[go: up one dir, main page]

CN103757310A - Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery - Google Patents

Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery Download PDF

Info

Publication number
CN103757310A
CN103757310A CN201310736502.6A CN201310736502A CN103757310A CN 103757310 A CN103757310 A CN 103757310A CN 201310736502 A CN201310736502 A CN 201310736502A CN 103757310 A CN103757310 A CN 103757310A
Authority
CN
China
Prior art keywords
leaching
positive
nickel
sulfuric acid
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310736502.6A
Other languages
Chinese (zh)
Other versions
CN103757310B (en
Inventor
龙炳清
陈俊
万旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Normal University
Original Assignee
Sichuan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Normal University filed Critical Sichuan Normal University
Priority to CN201310736502.6A priority Critical patent/CN103757310B/en
Publication of CN103757310A publication Critical patent/CN103757310A/en
Application granted granted Critical
Publication of CN103757310B publication Critical patent/CN103757310B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明介绍的镍氢废电池正负极混合材料的浸出方法是将从镍氢废电池中分离出的并经焙烧预处理得到的正负极混合材料和稻草粉加入耐压、耐硫酸和硝酸腐蚀的反应釜中,加入硫酸和硝酸的混合溶液,并在密闭条件下进行搅拌浸出。The method for leaching the positive and negative mixed materials of nickel-hydrogen waste batteries introduced in the present invention is to add the mixed positive and negative materials separated from waste nickel-hydrogen batteries and obtained through roasting pretreatment and rice straw powder Add the mixed solution of sulfuric acid and nitric acid to the corroded reaction kettle, and carry out stirring and leaching under airtight conditions.

Description

镍氢废电池正负极混合材料的浸出方法Leaching method of mixed positive and negative electrodes of nickel-metal hydride batteries

技术领域 technical field

 本发明涉及镍氢废电池正负极混合材料的一种浸出方法。 The invention relates to a method for leaching mixed positive and negative electrodes of waste nickel-metal hydride batteries.

背景技术 Background technique

镍氢电池是一类广泛使用的电池,该电池使用报废后将产生大量废电池。由于这类电池含有大量重金属,若弃入环境,将对环境产生很大的直接和潜在危害。镍氢废电池正负极混合材料主要含镍、钴和稀土,三者的总含量高达75~97%,很具回收价值。目前从镍氢废电池正负极混合材料中回收镍、钴和稀土的工艺主要有火法工艺和湿法工艺。火法工艺得到的产品为合金材料,很难获得较纯的镍、钴和稀土。湿法工艺比较容易得到较纯的镍、钴和稀土。浸出是湿法工艺中必不可少的一个过程。目前镍氢废电池正负极混合材料的浸出方法主要有盐酸浸出法、硫酸浸出法、硝酸浸出法和混酸(硫酸加硝酸)浸出法。盐酸浸出法的设备腐蚀大,酸雾产生量大而污染环境。硫酸浸出法消耗较昂贵的还原剂(如双氧水等),而且浸出速度较慢,酸耗高。硝酸浸出法的硝酸消耗量大,而且会产生大量氮氧化物,污染环境。所有的湿法工艺都存在如何经济地提高浸出速度、提高金属浸出率、降低酸耗和其它辅料消耗的问题。虽然硝酸加工业纯氧浸出法和混酸加工业纯氧浸出法较好地解决了上述问题,但浸出设备较复杂,而且废电池浸出所需工业纯氧量不大,废电池处理企业就地生产工业纯氧自用不经济,工业纯氧的储存、运输和使用比较麻烦。开发设备腐蚀小、浸出速度快、浸出率高、酸耗和其它辅料消耗低、使用方便、基本无环境污染的镍氢废电池正负极混合材料的浸出方法具有较大实用价值。 Ni-MH batteries are a type of batteries widely used, and a large amount of waste batteries will be produced after the batteries are scrapped. Because this type of battery contains a large amount of heavy metals, if it is discarded into the environment, it will cause great direct and potential harm to the environment. The positive and negative mixed materials of nickel-metal hydride batteries mainly contain nickel, cobalt and rare earth, and the total content of the three is as high as 75-97%, which is very valuable for recycling. At present, the processes for recovering nickel, cobalt and rare earth from the positive and negative mixed materials of nickel-metal hydride batteries mainly include pyrotechnics and wet processes. The products obtained by the fire process are alloy materials, and it is difficult to obtain relatively pure nickel, cobalt and rare earth. The wet process is relatively easy to obtain relatively pure nickel, cobalt and rare earth. Leaching is an essential process in the wet process. At present, the leaching methods of the mixed positive and negative electrodes of nickel-metal hydride batteries mainly include hydrochloric acid leaching method, sulfuric acid leaching method, nitric acid leaching method and mixed acid (sulfuric acid plus nitric acid) leaching method. The equipment of the hydrochloric acid leaching method is highly corroded, and the amount of acid mist generated is large and pollutes the environment. The sulfuric acid leaching method consumes more expensive reducing agents (such as hydrogen peroxide, etc.), and the leaching speed is slow and the acid consumption is high. The consumption of nitric acid in the nitric acid leaching method is large, and a large amount of nitrogen oxides will be produced, which will pollute the environment. All wet processes have the problem of how to economically increase the leaching speed, increase the metal leaching rate, and reduce the consumption of acid and other auxiliary materials. Although the pure oxygen leaching method in the nitric acid processing industry and the pure oxygen leaching method in the mixed acid processing industry have solved the above problems, the leaching equipment is more complicated, and the amount of industrial pure oxygen required for the leaching of waste batteries is not large, and waste battery treatment enterprises produce on-site Industrial pure oxygen is not economical for personal use, and the storage, transportation and use of industrial pure oxygen are troublesome. It is of great practical value to develop a leaching method for the mixed positive and negative electrodes of nickel-metal hydride batteries with low equipment corrosion, fast leaching speed, high leaching rate, low acid consumption and other auxiliary material consumption, convenient use, and basically no environmental pollution.

