的稀疏性,通过求解非线性优化问题实现光谱图像重构,使得本发明能够同时获得具有高空间分辨率和高谱间分辨率的光谱图像。Third: the present invention utilizes the sparsity of spectral images, and realizes spectral image reconstruction by solving nonlinear optimization problems, so that the present invention can simultaneously obtain spectral images with high spatial resolution and high inter-spectral resolution.

附图说明Description of drawings

图1是本发明的系统框图;Fig. 1 is a system block diagram of the present invention;

图2是本发明中压缩光谱观测模块的结构框图;Fig. 2 is the structural block diagram of compressed spectrum observation module in the present invention;

图3是本发明中全色观测模块的结构框图;Fig. 3 is the structural block diagram of panchromatic observation module among the present invention;

图4是本发明中的编码模板结构图;Fig. 4 is a coding template structural diagram among the present invention;

图5是本发明的成像方法流程图;Fig. 5 is the flow chart of imaging method of the present invention;

图6是本发明成像系统和杜克大学CASSI系统对balloons光谱图像进行观测的重构结果;Fig. 6 is the reconstruction result of observation of the balloons spectral image by the imaging system of the present invention and the CASSI system of Duke University;

图7是本发明成像系统和杜克大学CASSI系统对egyptian_statue光谱图像进行观测的重构结果。Fig. 7 is the reconstruction result of observing the Egyptian_statue spectral image by the imaging system of the present invention and the CASSI system of Duke University.

具体实施方式Detailed ways

下面结合附图和实例对本发明进行详细说明:The present invention is described in detail below in conjunction with accompanying drawing and example:

参照图1,本发明的基于全色成像的压缩光谱成像系统,包括分束器模块1、压缩光谱观测模块2、全色观测模块3和图像重构处理模块4。其中:分束器模块1位于压缩光谱观测模块2和全色观测模块3的前端;被采集的光谱图像的入射光束经过分束器模块1分成信息相同、方向不同的两路光束,一路经过压缩光谱观测模块2实现光谱图像的压缩编码观测,另一路经过全色观测模块3实现光谱图像的全色观测;图像重构处理模块4将这两个模块输出的光谱图像的压缩编码观测和全色观测结果进行联立融合后完成光谱图像的重构。Referring to FIG. 1 , the compressed spectrum imaging system based on panchromatic imaging of the present invention includes a beam splitter module 1 , a compressed spectrum observation module 2 , a panchromatic observation module 3 and an image reconstruction processing module 4 . Among them: the beam splitter module 1 is located at the front end of the compressed spectrum observation module 2 and the panchromatic observation module 3; the incident light beam of the collected spectral image is divided into two beams with the same information and different directions by the beam splitter module 1, and one way is compressed The spectral observation module 2 realizes the compressed coding observation of the spectral image, and the other way passes through the panchromatic observation module 3 to realize the panchromatic observation of the spectral image; the image reconstruction processing module 4 converts the compressed coding observation and panchromatic The reconstruction of the spectral image is completed after simultaneous fusion of the observation results.

参照图2,本发明中的压缩光谱观测模块2,包括第一透镜组21、编码模板22、色散元件23和第一面阵探测器24。其中:编码模板22位于第一透镜组21的后端,实现对光谱图像的编码;色散元件23位于编码模板22的后端,用于平移光谱图像的光谱维信息,实现光谱图像的色散;第一面阵探测器24位于色散元件23的后端,用于观测图像,获取编码之后的图像信息。Referring to FIG. 2 , the compressed spectrum observation module 2 in the present invention includes a first lens group 21 , an encoding template 22 , a dispersive element 23 and a first area array detector 24 . Wherein: the encoding template 22 is located at the rear end of the first lens group 21 to realize the encoding of the spectral image; the dispersion element 23 is located at the rear end of the encoding template 22 and is used to translate the spectral dimension information of the spectral image to realize the dispersion of the spectral image; An array detector 24 is located at the rear end of the dispersive element 23, and is used to observe images and obtain encoded image information.

参照图3,本发明中的全色观测模块3,包括第二透镜组31和第二面阵探测器32。其中:第二面阵探测器32位于第二透镜组31后端,用于观测图像,获取全色图像信息,该全色图像信息包括第一面阵探测器24记录的光谱信息和丢失的光谱信息。Referring to FIG. 3 , the panchromatic observation module 3 in the present invention includes a second lens group 31 and a second area array detector 32 . Wherein: the second area array detector 32 is located at the rear end of the second lens group 31, and is used to observe images and obtain panchromatic image information, which includes the spectral information recorded by the first area array detector 24 and the lost spectrum information.

