CN103701886A - Hierarchic scheduling method for service and resources in cloud computation environment - Google Patents
Hierarchic scheduling method for service and resources in cloud computation environment Download PDFInfo
- Publication number
- CN103701886A CN103701886A CN201310704075.3A CN201310704075A CN103701886A CN 103701886 A CN103701886 A CN 103701886A CN 201310704075 A CN201310704075 A CN 201310704075A CN 103701886 A CN103701886 A CN 103701886A
- Authority
- CN
- China
- Prior art keywords
- service
- resource
- scheduling
- task
- tasks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 75
- 238000013468 resource allocation Methods 0.000 claims abstract description 9
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 claims description 4
- 238000004088 simulation Methods 0.000 abstract description 5
- 238000013178 mathematical model Methods 0.000 abstract description 2
- 238000004422 calculation algorithm Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000007726 management method Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
一种云计算环境下的服务及资源分层调度方法;其包括提交用户请求、划分任务单元、定义计算模型、定义存储模型、定义服务解析过程、服务调度过程、资源调度过程和对调度进行评估等阶段:本发明定义了服务组合文件的数学模型并将其应用于云环境中;首先对服务组合文件进行解析以确定服务优先级;利用资源池将任务分类,服务可以通过运行特点使用合适的资源分配方法执行;调度方法考虑了数据局部性和相关服务完成率。从模拟实验中可以观察到,本发明提出的分层调度方法可以提高资源利用率,相较于Hadoop默认的FIFO调度实现更高的服务完成率。本发明提出的方法通过高效调度和优先级的重新分配满足用户和服务提供者的要求。
A hierarchical scheduling method for services and resources in a cloud computing environment; it includes submitting user requests, dividing task units, defining computing models, defining storage models, defining service resolution processes, service scheduling processes, resource scheduling processes, and evaluating scheduling Etc stage: the present invention defines the mathematical model of the service composition file and applies it to the cloud environment; firstly, the service composition file is parsed to determine the service priority; the resource pool is used to classify the tasks, and the service can use the appropriate Resource allocation methods execute; scheduling methods take into account data locality and relative service completion rates. It can be observed from simulation experiments that the hierarchical scheduling method proposed by the present invention can improve resource utilization, and achieve a higher service completion rate compared with the default FIFO scheduling of Hadoop. The method proposed by the invention satisfies the requirements of users and service providers through efficient scheduling and redistribution of priorities.
Description
技术领域technical field
本发明属于计算机网络应用与系统结构技术领域,特别是涉及一种云计算环境下的服务及资源分层调度方法。The invention belongs to the technical field of computer network application and system structure, and in particular relates to a service and resource hierarchical scheduling method in a cloud computing environment.
背景技术Background technique
云计算改变了传统使用基础设施的方式。其中,有效的资源管理和服务调度可以解决资源过度消耗或利用不足的问题,提高用户满意度。由于用户需求和服务属性的多样性,在云环境中针对不同应用程序和服务模式的调度算法的研究,以及在云环境中执行服务组合,对用户请求实现定制化是非常重要的。在云计算环境中实现服务组合,重要的是服务调度和资源分配并在此基础上满足QoS要求。服务组合是通过组合和连接云计算环境中已有的服务以创建新的服务的过程。服务的调度要符合云计算动态性,分布式和可共享的特点。资源的分配是为了能够让工作流中的所有服务都达到各自的性能指标。此外,在云计算平台中,基于QoS的资源分配机制可以对用户请求进行差异化的调度。Cloud computing has changed the traditional way of using infrastructure. Among them, effective resource management and service scheduling can solve the problem of excessive consumption or underutilization of resources and improve user satisfaction. Due to the diversity of user needs and service attributes, it is very important to study scheduling algorithms for different applications and service models in cloud environments, and to perform service composition in cloud environments to achieve customization to user requests. To implement service composition in a cloud computing environment, it is important to service scheduling and resource allocation and to meet QoS requirements on this basis. Service composition is the process of creating new services by combining and connecting existing services in the cloud computing environment. Service scheduling should conform to the dynamic, distributed and shareable characteristics of cloud computing. The allocation of resources is to enable all services in the workflow to achieve their respective performance targets. In addition, in the cloud computing platform, the QoS-based resource allocation mechanism can perform differentiated scheduling on user requests.
云计算服务提供三层架构。整个云架构包括资源提供者,服务提供者和用户三部分。服务提供者租借资源并创建虚拟机实例为用户提供服务;资源提供者负责将虚拟机调度到相应的物理机上;用户提交申请单个服务或服务组合。服务提供者的服务随着时间或成本等因素而发生变化。Cloud computing services provide a three-tier architecture. The entire cloud architecture includes resource providers, service providers and users. Service providers lease resources and create virtual machine instances to provide services to users; resource providers are responsible for scheduling virtual machines to corresponding physical machines; users submit applications for individual services or service combinations. A service provider's services vary with factors such as time or cost.
云计算向着数据密集型和计算密集型发展的特点,很多应用都是基于Map/Reduce模型以提高性能。Map/Reduce是Google提出的分布式并行计算编程模型,用于大规模数据的并行处理。Map/Reduce模型受函数式编程语言的启发,将大规模数据处理作业拆分成若干个可独立运行的Map任务,分配到不同的机器上去执行,生成某种格式的中间文件,再由若干个Reduce任务合并这些中间文件获得最后的输出文件。Cloud computing is characterized by data-intensive and computing-intensive development. Many applications are based on the Map/Reduce model to improve performance. Map/Reduce is a distributed parallel computing programming model proposed by Google for parallel processing of large-scale data. Inspired by functional programming languages, the Map/Reduce model splits large-scale data processing jobs into several Map tasks that can run independently, assigns them to different machines for execution, and generates intermediate files in a certain format, and then several The Reduce task merges these intermediate files to obtain the final output file.