 the

发明内容 Contents of the invention

针对目前镍氢废电池正负极混合材料浸出的问题,本发明的目的是寻找一种金属浸出率高,使用方便,不用昂贵还原剂,基本无氮氧化物污染的镍氢废电池正负极混合材料的浸出方法,其特征在于将从镍氢废电池中分离出的并经焙烧预处理得到的正负极混合材料和≤1.5mm的稻草粉加入耐压、耐硫酸和硝酸腐蚀的反应釜中,加入硫酸和硝酸的混合溶液,并在密闭条件下进行搅拌浸出。浸出结束后 进行液固分离,得到所需浸出溶液。反应温度为50℃~80℃, 浸出的硫酸初始浓度为1mol/L~4mol/L, 硝酸的初始浓度为5g/L~10g/L 浸出时间为2h~4h,浸出过程进行搅拌,搅拌速度为30r/min~120r/min。硫酸加入量为加入反应容器的正负极混合材料中全部金属浸出的硫酸理论消耗量的110%~140%。稻草粉的加入量以干基计为正负极混合材料中镍、钴总质量的60%~75%。 Aiming at the current problem of leaching the positive and negative mixed materials of waste nickel-hydrogen batteries, the purpose of this invention is to find a positive and negative electrode of spent nickel-hydrogen batteries that has a high metal leaching rate, is easy to use, does not require expensive reducing agents, and is basically free from nitrogen oxide pollution. The leaching method of the mixed material is characterized in that the positive and negative mixed materials separated from the nickel-metal hydride waste battery and obtained through roasting pretreatment and rice straw powder of ≤1.5 mm are added to a pressure-resistant, sulfuric acid and nitric acid corrosion-resistant reaction kettle In, add the mixed solution of sulfuric acid and nitric acid, and carry out stirring and leaching under airtight conditions. After leaching, liquid-solid separation is carried out to obtain the required leaching solution. The reaction temperature is 50 ℃ ~ 80 ℃, the initial concentration of sulfuric acid leached is 1mol/L ~ 4mol/L, the initial concentration of nitric acid is 5g/L ~ 10g/L, the leaching time is 2h ~ 4h, the leaching process is stirred, and the stirring speed is 30r/min~120r/min. The amount of sulfuric acid added is 110% to 140% of the theoretical consumption of sulfuric acid for leaching all metals in the positive and negative electrode mixed materials added to the reaction vessel. The amount of rice straw powder added is 60% to 75% of the total mass of nickel and cobalt in the positive and negative electrode mixed materials on a dry basis.