参照图4,本发明中的编码模板22,是由透光和不透光的方格组成的矩形平面板,每个方格大小相同,且与图像像素点大小相等,透光方格对图像的编码为1,不透光方格对图像的编码为0;编码模板22的每一方格是否透光是随机设定的,通过该编码模板实现对图像的每一位置信息的随机编码。With reference to Fig. 4, coding template 22 among the present invention is the rectangular planar plate that is made up of light-transmitting and opaque grid, and each grid size is identical, and is equal to the size of image pixel point, and light-transmitting grid is opposite to image. The encoding of the image is 1, and the encoding of the image by the opaque grid is 0; whether each grid of the encoding template 22 is transparent is randomly set, and the random encoding of each position information of the image is realized through the encoding template.

参照图5,本发明基于全色成像的压缩光谱成像方法,包括光谱图像观测和光谱图像重构两大步。Referring to FIG. 5 , the compressed spectral imaging method based on panchromatic imaging in the present invention includes two steps of spectral image observation and spectral image reconstruction.

一.光谱图像观测:1. Spectral image observation:

步骤1,初始化原始光谱信息,设原始光谱信息矩阵f0的大小为M×N×L,设任意一点的光谱信息为f0(m,n,k),其中M×N为光谱信息的空间分辨率,L为光谱信息的光谱分辨率,即光谱信息的谱段个数为L;m和n表示空间维坐标,k表示光谱维坐标,其中0≤m≤M-1,0≤n≤N-1,0≤k≤L-1。Step 1, initialize the original spectral information, set the size of the original spectral information matrix f 0 as M×N×L, and set the spectral information of any point as f 0 (m,n,k), where M×N is the space of spectral information Resolution, L is the spectral resolution of spectral information, that is, the number of spectral segments of spectral information is L; m and n represent spatial dimension coordinates, k represents spectral dimension coordinates, where 0≤m≤M-1, 0≤n≤ N-1, 0≤k≤L-1.

步骤2,将原始光谱信息按1:1的比例分成两路,其中第一路所含的光谱信息f11(m,n,k)与第二路所含的光谱信息f21(m,n,k)相同,且等同于倍的原始光谱信息,即:Step 2: Divide the original spectral information into two paths at a ratio of 1:1, wherein the spectral information f 11 (m,n,k) contained in the first path and the spectral information f 21 (m,n,k) contained in the second path ,k) is the same and is equivalent to times the original spectral information, namely:

ff 1111 (( mm ,, nno ,, kk )) == 11 22 ff 00 (( mm ,, nno ,, kk )) ,,

ff 21twenty one (( mm ,, nno ,, kk )) == 11 22 ff 00 (( mm ,, nno ,, kk )) ..

步骤3,设编码函数为T(m,n),用该编码函数对第一路光谱信息f11(m,n,k)进行编码,得出第一路经过编码之后的光谱信息f12(m,n,k):Step 3, set the encoding function as T(m,n), use this encoding function to encode the first path of spectral information f 11 (m,n,k), and obtain the first path of encoded spectral information f 12 ( m,n,k):

ff 1212 (( mm ,, nno ,, kk )) == ff 1111 (( mm ,, nno ,, kk )) TT (( mm ,, nno )) == 11 22 ff 00 (( mm ,, nno ,, kk )) TT (( mm ,, nno )) ,,

其中,T(m,n)随机地取0或1。Among them, T(m,n) randomly takes 0 or 1.

步骤4,将第一路编码之后的光谱信息f12(m,n,k)平移,即将第k个谱段第m行的信息平移到第m-k行,得出平移后的光谱信息f13(m,n,k)为:Step 4, translate the spectral information f 12 (m,n,k) after the first encoding, that is, translate the information of the m-th row of the k-th spectral segment to the m-th row, and obtain the shifted spectral information f 13 ( m,n,k) is:

ff 1313 (( mm ,, nno ,, kk )) == ff 1212 (( mm -- kk ,, nno ,, kk )) == ff 1111 (( mm -- kk ,, nno ,, kk )) TT (( mm -- kk ,, nno )) == 11 22 ff 00 (( mm -- kk ,, nno ,, kk )) TT (( mm -- kk ,, nno )) ..

步骤5,获取观测图像矩阵。Step 5, obtain the observation image matrix.

(5a)分别对第一路平移后的光谱信息f13(m,n,k)和第二路的光谱信息f21(m,n,k)进行曝光,即将每一路各个谱段的光谱信息进行累加,得出第一路的观测结果y1(m,n)和第二路的观测结果y2(m,n):(5a) Expose the shifted spectral information f 13 (m,n,k) of the first channel and the spectral information f 21 (m,n,k) of the second channel respectively, that is, the spectral information of each spectral segment of each channel Accumulate to get the observation result y 1 (m,n) of the first path and the observation result y 2 (m,n) of the second path:

ythe y 11 (( mm ,, nno )) == &Sigma;&Sigma; kk ff 1313 (( mm ,, nno ,, kk )) == 11 22 &Sigma;&Sigma; kk == 00 LL -- 11 ff 00 (( mm -- kk ,, nno ,, kk )) TT (( mm -- kk ,, nno )) ,,

ythe y 22 (( mm ,, nno )) == &Sigma;&Sigma; kk ff 21twenty one (( mm ,, nno ,, kk )) == 11 22 &Sigma;&Sigma; kk == 00 LL -- 11 ff 00 (( mm ,, nno ,, kk )) ,,