此前在Map/Reduce模型中对服务调度算法的研究包括:FIFO调度算法会长期占用系统资源,其他作业提交之后由于迟迟得不到系统资源而不能及时处理,从而影响了系统的交互能力和用户的使用体验;公平份额调度算法和计算能力调度算法要进行预先的配置,因此配置的适当与否决定着系统的性能,配置合适时系统有着较好的响应性能,但如果没有配置好,则与配置好时的系统性能有着较大的差距。Previous research on service scheduling algorithms in the Map/Reduce model includes: FIFO scheduling algorithms will occupy system resources for a long time. After other jobs are submitted, they cannot be processed in time due to the lack of system resources, which affects the interactive capabilities of the system and users. The use experience; the fair share scheduling algorithm and the computing power scheduling algorithm need to be pre-configured, so whether the configuration is appropriate or not determines the performance of the system. Hershey's system performance has a large gap.
发明内容Contents of the invention
为了解决上述问题,本发明的目的在于提供一种云计算环境下的服务及资源分层调度方法。In order to solve the above problems, the object of the present invention is to provide a service and resource hierarchical scheduling method in a cloud computing environment.
为了达到上述目的,本发明提供的云计算环境下的服务及资源分层调度方法包括按顺序进行的下列步骤:In order to achieve the above object, the service and resource hierarchical scheduling method under the cloud computing environment provided by the present invention includes the following steps in order:
1)提交用户请求的S01阶段:用户提交请求给服务提供者,包括单个服务或服务组合;1) S01 stage of submitting user requests: users submit requests to service providers, including individual services or service combinations;
2)划分任务单元的S02阶段:服务提供者接收用户请求,划分为更小单元的任务,任务单元在得到优先级后进行调度;2) The S02 stage of dividing task units: the service provider receives user requests and divides them into tasks of smaller units, and the task units are scheduled after obtaining the priority;
3)定义计算模型的S03阶段:从服务级定义负责服务执行的计算资源模型,计算资源模型分为服务层和虚拟层;3) The S03 stage of defining the computing model: define the computing resource model responsible for service execution from the service level, and the computing resource model is divided into a service layer and a virtual layer;
4)定义存储模型的S04阶段:从任务级定义负责数据的存储资源模型,分为服务层和数据访问层;4) Define the S04 stage of the storage model: define the storage resource model responsible for data from the task level, which is divided into a service layer and a data access layer;
5)定义服务解析过程的S05阶段:定义服务解析过程,将用户所请求的服务根据定义的调度模型分解成服务组合模式,对服务组合模式中的服务文件进行解析,包括计算服务执行时间,服务权重和数据传输权重,并根据计算结果和服务路径对服务进行排名;5) Define the S05 stage of the service analysis process: define the service analysis process, decompose the service requested by the user into a service composition model according to the defined scheduling model, and analyze the service files in the service composition model, including calculating service execution time, service Weight and data transfer weight, and rank services based on calculation results and service paths;
6)服务调度过程的S06阶段:预定义三个资源池,资源池根据Map/Consumption比衡量和比较Map/Reduce服务,将排名后的服务分解成任务,计算任务完成率是否大于资源池中任务槽定义的阈值,将大于阈值的任务根据服务所需的资源分解进入三个资源池中,不同资源池中的服务对应不同的资源分配方法,任务在资源池中的分布式任务槽中执行,这是服务调度过程;6) The S06 stage of the service scheduling process: three resource pools are predefined, and the resource pools measure and compare Map/Reduce services according to the Map/Consumption ratio, decompose the ranked services into tasks, and calculate whether the task completion rate is greater than the tasks in the resource pool The threshold defined by the slot, the tasks greater than the threshold are decomposed into three resource pools according to the resources required by the service. The services in different resource pools correspond to different resource allocation methods, and the tasks are executed in the distributed task slots in the resource pool. This is the service scheduling process;
7)资源调度过程的S07阶段:资源池中有可用任务槽时对任务进行调度部署,预定义三种资源池的分配方法,当Map/Reduce中的TaskTracker有可用任务槽时,根据数据局部性原理从资源池中选合适的任务执行,若排名前三任务数据局部性符合,将排名最高的任务分配进入任务槽中,若不符合,继续等待;最后完成服务调度与资源调度的整体过程;7) The S07 stage of the resource scheduling process: schedule and deploy tasks when there are available task slots in the resource pool, and predefine three resource pool allocation methods. When the TaskTracker in Map/Reduce has available task slots, according to data locality The principle is to select the appropriate task from the resource pool for execution. If the locality of the top three task data matches, assign the highest-ranked task into the task slot. If not, continue to wait; finally complete the overall process of service scheduling and resource scheduling;
8)对调度进行评估的S08阶段:从服务总完成时间、资源利用率方面对调度进行评估。8) S08 stage of evaluating scheduling: evaluating scheduling from the aspects of total service completion time and resource utilization.
在S03阶段中,所述的计算资源模型定义了三种任务类型:TM-Map任务,TR-Reduce任务和非Map-Reduce任务。In the S03 stage, the computing resource model defines three types of tasks: TM-Map tasks, TR-Reduce tasks and non-Map-Reduce tasks.
在S03阶段中,计算资源模型中定义的数据块是可复制的。In the S03 stage, the data blocks defined in the computing resource model are reproducible.
所述的步骤6)中依据Map/Consumption比设置三个数据访问级别:Map数据输入,Map-Reduce中间数据,Reduce数据输出。In step 6), three data access levels are set according to the Map/Consumption ratio: Map data input, Map-Reduce intermediate data, and Reduce data output.
所述的步骤5)-步骤7)共同构成分层调度模型,从服务调度和资源调度两方面改善服务组合执行率。The steps 5) to 7) together constitute a hierarchical scheduling model, which improves the service combination execution rate from two aspects of service scheduling and resource scheduling.
本发明提供的云计算环境下的服务及资源分层调度方法,定义了服务组合文件的数学模型并将其应用于云环境中;首先对服务组合文件进行解析以确定服务优先级;利用资源池将任务分类,服务可以通过运行特点使用合适的资源分配方法执行;调度方法考虑了数据局部性和相关服务完成率。从模拟实验中可以观察到,本发明提出的分层调度方法可以提高资源利用率,相较于Hadoop默认的FIFO调度实现更高的服务完成率。另外,为了同时满足用户和服务提供者,需要一个高效的服务调度方法。本发明提出的方法通过高效调度和优先级的重新分配满足用户和服务提供者的要求。The service and resource hierarchical scheduling method under the cloud computing environment provided by the present invention defines the mathematical model of the service combination file and applies it to the cloud environment; firstly, the service combination file is analyzed to determine the service priority; the resource pool is used By classifying tasks, services can be executed using appropriate resource allocation methods based on operational characteristics; scheduling methods take into account data locality and relative service completion rates. It can be observed from simulation experiments that the hierarchical scheduling method proposed by the present invention can improve resource utilization, and achieve a higher service completion rate compared with the default FIFO scheduling of Hadoop. In addition, in order to satisfy both users and service providers, an efficient service scheduling method is needed. The method proposed by the invention satisfies the requirements of users and service providers through efficient scheduling and redistribution of priorities.