   本发明的目的是这样实现的:在密闭并有稻草粉和硝酸存在的条件下,硫酸浸出经焙烧预处理后的镍氢废电池正负极混合材料(材料中的镍、钴和稀土呈氧化物形态)时,浸出过程发生如下主要化学反应: The object of the present invention is achieved like this: under the condition that is airtight and there are rice straw powder and nitric acid to exist, sulfuric acid leaches the mixed positive and negative electrodes of nickel-metal hydride batteries after roasting pretreatment (nickel, cobalt and rare earth in the material are oxidized form), the following main chemical reactions occur during the leaching process:

     NiO + H2SO4 = NiSO4 + H2O NiO + H2SO4 = NiSO4 + H2O

     CoO + H2SO4 = CoSO4 + H2O CoO + H2SO4 = CoSO4 + H2O

Re2O3 + 3H2SO4 = Re2(SO4)3 + 3H2O Re 2 O 3 + 3H 2 SO 4 = Re 2 (SO 4 ) 3 + 3H 2 O

 nC6H10O5 + nH2SO4 =n(C5H11O5)HSO4 nC 6 H 10 O 5 + nH 2 SO 4 =n(C 5 H 11 O 5 )HSO 4

     n(C5H11O5)HSO4 + nH2O = nC6H12O6 + nH2SO4 n(C 5 H 11 O 5 )HSO 4 + nH 2 O = nC 6 H 12 O 6 + nH 2 SO 4

      C6H12O6 + 8HNO3 = 8NO + 6CO2 + 10H2O C 6 H 12 O 6 + 8HNO 3 = 8NO + 6CO 2 + 10H 2 O

      nC6H10O5 + 8nHNO3 = 8nNO + 6nCO2 + 9nH2O nC 6 H 10 O 5 + 8nHNO 3 = 8nNO + 6nCO 2 + 9nH 2 O

      3Ni2O3 + 6H2SO4 + 2NO = 6NiSO4 + 2HNO3 + 5H2O 3Ni2O3 + 6H2SO4 + 2NO = 6NiSO4 + 2HNO3 + 5H2O

      3Co2O3 + 6H2SO4 + 2NO = 6CoSO4 + 2HNO3 + 5H2O 3Co 2 O 3 + 6H 2 SO 4 + 2NO = 6CoSO 4 + 2HNO 3 + 5H 2 O

     Ni2O3和Co2O3的总反应为: The overall reaction of Ni2O3 and Co2O3 is:

12nNi2O3 + nC6H10O5 + 24nH2SO4 = 24nNiSO4 + 6nCO2 + 29nH2O 12nNi 2 O 3 + nC 6 H 10 O 5 + 24nH 2 SO 4 = 24nNiSO 4 + 6nCO 2 + 29nH 2 O

12nCo2O3 + nC6H10O5 + 24nH2SO4 = 24nCoSO4 + 6nCO2 + 29nH2O 12nCo 2 O 3 + nC 6 H 10 O 5 + 24nH 2 SO 4 = 24nCoSO 4 + 6nCO 2 + 29nH 2 O

稻草粉中的其它有机物也与硝酸反应生成NO、CO2和H2O,生成的NO与Ni2O3和Co2O3按前述反应生成NiSO4 、CoSO4、HNO3和H2O。 Other organic matter in rice straw powder also reacts with nitric acid to generate NO, CO 2 and H 2 O, and the generated NO reacts with Ni 2 O 3 and Co 2 O 3 to generate NiSO 4 , CoSO 4 , HNO 3 and H 2 O.