(5b)将这两路观测结果记为:(5b) Record the two observations as:

Y=Hf,Y=Hf,

其中Y={y1(m,n),y2(m,n)}为观测图像矩阵,H为观测算子,表示系统的观测模型,f为原始光谱信息。Where Y={y 1 (m,n),y 2 (m,n)} is the observation image matrix, H is the observation operator, which represents the observation model of the system, and f is the original spectral information.

二.光谱图像重构:2. Spectral image reconstruction:

步骤6,将观测图像矩阵Y传送至图像重构处理器。Step 6: Send the observed image matrix Y to the image reconstruction processor.

步骤7,设定稀疏基Ψ为小波基或DCT基或傅立叶基,使得原始光谱信息f在稀疏基Ψ下是稀疏的,即原始光谱信息f在稀疏基Ψ下的投影系数ΨTf中绝大部分数值小于某一特定阈值,此阈值需要通过实验设定,不同稀疏变换域对应的阈值不同,本实例设定稀疏基Ψ为小波基,设定阈值为自适应阈值。Step 7, set the sparse base Ψ as wavelet base, DCT base or Fourier base, so that the original spectral information f is sparse under the sparse base Ψ, that is, the projection coefficient Ψ T f of the original spectral information f under the sparse base Ψ is absolutely Most of the values are smaller than a certain threshold, which needs to be set through experiments, and the thresholds corresponding to different sparse transform domains are different. In this example, the sparse base Ψ is set as a wavelet base, and the threshold is set as an adaptive threshold.

步骤8,图像重构处理器根据观测结果Y和稀疏基Ψ,利用非线性优化方法重构原始光谱信息f。Step 8, the image reconstruction processor uses the nonlinear optimization method to reconstruct the original spectral information f according to the observation result Y and the sparse basis Ψ.

(8a)设定优化目标函数为min(||ΨTf||1),其中T表示矩阵转置,||·||1表示对投影系数ΨTf取l1范数,min(·)表示取l1范数的最小值;(8a) Set the optimization objective function as min(||Ψ T f|| 1 ), where T represents matrix transposition, |||| ) means to take the minimum value of l1 norm;

(8b)将观测图像矩阵Y=Hf作为约束条件;(8b) taking the observed image matrix Y=Hf as a constraint condition;

(8c)联立优化目标函数和约束条件,得出满足约束条件Y=Hf,并且使||ΨTf||1最小的f,即为原始光谱信息f。(8c) Simultaneously optimize the objective function and constraint conditions, and obtain f that satisfies the constraint condition Y=Hf and minimizes ||Ψ T f|| 1 , which is the original spectral information f.

本发明的效果可通过以下仿真进一步说明Effect of the present invention can be further illustrated by following simulation

1.仿真条件1. Simulation conditions

本实验的硬件测试平台是:Intel Core i7CPU,主频3.40GHz,内存8GB;软件仿真平台为:windows764位操作系统和Matlab2013b;测试图像为:哥伦比亚大学公开的光谱图像,空间分辨率为(512,512),谱间分辨率为31。The hardware test platform of this experiment is: Intel Core i7CPU, main frequency 3.40GHz, memory 8GB; software simulation platform is: windows764 bit operating system and Matlab2013b; test image is: spectral image released by Columbia University, spatial resolution is (512,512) , with an interspectral resolution of 31.

2.仿真内容与结果分析2. Simulation content and result analysis

为验证本发明的有效性,实施了两个仿真实验,两个仿真实验采用不同的光谱数据立方体作为原始光谱图像,然后利用两步迭代算法进行光谱图像重构,再根据重构结果计算出重构光谱图像的峰值信噪比PSNR,并与杜克大学CASSI系统的重构结果进行比较。In order to verify the effectiveness of the present invention, two simulation experiments were carried out. The two simulation experiments used different spectral data cubes as the original spectral images, and then used the two-step iterative algorithm to reconstruct the spectral images, and then calculated the reconstruction results according to the reconstruction results. The peak signal-to-noise ratio (PSNR) of the reconstructed spectral image was compared with the reconstruction result of Duke University's CASSI system.