附图说明Description of drawings
图1为本发明提供的云计算环境下的服务及资源分层调度方法的流程图;Fig. 1 is a flow chart of the service and resource hierarchical scheduling method under the cloud computing environment provided by the present invention;
图2为负责服务执行的计算资源模型示意图;FIG. 2 is a schematic diagram of a computing resource model responsible for service execution;
图3为负责数据的存储资源模型示意图;Fig. 3 is a schematic diagram of a storage resource model responsible for data;
图4为本发明提供的云计算环境下的服务及资源分层调度方法的操作过程框图;4 is a block diagram of the operation process of the service and resource hierarchical scheduling method in the cloud computing environment provided by the present invention;
图5为本方法与FIFO总服务完成时间对比;Figure 5 is a comparison between this method and the total service completion time of FIFO;
图6为本方法与FIFO的资源占用对比;Figure 6 is a comparison of resource occupation between this method and FIFO;
图7为本方法中不同资源池中服务的完成时间;Fig. 7 is the completion time of the service in different resource pools in this method;
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明提供的云计算环境下的服务及资源分层调度方法进行详细说明。The service and resource layered scheduling method under the cloud computing environment provided by the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
如图1所示,本发明提供的云计算环境下的服务及资源分层调度方法包括按顺序进行的下列步骤:As shown in Figure 1, the service and resource hierarchical scheduling method under the cloud computing environment provided by the present invention includes the following steps carried out in order:
1)提交用户请求的S01阶段:用户提交请求给服务提供者,包括单个服务或服务组合;1) S01 stage of submitting user requests: users submit requests to service providers, including individual services or service combinations;
2)划分任务单元的S02阶段:服务提供者接收用户请求,划分为更小单元的任务,任务单元在得到优先级后进行调度;2) The S02 stage of dividing task units: the service provider receives user requests and divides them into tasks of smaller units, and the task units are scheduled after obtaining the priority;
3)定义计算模型的S03阶段:从服务级定义负责服务执行的计算资源模型,图2所示为计算资源模型,分为服务层和虚拟层;3) Defining the S03 stage of the computing model: defining the computing resource model responsible for service execution from the service level. Figure 2 shows the computing resource model, which is divided into a service layer and a virtual layer;
4)定义存储模型的S04阶段:从任务级定义负责数据的存储资源模型,图3所示为存储资源模型,分为服务层和数据访问层;4) Define the S04 stage of the storage model: define the storage resource model responsible for data from the task level. Figure 3 shows the storage resource model, which is divided into a service layer and a data access layer;
5)定义服务解析过程的S05阶段:定义服务解析过程。将用户所请求的服务根据定义的调度模型分解成服务组合模式(SCP),对服务组合模式中的服务文件进行解析,包括计算服务执行时间,服务权重和数据传输权重,并根据计算结果和服务路径对服务进行排名;5) Define the S05 stage of the service resolution process: define the service resolution process. Decompose the service requested by the user into a service composition pattern (SCP) according to the defined scheduling model, analyze the service files in the service composition pattern, including calculating the service execution time, service weight and data transmission weight, and according to the calculation results and service The path ranks the services;
6)服务调度过程的S06阶段:预定义三个资源池,资源池根据Map/Consumption比衡量和比较Map/Reduce服务,将排名后的服务分解成任务,计算任务完成率是否大于资源池中任务槽定义的阈值,将大于阈值的任务根据服务所需的资源分解进入三个资源池中,不同资源池中的服务对应不同的资源分配方法,任务在资源池中的分布式任务槽中执行,这是服务调度过程;6) The S06 stage of the service scheduling process: three resource pools are predefined, and the resource pools measure and compare Map/Reduce services according to the Map/Consumption ratio, decompose the ranked services into tasks, and calculate whether the task completion rate is greater than the tasks in the resource pool The threshold defined by the slot, the tasks greater than the threshold are decomposed into three resource pools according to the resources required by the service. The services in different resource pools correspond to different resource allocation methods, and the tasks are executed in the distributed task slots in the resource pool. This is the service scheduling process;
7)资源调度过程的S07阶段:资源池中有可用任务槽时对任务进行调度部署,预定义三种资源池的分配方法,当Map/Reduce中的TaskTracker有可用任务槽时,根据数据局部性原理从资源池中选合适的任务执行,若排名前三任务数据局部性符合,将排名最高的任务分配进入任务槽中,若不符合,继续等待;最后完成服务调度与资源调度的整体过程。7) The S07 stage of the resource scheduling process: schedule and deploy tasks when there are available task slots in the resource pool, and predefine three resource pool allocation methods. When the TaskTracker in Map/Reduce has available task slots, according to data locality The principle is to select the appropriate task from the resource pool for execution. If the data locality of the top three tasks matches, assign the highest-ranked task to the task slot. If not, continue to wait; finally complete the overall process of service scheduling and resource scheduling.
8)对调度进行评估的S08阶段:从服务总完成时间,资源利用率等方面对调度进行评估。8) S08 stage of evaluating scheduling: evaluating scheduling from the aspects of total service completion time, resource utilization rate, etc.
在S03阶段中,所述的计算资源模型定义了三种任务类型:TM-Map任务,TR-Reduce任务和非Map-Reduce任务。In the S03 stage, the computing resource model defines three types of tasks: TM-Map tasks, TR-Reduce tasks and non-Map-Reduce tasks.
在S03阶段中,计算资源模型中定义的数据块是可复制的。In the S03 stage, the data blocks defined in the computing resource model are reproducible.
所述的步骤6)中依据Map/Consumption比设置三个数据访问级别:Map数据输入,Map-Reduce中间数据,Reduce数据输出。由于不同的部署方法和服务会得到不同的结果,造成服务失败,因此MRCT(Map/Reduce消耗时间比)用于服务分类。资源池的细节描述在表2中体现;表3表示三种资源池的分类方法。In step 6), three data access levels are set according to the Map/Consumption ratio: Map data input, Map-Reduce intermediate data, and Reduce data output. Because different deployment methods and services will get different results, resulting in service failure, so MRCT (Map/Reduce consumption time ratio) is used for service classification. The detailed description of the resource pool is reflected in Table 2; Table 3 shows the classification methods of the three resource pools.
在S07阶段,中所述的任务槽的配置是可变的,并能够动态调整负载节点。In the S07 stage, the configuration of the task slots described in is variable and can dynamically adjust the load nodes.
步骤5-步骤7共同构成分层调度模型,从服务调度和资源调度两方面改善服务组合执行率。Step 5-Step 7 together constitute a hierarchical scheduling model, which improves the service combination execution rate from two aspects of service scheduling and resource scheduling.
如图2所示,在S03阶段中,所述的负责服务执行的计算资源模型的定义方法步骤如下:As shown in Figure 2, in the S03 stage, the steps of the method for defining the computing resource model responsible for service execution are as follows:
从服务层角度:From the service layer perspective:
1)服务文件。SP=<ID,Start Time,End Time,L-route,C-route,MA>描述服务属性的配置文件。ID表示云服务名称,Start Time和End Time分别表示服务执行的开始和结束时间。L-route表示从起始服务到当前服务的最长路径。C-route表示从当前服务到最终服务的最长路径(任务权重)。1) Service files. SP=<ID,Start Time,End Time,L-route,C-route,MA>A configuration file describing service attributes. ID indicates the name of the cloud service, and Start Time and End Time indicate the start and end time of service execution, respectively. L-route represents the longest path from the starting service to the current service. C-route represents the longest path (task weight) from the current service to the final service.
2)操作。MA=<Depend,Di,D0>,Depend表示在执行某服务之前必须要执行的服务,Di和D0是服务输入和输出的数据类型,表示服务需要的资源。2) Operation. MA=<Depend, D i , D 0 >, Depend indicates the service that must be executed before executing a certain service, D i and D 0 are the data types of service input and output, indicating the resources required by the service.
3)服务组合模式。SCP=<Di,D0,Sx,BWx>表示服务组合模式。Di和D0表示输入数据和输出数据,S表示一个服务集。BWx表示两个节点之间的带宽。p和q分别表示服务文件中的服务,即Sq∈Sx,Sq.Di=Sp.D0,e表示两个服务之间的带宽索引。3) Service combination mode. SCP=<D i , D 0 , S x , BW x > means service combination mode. D i and D 0 represent input data and output data, and S represents a service set. BW x represents the bandwidth between two nodes. p and q respectively represent the services in the service file, namely S q ∈ S x , S q .D i =S p .D 0 , e represents the bandwidth index between two services.
从虚拟层角度:From the perspective of the virtual layer:
4)集群。C=<VM,D>表示云中的集群。集群是一组松耦合协同工作的计算机。该集群由虚拟机(VM)和磁盘文件(D)组成。VM表示计算资源,D表示存储资源。4) Clusters. C=<VM,D> represents a cluster in the cloud. A cluster is a group of loosely coupled computers working together. The cluster consists of virtual machines (VM) and disk files (D). VM represents computing resources, and D represents storage resources.
5)VMs。VM(虚拟机)是一组基于物理机的计算资源。每个VM包含一个或多个任务插槽,是本方法中的最小执行单元。服务所需的虚拟机数量取决于应用程序类型。在系统模型中,根据用户需求调度不同类型的VM。5) VMs. A VM (Virtual Machine) is a set of computing resources based on physical machines. Each VM contains one or more task slots, which is the smallest execution unit in this method. The number of virtual machines required for a service depends on the application type. In the system model, different types of VMs are scheduled according to user demands.
6)数据块。D={d}表示存储资源集合,d=<filename,B>表示文件系统中的分布式文件集。每个文件被分成大小为64MB或128MB的数据块,这些数据块构成数据集。本方法中的数据块是可复制的。6) Data blocks. D={d} represents a collection of storage resources, and d=<filename,B> represents a distributed file set in the file system. Each file is divided into data blocks of size 64MB or 128MB, and these data blocks form the dataset. Data blocks in this method are replicable.
如图3所示,在S04阶段中,所述的负责数据的存储资源模型的定义方法如下:As shown in Figure 3, in the S04 stage, the definition method of the storage resource model responsible for data is as follows:
从任务角度定义:Defined from a task perspective:
任务T={ID,TM|TR|TN|,Td,Di,D0,Tr,Ts,Tw,Tω,Te,Cr}定义了三种任务类型:TM-Map任务,TR-Reduce任务和其他非Map-Reduce任务。非Map-Reduce的服务将被拆分成TN类型。当任务从TaskTracker到JobTracker执行和传输任务时记录任务参数。模型分为服务层和数据访问层;数据块分布在云中,由文件系统管理;服务文件中的每个服务使用接入箭头指向必要的数据块;图中数据块B3和B6表示同样的数据;虚线箭头表示并发执行S2和S3时会引起对数据块B3的竞争;由于B6是B3的复制,S3可能会访问B6,下一个服务S4会直接进入到数据块B5中。Task T={ID, TM|TR|TN|, T d , D i , D 0 , T r , T s , T w , T ω , T e , C r } defines three task types: TM-Map tasks, TR-Reduce tasks and other non-Map-Reduce tasks. Non-Map-Reduce services will be split into TN types. Log task parameters as tasks execute and transfer tasks from TaskTracker to JobTracker. The model is divided into service layer and data access layer; data blocks are distributed in the cloud and managed by the file system; each service in the service file uses access arrows to point to the necessary data blocks; data blocks B3 and B6 in the figure represent the same data ; The dotted arrow indicates that the concurrent execution of S 2 and S 3 will cause competition for data block B3; since B6 is a copy of B3, S 3 may visit B6, and the next service S 4 will directly enter data block B5.
如图4所示,本发明提供的云计算环境下的服务及资源分层调度方法的具体操作步骤如下:As shown in Figure 4, the specific operation steps of the service and resource hierarchical scheduling method under the cloud computing environment provided by the present invention are as follows:
1)将用户所请求的服务根据定义的系统模型分解成服务组合模式(SCP),对服务组合模式中的服务文件进行解析,动作包括计算服务执行时间,服务权重和数据传输权重,并根据计算结果和服务路径对服务进行排名;通过比较SCP中的服务决定服务的执行顺序。在服务调度中,考虑服务依赖性和执行时间。评估数据传输时间和服务执行时间的计算方程式为:1) Decompose the service requested by the user into a service composition pattern (SCP) according to the defined system model, and analyze the service files in the service composition pattern. The action includes calculating the service execution time, service weight and data transmission weight, and according to the calculation Results and service paths rank services; the order in which services are executed is determined by comparing services in the SCP. In service scheduling, consider service dependencies and execution times. The calculation equation for evaluating data transfer time and service execution time is:
参数α计算任务的执行率,表示服务需要多少虚拟机同时执行。数据块设置根据Hadoop默认为64MB或128MB。参数TaskSlotPerVM默认设置为4。The parameter α calculates the execution rate of the task, indicating how many virtual machines the service needs to execute at the same time. The data block setting defaults to 64MB or 128MB depending on Hadoop. The parameter TaskSlotPerVM is set to 4 by default.
计算出服务执行时间后,给出服务执行优先级排名。首先考虑L-route。这个参数用于确定SCP中的服务Sx是否应优先执行。排名中使用的另一个参数表示每个服务的预执行时间。通过这个参数可以估计出Sx的最早执行时间。最后,增加的两个术语描述参数排名,并将服务排名列表推到下一级别。After the service execution time is calculated, the service execution priority ranking is given. Consider first the L-route. This parameter is used to determine whether the service Sx in the SCP should be executed preferentially. Another parameter used in the ranking represents the pre-execution time of each service. The earliest execution time of Sx can be estimated by this parameter. Finally, the addition of two terms describes parameter ranking and pushes the service ranking list to the next level.
系统需要为任务和资源设定多个QoS参数值以满足用户需求。对资源和任务分别创建资源矩阵和任务矩阵。用户满意度的方程式如下:The system needs to set multiple QoS parameter values for tasks and resources to meet user needs. Create a resource matrix and task matrix for resources and tasks, respectively. The equation for user satisfaction is as follows:
任务矩阵Tn,k与所需的QoS参数值以调度任务。Task matrix T n,k with required QoS parameter values to schedule tasks.
资源矩阵Rm,k与所需的QoS参数值以设置可用资源。Resource matrix R m,k with required QoS parameter values to set available resources.
进一步设置资源的QoS参数的阈值,以达到用户要求QoS标准。Further set the threshold of the QoS parameter of the resource to meet the QoS standard required by the user.
2)服务调度过程。本发明定义了三种资源池的集合,资源池根据Map/Consumption比衡量和比较Map/Reduce服务,我们设置了三个数据访问级别:Map数据输入,Map-Reduce中间数据,Reduce数据输出。不同的部署方法和服务将得到不同的结果。因此MRCT(Map/Reduce消耗时间比)用于服务分类。下一步动作包括将排名后的服务分解成任务,计算任务完成率是否大于资源池中任务槽中定义的阈值,若是,将排名最高的服务放入资源池中,若否,继续等待;动作包括将大于阈值的任务根据服务所需的资源分解进入三个资源池中,每个资源池有不同的资源需求特性,不同资源池中的服务对应不同的资源分配方法。每个服务分解成一个或多个任务在分布式任务槽中执行。作业拆分成任务并分配到相应的资源池后开始执行。2) Service scheduling process. The present invention defines a collection of three resource pools. The resource pool measures and compares Map/Reduce services according to the Map/Consumption ratio. We set up three data access levels: Map data input, Map-Reduce intermediate data, and Reduce data output. Different deployment methods and services will have different results. So MRCT (Map/Reduce Consumption Time Ratio) is used for service classification. The next step includes decomposing the ranked services into tasks, and calculating whether the task completion rate is greater than the threshold defined in the task slot in the resource pool. If yes, put the highest-ranked service into the resource pool. If not, continue to wait; actions include The tasks greater than the threshold are decomposed into three resource pools according to the resources required by the service. Each resource pool has different resource demand characteristics, and the services in different resource pools correspond to different resource allocation methods. Each service is decomposed into one or more tasks to be executed in distributed task slots. Jobs are split into tasks and assigned to the corresponding resource pools for execution.
在每个资源池中,将排名最高的服务分成一个或多个任务。任务优先级的确定如下:Within each resource pool, divide the highest-ranked service into one or more tasks. Task priorities are determined as follows:
首先通过公式计算任务权重C-route。在这一层,C-route值较小的任务将在最后执行。数据传输权重通过Ti,Tj之间的数据传输决定,如公式(8)。公式(9)中的参数Ti描述了数据传输的总和。使用这个参数决定任务Ti是否应该被调度等待。First, the task weight C-route is calculated by the formula. At this layer, tasks with smaller C-route values will be executed last. The data transmission weight is determined by the data transmission between T i and T j , as shown in formula (8). The parameter T i in equation (9) describes the sum of data transfers. Use this parameter to decide whether task T i should be scheduled to wait.
3)资源调度过程。资源池中有可用任务槽时对任务进行调度部署,预定义三种资源池的分配方法,动作包括当Map/Reduce中的TaskTracker有可用任务槽时,根据数据局部性从资源池中挑选合适的任务执行,若排名前三的任务数据局部性符合要求,将排名最高的任务分配进入任务槽中,若不符合,继续等待;最后完成服务调度与资源调度的整体过程;默认情况下,在Hadoop的配置中,Map任务数通常由输入的总大小决定,输入文件的总块数为NSi。Reduce的任务数为0.95或1.75乘以Reduce的任务槽数量,即总虚拟机数乘以系统分配给每个虚拟机的任务槽数。3) Resource scheduling process. When there are available task slots in the resource pool, tasks are scheduled and deployed. Three resource pool allocation methods are predefined. The action includes when the TaskTracker in Map/Reduce has available task slots, select the appropriate one from the resource pool according to data locality. Task execution, if the data locality of the top three tasks meets the requirements, assign the highest-ranked task into the task slot, if not, continue to wait; finally complete the overall process of service scheduling and resource scheduling; by default, in Hadoop In the configuration of , the number of Map tasks is usually determined by the total size of the input, and the total number of blocks of the input file is NS i . The number of Reduce tasks is 0.95 or 1.75 multiplied by the number of Reduce task slots, that is, the total number of virtual machines multiplied by the number of task slots allocated by the system to each virtual machine.
初始分配后,当TaskTracker有可用任务槽时,从资源池中的队列中挑选合适的任务执行。因此公式(10)中的距离权重用来解决数据局部性问题。假设有可用任务槽Slotm,需要计算任务Ti,以及中的相关任务Ti,Tj。公式用于计算平均数据局部性和所候选任务Ti依赖任务完成率,Ti值越小越好。After the initial allocation, when the TaskTracker has available task slots, it will pick a suitable task to execute from the queue in the resource pool. Therefore the distance weight in formula (10) is used to solve the data locality problem. Assuming that there is an available task slot Slot m , it is necessary to calculate the task T i , and the related tasks T i , T j in it. The formula is used to calculate the average data locality and the completion rate of the candidate task T i dependent tasks, the smaller the T i value, the better.
使用CPU利用率可估计每个节点上的工作负载。CPU信息是异构多核处理器处理能力的重要指标。内存管理对Map/Reduce作业的I/O性能非常重要。当内存可用的磁盘缓存增加时,性能会相应提高。因此,首先要确保有足够的内存空间供节点使用。若有足够内存,CPU利用率正常,就增加插槽数来分配和执行更多的任务以充分利用资源。反之,由于缺少内存,插槽数相应减少。初始的任务分配策略只考虑了插槽的可用性。当TaskTracker包含空槽时,它将获得JobTracker分配的任务而不需考虑节点的当前负载。如果插槽配置了不适当的任务分配策略,就可能导致资源利用不充分或者系统过载的情况。因此,在最好的情况下,插槽应该适应硬件的配置和每个节点的实时工作负载。在本发明中,插槽的配置是可变的,并能够动态调整负载节点。工作负载应考虑CPU的利用率,网络带宽,I/O和其他计算资源。本发明提出的任务调度计划考虑了每个节点的实施工作负载,最大限度地利用资源。Use CPU utilization to estimate the workload on each node. CPU information is an important indicator of the processing capability of heterogeneous multi-core processors. Memory management is very important to the I/O performance of Map/Reduce jobs. When the disk cache available to memory increases, performance increases accordingly. So first make sure there is enough memory space for the nodes. If there is enough memory and the CPU utilization is normal, increase the number of slots to allocate and execute more tasks to make full use of resources. Conversely, due to lack of memory, the number of slots decreases accordingly. The initial task allocation strategy only considers slot availability. When the TaskTracker contains empty slots, it will get the tasks assigned by the JobTracker regardless of the current load of the node. If the slot is configured with an inappropriate task allocation strategy, it may lead to underutilization of resources or system overload. Therefore, in the best case, the socket should be adapted to the configuration of the hardware and the real-time workload of each node. In the present invention, the slot configuration is variable, and the load nodes can be dynamically adjusted. The workload should consider the utilization of CPU, network bandwidth, I/O and other computing resources. The task scheduling plan proposed by the invention takes into account the implementation workload of each node and maximizes the utilization of resources.
图5至图7分别为对所提出策略的仿真模拟,该仿真环境的重点在于不同情景下的资源竞争。由仿真结果可见:采用云计算环境下的服务及资源分层调度方法,服务总完成时间较FIFO缩短,能够有效避免资源浪费并且在I/O密集型计算模式下,分层调度方法较FIFO性能提升了约30%。即本发明方法可以有效提高资源利用率,相较于Hadoop中默认的FIFO调度实现更高的服务完成率。Figures 5 to 7 are the simulations of the proposed strategies, the simulation environment focuses on resource competition under different scenarios. It can be seen from the simulation results that using the service and resource hierarchical scheduling method in the cloud computing environment, the total completion time of the service is shorter than that of FIFO, which can effectively avoid resource waste and in I/O-intensive computing mode, the hierarchical scheduling method has better performance than FIFO increased by about 30%. That is, the method of the present invention can effectively improve the resource utilization rate, and achieve a higher service completion rate compared with the default FIFO scheduling in Hadoop.
表1为本发明提出的三种资源池的划分方法;Table 1 is the division method of three kinds of resource pools proposed by the present invention;
表2为本发明提出的资源的分配方法。Table 2 shows the resource allocation method proposed by the present invention.
表1Table 1
表2Table 2
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310704075.3A CN103701886A (en) | 2013-12-19 | 2013-12-19 | Hierarchic scheduling method for service and resources in cloud computation environment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310704075.3A CN103701886A (en) | 2013-12-19 | 2013-12-19 | Hierarchic scheduling method for service and resources in cloud computation environment |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN103701886A true CN103701886A (en) | 2014-04-02 |
Family
ID=50363280
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310704075.3A Pending CN103701886A (en) | 2013-12-19 | 2013-12-19 | Hierarchic scheduling method for service and resources in cloud computation environment |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103701886A (en) |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104852860A (en) * | 2015-05-04 | 2015-08-19 | 四川大学 | Queue-based multi-target scheduling strategy for heterogeneous resources |
| WO2015154686A1 (en) * | 2014-04-09 | 2015-10-15 | Tencent Technology (Shenzhen) Company Limited | Scheduling method and apparatus for distributed computing system |
| CN105096096A (en) * | 2014-04-29 | 2015-11-25 | 阿里巴巴集团控股有限公司 | Task performance evaluation method and system |
| CN105577760A (en) * | 2015-12-16 | 2016-05-11 | 南京邮电大学 | Cloud Computing Hierarchical Management Method and System |
| CN105589752A (en) * | 2016-02-24 | 2016-05-18 | 哈尔滨工业大学深圳研究生院 | Cross-data center big data processing based on key value distribution |
| CN106027420A (en) * | 2016-04-27 | 2016-10-12 | 乐视控股(北京)有限公司 | Resource model establishment method and device |
| WO2016173452A1 (en) * | 2015-04-29 | 2016-11-03 | 阿里巴巴集团控股有限公司 | Method and apparatus for processing resolution task, and server |
| CN107038072A (en) * | 2016-02-03 | 2017-08-11 | 博雅网络游戏开发(深圳)有限公司 | Method for scheduling task and device based on Hadoop system |
| CN107209642A (en) * | 2015-01-15 | 2017-09-26 | 瑞典爱立信有限公司 | Store fast path |
| CN107203492A (en) * | 2017-05-31 | 2017-09-26 | 西北工业大学 | Product design cloud service platform modularization task replanning and distribution optimization method |
| CN107239329A (en) * | 2016-03-29 | 2017-10-10 | 西门子公司 | Unified resource dispatching method and system under cloud environment |
| WO2018059029A1 (en) * | 2016-09-30 | 2018-04-05 | 华为技术有限公司 | Resource allocation method, related device and system |
| CN107967179A (en) * | 2017-12-12 | 2018-04-27 | 山东省计算中心(国家超级计算济南中心) | A kind of cloud computing resources distribution method for supporting emergency |
| CN109446114A (en) * | 2018-10-12 | 2019-03-08 | 咪咕文化科技有限公司 | Spatial data caching method and device and storage medium |
| CN109743203A (en) * | 2018-12-28 | 2019-05-10 | 西安电子科技大学 | A distributed service security combination system and method based on quantitative information flow |
| CN110914805A (en) * | 2017-07-12 | 2020-03-24 | 华为技术有限公司 | Computing system for hierarchical task scheduling |
| CN111222046A (en) * | 2020-01-03 | 2020-06-02 | 腾讯科技(深圳)有限公司 | Service configuration method, client for service configuration, equipment and electronic equipment |
| CN112738247A (en) * | 2020-12-29 | 2021-04-30 | 乐陵欧曼电子科技有限公司 | Cloud computing resource allocation system and method based on multilayer space scheduling |
| CN118860909A (en) * | 2024-08-14 | 2024-10-29 | 无锡众星微系统技术有限公司 | Management method, device and electronic device for RMDA memory area context cache |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101894050A (en) * | 2010-07-28 | 2010-11-24 | 山东中创软件工程股份有限公司 | Method, device and system for flexibly scheduling JEE application resources of cloud resource pool |
| US20110231899A1 (en) * | 2009-06-19 | 2011-09-22 | ServiceMesh Corporation | System and method for a cloud computing abstraction layer |
| CN102243598A (en) * | 2010-05-14 | 2011-11-16 | 深圳市腾讯计算机系统有限公司 | Task scheduling method and system in distributed data warehouse |
| CN102780759A (en) * | 2012-06-13 | 2012-11-14 | 合肥工业大学 | Cloud computing resource scheduling method based on scheduling object space |
| CN103067468A (en) * | 2012-12-22 | 2013-04-24 | 深圳先进技术研究院 | Cloud scheduling method and system thereof |
-
2013
- 2013-12-19 CN CN201310704075.3A patent/CN103701886A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110231899A1 (en) * | 2009-06-19 | 2011-09-22 | ServiceMesh Corporation | System and method for a cloud computing abstraction layer |
| CN102243598A (en) * | 2010-05-14 | 2011-11-16 | 深圳市腾讯计算机系统有限公司 | Task scheduling method and system in distributed data warehouse |
| CN101894050A (en) * | 2010-07-28 | 2010-11-24 | 山东中创软件工程股份有限公司 | Method, device and system for flexibly scheduling JEE application resources of cloud resource pool |
| CN102780759A (en) * | 2012-06-13 | 2012-11-14 | 合肥工业大学 | Cloud computing resource scheduling method based on scheduling object space |
| CN103067468A (en) * | 2012-12-22 | 2013-04-24 | 深圳先进技术研究院 | Cloud scheduling method and system thereof |
Non-Patent Citations (4)
| Title |
|---|
| HILDA LAWRANCE,ET AL: "Efficient Qos Based Resource Scheduling Using PAPRIKA Method for Cloud computing", 《INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY (IJEST)》 * |
| KUAN-RONG LEE,ET AL: "A Hierarchical Scheduling Strategy for the Composition Services Architecture Based on Cloud Computing", 《NEXT GENERATION INFORMATION TECHNOLOGY(ICNIT),2011 THE 2ND INTERNATIONAL CONFERENCE ON》 * |
| WUQI GAO,ET AL: "Cloud Simulation Resource Scheduling Algorithm Based on Multi-dimension Quality of Service", 《INFORMATION TECHNOLOGY JOURNAL》 * |
| 马言春: "面向云市场的资源管理的研究与实现", 《中国优秀硕士论文全文数据库信息科技辑》 * |
Cited By (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015154686A1 (en) * | 2014-04-09 | 2015-10-15 | Tencent Technology (Shenzhen) Company Limited | Scheduling method and apparatus for distributed computing system |
| CN105096096A (en) * | 2014-04-29 | 2015-11-25 | 阿里巴巴集团控股有限公司 | Task performance evaluation method and system |
| CN107209642B (en) * | 2015-01-15 | 2021-02-12 | 瑞典爱立信有限公司 | Method and entity for controlling resources in a cloud environment |
| CN107209642A (en) * | 2015-01-15 | 2017-09-26 | 瑞典爱立信有限公司 | Store fast path |
| WO2016173452A1 (en) * | 2015-04-29 | 2016-11-03 | 阿里巴巴集团控股有限公司 | Method and apparatus for processing resolution task, and server |
| CN104852860B (en) * | 2015-05-04 | 2019-04-23 | 四川大学 | A Queue-Based Multi-objective Scheduling Strategy for Heterogeneous Resources |
| CN104852860A (en) * | 2015-05-04 | 2015-08-19 | 四川大学 | Queue-based multi-target scheduling strategy for heterogeneous resources |
| CN105577760A (en) * | 2015-12-16 | 2016-05-11 | 南京邮电大学 | Cloud Computing Hierarchical Management Method and System |
| CN107038072B (en) * | 2016-02-03 | 2019-10-25 | 博雅网络游戏开发(深圳)有限公司 | Method for scheduling task and device based on Hadoop system |
| CN107038072A (en) * | 2016-02-03 | 2017-08-11 | 博雅网络游戏开发(深圳)有限公司 | Method for scheduling task and device based on Hadoop system |
| CN105589752A (en) * | 2016-02-24 | 2016-05-18 | 哈尔滨工业大学深圳研究生院 | Cross-data center big data processing based on key value distribution |
| CN105589752B (en) * | 2016-02-24 | 2019-10-15 | 哈尔滨工业大学深圳研究生院 | Cross-data center big data processing based on key-value distribution |
| CN107239329A (en) * | 2016-03-29 | 2017-10-10 | 西门子公司 | Unified resource dispatching method and system under cloud environment |
| CN106027420A (en) * | 2016-04-27 | 2016-10-12 | 乐视控股(北京)有限公司 | Resource model establishment method and device |
| WO2018059029A1 (en) * | 2016-09-30 | 2018-04-05 | 华为技术有限公司 | Resource allocation method, related device and system |
| CN107885595A (en) * | 2016-09-30 | 2018-04-06 | 华为技术有限公司 | A kind of resource allocation methods, relevant device and system |
| US11003507B2 (en) | 2016-09-30 | 2021-05-11 | Huawei Technologies Co., Ltd. | Mapreduce job resource sizing using assessment models |
| CN107203492B (en) * | 2017-05-31 | 2020-09-08 | 西北工业大学 | Modular task reorganization and allocation optimization method of product design cloud service platform |
| CN107203492A (en) * | 2017-05-31 | 2017-09-26 | 西北工业大学 | Product design cloud service platform modularization task replanning and distribution optimization method |
| CN110914805A (en) * | 2017-07-12 | 2020-03-24 | 华为技术有限公司 | Computing system for hierarchical task scheduling |
| US11455187B2 (en) | 2017-07-12 | 2022-09-27 | Huawei Technologies Co., Ltd. | Computing system for hierarchical task scheduling |
| CN107967179A (en) * | 2017-12-12 | 2018-04-27 | 山东省计算中心(国家超级计算济南中心) | A kind of cloud computing resources distribution method for supporting emergency |
| CN107967179B (en) * | 2017-12-12 | 2021-08-06 | 山东省计算中心(国家超级计算济南中心) | A cloud computing resource allocation method supporting emergencies |
| CN109446114A (en) * | 2018-10-12 | 2019-03-08 | 咪咕文化科技有限公司 | Spatial data caching method and device and storage medium |
| CN109743203A (en) * | 2018-12-28 | 2019-05-10 | 西安电子科技大学 | A distributed service security combination system and method based on quantitative information flow |
| CN111222046A (en) * | 2020-01-03 | 2020-06-02 | 腾讯科技(深圳)有限公司 | Service configuration method, client for service configuration, equipment and electronic equipment |
| CN111222046B (en) * | 2020-01-03 | 2022-09-20 | 腾讯科技(深圳)有限公司 | Service configuration method, client for service configuration, equipment and electronic equipment |
| CN112738247A (en) * | 2020-12-29 | 2021-04-30 | 乐陵欧曼电子科技有限公司 | Cloud computing resource allocation system and method based on multilayer space scheduling |
| CN112738247B (en) * | 2020-12-29 | 2023-08-04 | 北京英博数科科技有限公司 | Cloud computing resource distribution system and method based on multi-layer space scheduling |
| CN118860909A (en) * | 2024-08-14 | 2024-10-29 | 无锡众星微系统技术有限公司 | Management method, device and electronic device for RMDA memory area context cache |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103701886A (en) | Hierarchic scheduling method for service and resources in cloud computation environment | |
| Rahimikhanghah et al. | Resource scheduling methods in cloud and fog computing environments: a systematic literature review | |
| Glushkova et al. | Mapreduce performance model for Hadoop 2. x | |
| Chowdhury et al. | Implementation and performance analysis of various VM placement strategies in CloudSim | |
| CN107038069B (en) | Dynamic label matching DLMS scheduling method under Hadoop platform | |
| Grandl et al. | Multi-resource packing for cluster schedulers | |
| Mekala et al. | Energy-efficient virtual machine selection based on resource ranking and utilization factor approach in cloud computing for IoT | |
| US10089140B2 (en) | Dynamically adaptive, resource aware system and method for scheduling | |
| Asghari et al. | Online scheduling of dependent tasks of cloud’s workflows to enhance resource utilization and reduce the makespan using multiple reinforcement learning-based agents | |
| Garg et al. | Adaptive workflow scheduling in grid computing based on dynamic resource availability | |
| Wang et al. | Adaptive scheduling for parallel tasks with QoS satisfaction for hybrid cloud environments | |
| US9218213B2 (en) | Dynamic placement of heterogeneous workloads | |
| Patel et al. | Survey on resource allocation strategies in cloud computing | |
| CN112181620B (en) | Big data workflow scheduling method for sensing service capability of virtual machine in cloud environment | |
| Seth et al. | Dynamic heterogeneous shortest job first (DHSJF): a task scheduling approach for heterogeneous cloud computing systems | |
| Liu et al. | Preemptive hadoop jobs scheduling under a deadline | |
| Tang et al. | An effective reliability-driven technique of allocating tasks on heterogeneous cluster systems | |
| Liu et al. | CCRP: Customized cooperative resource provisioning for high resource utilization in clouds | |
| Rodero-Merino et al. | Using clouds to scale grid resources: An economic model | |
| CN107070965B (en) | Multi-workflow resource supply method under virtualized container resource | |
| Khalid et al. | QoS based optimal resource allocation and workload balancing for fog enabled IoT | |
| Swain et al. | Efficient straggler task management in cloud environment using stochastic gradient descent with momentum learning-driven neural networks | |
| Du et al. | A combined priority scheduling method for distributed machine learning | |
| Patel et al. | An improved load-balancing mechanism based on deadline failure recovery on GridSim | |
| CN106407007B (en) | Cloud resource configuration optimization method for elastic analysis process |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140402 |