由于硝酸与稻草粉的反应速度较快,产生的NO与Ni2O3和Co2O3的反应也较快,由此加快整个浸出过程,并实现Ni2O3和Co2O3较完全浸出。NO可以彻底破坏正负极混合材料中高价氧化物的层状结构,提高有价金属的浸出率。 Due to the fast reaction speed of nitric acid and rice straw powder, the reaction of produced NO with Ni 2 O 3 and Co 2 O 3 is also fast, thereby speeding up the whole leaching process, and realizing the completeness of Ni 2 O 3 and Co 2 O 3 leach. NO can completely destroy the layered structure of high-valent oxides in the positive and negative mixed materials, and improve the leaching rate of valuable metals.

   相对于现有方法,本发明的突出优点是采用稻草粉作还原剂,硝酸作浸出加速剂浸出镍氢废电池正负极混合材料,反应速度快,反应酸度较低,硫酸和还原剂的消耗量小,并且稻草粉便宜;正负极混合材料中高价氧化物的层状结构破坏彻底,可提高金属浸出率;浸出液后续处理中不需要中和大量的酸,成本较低;浸出液后续处理中产生的废弃物量少,降低了污染治理费用,具有明显的经济效益和环境效益;过程在密闭条件下进行,避免了NO逸出产生的环境污染。 Compared with the existing method, the outstanding advantage of the present invention is that rice straw powder is used as reducing agent, and nitric acid is used as leaching accelerator to leach mixed positive and negative electrodes of nickel-metal hydride batteries, the reaction speed is fast, the reaction acidity is low, and the consumption of sulfuric acid and reducing agent The amount is small, and the rice straw powder is cheap; the layered structure of the high-valent oxide in the positive and negative mixed materials is completely destroyed, which can increase the metal leaching rate; the subsequent treatment of the leachate does not need to neutralize a large amount of acid, and the cost is low; The amount of waste produced is small, the cost of pollution control is reduced, and it has obvious economic and environmental benefits; the process is carried out under airtight conditions, which avoids environmental pollution caused by NO escape.

具体实施方法Specific implementation method

   实施例1:将100g经焙烧预处理的镍氢废电池正负极混合材料(含镍55.3%、钴6.2%、稀土12.5%)和≤1.5mm稻草粉37g加入容积为2L的衬钛压力反应釜中,加入硫酸浓度为1.5mol/L、硝酸浓度为5g/L的混酸溶液870ml,在50℃~60℃下密闭搅拌(搅拌速度80r/min)浸出4h,浸出结束后进行液固分离,得到840ml浸出溶液(不含浸出渣洗涤水)。镍、钴和稀土的浸出率分别为98.9%、98.5%和8.8 %(按进入浸出溶液和浸出渣洗涤液中的镍、钴和稀土计算)。    Example 1: Add 100g of the positive and negative mixed materials of nickel-metal hydride waste batteries (containing 55.3% nickel, 6.2% cobalt, and 12.5% rare earth) and 37g of straw powder ≤ 1.5mm into a titanium-lined pressure reaction with a volume of 2L. Add 870ml of mixed acid solution with a concentration of sulfuric acid of 1.5mol/L and a concentration of nitric acid of 5g/L into the kettle, leaching at 50℃~60℃ with closed stirring (stirring speed 80r/min) for 4 hours, and then carry out liquid-solid separation after leaching. Obtain 840ml leaching solution (excluding leaching slag washing water). The leaching rates of nickel, cobalt and rare earths are 98.9%, 98.5% and 8.8% respectively (calculated based on nickel, cobalt and rare earths entering the leaching solution and leaching slag washing solution).