仿真1,以哥伦比亚大学的balloons图作为原始光谱图像,用杜克大学CASSI系统和本发明系统进行仿真观测,并分别利用两步迭代算法对观测结果进行重构,结果如图(6)所示,其中,图(6a)为原始光谱图像,即balloons图;图(6b)为利用杜克大学CASSI系统观测后的重构结果;图(6c)为利用本发明系统观测后的重构结果。每个重构图像下都标出了该波段重构结果的PSNR,由于波段数较多,故只对波段1,波段5,波段22,波段31进行展示。Simulation 1, using the balloons diagram of Columbia University as the original spectral image, using the CASSI system of Duke University and the system of the present invention for simulation observation, and using two-step iterative algorithms to reconstruct the observation results, the results are shown in Figure (6) , wherein, Figure (6a) is the original spectral image, i.e. balloons figure; Figure (6b) is the reconstruction result after observation by Duke University CASSI system; Figure (6c) is the reconstruction result after observation by the system of the present invention. The PSNR of the reconstruction result of the band is marked under each reconstructed image. Due to the large number of bands, only band 1, band 5, band 22, and band 31 are displayed.

仿真2,以哥伦比亚大学的egyptian_statue图作为原始光谱图像,用杜克大学的CASSI系统和本发明的系统进行仿真观测,并分别利用两步迭代算法对观测结果进行重构,结果如图(7)所示,其中,图(7a)为原始光谱图像,即egyptian_statue图;图(7b)为利用杜克大学CASSI系统观测后的重构结果;图(7c)为利用本发明系统观测后的重构结果。每个重构图像下都标出了该波段重构结果的PSNR,由于波段数较多,故只对波段1,波段5,波段22,波段31进行展示。Simulation 2, using the egyptian_statue map of Columbia University as the original spectral image, using the CASSI system of Duke University and the system of the present invention to perform simulation observations, and using two-step iterative algorithms to reconstruct the observation results, the results are shown in Figure (7) Shown, wherein, figure (7a) is the original spectral image, i.e. egyptian_statue figure; Figure (7b) is the reconstruction result after utilizing Duke University CASSI system observation; Figure (7c) is the reconstruction after utilizing the system observation of the present invention result. The PSNR of the reconstruction result of the band is marked under each reconstructed image. Since there are many bands, only band 1, band 5, band 22, and band 31 are displayed.

从仿真的实验结果可以看出,用本发明获取的光谱图像,细节更清晰、轮廓更完整,比杜克大学的CASSI系统有了很大提高;如表(1)所示,从重构图像的PSNR可以看出,本发明重构图像的PSNR比杜克大学CASSI系统重构图像的PSNR有7-10dB的提高,平均在8.5dB左右。这两方面都充分证实了本发明的优良性能。As can be seen from the experimental results of the simulation, the spectral images obtained by the present invention have clearer details and more complete outlines, which have been greatly improved than the CASSI system of Duke University; as shown in table (1), from the reconstructed image It can be seen that the PSNR of the reconstructed image in the present invention is 7-10dB higher than that of the Duke University CASSI system, with an average of about 8.5dB. These two aspects have fully demonstrated the excellent performance of the present invention.

表1.PSNR对比Table 1. PSNR comparison

PSNR/dBPSNR/dB 图6Figure 6 图7Figure 7 CASSICASSI 31.407931.4079 34.187634.1876 本发明this invention 38.671538.6715 43.945743.9457

Claims (5)

1.一种基于全色成像的压缩光谱成像系统,包括观测模块,图像重构处理模块,观测模块对光谱图像进行观测,获得观测图像,图像重构处理模块对观测图像进行重构,获得原始光谱图像,其特征在于,观测模块分为两个,即压缩光谱观测模块(2)和全色观测模块(3),这两个观测模块的前端设有分束器模块(1);被采集的光谱图像的入射光束经过分束器模块(1)分成信息相同、方向不同的两路光束,一路经过压缩光谱观测模块(2)实现光谱图像的压缩编码观测,另一路经过全色观测模块(3)实现光谱图像的全色观测;图像重构处理模块(4)将这两个模块输出的光谱图像的压缩编码观测和全色观测结果进行联立融合后完成光谱图像的重构。1. A compressed spectral imaging system based on panchromatic imaging, including an observation module, an image reconstruction processing module, the observation module observes the spectral image to obtain an observation image, and the image reconstruction processing module reconstructs the observation image to obtain the original The spectrum image is characterized in that the observation module is divided into two, that is, a compressed spectrum observation module (2) and a panchromatic observation module (3), and the front ends of these two observation modules are provided with a beam splitter module (1); The incident light beam of the spectral image passes through the beam splitter module (1) and is divided into two beams with the same information and different directions, one path passes through the compressed spectral observation module (2) to realize the compressed coding observation of the spectral image, and the other path passes through the panchromatic observation module ( 3) Realize the panchromatic observation of the spectral image; the image reconstruction processing module (4) performs simultaneous fusion of the compressed coding observation and panchromatic observation results of the spectral image output by these two modules to complete the reconstruction of the spectral image. 2.根据权利要求1所述的基于全色成像的压缩光谱成像系统,其特征在于,所述压缩光谱观测模块(2),包括第一透镜组(21)、编码模板(22)、色散元件(23)和第一面阵探测器(24);编码模板(22)位于第一透镜组(21)的后端,实现对光谱图像的编码,色散元件(23)位于编码模板(22)的后端,用于平移光谱图像的光谱维信息,实现光谱图像的色散,第一面阵探测器(24)位于色散元件(23)的后端,用于观测图像,获取编码之后的图像信息。2. The compressed spectrum imaging system based on panchromatic imaging according to claim 1, characterized in that, the compressed spectrum observation module (2) includes a first lens group (21), a coding template (22), a dispersion element (23) and the first area array detector (24); The coding template (22) is positioned at the rear end of the first lens group (21), realizes the coding to spectral image, and dispersion element (23) is positioned at the coding template (22) The rear end is used to translate the spectral dimension information of the spectral image to realize the dispersion of the spectral image. The first area array detector (24) is located at the rear end of the dispersion element (23) and is used to observe the image and obtain encoded image information. 3.根据权利要求1所述的基于全色成像的压缩光谱成像系统,其特征在于,所述全色观测模块(3),包括第二透镜组(31)和第二面阵探测器(32),第二面阵探测器(32)位于第二透镜组(31)后端,用于观测图像,获取全色图像信息,该全色图像信息包括第一面阵探测器(24)记录的光谱信息和丢失的光谱信息。3. The compressed spectrum imaging system based on panchromatic imaging according to claim 1, wherein the panchromatic observation module (3) includes a second lens group (31) and a second area array detector (32 ), the second area array detector (32) is positioned at the second lens group (31) rear end, is used for observing image, obtains panchromatic image information, and this panchromatic image information comprises first area array detector (24) record Spectral information and missing spectral information. 4.一种基于全色成像的压缩光谱成像方法,包括:4. A compressed spectral imaging method based on panchromatic imaging, comprising: (1)光谱图像观测步骤:(1) Spectral image observation steps: (1a)设原始光谱信息矩阵f0的大小为M×N×L,其中M×N为光谱信息空间分辨率,L为光谱信息的光谱分辨率;(1a) Suppose the size of the original spectral information matrix f0 is M×N×L, where M×N is the spatial resolution of the spectral information, and L is the spectral resolution of the spectral information; (1b)设任意一点的光谱信息为f0(m,n,k),其中m和n表示空间维坐标,k表示光谱维坐标,其中0≤m≤M-1,0≤n≤N-1,0≤k≤L-1;(1b) Let the spectral information of any point be f 0 (m,n,k), where m and n represent spatial dimension coordinates, k represents spectral dimension coordinates, where 0≤m≤M-1, 0≤n≤N- 1, 0≤k≤L-1; (1c)将原始光谱信息按1:1的比例分成两路,其中第一路所含的信息f11(m,n,k)与第二路所含的信息f21(m,n,k)相同,即:(1c) Divide the original spectral information into two channels at a ratio of 1:1, where the information f 11 (m,n,k) contained in the first channel and the information f 21 (m,n,k) contained in the second channel ) are the same, namely: ff 1111 (( mm ,, nno ,, kk )) == 11 22 ff 00 (( mm ,, nno ,, kk )) ,, ff 21twenty one (( mm ,, nno ,, kk )) == 11 22 ff 00 (( mm ,, nno ,, kk )) ;; (1d)利用编码函数T(m,n)对第一路光谱信息进行编码,得出经过编码之后的光谱信息f12(m,n,k)为:(1d) Use the encoding function T(m,n) to encode the first spectral information, and obtain the encoded spectral information f 12 (m,n,k) as: ff 1212 (( mm ,, nno ,, kk )) == ff 1111 (( mm ,, nno ,, kk )) TT (( mm ,, nno )) == 11 22 ff 00 (( mm ,, nno ,, kk )) TT (( mm ,, nno )) ,, 其中,T(m,n)随机地取0或1;Among them, T(m,n) randomly takes 0 or 1; (1e)将第一路编码后的光谱信息中的第k个谱段的信息平移k个像素,即将第k个谱段第m行的信息平移到第m-k行,得出平移之后的光谱信息f13(m,n,k)为:(1e) Translate the information of the kth spectral segment in the spectral information of the first channel of encoding by k pixels, that is, translate the information of the mth row of the kth spectral segment to the mkth row, and obtain the spectral information after the shifting f 13 (m,n,k) is: ff 1313 (( mm ,, nno ,, kk )) == ff 1212 (( mm -- kk ,, nno ,, kk )) == ff 1111 (( mm -- kk ,, nno ,, kk )) TT (( mm -- kk ,, nno )) == 11 22 ff 00 (( mm -- kk ,, nno ,, kk )) TT (( mm -- kk ,, nno )) ;; (1f)对第一路和第二路的光谱信息同时进行曝光,得到第一路的观测结果y1(m,n)和第二路的观测结果y2(m,n):(1f) Simultaneously expose the spectral information of the first path and the second path, and obtain the observation result y 1 (m,n) of the first path and the observation result y 2 (m,n) of the second path: ythe y 11 (( mm ,, nno )) == &Sigma;&Sigma; kk ff 1313 (( mm ,, nno ,, kk )) == 11 22 &Sigma;&Sigma; kk == 00 LL -- 11 ff 00 (( mm -- kk ,, nno ,, kk )) TT (( mm -- kk ,, nno )) ,, ythe y 22 (( mm ,, nno )) == &Sigma;&Sigma; kk ff 21twenty one (( mm ,, nno ,, kk )) == 11 22 &Sigma;&Sigma; kk == 00 LL -- 11 ff 00 (( mm ,, nno ,, kk )) ,, 将这两路观测结果记为:Record the results of these two observations as: Y=Hf,Y=Hf, 其中Y={y1(m,n),y2(m,n)}为观测图像矩阵,H为观测算子,表示系统的观测模型,f为原始光谱信息;Where Y={y 1 (m,n),y 2 (m,n)} is the observation image matrix, H is the observation operator, which represents the observation model of the system, and f is the original spectral information; (2)光谱图像重构步骤:(2) Spectral image reconstruction steps: (2a)将观测图像矩阵Y送至图像重构处理器;(2a) Send the observed image matrix Y to the image reconstruction processor; (2b)设定稀疏基Ψ为小波基或DCT基或傅立叶基,使得光谱信息在稀疏基Ψ下是稀疏的;(2b) Set the sparse base Ψ as wavelet base, DCT base or Fourier base, so that the spectral information is sparse under the sparse base Ψ; (2c)图像重构处理器根据观测图像矩阵Y和稀疏基Ψ,利用非线性优化方法重构出原始光谱信息f。(2c) The image reconstruction processor uses a nonlinear optimization method to reconstruct the original spectral information f according to the observed image matrix Y and the sparse basis Ψ. 5.根据权利要求4所述的基于全色成像的压缩光谱成像方法,其特征在于,步骤(2c)所述的利用非线性优化方法重构原始图像,按如下步骤进行:5. the compressed spectral imaging method based on panchromatic imaging according to claim 4, is characterized in that, utilizes nonlinear optimization method described in step (2c) to reconstruct original image, carries out as follows: (2c1)设定优化目标函数为min(||ΨTf||1),其中T表示矩阵转置,||·||1表示对投影系数ΨTf取l1范数,min(·)表示取l1范数的最小值;(2c1) Set the optimization objective function as min(||Ψ T f|| 1 ), where T represents the matrix transposition, ||·|| 1 represents the l 1 norm for the projection coefficient Ψ T f, min( ) means to take the minimum value of l1 norm; (2c2)将观测图像矩阵Y=Hf作为约束条件;(2c2) taking the observed image matrix Y=Hf as a constraint condition; (2c3)联立优化目标函数和约束条件,得出满足约束条件Y=Hf,并且使||ΨTf||1最小的f,即为原始光谱信息f。(2c3) Simultaneously optimize the objective function and constraint conditions, and obtain f that satisfies the constraint condition Y=Hf and minimizes ||Ψ T f|| 1 , which is the original spectral information f.
CN201410228328.9A 2014-05-27 2014-05-27 Based on compressed spectrum imaging system and the formation method of full color imaging Active CN103983355B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410228328.9A CN103983355B (en) 2014-05-27 2014-05-27 Based on compressed spectrum imaging system and the formation method of full color imaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410228328.9A CN103983355B (en) 2014-05-27 2014-05-27 Based on compressed spectrum imaging system and the formation method of full color imaging