    实施例2:将经焙烧预处理的500g镍氢废电池正负极混合材料(含镍55.3%、钴6.2%、稀土12.5%)和≤1.5mm稻草粉230g加入容积为5L的衬钛压力反应釜中,加入硫酸浓度为3.0mol/L、硝酸浓度为10g/L的混酸溶液2700ml,在70℃~80℃下密闭搅拌(搅拌速度70r/min)浸出2.0h,浸出结束后进行液固分离,得到2400ml浸出溶液(不含浸出渣洗涤水)。镍、钴和稀土的浸出率分别为99.2%、99.1%和7.9 %(按进入浸出溶液和浸出渣洗涤液中的镍、钴和稀土计算)。 Example 2: 500g of mixed positive and negative electrode materials of waste nickel-metal hydride batteries (containing 55.3% nickel, 6.2% cobalt, and 12.5% rare earth) and 230g ≤ 1.5mm rice straw powder were added to a titanium-lined pressure reaction with a volume of 5L. Add 2700ml of mixed acid solution with a concentration of sulfuric acid of 3.0mol/L and a concentration of nitric acid of 10g/L in the kettle, and leaching at 70°C to 80°C (stirring speed 70r/min) for 2.0h, and liquid-solid separation after leaching , to obtain 2400ml leaching solution (excluding leaching slag washing water). The leaching rates of nickel, cobalt and rare earths are 99.2%, 99.1% and 7.9% respectively (calculated based on nickel, cobalt and rare earths entering the leaching solution and leaching slag washing solution).

Claims (1)

1.一种镍氢废电池正负极混合材料的浸出方法,其特征是将从镍氢废电池中分离出的并经焙烧预处理得到的正负极混合材料和≤1.5mm的稻草粉加入耐压、耐硫酸和硝酸腐蚀的反应釜中,加入硫酸和硝酸的混合溶液,并在密闭条件下进行搅拌浸出,浸出结束后进行液固分离,得到所需浸出溶液,反应温度为50℃~80℃, 浸出的硫酸初始浓度为1mol/L~4mol/L, 硝酸的初始浓度为5g/L~10g/L 浸出时间为2h~4h,浸出过程进行搅拌,搅拌速度为30r/min~120r/min,硫酸加入量为加入反应容器的正负极混合材料中全部金属浸出的硫酸理论消耗量的110%~140%,稻草粉的加入量以干基计为正负极混合材料中镍、钴总质量的60%~75%。 1. A method for leaching the positive and negative mixed materials of nickel-hydrogen waste batteries, which is characterized in that the positive and negative mixed materials separated from the waste nickel-hydrogen batteries and obtained through roasting pretreatment and rice straw powder of ≤1.5mm are added Add a mixed solution of sulfuric acid and nitric acid into a pressure-resistant, sulfuric acid and nitric acid corrosion-resistant reaction kettle, and carry out stirring and leaching under airtight conditions. After the leaching is completed, liquid-solid separation is carried out to obtain the required leaching solution. The reaction temperature is 50 ° C ~ 80℃, the initial concentration of leached sulfuric acid is 1mol/L~4mol/L, the initial concentration of nitric acid is 5g/L~10g/L, the leaching time is 2h~4h, and the leaching process is stirred at a stirring speed of 30r/min~120r/ min, the amount of sulfuric acid added is 110% to 140% of the theoretical consumption of sulfuric acid for leaching all metals in the positive and negative mixed materials added to the reaction vessel, and the added amount of rice straw powder is calculated on a dry basis as the nickel and cobalt in the positive and negative mixed materials 60% to 75% of the total mass.
CN201310736502.6A 2013-12-29 2013-12-29 The leaching method of Ni-MH used battery anode and cathode mixed material Expired - Fee Related CN103757310B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310736502.6A CN103757310B (en) 2013-12-29 2013-12-29 The leaching method of Ni-MH used battery anode and cathode mixed material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310736502.6A CN103757310B (en) 2013-12-29 2013-12-29 The leaching method of Ni-MH used battery anode and cathode mixed material

Publications (2)

Publication Number Publication Date
CN103757310A true CN103757310A (en) 2014-04-30
CN103757310B CN103757310B (en) 2016-01-20

Family

ID=50524624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310736502.6A Expired - Fee Related CN103757310B (en) 2013-12-29 2013-12-29 The leaching method of Ni-MH used battery anode and cathode mixed material

Country Status (1)

Country Link
CN (1) CN103757310B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1171171A (en) * 1994-12-20 1998-01-21 瓦尔达电池股份公司 Method for recovering metals from spent nickel-metal hydride batteries
CN101383440A (en) * 2007-11-16 2009-03-11 佛山市邦普镍钴技术有限公司 Method for recycling and preparing superfine nickel powder from nickel-hydrogen cell
CN101629243A (en) * 2009-06-23 2010-01-20 四川师范大学 Infusion method of Ni-MH used battery anode and cathode mixed material
JP2010174366A (en) * 2009-02-02 2010-08-12 Sumitomo Metal Mining Co Ltd Method of recovering metal from used nickel-metal hydride battery
CN102030375A (en) * 2010-10-29 2011-04-27 北京矿冶研究总院 Method for preparing lithium cobaltate by directly using failed lithium ion battery
WO2012011205A1 (en) * 2010-07-21 2012-01-26 住友金属鉱山株式会社 Method for separating nikel and cobalt from active materials contained in spent nickel-hydrogen battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1171171A (en) * 1994-12-20 1998-01-21 瓦尔达电池股份公司 Method for recovering metals from spent nickel-metal hydride batteries
CN101383440A (en) * 2007-11-16 2009-03-11 佛山市邦普镍钴技术有限公司 Method for recycling and preparing superfine nickel powder from nickel-hydrogen cell
JP2010174366A (en) * 2009-02-02 2010-08-12 Sumitomo Metal Mining Co Ltd Method of recovering metal from used nickel-metal hydride battery
CN101629243A (en) * 2009-06-23 2010-01-20 四川师范大学 Infusion method of Ni-MH used battery anode and cathode mixed material
WO2012011205A1 (en) * 2010-07-21 2012-01-26 住友金属鉱山株式会社 Method for separating nikel and cobalt from active materials contained in spent nickel-hydrogen battery
CN102030375A (en) * 2010-10-29 2011-04-27 北京矿冶研究总院 Method for preparing lithium cobaltate by directly using failed lithium ion battery

Also Published As

Publication number Publication date
CN103757310B (en) 2016-01-20

Similar Documents

Publication Publication Date Title
CN103757310B (en) The leaching method of Ni-MH used battery anode and cathode mixed material
CN103757307B (en) The leaching method of Ni-MH used battery anode and cathode mixed material
CN103757263B (en) The leaching method of anode material of used nickel cadmium battery
CN103757322A (en) Method for leaching positive pole material of waste nickel-metal hydride battery
CN103757317A (en) Method for leaching positive pole material of waste nickel-metal hydride battery
CN103757308A (en) Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery
CN103757240A (en) Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery
CN103757296A (en) Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery
CN103757309A (en) Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery
CN103757313A (en) Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery
CN103757318A (en) Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery
CN103757237A (en) Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery
CN103757297A (en) Method for leaching positive pole material of waste nickel-metal hydride battery
CN103757302A (en) Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery
CN103757314A (en) Method for leaching positive pole material of waste nickel-metal hydride battery
CN103757315A (en) Method for leaching positive pole material of waste nickel-metal hydride battery
CN103757301A (en) Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery
CN103757303A (en) Method for leaching positive pole material of waste nickel-metal hydride battery
CN103757300A (en) Method for leaching positive pole material of waste nickel-metal hydride battery
CN103757304A (en) Method for leaching positive pole material of waste nickel-metal hydride battery
CN103757359A (en) Leaching method of nickel-cadmium waste battery positive-negative electrode mixed material
CN103757305A (en) Method for leaching positive pole material of waste nickel-metal hydride battery
CN103757238A (en) Method for leaching positive pole material of waste nickel-metal hydride battery
CN103757338A (en) Leaching method of nickel-cadmium waste battery positive electrode material
CN103757326A (en) Method for leaching positive pole material of waste nickel-metal hydride battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20161229

CF01 Termination of patent right due to non-payment of annual fee