Publications (2)

Publication Number Publication Date
CN103983355A true CN103983355A (en) 2014-08-13
CN103983355B CN103983355B (en) 2016-01-20

Family

ID=51275415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410228328.9A Active CN103983355B (en) 2014-05-27 2014-05-27 Based on compressed spectrum imaging system and the formation method of full color imaging

Country Status (1)

Country Link
CN (1) CN103983355B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105021280A (en) * 2015-08-13 2015-11-04 西安电子科技大学 Panchromatic-and-compressed-spectral-imaging-based image super-resolution system and method
CN106066207A (en) * 2016-05-19 2016-11-02 北京航空航天大学 A kind of parallel light path combination type multi-source information acquiring processing means and method
CN106441577A (en) * 2016-09-27 2017-02-22 北京理工大学 Collaborative coding hyperspectral imaging system and image reconstruction method based on random projection
CN107179125A (en) * 2017-07-05 2017-09-19 中国科学院光电研究院 Sparse target optical spectrum real-time detection system
CN107205103A (en) * 2017-04-14 2017-09-26 华东师范大学 Ultrahigh speed compression camera based on compressed sensing and streak camera principle
CN107290055A (en) * 2017-06-21 2017-10-24 西安电子科技大学 Compressed spectrum imaging system and imaging method based on RGB channel
CN108254072A (en) * 2017-12-29 2018-07-06 中国科学院上海技术物理研究所杭州大江东空间信息技术研究院 A kind of novel EO-1 hyperion video imaging instrument
CN108414086A (en) * 2018-05-11 2018-08-17 中国科学院西安光学精密机械研究所 Snapshot type microscopic hyperspectral imaging system and method
CN109186761A (en) * 2018-09-14 2019-01-11 中国科学院西安光学精密机械研究所 Calibration method and coding template of coding spectral imaging system
CN109682476A (en) * 2019-02-01 2019-04-26 北京理工大学 A method of compression high light spectrum image-forming is carried out using adaptive coding aperture
CN109798853A (en) * 2019-01-14 2019-05-24 西安工程大学 A method and equipment for monitoring the structural health of a transmission tower
CN111999862A (en) * 2020-07-09 2020-11-27 中国科学院西安光学精密机械研究所 Compact type long-focus short-wave optical system with real-time multispectral imaging function
CN112802136A (en) * 2021-01-28 2021-05-14 北京理工大学重庆创新中心 Scene reconstruction method and system based on low-resolution priori information complementary coding
CN116648605A (en) * 2020-12-17 2023-08-25 巴里大学 Hyperspectral imaging device and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007103385A2 (en) * 2006-03-09 2007-09-13 Northrop Grumman Corporation Spectral filter for optical sensor
US7315371B2 (en) * 2004-01-23 2008-01-01 P&P Optica Inc. Multi-channel spectrum analyzer
CN101893552A (en) * 2010-07-06 2010-11-24 西安电子科技大学 Hyperspectral imager and imaging method based on compressed sensing
CN201811790U (en) * 2009-11-27 2011-04-27 中国科学院西安光学精密机械研究所 An imager with integrated panchromatic and polarization hyperspectral detection capabilities
CN102706449A (en) * 2012-05-24 2012-10-03 西安电子科技大学 Two-channel remote sensing light spectrum imaging system based on compressed sensing and imaging method
CN102706450A (en) * 2012-06-13 2012-10-03 西安电子科技大学 Dual-channel multispectral video imaging device and imaging method based on compressive sensing
CN102914367A (en) * 2012-10-25 2013-02-06 浙江大学 Multispectral imaging device and method based on compressed sensing
CN103471715A (en) * 2013-09-02 2013-12-25 北京航空航天大学 Common optical path combined optical field spectral imaging method and device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7315371B2 (en) * 2004-01-23 2008-01-01 P&P Optica Inc. Multi-channel spectrum analyzer
WO2007103385A2 (en) * 2006-03-09 2007-09-13 Northrop Grumman Corporation Spectral filter for optical sensor
CN201811790U (en) * 2009-11-27 2011-04-27 中国科学院西安光学精密机械研究所 An imager with integrated panchromatic and polarization hyperspectral detection capabilities
CN101893552A (en) * 2010-07-06 2010-11-24 西安电子科技大学 Hyperspectral imager and imaging method based on compressed sensing
CN102706449A (en) * 2012-05-24 2012-10-03 西安电子科技大学 Two-channel remote sensing light spectrum imaging system based on compressed sensing and imaging method
CN102706450A (en) * 2012-06-13 2012-10-03 西安电子科技大学 Dual-channel multispectral video imaging device and imaging method based on compressive sensing
CN102914367A (en) * 2012-10-25 2013-02-06 浙江大学 Multispectral imaging device and method based on compressed sensing
CN103471715A (en) * 2013-09-02 2013-12-25 北京航空航天大学 Common optical path combined optical field spectral imaging method and device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105021280A (en) * 2015-08-13 2015-11-04 西安电子科技大学 Panchromatic-and-compressed-spectral-imaging-based image super-resolution system and method
CN106066207A (en) * 2016-05-19 2016-11-02 北京航空航天大学 A kind of parallel light path combination type multi-source information acquiring processing means and method
CN106441577A (en) * 2016-09-27 2017-02-22 北京理工大学 Collaborative coding hyperspectral imaging system and image reconstruction method based on random projection
CN106441577B (en) * 2016-09-27 2018-01-09 北京理工大学 Collaboration coding Hyperspectral imager and image reconstructing method based on accidental projection
CN107205103B (en) * 2017-04-14 2020-02-14 华东师范大学 Ultra-high speed compression photographic device based on compressed sensing and stripe camera principle
CN107205103A (en) * 2017-04-14 2017-09-26 华东师范大学 Ultrahigh speed compression camera based on compressed sensing and streak camera principle
CN107290055A (en) * 2017-06-21 2017-10-24 西安电子科技大学 Compressed spectrum imaging system and imaging method based on RGB channel
CN107179125A (en) * 2017-07-05 2017-09-19 中国科学院光电研究院 Sparse target optical spectrum real-time detection system
CN107179125B (en) * 2017-07-05 2019-10-01 中国科学院光电研究院 Sparse target optical spectrum real-time detection system
CN108254072A (en) * 2017-12-29 2018-07-06 中国科学院上海技术物理研究所杭州大江东空间信息技术研究院 A kind of novel EO-1 hyperion video imaging instrument
CN108414086A (en) * 2018-05-11 2018-08-17 中国科学院西安光学精密机械研究所 Snapshot type microscopic hyperspectral imaging system and method
CN109186761A (en) * 2018-09-14 2019-01-11 中国科学院西安光学精密机械研究所 Calibration method and coding template of coding spectral imaging system
CN109186761B (en) * 2018-09-14 2024-01-30 中国科学院西安光学精密机械研究所 Calibration method and coding template of coding spectrum imaging system
CN109798853A (en) * 2019-01-14 2019-05-24 西安工程大学 A method and equipment for monitoring the structural health of a transmission tower
CN109682476A (en) * 2019-02-01 2019-04-26 北京理工大学 A method of compression high light spectrum image-forming is carried out using adaptive coding aperture
CN109682476B (en) * 2019-02-01 2020-06-19 北京理工大学 Method for performing compressed hyperspectral imaging by using self-adaptive coding aperture
CN111999862A (en) * 2020-07-09 2020-11-27 中国科学院西安光学精密机械研究所 Compact type long-focus short-wave optical system with real-time multispectral imaging function
CN111999862B (en) * 2020-07-09 2021-10-15 中国科学院西安光学精密机械研究所 Compact Telephoto Shortwave Optical System with Real-Time Multispectral Imaging
CN116648605A (en) * 2020-12-17 2023-08-25 巴里大学 Hyperspectral imaging device and method
CN116648605B (en) * 2020-12-17 2025-10-24 巴里大学 Hyperspectral imaging device and method
CN112802136A (en) * 2021-01-28 2021-05-14 北京理工大学重庆创新中心 Scene reconstruction method and system based on low-resolution priori information complementary coding
CN112802136B (en) * 2021-01-28 2022-11-15 北京理工大学重庆创新中心 Scene reconstruction method and system based on low-resolution priori information complementary coding

Also Published As

Publication number Publication date
CN103983355B (en) 2016-01-20

Similar Documents

Publication Publication Date Title
CN103983355B (en) Based on compressed spectrum imaging system and the formation method of full color imaging
CN102706449B (en) Two-channel remote sensing light spectrum imaging system based on compressed sensing and imaging method
CN104154998B (en) A kind of reconstructing method of the calculating multispectral imaging collection of illustrative plates based on compressed sensing
CN102706450B (en) Dual-channel multispectral video imaging device and imaging method based on compressive sensing
CN204788661U (en) Calculate many spectral imaging system based on compressed sensing
CN108955882B (en) 3D data reconstruction method based on liquid crystal hyperspectral computational imaging system
CN101893552A (en) Hyperspectral imager and imaging method based on compressed sensing
CN105758524A (en) Spectrum camera based on all-pass single-template complementary sampling and imaging method
CN102438102A (en) Super-resolution imaging system and imaging method based on compressed coding aperture
CN107064005B (en) The fast illuminated imaging system and algorithm for reconstructing of a kind of EO-1 hyperion light field
CN105021280A (en) Panchromatic-and-compressed-spectral-imaging-based image super-resolution system and method
CN104581166A (en) Multichannel acquired image-based compressive imaging system and method
Arguello et al. Spatial super-resolution in code aperture spectral imaging
CN107622515A (en) Physical reconstruction method of compressed light field
Correa-Pugliese et al. Sparse representations of dynamic scenes for compressive spectral video sensing
CN106441577B (en) Collaboration coding Hyperspectral imager and image reconstructing method based on accidental projection
CN109682476B (en) Method for performing compressed hyperspectral imaging by using self-adaptive coding aperture
CN103186891A (en) Hexagon image reconstruction method based on compressed sensing
CN108288295A (en) The method for fast reconstruction and system of infrared small target image based on structural information
CN115131450B (en) A Joint Modeling Method for Compressed Coding Imaging System
CN103400341B (en) Method based on the empty spectral domain integrated restoration high-spectral data of compressed sensing
CN114694026A (en) Hyperspectral rapid target detection method based on compressed spectrum imaging
CN108460777A (en) A kind of extraction splits&#39; positions reconstructing method towards plant EO-1 hyperion
CN107895063A (en) One kind compression EO-1 hyperion mask optimization method
CN109448064B (en) Hyperspectral image reconstruction method based on Hadamard

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant