[go: up one dir, main page]

CN103459597A - Marker for predicting prognosis of gastric cancer and method for predicting prognosis of gastric cancer - Google Patents

Marker for predicting prognosis of gastric cancer and method for predicting prognosis of gastric cancer Download PDF

Info

Publication number
CN103459597A
CN103459597A CN201180065578XA CN201180065578A CN103459597A CN 103459597 A CN103459597 A CN 103459597A CN 201180065578X A CN201180065578X A CN 201180065578XA CN 201180065578 A CN201180065578 A CN 201180065578A CN 103459597 A CN103459597 A CN 103459597A
Authority
CN
China
Prior art keywords
ilmn
gastric cancer
prognosis
protein
genes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201180065578XA
Other languages
Chinese (zh)
Other versions
CN103459597B (en
Inventor
白淳明
金圣�
姜元基
李芝渊
裴栽问
孙太成
卢载滢
崔珉奎
朴英锡
朴埈旿
朴世勋
林浩永
丁信豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Life Public Welfare Foundation
Original Assignee
Samsung Life Public Welfare Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Life Public Welfare Foundation filed Critical Samsung Life Public Welfare Foundation
Publication of CN103459597A publication Critical patent/CN103459597A/en
Application granted granted Critical
Publication of CN103459597B publication Critical patent/CN103459597B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57446Specifically defined cancers of stomach or intestine
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Algebra (AREA)

Abstract

The present invention relates to a marker for predicting gastric cancer prognosis, a composition and a kit for predicting gastric cancer prognosis, which contain an agent for measuring the expression level of the marker, and a method for predicting gastric cancer prognosis using the marker. According to the present invention, gastric cancer prognosis can be accurately predicted, and an appropriate treatment plan can be advantageously established based on the predicted prognosis to significantly reduce death caused by gastric cancer. In particular, according to the present invention, the treatment method for stage III gastric cancer patients can be used for patients who have been predicted to have a negative prognosis among the stage Ib/II gastric cancer patients, whereby the survival rate is greatly improved.

Description

用于预测胃癌预后的标记和用于预测胃癌预后的方法Marker for predicting prognosis of gastric cancer and method for predicting prognosis of gastric cancer

技术领域technical field

本发明涉及用于预测胃癌预后的标记、用于预测胃癌预后的包含测量该标记表达水平的试剂的组合物和试剂盒和使用所述标记预测胃癌预后的方法。The present invention relates to a marker for predicting the prognosis of gastric cancer, a composition and a kit for predicting the prognosis of gastric cancer comprising a reagent for measuring the expression level of the marker, and a method for predicting the prognosis of gastric cancer using the marker.

背景技术Background technique

在2005年,总计65,479人死于癌症,占全部死亡的26.7%。造成最多死亡的癌症是肺癌,每100,000人群中有28.4位患者死亡(21.1%),按顺序其次是胃癌,22.6位患者死亡(16.8%);肝癌,22.5位患者死亡(16.7%);结直肠癌,12.5位患者死亡(9.3%)。已知胃癌是世界范围内因癌症造成的死亡当中造成第二多死亡的因素。In 2005, a total of 65,479 people died of cancer, accounting for 26.7% of all deaths. The cancer that caused the most deaths was lung cancer with 28.4 deaths per 100,000 population (21.1%), followed in order by gastric cancer with 22.6 deaths (16.8%); liver cancer with 22.5 deaths (16.7%); colorectal cancer with 22.5 deaths (16.7%); Cancer, 12.5 patients (9.3%) died. Gastric cancer is known to be the second leading cause of death from cancer worldwide.

胃癌的症状显示出多个方面,范围从无症状至严重疼痛。此外,胃癌症状似乎像常见的消化症状,没有任何特异特征。通常,在胃癌早期,大部分病例没有症状,即便有任何症状的话,也很轻微,如轻微消化不良或上腹部不适,这造成大部分人忽视并因此可能增加胃癌死亡率。Symptoms of stomach cancer show many facets, ranging from asymptomatic to severe pain. Furthermore, stomach cancer symptoms appear to resemble common digestive symptoms without any specific features. Usually, in the early stage of gastric cancer, most cases have no symptoms, and even if there are any symptoms, they are very mild, such as mild indigestion or upper abdominal discomfort, which causes most people to ignore it and thus may increase the death rate of gastric cancer.

大部分用于胃癌的检验方法迄今是物理检验方法。首选是胃X射线法,这包括双重对比方法、压缩X射线法、粘膜图法,并且其次是胃镜检查法,所述胃镜检查法通过找到非常小的病灶并且允许在疑似部位进行胃活组织检查而提高诊断率,其中所述非常小的病灶在X射线检查法中通过用肉眼检查胃部时不显现。然而,这种方法具有以下缺点:存在卫生问题和患者在检查期间感觉疼痛。因此,近年来,已经进行了通过测量胃中特异性表达的标记基因的表达水平而诊断胃癌的研究,但是关于预测胃癌患者预后的遗传标记的研究相对较少。The majority of testing methods for gastric cancer have hitherto been physical testing methods. The first choice is gastric X-ray, which includes the double contrast method, compressed X-ray, mucosal mapping, and secondly gastroscopy, which finds very small lesions and allows gastric biopsy at suspicious sites Instead, the diagnostic yield is improved, wherein the very small lesions do not appear when examining the stomach with the naked eye in X-ray examination. However, this method has the disadvantages of hygienic problems and pain experienced by the patient during the examination. Therefore, in recent years, studies on diagnosing gastric cancer by measuring the expression levels of marker genes specifically expressed in the stomach have been conducted, but there are relatively few studies on genetic markers predicting the prognosis of patients with gastric cancer.

胃癌患者存活率取决于诊断时的病理学分期。根据三星医学中心的数据,胃癌患者的5年存活率如下(KimS等人,Int J Radiat Oncol Biol Phys2005;63:1279-85)。The survival rate of patients with gastric cancer depends on the pathological stage at diagnosis. According to Samsung Medical Center, the 5-year survival rate of gastric cancer patients is as follows (KimS et al., Int J Radiat Oncol Biol Phys 2005;63:1279-85).

II期:76.2%,IIIA期:57.6%,Phase II: 76.2%, Phase IIIA: 57.6%,

IIIB期:39.6%,IV期26.3%Stage IIIB: 39.6%, Stage IV 26.3%

结果显示早期检出胃癌能明显有助于提高存活率。然而,由于已经诊断为处于相同阶段的胃癌根据患者的不同而显示出了预后的差异,因此精确预测胃癌预后以及早期检出胃癌是有效治疗胃癌的最重要因素。The results showed that early detection of gastric cancer can significantly improve the survival rate. However, since gastric cancers that have been diagnosed at the same stage show differences in prognosis depending on patients, accurate prediction of gastric cancer prognosis and early detection of gastric cancer are the most important factors for effective treatment of gastric cancer.

在另一方面,为诊断胃癌,医生开始对患者实施必要的、据认为是最适宜的治疗方案的检查。存在用于治疗癌症的方法,如手术、内窥镜疗法、化疗和放射疗法。一般通过考虑胃癌疗法、胃癌尺寸、位置和范围、患者总体健康状态以及许多其他因素确定治疗方法。On the other hand, in order to diagnose gastric cancer, the doctor starts the necessary examination of the patient, which is considered to be the most appropriate treatment plan. There are methods for treating cancer such as surgery, endoscopic therapy, chemotherapy and radiation therapy. Treatment is generally determined by considering stomach cancer therapy, the size, location and extent of the stomach cancer, the patient's general health, and many other factors.

在仅用手术治疗ΙB/II期胃癌的情况下,已知大约30%患者在5年内复发。在这种情况下,由于不能预测胃癌在哪些患者中复发,因此不同医生采用不同疗法。因此,如果可以精确预测胃癌患者预后,则可以基于这种预后确定适宜的治疗方法,如手术或化疗,这可能很有助于胃癌患者存活,并且因此需要可以精确预测胃癌患者预后的技术。In the case of stage IB/II gastric cancer treated only with surgery, approximately 30% of patients are known to relapse within 5 years. In this case, since it is impossible to predict in which patients gastric cancer will recur, different doctors use different treatments. Therefore, if the prognosis of gastric cancer patients can be accurately predicted, an appropriate treatment such as surgery or chemotherapy can be determined based on the prognosis, which may greatly contribute to the survival of gastric cancer patients, and thus a technology that can accurately predict the prognosis of gastric cancer patients is required.

常规上,已经使用解剖观察法(癌细胞侵入程度和转移的淋巴结数目)以便预测胃癌患者的预后,但是该方法存在医师主观判断的可能介入和精确预测预后的局限。Conventionally, anatomical observation (the degree of cancer cell invasion and the number of metastatic lymph nodes) has been used in order to predict the prognosis of gastric cancer patients, but this method has limitations in possible intervention of physician's subjective judgment and accurate prediction of prognosis.

发明内容Contents of the invention

发明公开invention disclosure

技术问题在这种背景下,作为研究可以通过精确预测胃癌预后并根据预测的预后确定适宜治疗方向而提高胃癌患者存活率的结果,本发明人确定,可以通过鉴定用于预测胃癌预后的标记并且测量所述标记的表达水平来精确预测胃癌预后,以便完成本发明。Technical Problem In this context, as a result of research that the survival rate of gastric cancer patients can be improved by accurately predicting the prognosis of gastric cancer and determining an appropriate direction of treatment based on the predicted prognosis, the present inventors determined that it is possible to identify a marker for predicting the prognosis of gastric cancer and The expression levels of the markers are measured to accurately predict the prognosis of gastric cancer, so as to complete the present invention.

技术方案Technical solutions

本发明的目的是提供一种用于预测胃癌预后的标记,所述标记包括选自以下的一个或多种基因:C20orf103、COL10A1、MATN3、FMO2、FOXS1、COL8A1、THBS4、CDC25B、CDK1、CLIP4、LTB4R2、NOX4、TFDP1、ADRA2C、CSK、FZD9、GALR1、GRM6、INSR、LPHN1、LYN、MRGPRX3、ALAS1、CASP8、CLYBL、CST2、HSPC159、MADCAM1、MAF、REG3A、RNF152、UCHL1、ZBED5、GPNMB、HIST1H2AJ、RPL9、DPP6、ARL10、ISLR2、GPBAR1、CPS1、BCL11B和PCDHGA8基因。The object of the present invention is to provide a marker for predicting the prognosis of gastric cancer, said marker comprising one or more genes selected from the following: C20orf103, COL10A1, MATN3, FMO2, FOXS1, COL8A1, THBS4, CDC25B, CDK1, CLIP4, LTB4R2, NOX4, TFDP1, ADRA2C, CSK, FZD9, GALR1, GRM6, INSR, LPHN1, LYN, MRGPRX3, ALAS1, CASP8, CLYBL, CST2, HSPC159, MADCAM1, MAF, REG3A, RNF152, UCHL1, ZBED5, GPNMB, HIST1H2AJ, RPL9, DPP6, ARL10, ISLR2, GPBAR1, CPS1, BCL11B, and PCDHGA8 genes.

本发明的另一个目的是提供一种用于预测胃癌预后的组合物,所述组合物包含用于测量用于预测胃癌预后标记的mRNA或蛋白质表达水平的试剂。Another object of the present invention is to provide a composition for predicting the prognosis of gastric cancer, the composition comprising reagents for measuring mRNA or protein expression levels of markers for predicting the prognosis of gastric cancer.

本发明的另一个目的是提供一种用于预测胃癌预后的试剂盒,所述试剂盒包含用于测量用于预测胃癌预后标记的mRNA或蛋白质表达水平的试剂。Another object of the present invention is to provide a kit for predicting the prognosis of gastric cancer, the kit comprising reagents for measuring mRNA or protein expression levels of markers for predicting the prognosis of gastric cancer.

本发明的另一个目的是提供一种用于预测胃癌预后的方法,所述方法包括a)获得从胃癌患者采集的样品中用于预测胃癌预后的标记的mRNA或蛋白质的表达水平或表达模式;和b)比较从步骤a)所获得的表达水平或表达模式与预后已知的胃癌患者中相应基因的mRNA或蛋白质的表达水平或表达模式。Another object of the present invention is to provide a method for predicting the prognosis of gastric cancer, the method comprising a) obtaining the expression level or expression pattern of mRNA or protein markers used to predict the prognosis of gastric cancer in samples collected from gastric cancer patients; and b) comparing the expression level or expression pattern obtained from step a) with the expression level or expression pattern of mRNA or protein of the corresponding gene in gastric cancer patients with known prognosis.

本发明的另一个目的是提供一种用于预测胃癌预后的方法,所述方法包括a)测量从胃癌患者采集的样品中用于预测胃癌预后的标记的mRNA或蛋白质的表达水平或表达模式,以获得定量的表达值;b)将步骤a)中获得的表达值应用于预后预测模型以获得胃癌预后评分;和c)将步骤b)中获得的胃癌预后评分与参比值比较以确定患者的预后。Another object of the present invention is to provide a method for predicting the prognosis of gastric cancer, the method comprising a) measuring the expression level or expression pattern of mRNA or protein for predicting the prognosis of gastric cancer in a sample collected from a gastric cancer patient, obtaining a quantitative expression value; b) applying the expression value obtained in step a) to a prognosis prediction model to obtain a gastric cancer prognosis score; and c) comparing the gastric cancer prognosis score obtained in step b) with a reference value to determine the patient's prognosis.

有益效果Beneficial effect

根据本发明,可以迅速和精确地预测胃癌预后,并且可以基于预测的预后确定适宜的治疗,这具有有助于显著减少由胃癌引起的死亡的优点。尤其是,根据本发明,可以通过使用针对III期胃癌所开发的靶向疗法大幅度提高存活率,因为Ib/II期胃癌患者当中已经预测具有消极预后的患者显示与III期胃癌患者相似的预后并且耐受现有的标准化疗。According to the present invention, the prognosis of gastric cancer can be predicted rapidly and accurately, and appropriate treatment can be determined based on the predicted prognosis, which has the advantage of contributing to a significant reduction in death caused by gastric cancer. In particular, according to the present invention, the survival rate can be greatly improved by using the targeted therapy developed for stage III gastric cancer, because among patients with stage Ib/II gastric cancer, those who have been predicted to have a negative prognosis show a similar prognosis as that of patients with stage III gastric cancer And resistant to existing standard chemotherapy.

附图简述Brief description of the drawings

图1是显示在使用参比基因基于分位数归一化和自我标准化的多种风险之间关系的图。Figure 1 is a graph showing the relationship between various risks based on quantile normalization and self normalization using a reference gene.

图2代表根据C20orf103、COL10A1基因的表达水平的Kaplan-Meier曲线。Figure 2 represents Kaplan-Meier curves according to the expression levels of C20orf103, COL10A1 genes.

图3代表根据MATN3、FMO2基因的表达水平的Kaplan-Meier曲线。Fig. 3 represents Kaplan-Meier curves according to the expression levels of MATN3, FMO2 genes.

图4代表根据FOXS1、COL8A1基因的表达水平的Kaplan-Meier曲线。Fig. 4 represents Kaplan-Meier curves according to the expression levels of FOXS1, COL8A1 genes.

图5代表根据THBS4、ALAS1基因的表达水平的Kaplan-Meier曲线。Fig. 5 represents Kaplan-Meier curves according to the expression levels of THBS4, ALAS1 genes.

图6代表根据CASP8、CLYBL基因的表达水平的Kaplan-Meier曲线。Fig. 6 represents Kaplan-Meier curves according to the expression levels of CASP8, CLYBL genes.

图7代表根据CST2、HSPC159基因的表达水平的Kaplan-Meier曲线。Fig. 7 represents Kaplan-Meier curves according to the expression levels of CST2, HSPC159 genes.

图8代表根据MADCAM1、MAF基因的表达水平的Kaplan-Meier曲线。Fig. 8 represents Kaplan-Meier curves according to the expression levels of MADCAM1, MAF genes.

图9代表根据REG3A、RNF152基因的表达水平的Kaplan-Meier曲线。Fig. 9 represents Kaplan-Meier curves according to the expression levels of REG3A, RNF152 genes.

图10代表根据UCHL1、ZBED5基因的表达水平的Kaplan-Meier曲线。Fig. 10 represents Kaplan-Meier curves according to the expression levels of UCHL1, ZBED5 genes.

图11代表根据GPNMB、HIST1H2AJ基因的表达水平的Kaplan-Meier曲线。Fig. 11 represents Kaplan-Meier curves according to the expression levels of GPNMB, HIST1H2AJ genes.

图12代表根据RPL9、DPP6基因的表达水平的Kaplan-Meier曲线。Fig. 12 represents Kaplan-Meier curves according to the expression levels of RPL9, DPP6 genes.

图13代表根据ARL10、ISLR2基因的表达水平的Kaplan-Meier曲线。Fig. 13 represents Kaplan-Meier curves according to the expression levels of ARL10, ISLR2 genes.

图14代表根据GPBAR1、CPS1基因的表达水平的Kaplan-Meier曲线。Fig. 14 represents Kaplan-Meier curves according to the expression levels of GPBAR1, CPS1 genes.

图15代表根据BCL11B、PCDHGA8基因的表达水平的Kaplan-Meier曲线。Figure 15 represents Kaplan-Meier curves according to the expression levels of BCL11B, PCDHGA8 genes.

图2至图15的p-值是借助高表达或低表达和基因表达水平划分基因的表达水平并进行对数秩检验的结果值。The p-values in FIGS. 2 to 15 are the result values of the log-rank test by dividing the expression levels of genes by means of high expression or low expression and gene expression levels.

图16是显示积极预后组(低风险)或消极预后组(高风险)的无疾病存活率的Kaplan-Meier曲线,所述组根据使用表5中所列出基因的预后预测模型划分。16 is a Kaplan-Meier curve showing disease-free survival for positive prognosis groups (low risk) or negative prognosis groups (high risk), divided according to the prognosis prediction model using the genes listed in Table 5. FIG.

图17是显示Ib/II期胃癌患者的无疾病存活率的Kaplan-Meier曲线,所述Ib/II期胃癌患者使用表5中所列出基因的预后预测模型划分成积极预后组或消极预后组。17 is a Kaplan-Meier curve showing the disease-free survival rate of Ib/II stage gastric cancer patients divided into positive prognosis group or negative prognosis group using the prognostic prediction model of the genes listed in Table 5 .

图18是显示积极预后组(低风险)或消极预后组(高风险)的无疾病存活率的Kaplan-Meier曲线,所述组根据使用表7中所列出基因的预后预测模型划分。图18中的HR是累积性风险函数比,并且使用100个排列计算p-值。18 is a Kaplan-Meier curve showing disease-free survival for positive prognosis groups (low risk) or negative prognosis groups (high risk), divided according to the prognosis prediction model using the genes listed in Table 7. FIG. HR in Figure 18 is the cumulative hazard function ratio and p-values were calculated using 100 permutations.

图19是通过划分患者(高对低)后患者组的Kaplan-Meier曲线,其中根据使用表7中列出的基因并根据病理学分期(IB+II对III+IV)的预后预测模型将所述患者分类。通过双侧对数秩检验计算p-值。Fig. 19 is the Kaplan-Meier curve of the patient group after dividing the patients (high vs low), wherein according to the prognostic prediction model using the genes listed in Table 7 and according to the pathological stage (IB+II vs III+IV) patient classification. P-values were calculated by two-sided log-rank test.

图20代表根据CDC25B、CDK1基因的表达水平的Kaplan-Meier曲线。Fig. 20 represents Kaplan-Meier curves according to the expression levels of CDC25B, CDK1 genes.

图21代表根据CLIP4、LTB4R2基因的表达水平的Kaplan-Meier曲线。Fig. 21 represents Kaplan-Meier curves according to the expression levels of CLIP4, LTB4R2 genes.

图22代表根据NOX4、TFDP1基因的表达水平的Kaplan-Meier曲线。Fig. 22 represents Kaplan-Meier curves according to the expression levels of NOX4, TFDP1 genes.

图23代表根据ADRA2C、CSK基因的表达水平的Kaplan-Meier曲线。Fig. 23 represents Kaplan-Meier curves according to the expression levels of ADRA2C, CSK genes.

图24代表根据FZD9、GALR1基因的表达水平的Kaplan-Meier曲线。Fig. 24 represents Kaplan-Meier curves according to the expression levels of FZD9, GALR1 genes.

图25代表根据GRM6、INSR基因的表达水平的Kaplan-Meier曲线。Fig. 25 represents Kaplan-Meier curves according to the expression levels of GRM6, INSR genes.

图26代表根据LPHN1、LYN基因的表达水平的Kaplan-Meier曲线。Fig. 26 represents Kaplan-Meier curves according to the expression levels of LPHN1, LYN genes.

图27代表根据MRGPRX3基因的表达水平的Kaplan-Meier曲线。Fig. 27 represents a Kaplan-Meier curve according to the expression level of the MRGPRX3 gene.

图20至图27的p-值是借助高表达或低表达和基因表达水平划分基因的表达水平并进行对数秩检验的结果值。The p-values in FIGS. 20 to 27 are the result values of the log-rank test by dividing the expression levels of genes by means of high expression or low expression and gene expression levels.

图28代表在表10中列出的基因的GCPS的临界值分析。最佳区分是将患者划分为高风险组75%和低风险组25%的情况。Figure 28 represents the cutoff analysis of the GCPS for the genes listed in Table 10. The best discrimination is the case where patients are divided into 75% high-risk group and 25% low-risk group.

图29代表基于表10中列出的基因的GCPS的优化临界值,在发现集合中的II期胃癌患者的无疾病存活率。Figure 29 represents the disease-free survival of stage II gastric cancer patients in the discovery set based on the optimized cut-off values of GCPS for the genes listed in Table 10.

图30代表发现集合对验证集合中表10中列出的基因的GCPS的分布,并且显示发现集合中GCPS的分布与发现集合中GCPS的分布重合。这代表这种测定法的分析稳健性。Figure 30 represents the distribution of GCPS for the genes listed in Table 10 in the discovery set versus the validation set, and shows that the distribution of GCPS in the discovery set coincides with the distribution of GCPS in the discovery set. This represents the analytical robustness of this assay.

图31代表根据预定义算法GCPS和临界值(红色=高风险)的验证队列的无疾病存活率。Figure 31 represents disease-free survival for the validation cohort according to the predefined algorithm GCPS and cut-off values (red = high risk).

图32代表II期胃癌患者的无疾病存活率,其中所述II期胃癌患者基于表11中列出的基因的GCPS接受手术和放射疗法。蓝颜色代表由GCPS定义的高风险。32 represents the disease-free survival rate of stage II gastric cancer patients who underwent surgery and radiation therapy based on the GCPS of the genes listed in Table 11. Blue color represents high risk as defined by GCPS.

图33代表II期胃癌患者的无疾病存活率,其中所述II期胃癌患者仅基于表11中列出的基因的GCPS接受手术。蓝颜色代表由GCPS定义的高风险。Figure 33 represents the disease-free survival rate of stage II gastric cancer patients who underwent surgery based only on the GCPS of the genes listed in Table 11. Blue color represents high risk as defined by GCPS.

具体实施方式Detailed ways

优选发明模式Preferred Invention Mode

作为实现目标的一个方面,本发明提供用于预测胃癌预后的标记,所述标记包括选自以下基因的一个或多种:C20orf103、COL10A1、MATN3、FMO2、FOXS1、COL8A1、THBS4、CDC25B、CDK1、CLIP4、LTB4R2、NOX4、TFDP1、ADRA2C、CSK、FZD9、GALR1、GRM6、INSR、LPHN1、LYN、MRGPRX3、ALAS1、CASP8、CLYBL、CST2、HSPC159、MADCAM1、MAF、REG3A、RNF152、UCHL1、ZBED5、GPNMB、HIST1H2AJ、RPL9、DPP6、ARL10、ISLR2、GPBAR1、CPS1、BCL11B和PCDHGA8基因。As an aspect of achieving the goal, the present invention provides markers for predicting the prognosis of gastric cancer, which include one or more genes selected from the following genes: C20orf103, COL10A1, MATN3, FMO2, FOXS1, COL8A1, THBS4, CDC25B, CDK1, CLIP4, LTB4R2, NOX4, TFDP1, ADRA2C, CSK, FZD9, GALR1, GRM6, INSR, LPHN1, LYN, MRGPRX3, ALAS1, CASP8, CLYBL, CST2, HSPC159, MADCAM1, MAF, REG3A, RNF152, UCHL1, ZBED5, GPNMB, HIST1H2AJ, RPL9, DPP6, ARL10, ISLR2, GPBAR1, CPS1, BCL11B, and PCDHGA8 genes.

作为另一个方面,本发明提供一种用于预测胃癌预后的组合物,所述组合物包含用于测量用于预测胃癌预后的标记的mRNA或蛋白质的表达水平的试剂。As another aspect, the present invention provides a composition for predicting the prognosis of gastric cancer, the composition comprising a reagent for measuring the expression level of mRNA or protein of a marker for predicting the prognosis of gastric cancer.

虽然处于相同病理学分期,但是每种胃癌的临床预后是不同的,并且必须根据这种预后使用适宜的治疗方法以便增加胃癌患者的存活率。因而,本发明提供一种用于预测胃癌预后的组合物,所述组合物包含用于预测胃癌预后的标记和用于测量其表达水平的试剂,以便精确预测被诊断患有胃癌的患者的预后并且基于预测的预后确定适宜治疗方向,以增加胃癌患者的存活率。Although in the same pathological stage, the clinical prognosis of each gastric cancer is different, and appropriate treatment methods must be used according to this prognosis in order to increase the survival rate of gastric cancer patients. Thus, the present invention provides a composition for predicting the prognosis of gastric cancer, the composition comprising a marker for predicting the prognosis of gastric cancer and a reagent for measuring the expression level thereof, in order to accurately predict the prognosis of a patient diagnosed with gastric cancer And determine the appropriate treatment direction based on the predicted prognosis to increase the survival rate of gastric cancer patients.

如本文所用,术语“标记”指与生物学现象的存在定量或定性相关的分子,并且本发明的标记指作为预测胃癌患者存在良好或不良预后的基础的基因。As used herein, the term "marker" refers to a molecule that is quantitatively or qualitatively related to the presence of a biological phenomenon, and the marker of the present invention refers to a gene that serves as a basis for predicting the presence of good or poor prognosis in gastric cancer patients.

本发明的标记具有用于预测胃癌预后的显著低的p-值和高度可靠性,并且尤其,表5、7、10和11中列出的标记可以根据所述标记的表达水平,将患者组划分成积极预后组或消极预后组,并且可以通过测量标记的表达水平精确地预测胃癌患者的预后,因为根据显示这些组的存活率的Kaplan-Meier曲线,积极预后组的存活率高于消极预后组的存活率。The markers of the present invention have significantly low p-values and high reliability for predicting the prognosis of gastric cancer, and in particular, the markers listed in Tables 5, 7, 10 and 11 can divide patients into groups according to the expression levels of the markers. Divided into a positive prognosis group or a negative prognosis group, and the prognosis of gastric cancer patients can be accurately predicted by measuring the expression levels of the markers, because according to the Kaplan-Meier curve showing the survival rates of these groups, the survival rate of the positive prognosis group is higher than that of the negative prognosis group group survival.

如本文所用,术语“预后”指关于医学发展(例如,长期存活可能性、无疾病存活率等)的预期,包括积极预后或消极预后,所述消极预后包括疾病进展如复发,肿瘤生长、转移和耐药死亡率(mortality),并且积极预后包括疾病缓解如无疾病状态,疾病改善如肿瘤消退或稳定(stabilization)。As used herein, the term "prognosis" refers to expectations regarding medical development (e.g., likelihood of long-term survival, disease-free survival, etc.), including a positive prognosis or a negative prognosis including disease progression such as recurrence, tumor growth, metastasis and resistance mortality (mortality), and positive outcomes include disease remission, such as disease-free status, and disease improvement, such as tumor regression or stabilization (stabilization).

如本文所用,术语“预测”指关于医学发展的猜测,并且出于本发明的目的,指猜测诊断为胃癌的患者的疾病发展(疾病进展、改善、胃癌复发、肿瘤生长、耐药)。As used herein, the term "prediction" refers to guesses about medical developments, and for the purposes of the present invention, guesses about disease progression (disease progression, improvement, gastric cancer recurrence, tumor growth, drug resistance) in patients diagnosed with gastric cancer.

在本发明的例子中,通过将诊断患有胃癌的患者划分成积极预后组或消极预后组来预测胃癌患者的预后,并且另外,通过根据所述预后划分诊断存在胃癌病理学分期的患者来预测胃癌患者的预后(实施例7至9)。In an example of the present invention, the prognosis of gastric cancer patients is predicted by dividing patients diagnosed with gastric cancer into a positive prognosis group or a negative prognosis group, and additionally, by dividing patients diagnosed with gastric cancer pathological stages according to the prognosis. Prognosis of gastric cancer patients (Examples 7 to 9).

用于预测胃癌预后的标记可以优选地是以下基因的组合:C20orf103、COL10A1、MATN3、FMO2、FOXS1、COL8A1和THBS4基因;以下基因的组合:ALAS1、C20orf103、CASP8、CLYBL、COL10A1、CST2、FMO2、FOXS1、HSPC159、MADCAM1、MAF、REG3A、RNF152、THBS4、UCHL1、ZBED5、GPNMB、HIST1H2AJ、RPL9、DPP6、ARL10、ISLR2、GPBAR1、CPS1、BCL11B和PCDHGA8基因;以下基因的组合:C20orf103、CDC25B、CDK1、CLIP4、LTB4R2、MATN3、NOX4和TFDP1基因;或以下基因的组合:ADRA2C、C20orf103、CLIP4、CSK、FZD9、GALR1、GRM6、INSR、LPHN1、LYN、MATN3、MRGPRX3和NOX4基因;并且更优选地是以下基因的组合:C20orf103、CDC25B、CDK1、CLIP4、LTB4R2、MATN3、NOX4和TFDP1基因,或以下基因的组合:ADRA2C、C20orf103、CLIP4、CSK、FZD9、GALR1、GRM6、INSR、LPHN1、LYN、MATN3、MRGPRX3和NOX4基因。The markers for predicting the prognosis of gastric cancer can preferably be a combination of the following genes: C20orf103, COL10A1, MATN3, FMO2, FOXS1, COL8A1 and THBS4 genes; a combination of the following genes: ALAS1, C20orf103, CASP8, CLYBL, COL10A1, CST2, FMO2, FOXS1, HSPC159, MADCAM1, MAF, REG3A, RNF152, THBS4, UCHL1, ZBED5, GPNMB, HIST1H2AJ, RPL9, DPP6, ARL10, ISLR2, GPBAR1, CPS1, BCL11B, and PCDHGA8 genes; combination of the following genes: C20orf103, CDC25B, CDK1, CLIP4, LTB4R2, MATN3, NOX4 and TFDP1 genes; or a combination of the following genes: ADRA2C, C20orf103, CLIP4, CSK, FZD9, GALR1, GRM6, INSR, LPHN1, LYN, MATN3, MRGPRX3 and NOX4 genes; and more preferably the following A combination of genes: C20orf103, CDC25B, CDK1, CLIP4, LTB4R2, MATN3, NOX4, and TFDP1 genes, or a combination of the following genes: ADRA2C, C20orf103, CLIP4, CSK, FZD9, GALR1, GRM6, INSR, LPHN1, LYN, MATN3, MRGPRX3 and the NOX4 gene.

本发明人确定通过以下方法,以上基因可以精确地预测胃癌预后。本发明人从福尔马林固定的石蜡包埋的胃癌肿瘤组织中提取RNA,使用提取的RNA和全基因组DASL测定试剂盒(Whole-Genome DASL assay kit)测量基因表达水平,并且随后使用其中将基因表达水平作为连续变量处理的Cox比例风险模型(Cox proportional hazard model)进行标准统计分析(standard statistical analysis)。作为结果,鉴定到与无疾病存活率存在巨大相关性的、用于通过单变量分析(Univariate analysis)预测胃癌预后的369种基因(表2),和用于预测病理学分期Ib/II胃癌预后的基因(表3)。随后,通过对鉴定的基因的表达水平应用superPC算法,产生包含表5中基因的预后预测模型,并且根据这个预测模型,将胃癌患者划分成积极预后组或消极预后组。通过显示积极预后组的存活率高于消极预后组(实施例7和图16、图17),Kaplan-Meier曲线针对划分组的结果验证了使用本发明标记的预后预测模型的有效性和可靠性。此外,通过对鉴定的基因的表达水平应用梯度套索算法(gradient lasso algorithm)而产生的包含表7中基因的预后预测模型并且将胃癌患者划分成积极预后组或消极预后组的结果确定这种分类与临床结果重合(实施例8和图18、图19)。The present inventors determined that the above genes can accurately predict the prognosis of gastric cancer by the following method. The present inventors extracted RNA from formalin-fixed paraffin-embedded gastric cancer tumor tissues, measured gene expression levels using the extracted RNA and a Whole-Genome DASL assay kit, and then used the Gene expression levels were treated as a continuous variable with a Cox proportional hazard model for standard statistical analysis. As a result, 369 genes were identified for predicting the prognosis of gastric cancer by Univariate analysis (Table 2) with a large correlation with disease-free survival, and for predicting the prognosis of pathological stage Ib/II gastric cancer genes (Table 3). Subsequently, by applying the superPC algorithm to the expression levels of the identified genes, a prognostic prediction model containing the genes in Table 5 was generated, and according to this prediction model, gastric cancer patients were divided into a positive prognosis group or a negative prognosis group. By showing that the survival rate of the positive prognosis group is higher than that of the negative prognosis group (Example 7 and Figure 16, Figure 17), the Kaplan-Meier curve verifies the effectiveness and reliability of the prognosis prediction model using the markers of the present invention for the results of dividing groups . In addition, the result of dividing gastric cancer patients into a positive prognosis group or a negative prognosis group by applying the gradient lasso algorithm (gradient lasso algorithm) to the expression levels of the identified genes to generate a prognosis prediction model containing the genes in Table 7 determined this Classification coincides with clinical outcomes (Example 8 and Figures 18, 19).

如本文所用,术语“用于测量标记的表达水平的试剂”指可以用来确定标记基因或由这些基因编码的蛋白质的表达水平的分子,并且可以优选地是对对所述标记特异的抗体、引物或探针。As used herein, the term "a reagent for measuring the expression level of a marker" refers to a molecule that can be used to determine the expression level of marker genes or proteins encoded by these genes, and may preferably be an antibody specific for said marker, Primers or probes.

如本文所用,术语“抗体”是本领域已知的术语,指针对抗原性位点的特异性蛋白质分子。出于本发明的目的,抗体指与本发明标记特异性结合的抗体并且可以通过常规方法从标记基因编码的蛋白质中制备,其中通过以常规方式将每种基因克隆至表达载体中获得所述蛋白质。其中,包括可以从所述蛋白质产生的部分肽。As used herein, the term "antibody" is an art-recognized term referring to a specific protein molecule directed against an antigenic site. For the purposes of the present invention, an antibody refers to an antibody that specifically binds to a marker of the present invention and can be prepared by conventional methods from proteins encoded by marker genes obtained by cloning each gene into an expression vector in a conventional manner . Among them, partial peptides that can be produced from the protein are included.

如本文所用,术语“引物”指短核酸序列,作为具有短的游离3′末端羟基(游离3`羟基)的核酸序列,它可以与互补模板(template)形成碱基对(base pair)并充当复制模板的起点。在本发明中,可以通过以下方式预测胃癌预后:通过进行使用本发明的标记多核苷酸的有义和反义引物的PCR扩增,所需的产物是否产生。可以基于本领域已知内容修改PCR条件和有义引物和反义引物的长度。As used herein, the term "primer" refers to a short nucleic acid sequence, as a nucleic acid sequence with a short free 3' terminal hydroxyl group (free 3' hydroxyl), which can form a base pair with a complementary template (template) and serve as The starting point for copying templates. In the present invention, the prognosis of gastric cancer can be predicted by whether or not a desired product is produced by performing PCR amplification using sense and antisense primers of the marker polynucleotide of the present invention. PCR conditions and lengths of sense and antisense primers can be modified based on what is known in the art.

如本文所用,术语“探针”指短至几个到长达数百碱基的核酸片段如RNA或DNA,所述核酸片段可以与mRNA建立特异性结合并且可以因维持标记(Labeling)作用而确定特定mRNA的存在。探针可以按寡核苷酸探针、单链DNA(single stranded DNA)探针、双链DNA(double stranded DNA)探针和RNA探针等形式制备。在本发明中,可以通过使用本发明的标记多核苷酸及互补探针实施杂交,借助是否杂交来预测胃癌预后。可以基于本领域已知内容修改对探针和杂交条件的恰当选择。As used herein, the term "probe" refers to nucleic acid fragments such as RNA or DNA as short as a few to several hundred bases, which can establish specific binding with mRNA and can maintain labeling (Labeling) Determine the presence of a specific mRNA. Probes can be prepared in the form of oligonucleotide probes, single-stranded DNA (single stranded DNA) probes, double-stranded DNA (double stranded DNA) probes, and RNA probes. In the present invention, the prognosis of gastric cancer can be predicted by hybridization using the labeled polynucleotide of the present invention and a complementary probe. Proper selection of probes and hybridization conditions can be modified based on what is known in the art.

本发明的引物或探针可以使用磷酰亚胺固相支持法或其他熟知方法化学合成。也可以使用本领域已知的许多手段修饰所述核酸序列。这些修饰的非限制性实例是甲基化、加帽、用天然核苷酸的一种或多种类似物进行的置换和在核苷酸之间的修饰,例如,修饰不带电荷的连接体(例如,磷酸甲酯、磷酸三酯、磷酰亚胺、氨基甲酸酯等),或修饰带电荷的连接体(例如,硫代磷酸酯、二硫代磷酸酯等)。The primers or probes of the present invention can be chemically synthesized using phosphoramidite solid phase support method or other well-known methods. The nucleic acid sequences may also be modified using a number of means known in the art. Non-limiting examples of such modifications are methylation, capping, substitution with one or more analogs of natural nucleotides and modifications between nucleotides, e.g., modification of uncharged linkers (e.g., methyl phosphate, phosphotriester, phosphorimide, carbamate, etc.), or modify charged linkers (e.g., phosphorothioate, phosphorodithioate, etc.).

在本发明中,用于预测胃癌预后的标记的表达水平可以通过确定标记标记基因的mRNA或由所述基因编码的蛋白质的表达水平来确定。In the present invention, the expression level of the marker for predicting the prognosis of gastric cancer can be determined by determining the expression level of the mRNA of the marker gene or the protein encoded by the gene.

如本文所用,术语“测量mRNA的表达水平”指确定生物样品中标记基因的mRNA存在及其表达水平以便预测胃癌预后的过程并且通过测量mRNA的量可实现。用于此目的分析方法是但不限于RT-PCR、竞争性RT-PCR(competitive RT-PCR)、实时RT-PCR(Real-time RT PCR)、RNA酶保护测定法(RPA;RNase protection assay)、northern印迹法(northern blotting)、DNA微阵列芯片等。As used herein, the term "measuring the expression level of mRNA" refers to the process of determining the presence and expression level of mRNA of a marker gene in a biological sample in order to predict the prognosis of gastric cancer and can be achieved by measuring the amount of mRNA. Analytical methods used for this purpose are but not limited to RT-PCR, competitive RT-PCR (competitive RT-PCR), real-time RT-PCR (Real-time RT PCR), RNase protection assay (RPA; RNase protection assay) , northern blotting, DNA microarray chips, etc.

如本文所用,术语“测量蛋白质的表达水平”指确定生物样品中标记基因内表达的蛋白质存在及其表达水平以便预测胃癌预后的过程,并且可以通过使用与上述基因中表达的蛋白质特异性结合的抗体来确定蛋白质的量。用于此目的分析方法是但不限于western印迹法(western blotting)、ELISA(酶联免疫吸附测定)、放射性免疫测定(Radioimmunoassay)、放射性免疫扩散法(Radioimmunodiffusion)、奥克特洛尼(Ouchterlony)免疫扩散法、火箭(Rocket)电泳法、组织免疫染色法、免疫沉淀测定法(immunoprecipitation assay)、补体结合测定法(complete fixation assay)、FACS、蛋白质芯片(protein chip)等。As used herein, the term "measuring the expression level of a protein" refers to the process of determining the presence and expression level of a protein expressed in a marker gene in a biological sample in order to predict the prognosis of gastric cancer, and can be obtained by using a protein that specifically binds to the protein expressed in the above-mentioned gene. Antibodies to determine the amount of protein. Analytical methods used for this purpose are but not limited to western blotting, ELISA (enzyme-linked immunosorbent assay), radioimmunoassay, radioimmunodiffusion, Ouchterlony Immunodiffusion, Rocket electrophoresis, tissue immunostaining, immunoprecipitation assay, complete fixation assay, FACS, protein chip, etc.

作为另一个方面,本发明提供一种用于预测胃癌预后的试剂盒,所述试剂盒包含用于测量用于预测胃癌预后的标记的mRNA或蛋白质的表达水平的试剂。As another aspect, the present invention provides a kit for predicting the prognosis of gastric cancer, the kit comprising a reagent for measuring the expression level of mRNA or protein of a marker used for predicting the prognosis of gastric cancer.

本发明的试剂盒可以用于鉴定用于预测胃癌预后的标记的表达水平以便预测胃癌预后。The kit of the present invention can be used to identify the expression levels of markers for predicting the prognosis of gastric cancer so as to predict the prognosis of gastric cancer.

本发明的试剂盒可以是RT-PCR试剂盒、实时RT-PCR试剂盒、实时QRT-PCR试剂盒、微阵列芯片试剂盒或蛋白质芯片试剂盒。The kit of the present invention may be a RT-PCR kit, a real-time RT-PCR kit, a real-time QRT-PCR kit, a microarray chip kit or a protein chip kit.

本发明的试剂盒可以不仅包含用于测量预测胃癌预后的标记的表达水平的引物、探针,或特异性识别所述标记的抗体,还包含适用于分析方法的一类或多类其他组分的组合物、溶液或装置。The kit of the present invention may not only contain primers and probes for measuring the expression level of markers for predicting the prognosis of gastric cancer, or antibodies that specifically recognize the markers, but also include one or more types of other components suitable for the analysis method compositions, solutions or devices.

根据本发明的例子,用于测量标记基因的mRNA的表达水平的试剂盒可以是包含进行RT-PCR所要求的必需要素的试剂盒。除了对标记基因特异的每对引物之外,这种RT-PCR试剂盒还可以包含试管或其他适宜容器、反应缓冲溶液、脱氧核苷酸(dNTPs)、Taq-聚合酶和逆转录酶、DNA酶、RNA酶抑制剂和DEPC水(DEPC-water)以及无菌水。According to an example of the present invention, the kit for measuring the expression level of mRNA of a marker gene may be a kit containing essential elements required for performing RT-PCR. In addition to each pair of primers specific for a marker gene, this RT-PCR kit can also contain test tubes or other suitable containers, reaction buffer solution, deoxynucleotides (dNTPs), Taq-polymerase and reverse transcriptase, DNA Enzymes, RNase inhibitors and DEPC water (DEPC-water) and sterile water.

根据本发明的另一个例子,用于测量标记基因编码的蛋白质的表达水平的试剂盒可以包含底物、适宜的缓冲溶液、以生色酶或荧光物质标记的第二抗体和生色底物。According to another example of the present invention, the kit for measuring the expression level of the protein encoded by the marker gene may comprise a substrate, a suitable buffer solution, a second antibody labeled with a chromogenic enzyme or a fluorescent substance, and a chromogenic substrate.

根据本发明的另一个例子,本发明中的试剂盒可以是用于检测预测胃癌预后的标记的试剂盒,其包含为进行DNA微阵列芯片所要求的必需要素。DNA微阵列芯片试剂盒可以包含底物,其中作为探针的基因或与其片段相对应的cDNA与所述底物连接,并且所述底物可以包括定量性对照基因或与其片段相对应的cDNA。According to another example of the present invention, the kit in the present invention may be a kit for detecting markers for predicting the prognosis of gastric cancer, which contains the necessary elements required for performing DNA microarray chips. The DNA microarray chip kit may comprise a substrate to which a gene as a probe or a cDNA corresponding to a fragment thereof is ligated, and the substrate may include a quantitative control gene or a cDNA corresponding to a fragment thereof.

作为另一个方面,本发明提供一种用于预测胃癌预后的方法,所述方法包括a)获得从胃癌患者采集的样品中用于预测胃癌预后的标记的mRNA或蛋白质的表达水平或表达模式;和b)比较步骤a)中所获得的表达水平或表达模式和预后已知的胃癌患者中相应基因的mRNA或蛋白质的表达水平或表达模式。As another aspect, the present invention provides a method for predicting the prognosis of gastric cancer, the method comprising a) obtaining the expression level or expression pattern of mRNA or protein markers used to predict the prognosis of gastric cancer in samples collected from gastric cancer patients; and b) comparing the expression level or expression pattern obtained in step a) with the expression level or expression pattern of mRNA or protein of the corresponding gene in gastric cancer patients with known prognosis.

如本文所用,术语“从胃癌患者采集的样品”可以是但不限于源自胃癌患者胃部的组织、细胞、全血、血清、血浆,并且优选地是胃肿瘤组织。As used herein, the term "sample collected from a gastric cancer patient" may be, but not limited to, tissue, cells, whole blood, serum, plasma, and preferably gastric tumor tissue derived from the stomach of a gastric cancer patient.

如本文所用,术语“预后已知的胃癌患者”指在诊断为患有胃癌的患者当中其疾病进展已经被揭示的患者,例如,因手术后3年内复发而证实具有消极预后的患者或因手术后彻底治愈而证实具有积极预后的患者,并且可以通过从样品获得并且比较表达水平或表达模式精确预测待发现其预后的患者的预后,其中所述样品从上述患者和待发现其预后的患者采集。As used herein, the term "gastric cancer patient with known prognosis" refers to a patient whose disease progression has been revealed among patients diagnosed with gastric cancer, for example, a patient confirmed to have a negative prognosis due to recurrence within A patient whose prognosis is confirmed to be completely cured, and the prognosis of the patient whose prognosis is to be found can be accurately predicted by obtaining and comparing the expression level or expression pattern from the sample collected from the above-mentioned patient and the patient whose prognosis is to be found.

根据本发明的例子,可以通过以下方式预测预后:测量来自许多胃癌患者的标记基因的表达水平或表达模式,用所述患者的预后建立测量值的数据库,并且将待发现其预后的患者的表达水平或表达模式输入数据库中。在这种情况下,已知的算法或统计分析程序可以用来比较表达水平或表达模式。此外,该数据库可以进一步再划分成病理学分期、接受的治疗等。According to an example of the present invention, prognosis can be predicted by measuring the expression levels or expression patterns of marker genes from many gastric cancer patients, using the patient's prognosis to build a database of measured values, and comparing the expression of the patient whose prognosis is to be found Levels or expression patterns are entered into the database. In such cases, known algorithms or statistical analysis programs can be used to compare expression levels or patterns. In addition, the database can be further subdivided into pathology stage, treatment received, etc.

根据本发明的例子,在步骤a)和b)中的胃癌患者是接受相同治疗的患者,并所述治疗可以是放射性疗法、化疗、化放疗、辅助化疗(adjuvant chemotherapy)、胃切除术、胃切除术后化疗或化放疗和辅助化疗或手术后无放射性疗法情况下的胃切除术。According to an example of the present invention, the gastric cancer patient in steps a) and b) is a patient receiving the same treatment, and said treatment may be radiotherapy, chemotherapy, chemoradiotherapy, adjuvant chemotherapy, gastrectomy, gastrectomy Gastrectomy without radiation therapy after resection with chemotherapy or chemoradiation and adjuvant chemotherapy or surgery.

根据本发明的例子,胃癌可以是Ib期或II期胃癌。According to an example of the present invention, the gastric cancer may be stage Ib or stage II gastric cancer.

在本发明中,可以在mRNA或蛋白质的水平测量标记基因的表达水平,并且可以使用公众已知的方法从生物样品分离mRNA或蛋白质。In the present invention, the expression level of a marker gene can be measured at the level of mRNA or protein, and mRNA or protein can be isolated from a biological sample using a publicly known method.

用于测量mRNA或蛋白质的水平的分析方法如上文所述。Analytical methods for measuring levels of mRNA or protein are as described above.

借助以上分析方法,从预后已知的胃癌患者的样品中测量的胃癌基因标记的表达水平可以与从待发现其预后的患者的样品中测量的胃癌基因标记的表达水平相比较,并且可以通过确定所述表达水平的增加或减少而预测胃癌预后。换言之,如果通过比较表达水平的结果,待发现其预后的患者的样品显示与存在积极预后的胃癌患者的样品相似的表达水平或表达模式,则可以确定具有积极预后,并且相反地,如果它显示与存在消极预后的胃癌患者的样品相似的表达水平或表达模式,则可以确定具有消极预后。By means of the above analysis method, the expression level of gastric cancer gene markers measured from samples of gastric cancer patients whose prognosis is known can be compared with the expression level of gastric cancer gene markers measured from samples of patients whose prognosis is to be found, and can be determined by determining The increase or decrease of the expression level can predict the prognosis of gastric cancer. In other words, if a sample of a patient whose prognosis is to be found shows a similar expression level or expression pattern to a sample of a gastric cancer patient with a positive prognosis by comparing the results of expression levels, it can be determined to have a positive prognosis, and conversely, if it shows A similar expression level or expression pattern to samples from gastric cancer patients with a negative prognosis can be determined to have a negative prognosis.

根据本发明的例子,可以通过以下方式预测预后:将标记基因的表达水平与选自表4中列出的基因中的一个或多种基因的表达水平比较并归一化,并且随后使用归一化(normalization)的表达水平。According to an example of the present invention, the prognosis can be predicted by comparing and normalizing the expression level of the marker gene with the expression level of one or more genes selected from the genes listed in Table 4, and then using the normalization Expression level of normalization.

作为另一个方面,本发明提供一种用于预测胃癌预后的方法,所述方法包括a)测量从胃癌患者采集的样品中用于预测胃癌预后的标记的mRNA或蛋白质的表达水平以获得定量的表达值;b)将步骤a)中获得的表达值应用于预后预测模型以获得胃癌预后评分;和c)将步骤b)中获得的胃癌预后评分与参比值比较以确定患者的预后。As another aspect, the present invention provides a method for predicting the prognosis of gastric cancer, the method comprising a) measuring the expression level of mRNA or protein of a marker used to predict the prognosis of gastric cancer in a sample collected from a gastric cancer patient to obtain a quantitative an expression value; b) applying the expression value obtained in step a) to a prognosis prediction model to obtain a gastric cancer prognosis score; and c) comparing the gastric cancer prognosis score obtained in step b) with a reference value to determine the prognosis of the patient.

步骤a)是用于定量测量标记基因的表达水平的步骤。可以使用已知软件、试剂盒和系统来定量如上文所述的用于测量mRNA或蛋白质水平的分析方法所测量的表达水平,获得标记基因的定量表达值。根据本发明的例子,测量标记基因的表达水平可以使用nCounter分析试剂盒(NanoString Technologies)进行。在这种情况下,标记基因的表达水平可以通过与参比基因的表达水平比较而进行归一化。根据本发明的例子,测量的标记基因表达水平可以通过与选自表4内所列出的参比基因中的一个或多个参比基因的表达水平进行比较而归一化。Step a) is a step for quantitatively measuring the expression level of the marker gene. Quantitative expression values for marker genes can be obtained using known software, kits and systems to quantify the expression levels measured by the assay methods described above for measuring mRNA or protein levels. According to an example of the present invention, measuring the expression level of a marker gene can be performed using nCounter Assay Kit (NanoString Technologies). In this case, the expression level of the marker gene can be normalized by comparison with the expression level of the reference gene. According to an example of the present invention, the measured marker gene expression level can be normalized by comparing with the expression level of one or more reference genes selected from the reference genes listed in Table 4.

根据本发明的例子,在步骤a)中,可以测量C20orf103、CDC25B、CDK1、CLIP4、LTB4R2、MATN3、NOX4和TFDP1基因,或者ADRA2C、C20orf103、CLIP4、CSK、FZD9、GALR1、GRM6、INSR、LPHN1、LYN、MATN3、MRGPRX3和NOX4基因的mRNA或蛋白质的表达水平。According to an example of the present invention, in step a), C20orf103, CDC25B, CDK1, CLIP4, LTB4R2, MATN3, NOX4 and TFDP1 genes, or ADRA2C, C20orf103, CLIP4, CSK, FZD9, GALR1, GRM6, INSR, LPHN1, Expression levels of mRNA or protein of LYN, MATN3, MRGPRX3 and NOX4 genes.

步骤b)是将步骤a)中获得的表达值应用于预后预测模型以获得胃癌预后评分的步骤。Step b) is a step of applying the expression value obtained in step a) to a prognosis prediction model to obtain a gastric cancer prognosis score.

根据本发明的例子,这个预后预测模型可以表述为:According to the example of the present invention, this prognosis prediction model can be expressed as:

[S=β1x1+...+βnxn][S=β 1 x 1 +...+β n x n ]

其中,xn是第n个基因的定量表达值,Among them, x n is the quantitative expression value of the nth gene,

βn是第n个基因的Cox回归估计值(Cox Regression estimate),并且β n is the Cox Regression estimate for the nth gene, and

S代表胃癌预后评分。S stands for gastric cancer prognosis score.

步骤c)是将步骤b)中获得的胃癌预后评分与参比值比较以确定患者预后的步骤。Step c) is a step of comparing the gastric cancer prognosis score obtained in step b) with a reference value to determine the prognosis of the patient.

可以将参比值确定为在多个胃癌预后评分分布中第三个四分位数(third quartile)的临界值至第四个四分位数的临界值的范围内的值,其中通过输入来自多位胃癌患者的标记基因的表达值来获得所述多个胃癌预后评分分布。此外,可以将参比值确定为在多个胃癌预后评分分布中第二个四分位数(Second quartile)的临界值至第三个四分位数的临界值的范围内的值,其中通过输入来自多位胃癌患者的标记基因的表达值来获得所述多个胃癌预后评分分布。优选地,可以将参比值确定为在多个胃癌预后评分分布中第三个四分位数的临界值至第四个四分位数的临界值的范围内的值,其中通过输入来自多位胃癌患者的标记基因的表达值来获得所述多个胃癌预后评分分布。The reference value can be determined as a value within the range of the cut-off value of the third quartile (third quartile) to the cut-off value of the fourth quartile in the multiple gastric cancer prognostic score distribution, wherein by inputting from multiple The expression values of marker genes of gastric cancer patients are used to obtain the multiple gastric cancer prognosis score distributions. In addition, the reference value can be determined as a value within the range from the cut-off value of the second quartile (Second quartile) to the cut-off value of the third quartile in the distribution of multiple gastric cancer prognostic scores, wherein by inputting The expression values of marker genes from a plurality of gastric cancer patients are used to obtain the distribution of the multiple gastric cancer prognosis scores. Preferably, the reference value can be determined as a value within the range of the cut-off value of the third quartile to the cut-off value of the fourth quartile in the distribution of multiple gastric cancer prognostic scores, wherein by inputting The expression values of marker genes of gastric cancer patients are used to obtain the multiple gastric cancer prognosis score distributions.

四分位数的临界值可以定义为在多位胃癌患者根据胃癌预后评分的尺度而分布时,与1/4、2/4、3/4和4/4点相对应的值。在这种情况下,第四个四分位数的临界值可以是从患者所获得的胃癌预后评分当中最大的评分。The cutoff values of quartiles can be defined as values corresponding to 1/4, 2/4, 3/4, and 4/4 points when a plurality of gastric cancer patients are distributed according to the scale of the gastric cancer prognostic score. In this case, the cut-off value of the fourth quartile may be the largest score among the gastric cancer prognostic scores obtained from the patient.

根据本发明的一个例子,可以确定具有步骤b)中获得的与参比值相同或较之更大的胃癌预后评分的病例具有消极预后。According to an example of the present invention, it can be determined that a case with a gastric cancer prognosis score obtained in step b) that is equal to or greater than the reference value has a negative prognosis.

根据本发明的一个例子,该临界值可以是0.2205或-0.4478,并且可以确定具有步骤b)中获得的与临界值相同或较之更大的胃癌预后评分的病例具有消极预后。优选地,如果在步骤a)中测量C20orf103、CDC25B、CDK1、CLIP4,LTB4R2、MATN3、NOX4和TFDP1基因的表达水平,则临界值可以是0.2205,并且如果在步骤a)中测量ADRA2C、C20orf103、CLIP4、CSK、FZD9、GALR1、GRM6、INSR、LPHN1、LYN、MATN3、MRGPRX3和NOX4基因的表达水平,则临界值可以是-0.4478。According to an example of the present invention, the critical value can be 0.2205 or -0.4478, and it can be determined that the cases with the gastric cancer prognostic score obtained in step b) are equal to or greater than the critical value have a negative prognosis. Preferably, the cut-off value may be 0.2205 if the expression levels of C20orf103, CDC25B, CDK1, CLIP4, LTB4R2, MATN3, NOX4 and TFDP1 genes are measured in step a), and if ADRA2C, C20orf103, CLIP4 are measured in step a) , CSK, FZD9, GALR1, GRM6, INSR, LPHN1, LYN, MATN3, MRGPRX3 and NOX4 gene expression levels, the critical value can be -0.4478.

在本发明的一个例子中,通过应用梯度套索算法而产生包含表10和表11中基因的预后预测模型,并且通过比较胃癌预后值将胃癌患者划分成积极预后组或消极预后组,其中通过输入表达值和参比值至上式而获得所述胃癌预后值。通过证实消极预后组(高风险)的存活率显著低于积极预后组(低风险)(实施例9,和图29、图31、图32),针对划分组的Kaplan-Meier曲线结果验证了使用本发明标记的预后预测模型的有效性和可靠性。此外,根据以仅接受胃切除术的患者作为受试者而测量标记基因的表达水平所获得的胃癌预后值划分患者的结果确定了,通过证实消极预后组(高风险)的存活率显著低,也可以用本发明的标记预测仅接受胃切除术的患者的预后(实施例9和图33)。In an example of the present invention, the prognosis prediction model comprising the genes in Table 10 and Table 11 is generated by applying the gradient lasso algorithm, and gastric cancer patients are divided into positive prognosis group or negative prognosis group by comparing the gastric cancer prognosis value, wherein by Enter the expression value and reference value into the above formula to obtain the gastric cancer prognosis value. The Kaplan-Meier curve results for the divided groups validated the use of Validity and reliability of the prognostic prediction model marked by the present invention. In addition, as a result of dividing the patients according to the gastric cancer prognosis value obtained by measuring the expression level of marker genes with patients who underwent gastrectomy alone as subjects, it was determined that by confirming that the survival rate of the negative prognosis group (high risk) was significantly lower, The markers of the invention can also be used to predict prognosis in patients undergoing gastrectomy alone (Example 9 and Figure 33).

因此,可以根据本发明精确地预测胃癌预后,并且可以获得与预测的预后一致的适宜治疗方案的益处。例如,可以确定对经判定具有积极预后的患者进行标准疗法或侵入性较小的治疗选项,可以确定对经判定具有消极预后的患者进行用于早期胃癌患者的治疗方法或非常具有侵入性(invasive treatment)或实验性疗法。具体而言,对于经诊断患有Ib或II期胃癌的患者,可以根据本发明预测的预后选择适宜治疗方法,因为这些患者可能显示不同的预后。例如,用于III期胃癌患者的治疗方法如手术或抗癌药物可以用于经诊断患有Ib或II期胃癌的患者中预测具有消极预后的患者。Therefore, the prognosis of gastric cancer can be accurately predicted according to the present invention, and the benefit of an appropriate treatment regimen consistent with the predicted prognosis can be obtained. For example, standard therapy or less invasive treatment options may be determined for patients judged to have a positive prognosis, and treatment options for early gastric cancer patients or very invasive treatment options may be determined for patients judged to have a negative prognosis. treatment) or experimental therapy. Specifically, for patients diagnosed with stage Ib or II gastric cancer, an appropriate treatment method can be selected according to the prognosis predicted by the present invention, because these patients may show different prognosis. For example, treatments such as surgery or anticancer drugs for patients with stage III gastric cancer can be used in patients diagnosed with stage Ib or II gastric cancer who are predicted to have a negative prognosis.

发明方式way of invention

下文通过提供实施例更详细地描述了本发明。然而,这些实施例仅意在说明,而不以任何方式限制要求保护的发明。Hereinafter, the present invention is described in more detail by providing examples. However, these examples are intended to be illustrative only, and not to limit the claimed invention in any way.

实施例1:胃癌患者的选择Example 1: Selection of Gastric Cancer Patients

本研究在三星医学中心(Samsung Medical Center)和三星癌症研究所(Samsung CancerResearch Institue)按照赫尔辛基宣言(Declaration of Helsinki)而实施。本研究由三星医学中心指导委员会批准。在1994年至2005年12月期间,1152位患者的队列(cohort)根据以下标准选自1557位在5-FU/LV(INT-0116方案)辅助化疗后准接受胃切除术的患者:This study was conducted at Samsung Medical Center and Samsung Cancer Research Institute in accordance with the Declaration of Helsinki. This study was approved by the Steering Committee of Samsung Medical Center. Between 1994 and December 2005, a cohort of 1152 patients was selected from 1557 patients eligible for gastrectomy after adjuvant chemotherapy with 5-FU/LV (INT-0116 regimen) according to the following criteria:

1)腺瘤组织学诊断,切除肿瘤,无残余肿瘤,1) Histological diagnosis of adenoma, tumor resection, no residual tumor,

2)D2淋巴结清扫术(D2lymph node dissection),2) D2 lymph node dissection (D2 lymph node dissection),

3)年满18岁的男性和女性,3) Men and women over the age of 18,

4)根据AJCC(美国癌症联合委员会)第6版,病理学分期Ib(T2bN0、T1N1或不是T2aN0)至IV期,4) Pathological stage Ib (T2bN0, T1N1 or not T2aN0) to IV according to AJCC (American Joint Committee on Cancer) 6th edition,

5)完整保留手术记录和治疗记录,且根据以下方法接受5-氟尿嘧啶/甲酰四氢叶酸(5-fluorouracil/leucovorin)辅助化疗(INT-0116方案)至少2次的患者。即,这样的患者,其接受化放疗(总计4500cGy辐射,每日180cGy,1周/5日,持续5周),随后施用5-氟尿嘧啶(400mg/m2/日)和甲酰四氢叶酸(20mg/m2/日)5日(1次),和额外施用1次5-氟尿嘧啶(400mg/m2/日)和甲酰四氢叶酸(20mg/m2/日)。5) Patients who kept complete surgical records and treatment records, and received 5-fluorouracil/leucovorin (5-fluorouracil/leucovorin) adjuvant chemotherapy (INT-0116 program) at least twice according to the following methods. That is, patients who received chemoradiation (total radiation of 4500 cGy, 180 cGy per day, 1 week/5 days, for 5 weeks) followed by administration of 5-fluorouracil (400 mg/m 2 /day) and leucovorin ( 20mg/m 2 /day) for 5 days (once), and an additional administration of 5-fluorouracil (400mg/m 2 /day) and leucovorin (20mg/m 2 /day).

1557位患者组中有405位患者从本分析中排除,归因于如下原因:405 patients in a group of 1557 patients were excluded from this analysis due to the following reasons:

1)接受5-FU/LV辅助化疗少于2次的患者(N=144),1) Patients who received less than 2 times of 5-FU/LV adjuvant chemotherapy (N=144),

2)显微镜下存在阳性切缘(microscopically positive resection margin)的患者(N=73),2) Patients with positive resection margin under the microscope (N=73),

3)双重原发性癌症(double primary cancer)患者(N=53),3) Patients with double primary cancer (N=53),

4)胃次全切除术后残余胃(remnant stomach)内胃癌复发的患者(N=5),4) Patients with recurrence of gastric cancer in the remnant stomach after subtotal gastrectomy (N=5),

5)无完整医疗记录的患者(N=11),5) Patients without complete medical records (N=11),

6)使用非INT-0116方案的方案的患者(N=65)6) Patients using regimens other than INT-0116 regimen (N=65)

7)其他(N=54)。7) Others (N=54).

这项研究采用432位患者进行,其从1557位初步筛选的患者中二次筛查1152位患者后最终随机筛选而来,并且表1中显示了所述患者的医学特征。432位患者根据胃癌病理分期的分类显示了以下组成:Ib期68位、II期167位、IIIA期111位、IIIB期19位和IV期67位(表1)。This study was carried out with 432 patients, which were finally randomly screened after secondary screening of 1152 patients from 1557 primary screened patients, and the medical characteristics of the patients are shown in Table 1. The classification of the 432 patients according to the pathological stages of gastric cancer showed the following composition: 68 in stage Ib, 167 in stage II, 111 in stage IIIA, 19 in stage IIIB, and 67 in stage IV (Table 1).

表1Table 1

Figure BDA00003539228900131
Figure BDA00003539228900131

Figure BDA00003539228900141
Figure BDA00003539228900141

实施例2:从胃肿瘤提取RNAExample 2: RNA extraction from gastric tumors

从实施例1中最终筛选的胃癌患者的胃肿瘤提取RNA。为此目的,选择由最大肿瘤组成的原发性肿瘤石蜡块(primary tumor paraffin block)。RNA从福尔马林固定、石蜡包埋的组织(formalin-fixed,paraffin-embedded tissue)中4μm厚度的2至4块切片提取,并且在移至提取管之前,通过微切割法(microdissection)移除非肿瘤要素。随后,根据制造商的说明书,使用High Pure RNA Paraffin试剂盒(Roche Diagnostic,Mannheim,德国)或E.Z.N.A.

Figure BDA00003539228900142
FFPE RNA分离试剂盒(Omega Bio-Tek,Norcross,GA,美国)提取完整RNA。使用NanoDrop8000分光光度计(Thermo Scientific)测定提取的RNA的浓度,并且将其在使用之前贮存在-80°C的低温。在实验中,作为不适宜的样品,浓度小于40ng/μl并且A260/A280比率小于1.5或A260/230比率小于1.0的RNA样品不用分析中。RNA was extracted from gastric tumors of gastric cancer patients finally screened in Example 1. For this purpose, the primary tumor paraffin block consisting of the largest tumor was selected. RNA was extracted from 2 to 4 sections of 4 μm thickness in formalin-fixed, paraffin-embedded tissue and pipetted by microdissection before transfer to extraction tubes. Unless the tumor element. Subsequently, according to the manufacturer's instructions, using the High Pure RNA Paraffin kit (Roche Diagnostic, Mannheim, Germany) or EZNA
Figure BDA00003539228900142
FFPE RNA Isolation Kit (Omega Bio-Tek, Norcross, GA, USA) was used to extract intact RNA. The concentration of extracted RNA was determined using a NanoDrop 8000 spectrophotometer (Thermo Scientific) and stored at -80°C until use. In the experiment, RNA samples with a concentration of less than 40 ng/μl and an A260/A280 ratio of less than 1.5 or an A260/230 ratio of less than 1.0 were not analyzed as unsuitable samples.

实施例3:全基因组表达概况(Whole genome expression profiling)Example 3: Whole genome expression profiling

根据制造商的说明书,用200ng实施例2中提取的RNA进行Illumina全基因组DASL

Figure BDA00003539228900143
(Illumina Whole-Genome DASL
Figure BDA00003539228900144
)(cDNA介导的复性、选择、延长和连接,Illumina,美国)测定法。首先,通过以下方式制备PCR模板:使用生物素化的寡-dT(biotinylatedoligodT)引物和随机引物(random primers)将完整RNA逆转录成cDNA,使生物素化的cDNA与一对查询寡聚物(query oligos)复性,延伸查询寡聚物之间的空位并且随后连接。随后,使用一对通用PCR引物(universal PCR primers)扩增的PCR产物与人Ref-8表达珠芯片(humanRef-8Expression BeadChip)(>24,000种注释的转录物)杂交。在杂交后,使用iScan(Illumina,美国)扫描人Ref-8珠芯片。Illumina genome-wide DASL was performed with 200 ng of RNA extracted in Example 2 according to the manufacturer's instructions
Figure BDA00003539228900143
(Illumina Whole-Genome DASL
Figure BDA00003539228900144
) (cDNA-mediated renaturation, selection, elongation and ligation, Illumina, USA) assay. First, PCR templates were prepared by reverse-transcribing intact RNA into cDNA using biotinylated oligo-dT (biotinylated oligodT) primers and random primers, and combining biotinylated cDNA with a pair of query oligos ( query oligos), the gaps between the query oligos are extended and subsequently ligated. Subsequently, PCR products amplified using a pair of universal PCR primers were hybridized to the humanRef-8 Expression BeadChip (>24,000 annotated transcripts). After hybridization, the human Ref-8 bead chip was scanned using iScan (Illumina, USA).

实施例4:全基因组DASL测定法的质量控制(Quality control of Whole-Genome DASLassay)Example 4: Quality control of Whole-Genome DASLassay

过滤并且移除在实施例3中使用的人Ref-8表达珠芯片的24,526种探针当中称作“不存在”的探针。过滤后留下的17,418种探针用于稍后的分析中。将探针的强度通过以2)为底数的对数(logarithm with base2)进行修正并且使用分位数归一化算法归一化(normalization)。作为结果,使用17,418种探针和432份样品进行统计分析。Probes called "absent" among 24,526 probes of the human Ref-8 expression bead chip used in Example 3 were filtered and removed. The 17,418 probes remaining after filtering were used in later analysis. Probe intensities were corrected by logarithm with base2) and normalized using a quantile normalization algorithm. As a result, statistical analysis was performed using 17,418 probes and 432 samples.

实施例5:胃癌预测基因的鉴定Example 5: Identification of gastric cancer predictive genes

为了鉴定其表达水平与临床结果如无疾病存活(disease free survival,DFS)相关的基因,使用Cox比例风险模型(Cox proportional hazard model)进行标准统计分析(standardstatistical analysis),以处理作为连续变量(continuous variables)的基因表达水平。作为结果,通过单变量分析(Univariate analysis)鉴定到17,418种探针当中与无疾病存活率存在显著相关的369种探针,并且表2中显示了该结果(p<0.001)。To identify genes whose expression levels correlate with clinical outcomes such as disease free survival (DFS), standard statistical analysis was performed using a Cox proportional hazard model, with treatment as a continuous variable (continuous variables) gene expression levels. As a result, 369 probes having a significant correlation with the disease-free survival rate among 17,418 probes were identified by Univariate analysis, and the results are shown in Table 2 (p<0.001).

此外,由于重要的是预测Ib/II期(stage Ib/II)患者的预后,用样品中从Ib/II期患者采集的样品作为对象、以同上文一样的方式鉴定对Ib/II期特异的胃癌预后基因,并且表3中显示了该结果。表3中的p值(p value)代表基因表达水平对临床预后的影响程度,其中较低的p值更显著地影响预后,并且风险比代表对胃癌复发率的影响程度,数字增加或下降具有显著的含义。In addition, since it is important to predict the prognosis of patients with stage Ib/II (stage Ib/II), using samples collected from patients with stage Ib/II among the samples as objects, in the same manner as above, stage Ib/II-specific Gastric cancer prognosis genes, and the results are shown in Table 3. The p value (p value) in Table 3 represents the degree of influence of gene expression level on clinical prognosis, among which the lower p value affects the prognosis more significantly, and the hazard ratio represents the degree of influence on the recurrence rate of gastric cancer, and the increase or decrease of the number has significant meaning.

根据表2和表3,鉴定到众多Ib/II期特异性预后基因的存在,不过采用整组患者作为对象所鉴定到的预后基因与采用Ib/II期患者作为对象所鉴定到的预后基因重合。According to Tables 2 and 3, the presence of numerous stage Ib/II-specific prognostic genes was identified, but the prognostic genes identified using the entire cohort of patients coincided with those identified using stage Ib/II patients .

表2Table 2

Figure BDA00003539228900161
Figure BDA00003539228900161

Figure BDA00003539228900171
Figure BDA00003539228900171

Figure BDA00003539228900191
Figure BDA00003539228900191

Figure BDA00003539228900201
Figure BDA00003539228900201

Figure BDA00003539228900211
Figure BDA00003539228900211

Figure BDA00003539228900231
Figure BDA00003539228900231

Figure BDA00003539228900241
Figure BDA00003539228900241

表3table 3

引物编号Primer number 符号symbol 登录号Login ID P值P value 风险risk ILMN_1736078ILMN_1736078 THBS4THBS4 NM_003248.3NM_003248.3 1.38572E-061.38572E-06 1.6824980151.682498015 ILMN_1713561ILMN_1713561 C20orf103C20orf103 NM_012261.2NM_012261.2 2.55588E-062.55588E-06 1.4786946781.478694678 ILMN_1776490ILMN_1776490 C17orf53C17orf53 NM_024032.2NM_024032.2 6.03826E-066.03826E-06 0.342410990.34241099 ILMN_1755318ILMN_1755318 HIST1H2AJHIST1H2AJ NM_021066.2NM_021066.2 1.2522E-051.2522E-05 0.4703755690.470375569 ILMN_1769168ILMN_1769168 ARL10ARL10 NM_173664.4NM_173664.4 1.4066E-051.4066E-05 1.5616044621.561604462 ILMN_2180606ILMN_2180606 NAT13NAT13 NM_025146.1NM_025146.1 1.73444E-051.73444E-05 0.331143860.33114386 ILMN_1726815ILMN_1726815 HIST1H3GHIST1H3G NM_003534.2NM_003534.2 2.23113E-052.23113E-05 0.5991691940.599169194 ILMN_1663786ILMN_1663786 EPB41EPB41 NM_203342.1NM_203342.1 5.97621E-055.97621E-05 0.4887780320.488778032 ILMN_1789955ILMN_1789955 PNRC1PNRC1 NM_006813.1NM_006813.1 7.41079E-057.41079E-05 1.4486272791.448627279 ILMN_1762003ILMN_1762003 SEC62SEC62 NM_003262.3NM_003262.3 8.06626E-058.06626E-05 0.3741337950.374133795 ILMN_1757060ILMN_1757060 CAMK2DCAMK2D NM_172115.1NM_172115.1 8.99236E-058.99236E-05 0.2762351860.276235186 ILMN_1721127ILMN_1721127 HIST1H3DHIST1H3D NM_003530.3NM_003530.3 0.0001009910.000100991 0.3605361410.360536141 ILMN_2390544ILMN_2390544 DKFZP564J102DKFZP564J102 NM_015398.2NM_015398.2 0.0001238790.000123879 1.5382774751.538277475 ILMN_2249018ILMN_2249018 LOC389816LOC389816 NM_001013653.1NM_001013653.1 0.0001394530.000139453 0.4271954490.427195449 ILMN_1694877ILMN_1694877 CASP6CASP6 NM_001226.3NM_001226.3 0.0001398040.000139804 0.3257126070.325712607 ILMN_2103685ILMN_2103685 DEPDC1BDEPDC1B NM_018369.1NM_018369.1 0.000140850.00014085 0.3665052980.366505298 ILMN_1694472ILMN_1694472 GCKGCK NM_033508.1NM_033508.1 0.0001453820.000145382 1.4281173081.428117308 ILMN_1769207ILMN_1769207 KCTD7KCTD7 NM_153033.1NM_153033.1 0.0001909520.000190952 1.5852387081.585238708 ILMN_1738116ILMN_1738116 TMEM119TMEM119 NM_181724.1NM_181724.1 0.0001981410.000198141 1.4897617121.489761712 ILMN1725314ILMN1725314 GBP3GBP3 NM_018284.2NM_018284.2 0.0001989030.000198903 0.3611336850.361133685 ILMN_1784871ILMN_1784871 FASNFASN NM_004104.4NM_004104.4 0.0002073950.000207395 0.0568774710.056877471 ILMN_1652716ILMN_1652716 THEX1THEX1 NM_153332.2NM_153332.2 0.0002078460.000207846 0.2884849840.288484984 ILMN_2050761ILMN_2050761 EIF4EEIF4E NM_001968.2NM_001968.2 0.000257740.00025774 0.3856222470.385622247 ILMN_1747911ILMN_1747911 CDC2CDC2 NM_001786.2NM_001786.2 0.0002637710.000263771 0.5680071580.568007158 ILMN_1795340ILMN_1795340 TMPOTMPO NM_001032283.1NM_001032283.1 0.0002641850.000264185 0.269798990.26979899 ILMN_1780769ILMN_1780769 TUBB2CTUBB2C NM_006088.5NM_006088.5 0.000276460.00027646 0.3391975410.339197541 ILMN_2318430ILMN_2318430 EIF5EIF5 NM_001969.3NM_001969.3 0.0002838320.000283832 0.3218620890.321862089 ILMN_2051373ILMN_2051373 NEK2NEK2 NM_002497.2NM_002497.2 0.0003053970.000305397 0.6313598340.631359834 ILMN_1736176ILMN_1736176 PLK1PLK1 NM_005030.3NM_005030.3 0.0003074670.000307467 0.5152040210.515204021 ILMN_1742238ILMN_1742238 SETSET NM_003011.2NM_003011.2 0.0003274980.000327498 0.4030707850.403070785 ILMN_2159044ILMN_2159044 PDFPDF NM_022341.1NM_022341.1 0.0003278250.000327825 0.4576510020.457651002 ILMN_1678669ILMN_1678669 RRM2RRM2 NM_001034.1NM_001034.1 0.0003464520.000346452 0.7176860420.717686042 ILMN_1721963ILMN_1721963 MEN1MEN1 NM_130801.1NM_130801.1 0.0003539530.000353953 0.6714782740.671478274 ILMN_1701331ILMN_1701331 UBE2MUBE2M NM_003969.3NM_003969.3 0.0003883260.000388326 0.0360423610.036042361 ILMN_1797693ILMN_1797693 BRI3BPBRI3BP NM_080626.5NM_080626.5 0.0003971180.000397118 0.2399649690.239964969 ILMN_2375386ILMN_2375386 RNPS1RNPS1 NM_080594.1NM_080594.1 0.0004130550.000413055 0.2250589180.225058918 ILMN_2390974ILMN_2390974 DNAJB2DNAJB2 NM_006736.5NM_006736.5 0.000427720.00042772 11.0070311511.00703115 ILMN_1727709ILMN_1727709 GPBAR1GPBAR1 NM_170699.2NM_170699.2 0.000459260.00045926 1.6587064211.658706421

引物编号Primer number 符号symbol 登录号Login ID P值P value 风险risk ILMN_1792110ILMN_1792110 C10orf76C10orf76 NM_024541.2NM_024541.2 0.0004669020.000466902 1.3691405711.369140571 ILMN_2041327ILMN_2041327 MRPL37MRPL37 NM_016491.2NM_016491.2 0.0004695540.000469554 0.0537352150.053735215 ILMN_1680419ILMN_1680419 ASB7ASB7 NM_024708.2NM_024708.2 0.0004805010.000480501 0.4179370440.417937044 ILMN_1684873ILMN_1684873 ARSDARSD NM_001669.2NM_001669.2 0.0004949540.000494954 1.4912486281.491248628 ILMN_2414399ILMN_2414399 NME1NME1 NM_000269.2NM_000269.2 0.0005136960.000513696 0.6354353540.635435354 ILMN_1729368ILMN_1729368 FZD8FZD8 NM_031866.1NM_031866.1 0.0005388030.000538803 1.4911929881.491192988 ILMN_2354269ILMN_2354269 FAM164CFAM164C NM_024643.2NM_024643.2 0.0005603410.000560341 0.5804009140.580400914 ILMN_2220187ILMN_2220187 GFPT1GFPT1 NM_002056.1NM_002056.1 0.0005635920.000563592 0.4447967750.444796775 ILMN_1693669ILMN_1693669 WDR79WDR79 NM__018081.1NM__018081.1 0.0005793890.000579389 0.4328247050.432824705 ILMN_2155998ILMN_2155998 PSMD6PSMD6 NM_014814.1NM_014814.1 0.0005813490.000581349 0.420694810.42069481 ILMN_2116556ILMN_2116556 LSM5LSM5 NM_012322.1NM_012322.1 0.000595260.00059526 0.2446721150.244672115 ILMN_1695079ILMN_1695079 ZNF101ZNF101 NM_033204.2NM_033204.2 0.0006081090.000608109 0.4977576410.497757641 ILMN_1661424ILMN_1661424 THAP6THAP6 NM_144721.4NM_144721.4 0.0006132040.000613204 0.5059632230.505963223 ILMN_1705861ILMN_1705861 AP1M2AP1M2 NM_005498.3NM_005498.3 0.0006202070.000620207 0.4877071340.487707134 ILMN_1788489ILMN_1788489 HIST1H3FHIST1H3F NM_021018.2NM_021018.2 0.0006529170.000652917 0.5363771370.536377137 ILMN_1740842ILMN_1740842 SALL2SALL2 NM_005407.1NM_005407.1 0.0006529760.000652976 1.6348257961.634825796 ILMN_1677794ILMN_1677794 BRCA2BRCA2 NM_000059.3NM_000059.3 0.0006534280.000653428 0.5216242690.521624269 ILMN_1712755ILMN_1712755 LRRC41LRRC41 NM_006369.4NM_006369.4 0.0006555980.000655598 0.2548065660.254806566 ILMN_1765532ILMN_1765532 RDBPRDBP NM_002904.5NM_002904.5 0.0006617770.000661777 0.2260060620.226006062 ILMN_1655734ILMN_1655734 BXDC5BXDC5 NM_025065.6NM_025065.6 0.0006911740.000691174 0.3218068250.321806825 ILMN_1665515ILMN_1665515 MGC4677MGC4677 NR_024204.1NR_024204.1 0.0006968510.000696851 0.3793108590.379310859 ILMN_1652280ILMN_1652280 FBXO32FBXO32 NM_058229.2NM_058229.2 0.0006971820.000697182 4.1584102794.158410279 ILMN_1758067ILMN_1758067 RGS4RGS4 NM_005613.3NM_005613.3 0.0007318120.000731812 1.4487211691.448721169 ILMN_1677636ILMN_1677636 COMPCOMP NM_000095.2NM_000095.2 0.0007319160.000731916 1.3586402941.358640294 ILMN_2148796ILMN_2148796 MND1MND1 NM_032117.2NM_032117.2 0.0008466750.000846675 0.5251383930.525138393 ILMN_1804090ILMN_1804090 SLC25A10SLC25A10 NM_012140.3NM_012140.3 0.0008566020.000856602 0.4107934880.410793488 ILMN__2358914ILMN__2358914 SLC35C2SLC35C2 NM_015945.10NM_015945.10 0.0008848270.000884827 0.3094299710.309429971 ILMN_1771385ILMN_1771385 GBP4GBP4 NM_052941.3NM_052941.3 0.0008929610.000892961 0.5359611240.535961124 ILMN_1780667ILMN_1780667 WDR51AWDR51A NM_015426.3NM_015426.3 0.0009084190.000908419 0.5091789340.509178934 ILMN_1710752ILMN_1710752 NAPRT1NAPRT1 NM_145201.3NM_145201.3 0.0009105670.000910567 0.1227736560.122773656 ILMN_1774589ILMN_1774589 IQCCIQCC NM_018134.1NM_018134.1 0.0009399970.000939997 0.399666780.39966678 ILMN_1732158ILMN_1732158 FMO2FMO2 NM_001460.2NM_001460.2 0.0009621730.000962173 1.343180111.34318011 ILMN_1735453ILMN_1735453 FAM98AFAM98A NM_015475.3NM_015475.3 0.0009811640.000981164 0.2379177430.237917743 ILMN_2265759ILMN_2265759 SLC2A11SLC2A11 NM_030807.2NM_030807.2 0.0010080650.001008065 1.3486764541.348676454 ILMN_2190292ILMN_2190292 UGT8UGT8 NM_003360.2NM_003360.2 0.0010084050.001008405 0.3359859120.335985912 ILMN_2258471ILMN_2258471 SLC30A5SLC30A5 NM_022902.2NM_022902.2 0.0010091480.001009148 0.3533674030.353367403 ILMN_1801205ILMN_1801205 GPNMBGPNMB NM_001005340.1NM_001005340.1 0.0010129320.001012932 1.5693487841.569348784 ILMN_2224990ILMN_2224990 HIST1H4JHIST1H4J NM_021968.3NM_021968.3 0.0010403690.001040369 0.4338047450.433804745 ILMN_2396875ILMN_2396875 IGFBP3IGFBP3 NM_000598.4NM_000598.4 0.0010560990.001056099 1.4961360941.496136094 ILMN_2079004ILMN_2079004 MDH2MDH2 NM_005918.2NM_005918.2 0.0010593240.001059324 0.0981173090.098117309 ILMN_2103480ILMN_2103480 ZNF320ZNF320 NM_207333.2NM_207333.2 0.0011201730.001120173 0.5156833470.515683347 ILMN_1756849ILMN_1756849 HIST1H2AEHIST1H2AE NM_021052.2NM_021052.2 0.0011287820.001128782 0.558253510.55825351 ILMN_1751264ILMN_1751264 CCDC126CCDC126 NM_138771.3NM_138771.3 0.0011311620.001131162 0.5394582250.539458225

引物编号Primer number 符号symbol 登录号Login ID P值P value 风险risk ILMN_1670638ILMN_1670638 PITPNC1PITPNC1 NM_181671.1NM_181671.1 0.0011563640.001156364 1.4328371491.432837149 ILMN1805404ILMN1805404 GRIN1GRIN1 NM_021569.2NM_021569.2 0.0011797240.001179724 0.6469931950.646993195 ILMN_1735108ILMN_1735108 ANKS6ANKS6 NM_173551.3NM_173551.3 0.0011906050.001190605 0.5311367840.531136784 ILMN_1710428ILMN_1710428 CDC2CDC2 NM_001786.2NM_001786.2 0.001205490.00120549 0.306635120.30663512 ILMN_1674620ILMN_1674620 SGCESGCE NM001099400.1NM001099400.1 0.0012116090.001211609 1.4540722871.454072287 ILMN_1694400ILMN_1694400 MSR1MSR1 NM_138715.2NM_138715.2 0.0012118330.001211833 1.4675321711.467532171 ILMN_2088847ILMN_2088847 OTUD5OTUD5 NM_017602.2NM_017602.2 0.001214110.00121411 0.3789739710.378973971 ILMN2160209ILMN2160209 TACSTD1TACSTD1 NM_002354.1NM_002354.1 0.0012146160.001214616 0.4297964690.429796469 ILMN_1803376ILMN_1803376 AEBP2AEBP2 NM_153207.3NM_153207.3 0.0012339250.001233925 0.3795903970.379590397 ILMN_1685431ILMN_1685431 DZIP1DZIP1 NM_198968.2NM_198968.2 0.0012458640.001245864 1.3551786131.355178613 ILMN_2287276ILMN_2287276 FAM177A1FAM177A1 NM_173607.3NM_173607.3 0.0012597890.001259789 0.5157869670.515786967 ILMN2241317ILMN2241317 FOXK2FOXK2 NM_004514.3NM_004514.3 0.0012633750.001263375 0.6337926410.633792641 ILMN_1656192ILMN_1656192 ZNF704ZNF704 NM_001033723.1NM_001033723.1 0.0012756970.001275697 1.4628169571.462816957 ILMN_1708105ILMN_1708105 EZH2EZH2 NM_152998.1NM_152998.1 0.0012843320.001284332 0.536462970.53646297 ILMN_1778617ILMN_1778617 TAF9TAF9 NM_001015891.1NM_001015891.1 0.0013123140.001312314 0.4371940690.437194069 ILMN_1678423ILMN_1678423 SPA17SPA17 NM_017425.2NM_017425.2 0.0013229150.001322915 0.310246460.31024646 ILMN_1735004ILMN_1735004 C4orf43C4orf43 NM_018352.2NM_018352.2 0.0013308070.001330807 0.4512196660.451219666 ILMN_1766264ILMN_1766264 PI16PI16 NM_153370.2NM_153370.2 0.0013427220.001342722 1.543124611.54312461 ILMN_1651429ILMN_1651429 SELMSELM NM_080430.2NM_080430.2 0.0013503320.001350332 7.1208265457.120826545 ILMN_1652198ILMN_1652198 CCM2CCM2 NM_001029835.1NM_001029835.1 0.0013601230.001360123 1.4786346281.478634628 ILMN_1651872ILMN_1651872 UBIAD1UBIAD1 NM_013319.1NM_013319.1 0.0013634790.001363479 0.4838562170.483856217 ILMN_1747353ILMN_1747353 KIF27KIF27 NM_017576.1NM_017576.1 0.0013667940.001366794 0.3057542150.305754215 ILMN_1735958ILMN_1735958 METTL2BMETTL2B NM_018396.2NM_018396.2 0.0013720670.001372067 0.4975189320.497518932 ILMN_2130441ILMN_2130441 HLA-HHLA-H U60319.1U60319.1 0.0013835240.001383524 1.3098691511.309869151 ILMN_2320250ILMN_2320250 NOL6NOL6 NM_022917.4NM_022917.4 0.0013865450.001386545 0.1980708450.198070845 ILMN_1710170ILMN_1710170 PPAP2CPPAP2C NM_177526.1NM_177526.1 0.0013957010.001395701 0.6433570780.643357078 ILMN_1719870ILMN_1719870 GCUD2GCUD2 NM_207418.2NM_207418.2 0.0014565010.001456501 0.6049989950.604998995 ILMN_2181060ILMN_2181060 CKAP2CKAP2 NM_001098525.1NM_001098525.1 0.0014596460.001459646 0.6633781550.663378155 ILMN_1669928ILMN_1669928 ARHGEF16ARHGEF16 NM_014448.2NM_014448.2 0.0014624370.001462437 0.4357488450.435748845 ILMN_2233099ILMN_2233099 SSRP1SSRP1 NM_003146.2NM_003146.2 0.0014629830.001462983 0.3131006510.313100651 ILMN_1788886ILMN_1788886 TOXTOX NM_014729.2NM_014729.2 0.0014643370.001464337 1.3820740691.382074069 ILMN_2150894ILMN_2150894 ALDH1B1ALDH1B1 NM_000692.3NM_000692.3 0.0014710830.001471083 0.4788989180.478898918 ILMN_2148469ILMN_2148469 RASL11BRASL11B NM_023940.2NM_023940.2 0.0014854890.001485489 1.3017241011.301724101 ILMN_1734766ILMN_1734766 C6orf182C6orf182 NM_173830.4NM_173830.4 0.0015048440.001504844 0.3520055890.352005589 ILMN_1811790ILMN_1811790 FOXS1FOXS1 NM_004118.3NM_004118.3 0.0015255150.001525515 1.4938995821.493899582 ILMN_1711543ILMN_1711543 C14orf169C14orf169 NM_024644.2NM_024644.2 0.0015666290.001566629 0.3780068970.378006897 ILMN_1660698ILMN_1660698 GTPBP8GTPBP8 NM_014170.2NM_014170.2 0.0015880610.001588061 0.408369390.40836939 ILMN_1721868ILMN_1721868 KPNA2KPNA2 NM_002266.2NM_002266.2 0.0016178720.001617872 0.5667190730.566719073 ILMN_2344971ILMN_2344971 FOXM1FOXM1 NM_202003.1NM_202003.1 0.0016273220.001627322 0.6688306090.668830609 ILMN_2120340ILMN_2120340 RUVBL2RUVBL2 NM_006666.1NM_006666.1 0.0016435060.001643506 0.6416557090.641655709 ILMN1738938ILMN1738938 TIMM8BTIMM8B NM_012459.1NM_012459.1 0.0016499960.001649996 0.5073985240.507398524 ILMN_1718387ILMN_1718387 LORLOR NM_000427.2NM_000427.2 0.0016536340.001653634 1.3049946041.304994604 ILMN_2388517ILMN_2388517 MTERFD3MTERFD3 NM_001033050.1NM_001033050.1 0.0016611680.001661168 0.2982952730.298295273

引物编号Primer number 符号symbol 登录号Login ID P值P value 风险risk ILMN_1795063ILMN_1795063 ZADH2ZADH2 NM_175907.3NM_175907.3 0.0016730920.001673092 1.3851432641.385143264 ILMN_1695579ILMN_1695579 CITCIT NM_007174.1NM_007174.1 0.0016785690.001678569 0.6314787180.631478718 ILMN_1767448ILMN_1767448 LHFPLHFP NM_005780.2NM_005780.2 0.0016863240.001686324 1.6495221641.649522164 ILMN_1712803ILMN_1712803 CCNB1CCNB1 NM_031966.2NM_031966.2 0.0017298990.001729899 0.6985972940.698597294 ILMN_1715583ILMN_1715583 BOP1BOP1 NM_015201.3NM_015201.3 0.0017452630.001745263 0.4276803830.427680383 ILMN_1685343ILMN_1685343 NUPL1NUPL1 NM_001008565.1NM_001008565.1 0.0017522760.001752276 0.5315777420.531577742 ILMN_1790781ILMN_1790781 DHRS13DHRS13 NM_144683.3NM_144683.3 0.001805590.00180559 0.3736215530.373621553 ILMN_2152387ILMN_2152387 DOCK7DOCK7 NM_033407.2NM_033407.2 0.0018604150.001860415 0.3728344630.372834463 ILMN_2223836ILMN_2223836 CHORDC1CHORDC1 NM_012124.1NM_012124.1 0.0018887760.001888776 0.3149957360.314995736 ILMN_1775925ILMN_1775925 HIST1H2BIHIST1H2BI NM_003525.2NM_003525.2 0.001913290.00191329 0.2150941560.215094156 ILMN_2310909ILMN_2310909 ATP2A3ATP2A3 NM_174955.1NM_174955.1 0.0019206050.001920605 0.6407148720.640714872 ILMN_1799999ILMN_1799999 LRRCC1LRRCC1 NM_033402.3NM_033402.3 0.0019336420.001933642 0.3102231220.310223122 ILMN_1765258ILMN_1765258 HLA-EHLA-E NM_005516.4NM_005516.4 0.0019621690.001962169 0.414480450.41448045 ILMN_1693604ILMN_1693604 GRM2GRM2 NM_000839.2NM_000839.2 0.0019646740.001964674 0.6056397420.605639742 ILMN_2396020ILMN_2396020 DUSP6DUSP6 NM_001946.2NM_001946.2 0.0019895380.001989538 0.4403652280.440365228 ILMN_2215370ILMN_2215370 WWP1WWP1 NM_007013.3NM_007013.3 0.0020049310.002004931 0.4100212510.410021251 ILMN_1732127ILMN_1732127 RBKSRBKS NM_022128.1NM_022128.1 0.0020282830.002028283 0.5194994820.519499482 ILMN_1709451ILMN_1709451 TFPTTFPT NM_013342.2NM_013342.2 0.002031970.00203197 2.4449298352.444929835 ILMN_1753467ILMN_1753467 SAMD4BSAMD4B NM_018028.2NM_018028.2 0.0020848960.002084896 1.9445282011.944528201 ILMN_1797893ILMN_1797893 PFAAP5PFAAP5 NM_014887.1NM_014887.1 0.0020895090.002089509 1.7806907351.780690735 ILMN_2413898ILMN_2413898 MCM10MCM10 NM_018518.3NM_018518.3 0.0020984450.002098445 0.7460358040.746035804 ILMN_1689086ILMN_1689086 CTSCCTSC NM_001814.2NM_001814.2 0.0021017710.002101771 0.3571978640.357197864 ILMN_2363668ILMN_2363668 YIF1BYIF1B NM_001039673.1NM_001039673.1 0.0021448460.002144846 0.3952126830.395212683 ILMN_1737195ILMN_1737195 CENPKCENPK NM_022145.3NM_022145.3 0.0021811230.002181123 0.6522790.652279 ILMN_1749789ILMN_1749789 HIST1H1DHIST1H1D NM_005320.2NM_005320.2 0.0021969030.002196903 0.450860360.45086036 ILMN_1760153ILMN_1760153 GATA5GATA5 NM_080473.3NM_080473.3 0.002240150.00224015 1.3333010721.333301072 ILMN_2369018ILMN_2369018 EVI2AEVI2A NM_014210.2NM_014210.2 0.0022489080.002248908 1.530705811.53070581 ILMN_2294653ILMN_2294653 PDE5APDE5A NM_033437.2NM_033437.2 0.002264660.00226466 1.3253728411.325372841 ILMN_1742307ILMN_1742307 MESTMEST NM_177524.1NM_177524.1 0.0022659820.002265982 0.3849155590.384915559 ILMN_2207865ILMN_2207865 HIST1H3IHIST1H3I NM_003533.2NM_003533.2 0.0023131570.002313157 0.3907190520.390719052 ILMN_2061043ILMN_2061043 CD48CD48 NM_001778.2NM_001778.2 0.0023439340.002343934 1.44039491.4403949 ILMN_2307656ILMN_2307656 AGTRAPAGTRAP NM_001040196.1NM_001040196.1 0.0023534830.002353483 0.4764166010.476416601 ILMN_1737709ILMN_1737709 RPL10LRPL10L NM_080746.2NM_080746.2 0.0023551670.002355167 0.5924219210.592421921 ILMN_1777156ILMN_1777156 GTPBP3GTPBP3 NM_032620.1NM_032620.1 0.0023785770.002378577 0.4586563080.458656308 ILMN_2058141ILMN_2058141 HMGN2HMGN2 NM_005517.3NM_005517.3 0.002407930.00240793 0.3966695490.396669549 ILMN1700413ILMN1700413 MAFFMAFF NM_152878.1NM_152878.1 0.0024203370.002420337 0.4734347730.473434773 ILMN_1688755ILMN_1688755 AAK1AAK1 NM_014911.2NM_014911.2 0.00242490.0024249 1.4431422711.443142271 ILMN_1656415ILMN_1656415 CDKN2CCDKN2C NM_078626.2NM_078626.2 0.0024453340.002445334 1.3630821981.363082198 ILMN_1773080ILMN_1773080 OAZ1OAZ1 NM_004152.2NM_004152.2 0.0024632030.002463203 0.0066524340.006652434 ILMN_1655052ILMN_1655052 TRNT1TRNT1 NM_016000.2NM_016000.2 0.0024695480.002469548 0.4532402530.453240253 ILMN_1763491ILMN_1763491 CKMT1BCKMT1B NM_020990.3NM_020990.3 0.0024798880.002479888 0.6966177120.696617712 ILMN_2349459ILMN_2349459 BIRC5BIRC5 NM_001012271.1NM_001012271.1 0.0024937810.002493781 0.6320591330.632059133 ILMN_1693597ILMN_1693597 ZNF287ZNF287 NM_020653.1NM_020653.1 0.0025463590.002546359 1.3213028221.321302822

引物编号Primer number 符号symbol 登录号Login ID P值P value 风险risk ILMN_1791149ILMN_1791149 ARL6IP4ARL6IP4 NM_001002252.1NM_001002252.1 0.0025592550.002559255 0.4452049120.445204912 ILMN_2191634ILMN_2191634 RPL37RPL37 NM_000997.3NM_000997.3 0.0025666230.002566623 0.4396381820.439638182 ILMN_1692511ILMN_1692511 TMEM106CTMEM106C NM_024056.2NM_024056.2 0.0025840010.002584001 0.4100862730.410086273 ILMN_2336335ILMN_2336335 4024540245 NM_006231.2NM_006231.2 0.0025949220.002594922 1.4927010211.492701021 ILMN_1670903ILMN_1670903 NAT2NAT2 NM_000015.2NM_000015.2 0.0026212830.002621283 0.3941177060.394117706 ILMN2350183ILMN2350183 ST5ST5 NM_213618.1NM_213618.1 0.002641230.00264123 1.710881691.71088169 ILMN_1806473ILMN_1806473 BEX5BEX5 NM_001012978.2NM_001012978.2 0.002644970.00264497 1.4052906681.405290668 ILMN1745108ILMN1745108 ADAD2ADAD2 NM_139174.2NM_139174.2 0.0026503550.002650355 0.5640209670.564020967 ILMN_2208455ILMN_2208455 DDHD1DDHD1 NM_030637.1NM_030637.1 0.0026661870.002666187 0.620401130.62040113 ILMN2289381ILMN2289381 DKK3DKK3 NM_015881.5NM_015881.5 0.0026776860.002677686 1.2736996951.273699695 ILMN_2093500ILMN_2093500 ZBED5ZBED5 NM_021211.2NM_021211.2 0.0026869290.002686929 1.5934622211.593462221 ILMN_1676215ILMN_1676215 DLG2DLG2 NM_001364.2NM_001364.2 0.0026876160.002687616 1.3937514471.393751447 ILMN_1746435ILMN_1746435 HIST1H1EHIST1H1E NM_005321.2NM_005321.2 0.0027095680.002709568 0.4265359740.426535974 ILMN_1681757ILMN_1681757 FAM80BFAM80B NM_020734.1NM_020734.1 0.0027168620.002716862 1.3855850161.385585016 ILMN_1814282ILMN_1814282 ISG20L1ISG20L1 NM_022767.2NM_022767.2 0.0027201110.002720111 0.4010677430.401067743 ILMN_1695107ILMN_1695107 IL20RAIL20RA NM_014432.2NM_014432.2 0.0027271320.002727132 0.3912121610.391212161 ILMN_1704261ILMN_1704261 RANGRFRANGRF NM_016492.3NM_016492.3 0.0027321760.002732176 0.5613951840.561395184 ILMN_1742544ILMN_1742544 MEF2CMEF2C NM_002397.2NM_002397.2 0.0027639580.002763958 1.6347429491.634742949 ILMN_1800420ILMN_1800420 RNF214RNF214 NM_207343.2NM_207343.2 0.0028184090.002818409 0.4417022190.441702219 ILMN_2115696ILMN_2115696 USP42USP42 NM_032172.2NM_032172.2 0.0028266830.002826683 1.2540169181.254016918 ILMN_2369104ILMN_2369104 TRAPPC6BTRAPPC6B NM_177452.3NM_177452.3 0.0028369610.002836961 0.5372552230.537255223 ILMN_1811426ILMN_1811426 TMTC1TMTC1 NM_175861.2NM_175861.2 0.0028469370.002846937 1.4492286121.449228612 ILMN_1679641ILMN_1679641 FAM120BFAM120B NM_032448.1NM_032448.1 0.002867190.00286719 0.7006850770.700685077 ILMN_2191436ILMN_2191436 POLA1POLA1 NM_016937.3NM_016937.3 0.0028804460.002880446 0.2917929530.291792953 ILMN_1708160ILMN_1708160 KPNA2KPNA2 NM_002266.2NM_002266.2 0.0029201590.002920159 0.6714814210.671481421 ILMN_1752249ILMN_1752249 FAM38AFAM38A NM_014745.1NM_014745.1 0.0029689910.002968991 5.8498476585.849847658 ILMN_2414027ILMN_2414027 CKLFCKLF NM_001040138.1NM_001040138.1 0.0030071820.003007182 0.5362197080.536219708 ILMN_1748147ILMN_1748147 MTO1MTO1 NM_133645.1NM_133645.1 0.0030218740.003021874 0.4353488750.435348875 ILMN_1688231ILMN_1688231 TREM1TREM1 NM_018643.2NM_018643.2 0.0030385240.003038524 0.4043737040.404373704 ILMN_2071826ILMN_2071826 RNF152RNF152 NM_173557.1NM_173557.1 0.0030533670.003053367 1.3965240521.396524052 ILMN_1720542ILMN_1720542 POLR2IPOLR2I NM_006233.4NM_006233.4 0.003164020.00316402 0.7109469570.710946957 ILMN_1718334ILMN_1718334 ITPAITPA NM_033453.2NM_033453.2 0.0031650150.003165015 0.4413203070.441320307 ILMN_1731374ILMN_1731374 CPECPE NM_001873.1NM_001873.1 0.0031681710.003168171 1.3875653751.387565375 ILMN_2099045ILMN_2099045 KIAA1524KIAA1524 NM_020890.1NM_020890.1 0.0031843170.003184317 0.3979215460.397921546 ILMN_1774350ILMN_1774350 MYOZ3MYOZ3 NM_133371.2NM_133371.2 0.0032027540.003202754 1.3624398011.362439801 ILMN_2395926ILMN_2395926 MANBALMANBAL NM_022077.3NM_022077.3 0.0032208260.003220826 0.4461064680.446106468 ILMN_1814002ILMN_1814002 TEAD3TEAD3 NM_003214.3NM_003214.3 0.003223640.00322364 0.5080634590.508063459 ILMN_2351916ILMN_2351916 EX01EX01 NM_006027.3NM_006027.3 0.003238520.00323852 0.6214094960.621409496 ILMN_1785005ILMN_1785005 NCF4NCF4 NM_013416.2NM_013416.2 0.0032449840.003244984 1.8526005941.852600594 ILMN_2082810ILMN_2082810 BRD7BRD7 NM_013263.2NM_013263.2 0.0032476790.003247679 0.4451905050.445190505 ILMN_1702858ILMN_1702858 ADHFE1ADHFE1 NM_144650.2NM_144650.2 0.0032594480.003259448 1.5224405021.522440502 ILMN_1815385ILMN_1815385 SMAD9SMAD9 NM_005905.3NM_005905.3 0.0032668620.003266862 1.4863815671.486381567 ILMN_1699665ILMN_1699665 CLIC6CLIC6 NM_053277.1NM_053277.1 0.0032680170.003268017 1.3949343391.394934339

引物编号Primer number 符号symbol 登录号Login ID P值P value 风险risk ILMN_1672660ILMN_1672660 MBPMBP NM_001025100.1NM_001025100.1 0.0033086320.003308632 1.3076170771.307617077 ILMN_1710495ILMN_1710495 PAPLNPAPLN NM_173462.3NM_173462.3 0.0033173570.003317357 1.5559715851.555971585 ILMN_1788955ILMN_1788955 PDLIM1PDLIM1 NM_020992.2NM_020992.2 0.0033357680.003335768 0.364349180.36434918 ILMN_1750130ILMN_1750130 GSPT1GSPT1 NM_002094.2NM_002094.2 0.0034322060.003432206 0.5615499210.561549921 ILMN_1715175ILMN_1715175 METMET NM_000245.2NM_000245.2 0.003444090.00344409 0.4085794820.408579482 ILMN_1688041ILMN_1688041 TMEM53TMEM53 NM_024587.2NM_024587.2 0.0034581290.003458129 0.4602876910.460287691 ILMN_1693333ILMN_1693333 TMEM19TMEM19 NM_018279.3NM_018279.3 0.0035073510.003507351 0.368219290.36821929 ILMN_1688848ILMN_1688848 TMEM44TMEM44 NM_138399.3NM_138399.3 0.0035106880.003510688 0.4443914230.444391423 ILMN_2379527ILMN_2379527 ELM01ELM01 NM_014800.9NM_014800.9 0.0035667330.003566733 1.443572071.44357207 ILMN_1729713ILMN_1729713 RAB23RAB23 NM_183227.1NM_183227.1 0.0035698890.003569889 1.2900554491.290055449 ILMN_1717262ILMN_1717262 PROCRPROCR NM_006404.3NM_006404.3 0.0035885080.003588508 0.4811424710.481142471 ILMN_1722829ILMN_1722829 HLFHLF NM_002126.4NM_002126.4 0.0035922050.003592205 1.3874401051.387440105 ILMN_1653165ILMN_1653165 AAMPAAMP NM_001087.3NM_001087.3 0.0036251080.003625108 0.513151740.51315174 ILMN_1652826ILMN_1652826 LRRC17LRRC17 NM_005824.1NM_005824.1 0.00362850.0036285 1.3387496371.338749637 ILMN_1653200ILMN_1653200 SLC22A17SLC22A17 NM_020372.2NM_020372.2 0.0036561120.003656112 1.4521618751.452161875 ILMN_2076250ILMN_2076250 GPBP1L1GPBP1L1 NM_021639.3NM_021639.3 0.0036602530.003660253 0.5251018940.525101894 ILMN_1731610ILMN_1731610 ABLIM1ABLIM1 NM_006720.3NM_006720.3 0.003670750.00367075 1.4200846371.420084637 ILMN_1653001ILMN_1653001 CABLES1CABLES1 NM_138375.1NM_138375.1 0.0037353550.003735355 0.4217341710.421734171 ILMN_1670609ILMN_1670609 ATOX1ATOX1 NM_004045.3NM_004045.3 0.0037368910.003736891 4.1969174724.196917472 ILMN_1714197ILMN_1714197 ACSS2ACSS2 NM_139274.1NM_139274.1 0.0037593260.003759326 0.1449976690.144997669 ILMN_2367070ILMN_2367070 ACOT9ACOT9 NM_001033583.2NM_001033583.2 0.0037734240.003773424 0.4390299560.439029956 ILMN_1757406ILMN_1757406 HIST1H1CHIST1H1C NM_005319.3NM_005319.3 0.003777940.00377794 0.5457634010.545763401 ILMN_1815010ILMN_1815010 RNF141RNF141 NM_016422.3NM_016422.3 0.0037996080.003799608 0.4999573090.499957309 ILMN_1687589ILMN_1687589 CPT1ACPT1A NM_001876.2NM_001876.2 0.0038163750.003816375 0.5563343720.556334372 ILMN_1702265ILMN_1702265 HDHD2HDHD2 NM_032124.4NM_032124.4 0.0038204660.003820466 0.2557802210.255780221 ILMN_1776577ILMN_1776577 DSCC1DSCC1 NM_024094.2NM_024094.2 0.0038271060.003827106 0.4453753290.445375329 ILMN_1680692ILMN_1680692 NUCKS1NUCKS1 NM_022731.2NM_022731.2 0.0038304110.003830411 0.3520509420.352050942 ILMN_2301083ILMN_2301083 UBE2CUBE2C NM_181803.1NM_181803.1 0.003847050.00384705 0.7464668220.746466822 ILMN_1660636ILMN_1660636 WWOXWWOX NM_130844.1NM_130844.1 0.0038502470.003850247 0.3895878730.389587873 ILMN_2252408ILMN_2252408 CNPY4CNPY4 NM_152755.1NM_152755.1 0.0038720810.003872081 1.9264116691.926411669 ILMN_2122374ILMN_2122374 FAM49BFAM49B NM_016623.3NM_016623.3 0.0038741850.003874185 0.4755490210.475549021 ILMN_1679809ILMN_1679809 GSTP1GSTP1 NM_000852.2NM_000852.2 0.003903750.00390375 12.1341475212.13414752 ILMN_1739645ILMN_1739645 ANLNANLN NM_018685.2NM_018685.2 0.0039257810.003925781 0.5653998480.565399848 ILMN_1804419ILMN_1804419 LRMPLRMP NM_006152.2NM_006152.2 0.0039920310.003992031 1.2937375661.293737566 ILMN_2330410ILMN_2330410 EIF3CEIF3C NM_003752.3NM_003752.3 0.0040111690.004011169 0.3214443310.321444331 ILMN_1696380ILMN_1696380 GHRLGHRL NM_016362.2NM_016362.2 0.0040183560.004018356 1.269948291.26994829 ILMN_1787280ILMN_1787280 C1orf135C1orf135 NM_024037.1NM_024037.1 0.0040581790.004058179 0.6503356140.650335614 ILMN_1736178ILMN_1736178 AEBP1AEBP1 NM_001129.3NM_001129.3 0.0040644180.004064418 2.220403152.22040315 ILMN_1801939ILMN_1801939 CCNB2CCNB2 NM_004701.2NM_004701.2 0.0040653180.004065318 0.7385241590.738524159 ILMN_1682375ILMN_1682375 ATPBD3ATPBD3 NM_145232.2NM_145232.2 0.0040713460.004071346 0.472854110.47285411 ILMN_1657701ILMN_1657701 TMEM137TMEM137 XR_017971.1XR_017971.1 0.0040786550.004078655 0.1788992750.178899275 ILMN_1662419ILMN_1662419 COX7A1COX7A1 NM_001864.2NM_001864.2 0.0041026120.004102612 1.7015740951.701574095 ILMN_1708041ILMN_1708041 PLEKHF1PLEKHF1 NM_024310.4NM_024310.4 0.0041312760.004131276 1.321435171.32143517

引物编号Primer number 符号symbol 登录号Login ID P值P value 风险risk ILMN_1667641ILMN_1667641 ACACAACACA NM_198834.1NM_198834.1 0.0041547220.004154722 1.3237202431.323720243 ILMN_1682675ILMN_1682675 TWF1TWF1 NM_002822.3NM_002822.3 0.0042172740.004217274 0.4745903510.474590351 ILMN_2123402ILMN_2123402 TMEM4TMEM4 NM_014255.4NM_014255.4 0.004235930.00423593 0.4263496290.426349629 ILMN_1720484ILMN_1720484 CRTAPCRTAP NM_006371.3NM_006371.3 0.0042501470.004250147 1.3903157521.390315752 ILMN_1756982ILMN_1756982 CLIC1CLIC1 NM_001288.4NM_001288.4 0.0042514330.004251433 0.2622650660.262265066 ILMN_2315964ILMN_2315964 PSRC1PSRC1 NM_001032290.1NM_001032290.1 0.0042653420.004265342 0.4467863670.446786367 ILMN_1738704ILMN_1738704 TRIM26TRIM26 NM_003449.3NM_003449.3 0.0042693470.004269347 0.5987570260.598757026 ILMN_1713178ILMN_1713178 FAM116AFAM116A XM_001132771.1XM_001132771.1 0.0042755450.004275545 0.5639197610.563919761 ILMN_1814856ILMN_1814856 C9orf7C9orf7 NM_017586.1NM_017586.1 0.0042774180.004277418 0.4240208630.424020863 ILMN_1755504ILMN_1755504 CALCOCO2CALCOCO2 NM_005831.3NM_005831.3 0.0043003760.004300376 1.4984606921.498460692 ILMN_1764694ILMN_1764694 ZFP14ZFP14 NM_020917.1NM_020917.1 0.0043005290.004300529 1.4920324271.492032427 ILMN_1718265ILMN_1718265 ATG5ATG5 NM_004849.2NM_004849.2 0.0043093610.004309361 0.3147978660.314797866 ILMN_1764850ILMN_1764850 HPCAL1HPCAL1 NM_134421.1NM_134421.1 0.0043231090.004323109 0.5647695940.564769594 ILMN_1677652ILMN_1677652 PREX2PREX2 NM_024870.2NM_024870.2 0.0043378070.004337807 1.2914657931.291465793 ILMN_2362293ILMN_2362293 FBXO38FBXO38 NM_205836.1NM_205836.1 0.0043443450.004344345 0.309572760.30957276 ILMN_2184231ILMN_2184231 CHRDL1CHRDL1 NM_145234.2NM_145234.2 0.0043559280.004355928 1.4059896971.405989697 ILMN_1674337ILMN_1674337 FKBP2FKBP2 NM_057092.1NM_057092.1 0.0043655150.004365515 0.5522519710.552251971 ILMN_1673380ILMN_1673380 GNG12GNG12 NM_018841.4NM_018841.4 0.0044296130.004429613 2.2200914522.220091452 ILMN_1730347ILMN_1730347 CCDC115CCDC115 NM_032357.2NM_032357.2 0.0044422530.004442253 1.2997531151.299753115 ILMN_1752589ILMN_1752589 TMEM183ATMEM183A NM_138391.4NM_138391.4 0.0044546170.004454617 0.5823478930.582347893 ILMN_1692790ILMN_1692790 ITGB3BPITGB3BP NM_014288.3NM_014288.3 0.0044566060.004456606 0.2833350190.283335019 ILMN_1680626ILMN_1680626 PDIA6PDIA6 NM_005742.2NM_005742.2 0.0044868130.004486813 0.4387582430.438758243 ILMN_1789040ILMN_1789040 SLITRK5SLITRK5 NM__015567.1NM__015567.1 0.0044874210.004487421 1.588004731.58800473 ILMN_2221046ILMN_2221046 GM2AGM2A NM_000405.3NM_000405.3 0.0044995570.004499557 1.3436810081.343681008 ILMN_2392818ILMN_2392818 RTKNRTKN NM_D33046.2NM_D33046.2 0.0045042090.004504209 0.3800992650.380099265 ILMN_1691559ILMN_1691559 ELF2ELF2 NM_006874.2NM_006874.2 0.0045395540.004539554 1.4459112371.445911237 ILMN_2120965ILMN_2120965 NPATNPAT NM_002519.1NM_002519.1 0.0046085560.004608556 1.532130711.53213071 ILMN_1761772ILMN_1761772 NUP155NUP155 NM_153485.1NM_153485.1 0.0046092590.004609259 0.7877669290.787766929 ILMN_1768969ILMN_1768969 LBRLBR NM_194442.1NM_194442.1 0.0046120780.004612078 0.3819696170.381969617 ILMN_1669931ILMN_1669931 TM9SF3TM9SF3 NM_020123.2NM_020123.2 0.0046397690.004639769 0.4551093160.455109316 ILMN_1731194ILMN_1731194 STRAPSTRAP NM_007178.3NM_007178.3 0.0046633740.004663374 0.4866610130.486661013 ILMN_1665717ILMN_1665717 EIF2S3EIF2S3 NM_001415.3NM_001415.3 0.004664260.00466426 0.6077884660.607788466 ILMN_2076567ILMN_2076567 UBE2V2UBE2V2 NM_003350.2NM_003350.2 0.0046733280.004673328 0.3768894070.376889407 ILMN_1815570ILMN_1815570 HOXA6HOXA6 NM_024014.2NM_024014.2 0.0046778770.004677877 1.3150824731.315082473 ILMN_1704943ILMN_1704943 ATPBD1CATPBD1C NM_016301.2NM_016301.2 0.0046924240.004692424 0.458318310.45831831 ILMN_1681304ILMN_1681304 PAN3PAN3 NM_175854.5NM_175854.5 0.0046945930.004694593 0.3366912980.336691298 ILMN_1754842ILMN_1754842 DLGAP4DLGAP4 NM_014902.3NM_014902.3 0.0046958970.004695897 1.5007715941.500771594 ILMN_2397347ILMN_2397347 SEMG1SEMG1 NM_198139.1NM_198139.1 0.0047044680.004704468 0.5043693530.504369353 ILMN_1766983ILMN_1766983 FBXW11FBXW11 NM_033644.2NM_033644.2 0.0047332090.004733209 1.3737591741.373759174 ILMN_1715607ILMN_1715607 CHMP4ACHMP4A NM_014169.2NM_014169.2 0.0048139340.004813934 0.5992644970.599264497 ILMN_1657148ILMN_1657148 C19orf23C19orf23 NM_152480.1NM_152480.1 0.0048397560.004839756 0.7771573170.777157317 ILMN_1749213ILMN_1749213 SDF2L1SDF2L1 NM_022044.2NM_022044.2 0.0048741960.004874196 0.1170412690.117041269 ILMN_1664761ILMN_1664761 TMEM138TMEM138 NM_016464.3NM_016464.3 0.0048841750.004884175 1.7683868821.768386882

引物编号Primer number 符号symbol 登录号Login ID P值P value 风险risk ILMN_1782403ILMN_1782403 PRR11PRR11 NM_018304.2NM_018304.2 0.0048951720.004895172 0.6920014180.692001418 ILMN_1749583ILMN_1749583 KIAA1285KIAA1285 NM_015694.2NM_015694.2 0.0048955350.004895535 0.4857048750.485704875 ILMN_2294274ILMN_2294274 S100PBPS100PBP NM_022753.2NM_022753.2 0.0049027040.004902704 0.3482526510.348252651 ILMN_2089977ILMN_2089977 FKBP9LFKBP9L NM_182827.1NM_182827.1 0.0049258270.004925827 1.357155311.35715531 ILMN_1708143ILMN_1708143 FAM127AFAM127A NM_001078171.1NM_001078171.1 0.0049404240.004940424 1.5368570381.536857038 ILMN_1687947ILMN_1687947 HIST1H2BEHIST1H2BE NM_003523.2NM_003523.2 0.0049451460.004945146 0.608909650.60890965 ILMN_1790741ILMN_1790741 RNF126RNF126 NM_194460.1NM_194460.1 0.0049999630.004999963 0.4036521910.403652191 ILMN_2084391ILMN_2084391 RAD18RAD18 NM_020165.2NM_020165.2 0.0050215140.005021514 0.4788699880.478869988 ILMN_1700975ILMN_1700975 ENSAENSA NM_207168.1NM_207168.1 0.0050239520.005023952 0.5970394640.597039464 ILMN_1758529ILMN_1758529 P2RX1P2RX1 NM_002558.2NM_002558.2 0.0050404370.005040437 1.3316909521.331690952 ILMN_1653824ILMN_1653824 LAMC2LAMC2 NM_018891.1NM_018891.1 0.0050533340.005053334 0.5103971050.510397105 ILMN_1673673ILMN_1673673 PBKPBK NM_018492.2NM_018492.2 0.0050724480.005072448 0.5023538080.502353808 ILMN_2188451ILMN_2188451 HIST1H2AHHIST1H2AH NM_080596.1NM_080596.1 0.0050919750.005091975 0.568691360.56869136 ILMN_1729430ILMN_1729430 FBXO18FBXO18 NM_032807.3NM_032807.3 0.0050968650.005096865 0.4096384430.409638443 ILMN_2145670ILMN_2145670 TNCTNC NM_002160.2NM_002160.2 0.0050993490.005099349 0.449456390.44945639 ILMN_1799113ILMN_1799113 CCDC41CCDC41 NM_016122.2NM_016122.2 0.0051246660.005124666 0.3315417170.331541717 ILMN_1694177ILMN_1694177 PCNAPCNA NM_182649.1NM_182649.1 0.0051318560.005131856 0.4318242540.431824254 ILMN_2365176ILMN_2365176 ALDH8A1ALDH8A1 NM_022568.2NM_022568.2 0.00514980.0051498 0.5787659960.578765996 ILMN_1703791ILMN_1703791 ANXA7ANXA7 NM_004034.1NM_004034.1 0.0051941340.005194134 0.5200112990.520011299 ILMN_1653432ILMN_1653432 HNRPDLHNRPDL NR_003249.1NR_003249.1 0.005199020.00519902 1.9620063171.962006317 ILMN_1711470ILMN_1711470 UBE2TUBE2T NM_014176.2NM_014176.2 0.0052129050.005212905 0.708253410.70825341 ILMN_1672876ILMN_1672876 MFI2MFI2 NM_05929.4NM_05929.4 0.0052166360.005216636 0.6887907430.688790743 ILMN_1803956ILMN_1803956 BOCBOC NM_033254.2NM_033254.2 0.0052224050.005222405 1.560557921.56055792 ILMN_1793959ILMN_1793959 ADPGKADPGK NM_031284.3NM_031284.3 0.0052226680.005222668 0.6222096170.622209617 ILMN_2141118ILMN_2141118 C15orf59C15orf59 NM_001039614.1NM_001039614.1 0.0052322810.005232281 1.2883896311.288389631 ILMN_1740265ILMN_1740265 ACOT7ACOT7 NM_181864.2NM_181864.2 0.0052761760.005276176 0.425139680.42513968 ILMN_1705515ILMN_1705515 UPF3AUPF3A NM_080687.1NM_080687.1 0.0053355960.005335596 0.5559247960.555924796 ILMN_1747870ILMN_1747870 CD3EAPCD3EAP NM_012099.1NM_012099.1 0.0053358190.005335819 0.4315942630.431594263 ILMN_1662935ILMN_1662935 C1QTNF7C1QTNF7 NM_031911.3NM_031911.3 0.0053401410.005340141 1.4001327921.400132792 ILMN_2408796ILMN_2408796 C190rf28C190rf28 NM_174983.3NM_174983.3 0.0053776190.005377619 0.5351880810.535188081 ILMN_1808748ILMN_1808748 CLCN6CLCN6 NM_001286.2NM_001286.2 0.0053893850.005389385 0.4487988040.448798804 ILMN_2347999ILMN_2347999 IFNAR2IFNAR2 NM_207585.1NM_207585.1 0.005402360.00540236 0.3947410190.394741019 ILMN_1759184ILMN_1759184 C190rf48C190rf48 NM_199250.1NM_199250.1 0.0054206140.005420614 0.2627385450.262738545 ILMN_2402392ILMN_2402392 COL8A1COL8A1 NM_001850.3NM_001850.3 0.0054410260.005441026 1.5060738011.506073801 ILMN_1670542ILMN_1670542 AK2AK2 NM_001625.2NM_001625.2 0.0054561930.005456193 0.46425960.4642596 ILMN_1815306ILMN_1815306 AP2A1AP2A1 NM_014203.2NM_014203.2 0.0054790680.005479068 0.457826990.45782699 ILMN_1665982ILMN_1665982 AKTIPAKTIP NM_022476.2NM_022476.2 0.0055529070.005552907 1.4266066861.426606686 ILMN_1754476ILMN_1754476 TRIM15TRIM15 NM_033229.2NM_033229.2 0.0055999620.005599962 0.6723658120.672365812 ILMN_1715789ILMN_1715789 DOCK1DOCK1 NM_001380.3NM_001380.3 0.0056378660.005637866 1.2908097281.290809728 ILMN_2140207ILMN_2140207 ATPBD4ATPBD4 NM_080650.2NM_080650.2 0.0056874170.005687417 0.4651737750.465173775 ILMN_1707257ILMN_1707257 HIST1H3JHIST1H3J NM_003535.2NM_003535.2 0.005695480.00569548 0.4118680350.411868035 ILMN_2330341ILMN_2330341 TCEAL4TCEAL4 NM_024863.4NM_024863.4 0.0056977180.005697718 1.9057929821.905792982 ILMN_2371964ILMN_2371964 MRPS12MRPS12 NM_021107.1NM_021107.1 0.0057343330.005734333 0.3389994660.338999466

引物编号Primer number 符号symbol 登录号Login ID P值P value 风险risk ILMN_1793888ILMN_1793888 SERPINB5SERPIN B5 NM_002639.3NM_002639.3 0.0057561190.005756119 0.7597499690.759749969 ILMN_1715616ILMN_1715616 PPIL5PPIL5 NM_203467.1NM_203467.1 0.0057719050.005771905 0.4543891550.454389155 ILMN_1702526ILMN_1702526 C17orf48C17orf48 NM_020233.4NM_020233.4 0.0057992460.005799246 1.3552221951.355222195 ILMN_1739076ILMN_1739076 HIST1H2BOHIST1H2BO NM_003527.4NM_003527.4 0.0058014060.005801406 0.734012840.73401284 ILMN_2075714ILMN_2075714 ZNF284ZNF284 NM_001037813.2NM_001037813.2 0.0058240270.005824027 1.4114496421.411449642 ILMN_1814151ILMN_1814151 AGR2AGR2 NM_006408.2NM_006408.2 0.0058312680.005831268 0.5049409130.504940913 ILMN_1738684ILMN_1738684 NRXN2NRXN2 NM_138734.1NM_138734.1 0.0058362320.005836232 1.4182140091.418214009 ILMN_2065022ILMN_2065022 KIAA0672KIAA0672 NM_014859.4NM_014859.4 0.005845050.00584505 1.2797208011.279720801 ILMN_2402168ILMN_2402168 EXOSC10EXOSC10 NM_001001998.1NM_001001998.1 0.0058452990.005845299 0.5185185910.518518591 ILMN_1803570ILMN_1803570 BRI3BPBRI3BP NM_080626.5NM_080626.5 0.005848850.00584885 0.7956909990.795690999 ILMN_2103362ILMN_2103362 ARHGAP27ARHGAP27 NM_199282.1NM_199282.1 0.0058912060.005891206 0.4873952950.487395295 ILMN_1731048ILMN_1731048 TLR1TLR1 NM_003263.3NM_003263.3 0.0059098940.005909894 0.3541079090.354107909 ILMN_1813295ILMN_1813295 LMO3LMO3 NM_018640.3NM_018640.3 0.005923480.00592348 1.4178340191.417834019 ILMN_1676058ILMN_1676058 MAGOHBMAGOHB NM_018048.3NM_018048.3 0.0059328080.005932808 0.4665472350.466547235 ILMN_2255133ILMN_2255133 BCL11ABCL11A BCL11ABCL11A 0.0059431270.005943127 0.4643198770.464319877 ILMN_2311537ILMN_2311537 HMGA1HMGA1 NM_145902.1NM_145902.1 0.0059461640.005946164 0.8012437970.801243797 ILMN_1718853ILMN_1718853 UQCRC2UQCRC2 NM_003366.2NM_003366.2 0.0059801460.005980146 0.5135246840.513524684 ILMN_1776845ILMN_1776845 HIST1H3AHIST1H3A NM_003529.2NM_003529.2 0.0059855440.005985544 0.7109495750.710949575 ILMN_1672122ILMN_1672122 PH-4PH-4 NM_177938.2NM_177938.2 0.0059950020.005995002 0.50343170.5034317 ILMN_1651229ILMN_1651229 IP013IP013 NM_014652.2NM_014652.2 0.0060013690.006001369 2.3214894932.321489493 ILMN_2217661ILMN_2217661 SREBF2SREBF2 NM_004599.2NM_004599.2 0.0060205960.006020596 0.425386480.42538648 ILMN_2115340ILMN_2115340 HIST2H4AHIST2H4A NM_003548.2NM_003548.2 0.0060515340.006051534 0.7239534410.723953441 ILMN_1662140ILMN_1662140 SGPP2SGPP2 NM_152386.2NM_152386.2 0.0060531420.006053142 0.7357618930.735761893 ILMN_2362368ILMN_2362368 U2AF1U2AF1 NM_001025203.1NM_001025203.1 0.0060551250.006055125 0.5439690230.543969023 ILMN_1710070ILMN_1710070 PCSK6PCSK6 NM_138320.1NM_138320.1 0.006115010.00611501 0.721588680.72158868 ILMN_2358783ILMN_2358783 ASB3ASB3 NM_016115.3NM_016115.3 0.0061284610.006128461 0.4968623660.496862366 ILMN_2407464ILMN_2407464 FASTKFASTK NM_006712.3NM_006712.3 0.0062013080.006201308 0.5376899210.537689921 ILMN_2382990ILMN_2382990 HK1HK1 NM_033498.1NM_033498.1 0.0062162290.006216229 2.3531796282.353179628 ILMN_2143685ILMN_2143685 CLDN7CLDN7 NM_001307.4NM_001307.4 0.006244990.00624499 0.78552610.7855261 ILMN_1726108ILMN_1726108 LASS2LASS2 NM_181746.2NM_181746.2 0.0062504730.006250473 0.4223951440.422395144 ILMN_1734867ILMN_1734867 NR2C1NR2C1 NM_003297.1NM_003297.1 0.0062537860.006253786 0.5751693230.575169323 ILMN_1788180ILMN_1788180 RAB13RAB13 NM_002870.2NM_002870.2 0.0062651180.006265118 0.4485508570.448550857 ILMN_1720595ILMN_1720595 MDGA1MDGA1 NM_153487.3NM_153487.3 0.0062870870.006287087 1.5948699831.594869983 ILMN_2162358ILMN_2162358 ZNF597ZNF597 NM_152457.1NM_152457.1 0.0063076030.006307603 1.2695258751.269525875 ILMN_1717393ILMN_1717393 PTCHD1PTCHD1 NM_173495.2NM_173495.2 0.0063084280.006308428 1.3652990661.365299066 ILMN_1688033ILMN_1688033 HPS5HPS5 NM_181507.1NM_181507.1 0.0063284460.006328446 1.3503465891.350346589 ILMN_1664815ILMN_1664815 ELK4ELK4 NM_001973.2NM_001973.2 0.0063305130.006330513 0.6487791280.648779128 ILMN_2388070ILMN_2388070 TMEM44TMEM44 NM_138399.3NM_138399.3 0.0063490480.006349048 0.4625955840.462595584 ILMN_1666096ILMN_1666096 ACSL3ACSL3 NM_004457.3NM_004457.3 0.0063673950.006367395 1.4704849771.470484977 ILMN_1717757ILMN_1717757 CALML4CALML4 NM_001031733.2NM_001031733.2 0.0063952120.006395212 0.7325057490.732505749 ILMN_2116827ILMN_2116827 RGPD1RGPD1 NM_001024457.1NM_001024457.1 0.0064006630.006400663 1.2731964991.273196499 ILMN_1684647ILMN_1684647 ILKAPILKAP NM_030768.2NM_030768.2 0.0064205950.006420595 0.5201370670.520137067 ILMN_1795507ILMN_1795507 ABCA6ABCA6 NM_080284.2NM_080284.2 0.006453010.00645301 1.2663895851.266389585

引物编号Primer number 符号symbol 登录号Login ID P值P value 风险risk ILMN_1726030ILMN_1726030 GPX7GPX7 NM_015696.3NM_015696.3 0.0065054170.006505417 1.3190115091.319011509 ILMN_2336595ILMN_2336595 ACSS2ACSS2 NM_018677.2NM_018677.2 0.0065192760.006519276 0.3772680860.377268086 ILMN_1653251ILMN_1653251 HIST1H1BHIST1H1B NM_005322.2NM_005322.2 0.0065336080.006533608 0.615043060.61504306 ILMN_2250923ILMN_2250923 FOXP1FOXP1 NM_032682.4NM_032682.4 0.0065443890.006544389 0.4354568840.435456884 ILMN_1694759ILMN_1694759 C19orf42C19orf42 NM_024104.3NM_024104.3 0.0065744440.006574444 0.4808478660.480847866 ILMN_2230025ILMN_2230025 PDLIM3PDLIM3 NM_014476.1NM_014476.1 0.0066172240.006617224 1.7493829311.749382931 ILMN_1812970ILMN_1812970 RWDD1RWDD1 NM_016104.2NM_016104.2 0.0066514540.006651454 1.2742653911.274265391 ILMN_1733559ILMN_1733559 LOC100008589LOC100008589 NR_003287.1NR_003287.1 0.0066556330.006655633 0.054941940.05494194 ILMN_2214278ILMN_2214278 ANKRD32ANKRD32 NM_032290.2NM_032290.2 0.0066722630.006672263 0.4070024980.407002498 ILMN_2364928ILMN_2364928 APBA2BPAPBA2BP NM_031231.3NM_031231.3 0.0066746870.006674687 0.4766627350.476662735 ILMN_2368721ILMN_2368721 CENPMCENPM NM_024053.3NM_024053.3 0.0066812620.006681262 0.7756886140.775688614 ILMN_2042651ILMN_2042651 EVI2BEVI2B NM_006495.3NM_006495.3 0.0067095160.006709516 0.3989239790.398923979 ILMN_1757536ILMN_1757536 USP40USP40 NM_018218.2NM_018218.2 0.0067190190.006719019 0.4436067550.443606755 ILMN_1743579ILMN_1743579 WDR4WDR4 NM_033661.3NM_033661.3 0.0067199750.006719975 0.5866521040.586652104 ILMN_1794017ILMN_1794017 SERTAD1SERTAD1 NM_013376.3NM_013376.3 0.0067668510.006766851 1.4771820171.477182017 ILMN_2192683ILMN_2192683 DHX37DHX37 NM_032656.2NM_032656.2 0.0068033470.006803347 0.1446743910.144674391 ILMN_2148452ILMN_2148452 BCAS2BCAS2 NM_005872.2NM_005872.2 0.006886140.00688614 0.3945397190.394539719 ILMN_1805778ILMN_1805778 RBM12BRBM12B NM_203390.2NM_203390.2 0.0069065730.006906573 1.5341680091.534168009 ILMN_1658821ILMN_1658821 SAMD1SAMD1 NM_138352.1NM_138352.1 0.0069141930.006914193 0.7100970170.710097017 ILMN_2072357ILMN_2072357 IRF6IRF6 NM_006147.2NM_006147.2 0.0069532370.006953237 0.5025578680.502557868 ILMN_1740508ILMN_1740508 KCNMA1KCNMA1 NM_001014797.1NM_001014797.1 0.0069717330.006971733 1.45695121.4569512 ILMN_2401779ILMN_2401779 FAM102AFAM102A NM_001035254.1NM_001035254.1 0.0070119250.007011925 0.2517863640.251786364 ILMN_2330570ILMN_2330570 LEPRLEPR NM_002303.3NM_002303.3 0.0070740660.007074066 1.448709541.44870954 ILMN_1675106ILMN_1675106 YIPF2YIPF2 NM_024029.3NM_024029.3 0.0070744510.007074451 0.4549512560.454951256 ILMN_1784367ILMN_1784367 HSPD1HSPD1 NM_002156.4NM_002156.4 0.0071162940.007116294 0.7292301880.729230188 ILMN_1798254ILMN_1798254 ACTR10ACTR10 NM_018477.2NM_018477.2 0.007139150.00713915 0.4560788020.456078802 ILMN_2061950ILMN_2061950 RABGAP1RABGAP1 NM_012197.2NM_012197.2 0.0071434160.007143416 1.9096888171.909688817 ILMN_1657836ILMN_1657836 PLEKHG2PLEKHG2 NM_022835.1NM_022835.1 0.0072254840.007225484 1.4091395051.409139505 ILMN_2073307ILMN_2073307 IL10IL10 NM_000572.2NM_000572.2 0.0072353380.007235338 0.5815766190.581576619 ILMN_1669023ILMN_1669023 FHL5FHL5 NM_020482.3NM_020482.3 0.0072381260.007238126 1.3140200571.314020057 ILMN_2413251ILMN_2413251 EWSR1EWSR1 NM_005243.2NM_005243.2 0.0072434010.007243401 0.4974563430.497456343 ILMN_1692779ILMN_1692779 PRPF39PRPF39 NM_017922.2NM_017922.2 0.0072548780.007254878 0.4106544880.410654488 ILMN_1803338ILMN_1803338 CCDC80CCDC80 NM_199511.1NM_199511.1 0.0073686660.007368666 1.8921265061.892126506 ILMN_2316918ILMN_2316918 PANK1PANK1 NM_148978.1NM_148978.1 0.0073971880.007397188 0.4176795560.417679556 ILMN_1781400ILMN_1781400 SLC7A2SLC7A2 NM_001008539.2NM_001008539.2 0.0074133530.007413353 1.5157456541.515745654 ILMN_1799289ILMN_1799289 MRPL55MRPL55 NM_181454.1NM_181454.1 0.0074206280.007420628 0.4615703610.461570361 ILMN_2410924ILMN_2410924 PLOD2PLOD2 NM_000935.2NM_000935.2 0.0074376920.007437692 1.8762195941.876219594 ILMN_1684931ILMN_1684931 GPR119GPR119 NM_178471.1NM_178471.1 0.0074382190.007438219 0.4637487610.463748761 ILMN_2138589ILMN_2138589 MERTKMERTK NM_006343.2NM_006343.2 0.0074384660.007438466 1.4737808141.473780814 ILMN_1671557ILMN_1671557 PHLDA2PHLDA2 NM_003311.3NM_003311.3 0.007453360.00745336 0.6208911220.620891122 ILMN_1809101ILMN_1809101 STEAP2STEAP2 NM_152999.3NM_152999.3 0.0074731920.007473192 1.4052297081.405229708 ILMN_2381037ILMN_2381037 LIMS1LIMS1 NM_004987.3NM_004987.3 0.0074797280.007479728 0.5065762020.506576202 ILMN_1723522ILMN_1723522 APOLD1APOLD1 NM_030817.1NM_030817.1 0.0075001820.007500182 1.2738460611.273846061

引物编号Primer number 符号symbol 登录号Login ID P值P value 风险risk ILMN_2292178ILMN_2292178 CLEC12ACLEC12A NM_201623.2NM_201623.2 O.007513142O.007513142 1.2936185891.293618589 ILMN_2294684ILMN_2294684 CEP170CEP170 NM_014812.2NM_014812.2 O.007567842O.007567842 0.4920801220.492080122 ILMN_2331163ILMN_2331163 CUL4ACUL4A NM_003589.2NM_003589.2 O.007580851O.007580851 O.677020715O.677020715 ILMN_2209163ILMN_2209163 CHD6CHD6 NM_032221.3NM_032221.3 O.007605645O.007605645 O.532521441O.532521441 ILMN_1777263ILMN_1777263 MEOX2MEOX2 NM_005924.4NM_005924.4 O.007648662O.007648662 1.3446714571.344671457 ILMN_1688666ILMN_1688666 HIST1H2BHHIST1H2BH NM_003524.2NM_003524.2 0.0076889380.007688938 O.679188681O.679188681 ILMN_2064926ILMN_2064926 ITFG1ITFG1 NM_030790.3NM_030790.3 O.007689192O.007689192 O.430133813O.430133813 ILMN_1812795ILMN_1812795 RUNX1T1RUNX1T1 NM_175636.1NM_175636.1 O.007693535O.007693535 1.2347430181.234743018 ILMN_1783908ILMN_1783908 B3GNT9B3GNT9 NM_033309.2NM_033309.2 0.0077407250.007740725 0.5487261980.548726198 ILMN_1689438ILMN_1689438 BTRCBTRC NM_033637.2NM_033637.2 O.007752648O.007752648 1.3975350081.397535008 ILMN_1687652ILMN_1687652 TGFB3TGFB3 NM_003239.1NM_003239.1 O.007770746O.007770746 1.3524576911.352457691 ILMN_1695025ILMN_1695025 CD2CD2 NM_OO1767.3NM_OO1767.3 O.007797265O.007797265 1.3137363861.313736386 ILMN_1749846ILMN_1749846 OMDOMD NM_005014.1NM_005014.1 O.007801275O.007801275 1.4624352511.462435251 ILMN_1807945ILMN_1807945 ANP32AANP32A NM_006305.2NM_006305.2 0.00786570.0078657 0.542320470.54232047 ILMN_166491OILMN_166491O RPSARPSA NM_001012321.1NM_001012321.1 O.007938497O.007938497 O.537155609O.537155609 ILMN_2407605ILMN_2407605 GIYD2GIYD2 NM_024044.2NM_024044.2 O.007944606O.007944606 O.531217635O.531217635 ILMN_2152095ILMN_2152095 RNASENRNASEN NM_013235.3NM_013235.3 O.007987447O.007987447 O.458218869O.458218869 ILMN_1678464ILMN_1678464 DCLRE1CDCLRE1C NM_001033858.1NM_001033858.1 O.007991392O.007991392 O.619351961O.619351961 ILMN_1730529ILMN_1730529 CAB39LCAB39L NM_001079670.1NM_001079670.1 O.008004106O.008004106 O.465761281O.465761281 ILMN_1809285ILMN_1809285 DCP1ADCP1A NM_018403.4NM_018403.4 O.008063544O.008063544 O.499569903O.499569903 ILMN_1699440ILMN_1699440 ZBTB47ZBTB47 NM_145166.2NM_145166.2 O.008069873O.008069873 1.3007213261.300721326 ILMN_1774083ILMN_1774083 TRIAP1TRIAP1 NM_016399.2NM_016399.2 O.008084101O.008084101 O.452093496O.452093496 ILMN_1796523ILMN_1796523 FNIP1FNIP1 NM_133372.2NM_133372.2 0.0081010410.008101041 1.2519355951.251935595 ILMN_1742379ILMN_1742379 IFT122IFT122 NM_052989.1NM_052989.1 0.0081070690.008107069 O.585299967O.585299967 ILMN_1798581ILMN_1798581 MCM8MCM8 NM_032485.4NM_032485.4 O.008124758O.008124758 O.39895875O.39895875 ILMN_2045994ILMN_2045994 SEPW1SEPW1 NM_003009.2NM_003009.2 O.008180544O.008180544 2.1706107722.170610772 ILMN_2111237ILMN_2111237 MN1MN1 NM_002430.2NM_002430.2 O.008181064O.008181064 1.4805434941.480543494 ILMN_1727558ILMN_1727558 MRPL27MRPL27 NM_148571.1NM_148571.1 O.008216167O.008216167 O.49290801O.49290801 ILMN_1713613ILMN_1713613 PIAS2PIAS2 NM_173206.2NM_173206.2 O.008218756O.008218756 O.533318798O.533318798 ILMN_2207720ILMN_2207720 ITM2BITM2B NM_021999.3NM_021999.3 O.008268371O.008268371 0.4092299790.409229979 ILMN_1778059ILMN_1778059 CASP4CASP4 NM_033306.2NM_033306.2 0.0082996310.008299631 O.352535107O.352535107 ILMN_2151281ILMN_2151281 GABARAPL1GABARAPL1 NM_031412.2NM_031412.2 0.008305920.00830592 1.403440791.40344079 ILMN_2227368ILMN_2227368 SELTSELT NM_016275.3NM_016275.3 O.008323563O.008323563 0.6291519380.629151938 ILMN_1755222ILMN_1755222 C9orf82C9orf82 NM_024828.2NM_024828.2 0.0083767360.008376736 0.5378458740.537845874 ILMN_1670272ILMN_1670272 LRP10LRP10 NM_014045.3NM_014045.3 O.008387951O.008387951 0.4884619010.488461901 ILMN_1750044ILMN_1750044 ZNHIT3ZNHIT3 NM_004773.2NM_004773.2 O.008414785O.008414785 0.5962036970.596203697 ILMN_1801899ILMN_1801899 PLEC1PLEC1 NM_201380.2NM_201380.2 O.008415501O.008415501 O.788422978O.788422978 ILMN_1667707ILMN_1667707 SPCS3SPCS3 NM_021928.1NM_021928.1 O.008416213O.008416213 0.3333064130.333306413 ILMN_1784459ILMN_1784459 MMP3MMP3 NM_002422.3NM_002422.3 O.008424899O.008424899 0.7438459840.743845984 ILMN_1715613ILMN_1715613 TAOK2TAOK2 NM_004783.2NM_004783.2 O.008428815O.008428815 O.577192898O.577192898 ILMN_1783170ILMN_1783170 ING3ING3 NM_198267.1NM_198267.1 O.008464107O.008464107 O.45594537O.45594537 ILMN_2343332ILMN_2343332 TAF9TAF9 NM_001015891.1NM_001015891.1 O.008467944O.008467944 O.502769469O.502769469 ILMN_1746426ILMN_1746426 TOMM70ATOMM70A NM_014820.3NM_014820.3 O.008511501O.008511501 0.4514000090.451400009

引物编号Primer number 符号symbol 登录号Login ID P值P value 风险risk ILMN_1708164ILMN_1708164 EIF3AEIF3A NM_003750.2NM_003750.2 0.00851470.0085147 0.2730462830.273046283 ILMN_2319919ILMN_2319919 MAGEA2MAGEA2 NM_175743.1NM_175743.1 0.0085222990.008522299 0.5647080470.564708047 ILMN_1788166ILMN_1788166 TTKTTK NM_003318.3NM_003318.3 0.0085320790.008532079 0.62609550.6260955 ILMN_1694731ILMN_1694731 CLCN7CLCN7 NM_001287.3NM_001287.3 0.0085523660.008552366 0.0474289860.047428986 ILMN_2189037ILMN_2189037 WDR52WDR52 NM_018338.2NM_018338.2 0.0085790910.008579091 0.4424260390.442426039 ILMN_1654411ILMN_1654411 CCL18CCL18 NM_002988.2NM_002988.2 0.0085823030.008582303 0.5347714940.534771494 ILMN_1666372ILMN_1666372 ATP5HATP5H NM_006356.2NM_006356.2 0.008586780.00858678 0.3391812940.339181294 ILMN_1663220ILMN_1663220 MRPL22MRPL22 NM_014180.2NM_014180.2 0.0086576990.008657699 0.6822136050.682213605 ILMN_1736689ILMN_1736689 PCPC NM_001040716.1NM_001040716.1 0.0086865620.008686562 0.4913645670.491364567 ILMN_1702609ILMN_1702609 B3GNT5B3GNT5 NM_032047.4NM_032047.4 0.0086996950.008699695 0.359244260.35924426 ILMN_2126399ILMN_2126399 psiTPTE22psiTPTE22 EF535614.1EF535614.1 0.0087010890.008701089 0.5084109790.508410979 ILMN_1714438ILMN_1714438 MUTYHMUTYH NM_001048172.1NM_001048172.1 0.0087082570.008708257 1.4520441111.452044111 ILMN_1697117ILMN_1697117 TBPTBP NM_003194.3NM_003194.3 0.0087172570.008717257 1.3757542461.375754246 ILMN_2160476ILMN_2160476 CCL22CCL22 NM_002990.3NM_002990.3 0.008731550.00873155 0.6268161240.626816124 ILMN_2405156ILMN_2405156 PPAP2CPPAP2C NM_177543.1NM_177543.1 0.0087449420.008744942 0.4866583230.486658323 ILMN_2357976ILMN_2357976 BAT1BAT1 NM_004640.5NM_004640.5 0.0087488890.008748889 0.398699830.39869983 ILMN_1686804ILMN_1686804 CCRKCCRK NM_012119.3NM_012119.3 0.0087817380.008781738 1.3796836111.379683611 ILMN_1735908ILMN_1735908 UTP15UTP15 NM_032175.2NM_032175.2 0.0087958490.008795849 0.4557166040.455716604 ILMN_1739496ILMN_1739496 PRRX1PRRX1 NM_006902.3NM_006902.3 0.0088106310.008810631 1.3522030921.352203092 ILMN_2215631ILMN_2215631 OTUD6BOTUD6B NM_016023.2NM_016023.2 0.0088247880.008824788 0.3181700090.318170009 ILMN_1676449ILMN_1676449 SLIT2SLIT2 NM_004787.1NM_004787.1 0.0088256260.008825626 1.4433092561.443309256 ILMN_1717982ILMN_1717982 BZW1BZW1 NM_014670.2NM_014670.2 0.0088430560.008843056 0.4967202060.496720206 ILMN_2089902ILMN_2089902 NUS1NUS1 NM_138459.3NM_138459.3 0.0089240610.008924061 0.4264374370.426437437 ILMN2172269ILMN2172269 TMEM183BTMEM183B NM_001079809.1NM_001079809.1 0.0089475620.008947562 0.5313762850.531376285 ILMN_1750144ILMN_1750144 C3orf19C3orf19 NM_016474.4NM_016474.4 0.0089984870.008998487 1.2248810411.224881041 ILMN_1686043ILMN_1686043 FAM164CFAM164C NM_024643.2NM_024643.2 0.0090076540.009007654 0.5249541980.524954198 ILMN_2342793ILMN_2342793 FBXW8FBXW8 NM_153348.2NM_153348.2 0.0090101310.009010131 0.5267471650.526747165 ILMN_1684554ILMN_1684554 COL16A1COL16A1 NM_001856.3NM_001856.3 0.0092074940.009207494 2.1575931972.157593197 ILMN_2198878ILMN_2198878 INPP4BINPP4B NM_003866.1NM_003866.1 0.0092247310.009224731 1.3554833571.355483357 ILMN_2183610ILMN_2183610 SERAC1SERAC1 NM_032861.2NM_032861.2 0.0092372130.009237213 0.6529299290.652929929 ILMN_1735827ILMN_1735827 NISCHNISCH NM_007184.3NM_007184.3 0.0092679760.009267976 3.2449723393.244972339 ILMN_2408815ILMN_2408815 NAP1L1NAP1L1 NM_139207.1NM_139207.1 0.0092736770.009273677 0.4660782020.466078202 ILMN_1736154ILMN_1736154 ProSAPiP1ProSAPiP1 NM_014731.2NM_014731.2 0.0092974080.009297408 1.3718365071.371836507 ILMN_1660043ILMN_1660043 UBXN11UBXN11 NM_145345.2NM_145345.2 0.0093012340.009301234 0.4149236860.414923686 ILMN_1723087ILMN_1723087 MDKMDK NM_002391.3NM_002391.3 0.0093573760.009357376 0.4779251380.477925138 ILMN_2405190ILMN_2405190 VAPAVAPA NM_003574.5NM_003574.5 0.0093807250.009380725 0.6428692290.642869229 ILMN_2365549ILMN_2365549 BRPF1BRPF1 NM_004634.2NM_004634.2 0.0094184230.009418423 0.0309005280.030900528 ILMN_1688637ILMN_1688637 TMEM198TMEM198 NM_001005209.1NM_001005209.1 0.0094542950.009454295 0.534418610.53441861 ILMN_2381753ILMN_2381753 G3BP2G3BP2 NM_012297.3NM_012297.3 0.0094546430.009454643 0.5285600310.528560031 ILMN_2119945ILMN_2119945 NDUFB3NDUFB3 NM_002491.1NM_002491.1 0.0095127930.009512793 0.6059003770.605900377 ILMN_2395913ILMN_2395913 ARHGAP11AARHGAP11A NM_199357.1NM_199357.1 0.0095131890.009513189 0.525378590.52537859 ILMN_1799105ILMN_1799105 COL17A1COL17A1 NM_000494.3NM_000494.3 0.0095214180.009521418 0.5692374520.569237452 ILMN_1786707ILMN_1786707 C19orf63C19orf63 NM_175063.4NM_175063.4 0.0095499330.009549933 0.7058598330.705859833

引物编号Primer number 符号symbol 登录号Login ID P值P value 风险risk ILMN_1695962ILMN_1695962 SLC12A9SLC12A9 NM_020246.2NM_020246.2 0.009555320.00955532 0.6329864340.632986434 ILMN_2213247ILMN_2213247 SPCS2SPCS2 NM_014752.1NM_014752.1 0.0095686320.009568632 0.4681034640.468103464 ILMN1722016ILMN1722016 LY6G5CLY6G5C NM_001002849.1NM_001002849.1 0.0095729320.009572932 1.3373262321.337326232 ILMN_1809141ILMN_1809141 ING4ING4 NM_198287.1NM_198287.1 0.0095849630.009584963 0.479207370.47920737 ILMN_1682332ILMN_1682332 GYPCGYPC NM_016815.2NM_016815.2 0.0096330830.009633083 1.8870561711.887056171 ILMN_1761363ILMN_1761363 VAMP4VAMP4 NM_003762.3NM_003762.3 0.0096465520.009646552 0.4769503340.476950334 ILMN_1785179ILMN_1785179 UBE2G2UBE2G2 NM_003343.4NM_003343.4 0.0097018670.009701867 0.6171051460.617105146 ILMN_1763000ILMN_1763000 ADAP2ADAP2 NM_018404.2NM_018404.2 0.0097489520.009748952 1.6817996331.681799633 ILMN_1716224ILMN_1716224 STARD4STARD4 NM_139164.1NM_139164.1 0.0097834560.009783456 0.4894062670.489406267 ILMN_1739587ILMN_1739587 UTYUTY NM_007125.3NM_007125.3 0.0098163090.009816309 0.4392984780.439298478 ILMN_1680643ILMN_1680643 KIAA1333KIAA1333 NM_017769.2NM_017769.2 0.0098206910.009820691 0.4601926940.460192694 ILMN_2407879ILMN_2407879 SORBS2SORBS2 NM_003603.4NM_003603.4 0.0098311850.009831185 1.5481138731.548113873 ILMN_2275533ILMN_2275533 DIAPH3DIAPH3 NM_030932.3NM_030932.3 0.0098337780.009833778 0.6865534430.686553443 ILMN_1773645ILMN_1773645 GMPPBGMPPB NM_021971.1NM_021971.1 0.0098375590.009837559 0.4461301820.446130182 ILMN_1764091ILMN_1764091 R3HDM2R3HDM2 NM_014925.2NM_014925.2 0.0098431590.009843159 0.6850432840.685043284 ILMN_2400500ILMN_2400500 LASS2LASS2 NM_181746.2NM_181746.2 0.0098478680.009847868 0.4422538210.442253821 ILMN_2334350ILMN_2334350 BTBD3BTBD3 NM_014962.2NM_014962.2 0.009854160.00985416 0.4598700010.459870001 ILMN_1660602ILMN_1660602 C1orf43C1orf43 NM_015449.2NM_015449.2 0.0098740840.009874084 0.6179877930.617987793 ILMN_2170353ILMN_2170353 PTPLBPTPLB NM_198402.2NM_198402.2 0.0099185670.009918567 0.4005854310.400585431 ILMN_1794492ILMN_1794492 HOXC6HOXC6 NM_153693.3NM_153693.3 0.009921580.00992158 0.7219740310.721974031 ILMN_2364357ILMN_2364357 RPS6KB2RPS6KB2 NM_003952.2NM_003952.2 0.0099377110.009937711 0.2441795990.244179599 ILMN_2147503ILMN_2147503 ALG13ALG13 NM_018466.3NM_018466.3 0.0099467930.009946793 0.3527710710.352771071 ILMN_2177460ILMN_2177460 AQRAQR NM_014691.2NM_014691.2 0.0099539610.009953961 0.4046638060.404663806 ILMN_1668525ILMN_1668525 NR3C1NR3C1 NM_001018076.1NM_001018076.1 0.0099927890.009992789 0.6172153810.617215381 ILMN_2258543ILMN_2258543 PRDM2PRDM2 NM_012231.3NM_012231.3 0.0099940080.009994008 1.3648917011.364891701

实施例6:鉴定用于自我归一化(self-normalization)的参比基因(reference genes)Example 6: Identification of reference genes for self-normalization

减少临床领域中发现的预后基因数目的方式之一是在每种情况下自我归一化,因为不可能一次用整组患者作为对象进行归一化。目前,实时QRT-PCR(实时定量逆转录聚合酶链反应)广泛地用来测量基因的表达水平,但是当使用QTR-PCR时,不能测量人类中的全部基因以便进行分位数归一化,并且当使用旧石蜡块而非使用新样品时存在生成的实时QRT-PCR信号显著较低的问题。One of the ways to reduce the number of prognostic genes found in the clinical domain is to self-normalize in each case, since it is not possible to normalize against the entire group of patients at once. Currently, real-time QRT-PCR (quantitative real-time reverse transcription polymerase chain reaction) is widely used to measure gene expression levels, but when using QTR-PCR, all genes in humans cannot be measured for quantile normalization, And there is the problem that the real-time QRT-PCR signal generated is significantly lower when using old paraffin blocks instead of using new samples.

因此,为了在临床领域可靠使用鉴定的胃癌预后基因,本发明人尽力鉴定参比基因用于测量的基因表达水平的自我归一化。因此,通过分析实施例3中用WG-DASL测量的基因表达水平数据,鉴定了不具有预后特征并且在每种不同情况下均显示最小变化的50种参比基因,并且表4中显示了该结果。表4中列出的50种参比基因中一个或多种基因的组合可以用于胃癌预后基因的表达水平的归一化。Therefore, in order to reliably use the identified gastric cancer prognostic genes in the clinical field, the present inventors endeavored to identify reference genes for self-normalization of the measured gene expression levels. Therefore, by analyzing the gene expression level data measured with WG-DASL in Example 3, 50 reference genes that did not have prognostic features and showed minimal changes in each of the different cases were identified, and the results are shown in Table 4. result. The combination of one or more genes among the 50 reference genes listed in Table 4 can be used to normalize the expression levels of gastric cancer prognostic genes.

表4Table 4

探针编号Probe No. 登录号Login ID 符号symbol ILMN_2403446ILMN_2403446 NM_007011.5NM_007011.5 ABHD2ABHD2 ILMN_1708502ILMN_1708502 NM_014423.3NM_014423.3 AFF4AFF4 ILMN_1780806ILMN_1780806 NM_025190.3NM_025190.3 ANKRD36BANKRD36B ILMN_2415467ILMN_2415467 NM_080550.2NM_080550.2 AP1GBP1AP1GBP1 ILMN_1722066ILMN_1722066 NM_018120.3NM_018120.3 ARMC1ARMC1 ILMN_2352934ILMN_2352934 NM_004318.2NM_004318.2 ASPHASPH ILMN_1808163ILMN_1808163 NM_022338.2NM_022338.2 C11orf24C11orf24 ILMN_1693431ILMN_1693431 NM_153218.1NM_153218.1 C13orf31C13orf31 ILMN_1733288ILMN_1733288 NM_016546.1NM_016546.1 C1RLC1RL ILMN_2202940ILMN_2202940 NM_020244.2NM_020244.2 CHPT1CHPT1 ILMN_2188533ILMN_2188533 NT_007592.15NT_007592.15 CICK0721Q.1CICK0721Q.1 ILMN_1795754ILMN_1795754 NM_001289.4NM_001289.4 CLIC2CLIC2 ILMN_2373779ILMN_2373779 NM_198189.2NM_198189.2 COPS8COPS8 ILMN_1796180ILMN_1796180 NM_021117.2NM_021117.2 CRY2CRY2 ILMN_1651499ILMN_1651499 NM_020462.1NM_020462.1 ERGIC1ERGIC1 ILMN_1751425ILMN_1751425 NM_024896.2NM_024896.2 ERMP1ERMP1 ILMN_1712095ILMN_1712095 NM_005938.2NM_005938.2 FOXO4FOXO4 ILMN_1747305ILMN_1747305 NM_175571.2NM_175571.2 GIMAP8GIMAP8 ILMN_1737308ILMN_1737308 NM_002064.1NM_002064.1 GLRXGLRX ILMN_2168215ILMN_2168215 NM_016153.1NM_016153.1 HSFX1HSFX1 ILMN_1789018ILMN_1789018 NM_012218.2NM_012218.2 ILF3ILF3 ILMN_1809141ILMN_1809141 NM_016162.2NM_016162.2 ING4ING4 ILMN_1807767ILMN_1807767 NM_014615.1NM_014615.1 KIAA0182KIAA0182 ILMN_1776963ILMN_1776963 NM_006816.1NM_006816.1 LMAN2LMAN2 ILMN_1743583ILMN_1743583 NM_130473.1NM_130473.1 MADDMADD

探针编号Probe No. 登录号Login ID 符号symbol ILMN_1774844ILMN_1774844 NM_032960.2NM_032960.2 MAPKAPK2MAPKAPK2 ILMN_1761858ILMN_1761858 NM_033290.2NM_033290.2 MID1MID1 ILMN_1670801ILMN_1670801 NM_000254.1NM_000254.1 MTRMTR ILMN_1780937ILMN_1780937 NM_025128.3NM_025128.3 MUS81MUS81 ILMN_1784113ILMN_1784113 NM_020378.2NM_020378.2 NAT14NAT14 ILMN_2147133ILMN_2147133 NM_173638.2NM_173638.2 NBPF15NBPF15 ILMN_2361185ILMN_2361185 NM_024878.1NM_024878.1 PHF20L1PHF20L1 ILMN_1704529ILMN_1704529 NM_021130.3NM_021130.3 PPIAPPIA ILMN_2357577ILMN_2357577 NM_006251.5NM_006251.5 PRKAA1PRKAA1 ILMN_2353202ILMN_2353202 NM_152882.2NM_152882.2 PTK7PTK7 ILMN_1813753ILMN_1813753 NM_002825.5NM_002825.5 PTNPTN ILMN_1677843ILMN_1677843 NM_001031677.2NM_001031677.2 RAB24RAB24 ILMN_1773561ILMN_1773561 NM_021183.3NM_021183.3 RAP2CRAP2C ILMN_1749006ILMN_1749006 NM_052862.2NM_052862.2 RCSD1RCSD1 ILMN_2373266ILMN_2373266 NM_139168.2NM_139168.2 SFRS12SFRS12 ILMN_2117716ILMN_2117716 NM_005088.2NM_005088.2 SFRS17ASFRS17A ILMN_2379835ILMN_2379835 NM_003352.4NM_003352.4 SUMO1SUMO1 ILMN_1712075ILMN_1712075 NM_015286.5NM_015286.5 SYNMSYNM ILMN_1674866ILMN_1674866 NM_006354.2NM_006354.2 TADA3LTADA3L ILMN_2390227ILMN_2390227 NM_015043.3NM_015043.3 TBC1D9BTBC1D9B ILMN_1657983ILMN_1657983 NM_018975.2NM_018975.2 TERF2IPTERF2IP ILMN_1705213ILMN_1705213 NM_022152.4NM_022152.4 TMBIM1TMBIM1 ILMN_1756696ILMN_1756696 NM_207291.1NM_207291.1 USF2USF2 ILMN_2054442ILMN_2054442 NM_001099639.1NM_001099639.1 ZNF146ZNF146 ILMN_2352590ILMN_2352590 NM_006974.2NM_006974.2 ZNF33AZNF33A

随后,为了证实采用参比基因进行的自我归一化的有效性,研究了针对WG-DASL数据的分位数归一化和自我归一化数据之间的相关性。图1中显示了基于两种归一化方法的风险比(hazard ratio)。作为结果,确定了分位数归一化和自我归一化方法之间的密切相关性(图1)。Subsequently, to confirm the effectiveness of self-normalization with reference genes, the correlation between quantile normalization for WG-DASL data and self-normalization data was investigated. Figure 1 shows the hazard ratios based on the two normalization methods. As a result, a strong correlation between quantile normalization and self-normalization methods was identified (Fig. 1).

实施例7:开发和评价基于胃癌预后基因的预后预测模型-(1)Example 7: Development and evaluation of a prognostic prediction model based on gastric cancer prognostic genes-(1)

7-1:使用监督主成分分析的预后预测模型7-1: Prognosis Prediction Model Using Supervised Principal Component Analysis

为了建立预后预测模型,使用由Bair和Tibshirani开发的改进的主成分分析法(rvisedPrincipal Component analysis,SuperPC)(PLoS Biol.2004Apr;2(4):E108.Epub2004Apr13)。为了开发和评价基于SuperPC分析的胃癌预后预测模型,使用Richard Simon开发的BRB矩阵工具(SimonR等人,Cancer Inform2007;3:11-7)程序。To build a prognostic prediction model, a modified principal component analysis (SuperPC) developed by Bair and Tibshirani (PLoS Biol. 2004 Apr; 2(4): E108. Epub2004 Apr 13) was used. To develop and evaluate a gastric cancer prognosis prediction model based on SuperPC analysis, the BRB matrix tool (SimonR et al., Cancer Inform 2007; 3: 11-7) program developed by Richard Simon was used.

在SuperPC分析中,可以确定用于以所需水平预测预后的p-值阈值,并且在BRB矩阵工具程序中,默认p-值是0.001。临界P值可以在任何区域中小于0.01,并且通过预定义的p-值和计算有效成分,SuperPC分析可以包括表2和表3中列出的预后基因的子集。为了以被认可的有效性建立预后预测模型,将10倍交叉验证法和SuperPC分析与BRB矩阵工具组合。作为SuperPC分析的例子,为了建立预后预测模型,使用0.00001的临界p-值和两种有效成分,并且SuperPC预后预测模型由7个预后基因组成,并且在图16中显示这种预测模型(表5和图16)。此外,在图2至图5中显示了代表根据7个所选择的预后基因的表达水平的存活率的Kaplan-Meier曲线。In SuperPC analysis, a p-value threshold for predicting prognosis at a desired level can be determined, and in the BRB matrix tools program, the default p-value is 0.001. The critical P-value can be less than 0.01 in any region, and with predefined p-values and calculated active components, the SuperPC analysis can include a subset of the prognostic genes listed in Table 2 and Table 3. To build a prognostic prediction model with proven validity, 10-fold cross-validation and SuperPC analysis were combined with the BRB matrix tool. As an example of SuperPC analysis, in order to establish a prognosis prediction model, a critical p-value of 0.00001 and two active components are used, and the SuperPC prognosis prediction model is composed of 7 prognosis genes, and this prediction model is shown in Figure 16 (Table 5 and Figure 16). In addition, Kaplan-Meier curves representing survival rates according to the expression levels of the 7 selected prognostic genes are shown in FIGS. 2 to 5 .

表5table 5

基因编号gene number 基因符号gene symbol 权重(wi)weight (wi) 11 ILMN_1713561ILMN_1713561 C20orf103C20orf103 0.1526770.152677 22 ILMN_1672776ILMN_1672776 COL10A1COL10A1 0.0382610.038261 33 ILMN_1663171ILMN_1663171 MATN3MATN3 0.0164280.016428 44 ILMN_1732158ILMN_1732158 FMO2FMO2 0.086810.08681 55 ILMN_1811790ILMN_1811790 FOXS1FOXS1 0.0689650.068965 66 ILMN_2402392ILMN_2402392 COL8A1COL8A1 0.0607990.060799 77 ILMN_1736078ILMN_1736078 THBS4THBS4 0.0883770.088377

图2至图5确定,根据表5中列出的7种基因中每一种的表达水平,将患者队列划分成积极预后组或消极预后组,并且与消极预后组的存活率相比,积极预后组的存活率显得高。这些结果在临床上代表,可以通过测量本发明中胃癌预后基因的表达水平精确地预测胃癌患者的预后。Figures 2 to 5 determine that, according to the expression levels of each of the seven genes listed in Table 5, the patient cohort was divided into a positive or negative prognosis group, and the survival rate of the positive prognosis group was compared with that of the negative prognosis group. The survival rate of the prognostic group appeared to be high. These results represent clinically that the prognosis of gastric cancer patients can be accurately predicted by measuring the expression levels of the gastric cancer prognostic genes in the present invention.

此外,根据图16,建立表5中列出的7种基因的预后预测模型并且将患者根据所述模型进行划分的结果显示,与消极预后组(高风险)的存活率相比,划分至积极预后组(低风险)中的组的存活率显著更高,这与实际临床结果对应(图16)。这些结果显示,表5中列出的7种预后基因可以用于预测胃癌预后。In addition, according to FIG. 16 , the results of establishing the prognosis prediction model of the 7 genes listed in Table 5 and dividing the patients according to the model showed that compared with the survival rate of the negative prognosis group (high risk), the survival rate of the patients divided into positive The group in the prognostic group (low risk) had a significantly higher survival rate, which corresponds to the actual clinical outcome (Figure 16). These results show that the 7 prognostic genes listed in Table 5 can be used to predict gastric cancer prognosis.

另外,将已经根据该预后预测模型划分的患者中的Ib/II期胃癌患者再划分成积极预后组或消极预后组,并且图17中显示了代表所划分组的无疾病存活率的Kaplan-Meier曲线。作为结果,与划分入消极预后组的Ib/II期胃癌患者的存活率相比,根据SuperPC预后预测模型划分入积极预后组的Ib/II期胃癌患者的存活率显著更高(图17)。In addition, among the patients who have been classified according to the prognosis prediction model, the Ib/II stage gastric cancer patients are subdivided into a positive prognosis group or a negative prognosis group, and the Kaplan-Meier ratio representing the disease-free survival rate of the divided groups is shown in FIG. 17 . curve. As a result, the survival rate of stage Ib/II gastric cancer patients classified into the positive prognosis group according to the SuperPC prognostic prediction model was significantly higher compared to the survival rate of stage Ib/II gastric cancer patients classified into the negative prognosis group (Fig. 17).

具体而言,在SuperPC预后预测模型(使用表5中7种基因的表达水平)中,可以通过下式计算预后指数。如果通过下式计算的确定预后指数大于-0.077491,则从中采集样品的患者可以划入消极预后组中。Specifically, in the SuperPC prognostic prediction model (using the expression levels of 7 genes in Table 5), the prognostic index can be calculated by the following formula. If the determined prognosis index calculated by the following formula is greater than -0.077491, the patient from which the sample was taken can be classified in the negative prognosis group.

∑Iwi xi-4.51425∑Iwi xi-4.51425

[wi和xi分别代表基因的第i位权重(weight)和对数表达水平][wi and xi respectively represent the i-th weight (weight) and logarithmic expression level of the gene]

7-2:采用常规预后系数的对比评价7-2: Comparative evaluation using conventional prognostic coefficients

本发明人使用多变量Cox分析作为标准统计分析以确定基于本发明中预后基因的预后预测是否比常规预后系数提供更有意义的预后信息。具体而言,研究了多变量Cox模型,所述模型显示由SuperPC预后指数(表5)和10倍交叉验证法评价的无疾病存活率、肿瘤细胞侵入深度(pT期(pTstage))、由肿瘤细胞转移的淋巴结的数目(P Node)。The inventors used multivariate Cox analysis as a standard statistical analysis to determine whether prognostic predictions based on the prognostic genes of the present invention provide more meaningful prognostic information than conventional prognostic coefficients. Specifically, multivariate Cox models were investigated showing disease-free survival as assessed by the SuperPC prognostic index (Table 5) and 10-fold cross-validation, depth of tumor cell invasion (pT stage (pTstage)), tumor The number of lymph nodes to which cells metastasized (P Node).

多变量分析结果确定,与pT期和P Node无关的7种预后基因是接受治疗型胃切除术和辅助化疗的胃癌患者的无疾病存活率的优异预测物(HR=1.9232,95%CI,1.4066,2.6294,P<0.0001,表6)。Multivariate analysis identified seven prognostic genes independent of pT stage and P Node as excellent predictors of disease-free survival in gastric cancer patients undergoing curative gastrectomy and adjuvant chemotherapy (HR=1.9232, 95%CI, 1.4066 , 2.6294, P<0.0001, Table 6).

表6Table 6

协变量covariate bb SESE PP 期望(b)expect (b) 期望(b)的95%置信区间95% confidence interval for expectation (b) HER2=阳性HER2 = Positive -0.3020-0.3020 0.25100.2510 0.22890.2289 0.73930.7393 0.4531to1.20620.4531 to 1.2062 PNODEPNODE 0.55480.5548 0.087540.08754 <0.0001<0.0001 1.74151.7415 1.4683to2.06571.4683 to 2.0657 TstageTstage 0.73390.7339 0.16960.1696 <0.0001<0.0001 2.08312.0831 1.4965to2.89971.4965 to 2.8997 预测的风险=“高”Predicted Risk = "High" 0.65400.6540 0.16040.1604 <0.0001<0.0001 1.92321.9232 1.4066to2.62941.4066to2.6294

实施例8:开发和评价基于胃癌预后基因的预后预测模型-(2)Example 8: Development and evaluation of a prognostic prediction model based on gastric cancer prognostic genes-(2)

8-1:使用梯度套索方法的预后预测模型8-1: Prognosis prediction model using gradient lasso method

使用梯度套索算法(Sohn I等人:Bioinformatics2009;25:1775-81)筛选在实施例5中鉴定的369种胃癌预后基因中可以用于预测胃癌预后的基因。在梯度套索预后模型中,可以使用下式计算预后评分,并且如果随机样品的预后评分为正,可以预测为积极(positive)预后。The gradient lasso algorithm (Sohn I et al: Bioinformatics 2009; 25: 1775-81) was used to screen the 369 gastric cancer prognostic genes identified in Example 5 that could be used to predict the prognosis of gastric cancer. In the gradient lasso prognostic model, the prognostic score can be calculated using the following formula, and if the prognostic score of a random sample is positive, it can predict a positive prognosis.

是从训练集估计的回归系数(regression coefficient),X是训练集的基因表达水平的向量。]is the regression coefficient estimated from the training set, and X is a vector of gene expression levels in the training set. ]

在使用梯度套索选择基因后,必需使用独立数据集(data set)验证易感性。为此目的,使用留一交叉验证法(leave one out cross validation,LOOCV)。具体而言,留一交叉验证法将在通过梯度套索产生预后预测算法时使用N-1份样品(训练数据),不包括来自患者组的一份样品(测试数据),并且用来通过将相同样品应用于预后算法将剩余一份样品划入积极预后组或消极预后组。这种过程反复对患者组的N份样品进行。在完成将全部样品划分入积极预后组或消极预后组后,通过统计分析比较积极预后组和消极预后组之间的存活率。After gene selection using gradient lasso, susceptibility must be validated using an independent dataset. For this purpose, leave one out cross validation (LOOCV) is used. Specifically, leave-one-out cross-validation will use N-1 samples (training data), excluding one sample from the patient group (test data), when generating a prognostic prediction algorithm by gradient lasso, and will use The same sample was applied to the prognostic algorithm to classify the remaining one sample into the positive prognosis group or the negative prognosis group. This process is repeated for N samples of the patient group. After completing the division of all samples into the positive prognosis group or the negative prognosis group, the survival rate between the positive prognosis group and the negative prognosis group was compared by statistical analysis.

在进行留一交叉验证法期间通过梯度套索算法筛选出26种预后基因并且表7中列出了筛选的基因。此外,在图5至图15中显示了代表根据26种筛选的预后基因的表达水平的存活率的Kaplan-Meier曲线。根据图5至图15,确定了根据表7中列出的26种基因中每一种的表达水平将患者组划分成积极预后组或消极预后组,并且与消极预后组的存活率相比,积极预后组的存活率显得更高。这些结果临床上代表,可以通过测量本发明中胃癌预后基因的表达水平来精确地预测胃癌患者的预后。Twenty-six prognostic genes were screened by the gradient lasso algorithm during leave-one-out cross-validation and the screened genes are listed in Table 7. In addition, Kaplan-Meier curves representing the survival rate according to the expression levels of the 26 screened prognostic genes are shown in FIGS. 5 to 15 . According to Figures 5 to 15, it was determined that the patient group was divided into a positive prognosis group or a negative prognosis group according to the expression levels of each of the 26 genes listed in Table 7, and compared with the survival rate of the negative prognosis group, Survival rates appeared to be higher in the positive prognosis group. These results clinically represent that the prognosis of gastric cancer patients can be accurately predicted by measuring the expression levels of the gastric cancer prognostic genes in the present invention.

表7Table 7

Figure BDA00003539228900431
Figure BDA00003539228900431

随后,使用26种选择的基因(梯度套索和留一交叉验证法)、根据这种预后预测模型,将患者组划分成积极预后组或消极预后组。另外,根据病理学分期,将已经划分成积极预后组或消极预后组的患者组再划分,从而可能根据病理学分期预测预后。Subsequently, the patient groups were divided into positive or negative prognosis groups according to this prognostic prediction model using 26 selected genes (gradient lasso and leave-one-out cross-validation). In addition, according to the pathological stage, the patient group that has been classified into the positive prognosis group or the negative prognosis group is subdivided, so that it is possible to predict the prognosis according to the pathological stage.

8-2:评价使用梯度套索方法的预后预测模型8-2: Evaluation of Prognostic Prediction Models Using the Gradient Lasso Method

为了确定是否使用26种预后基因预测的预后是否与实际临床结果重合,在Kaplan-Meier曲线中显示划分成积极预后组和消极预后组的组的无疾病存活率(图18)。作为结果,与消极预后组(高风险)的5年无疾病存活率相比,积极预后组(低风险)的5年无疾病存活率显著更高(71.7%对47.7%),并且该结果似乎对应于复发率2.12的风险比(95%CI,1.57,2.88,P=0.04,图18)。因此,确定使用26种预后基因进行分类的胃癌患者的预后与实际临床结果重合。To determine whether the prognosis predicted using the 26 prognostic genes coincided with the actual clinical outcome, the disease-free survival rates for the groups divided into positive and negative prognosis groups were shown in Kaplan-Meier curves (Figure 18). As a result, the 5-year disease-free survival rate was significantly higher in the positive prognosis group (low risk) compared to the 5-year disease-free survival rate in the negative prognosis group (high risk) (71.7% vs. Hazard ratio corresponding to a recurrence rate of 2.12 (95% CI, 1.57, 2.88, P=0.04, Figure 18). Therefore, it was determined that the prognosis of gastric cancer patients classified using 26 prognostic genes coincided with actual clinical outcomes.

为了确定通过以下方式预测的预后结果是否与实际临床结果重合,所述方式为将已经根据病理学分期划分成积极预后组和消极预后组的患者再划分以便可以根据病理学分期预测预后,在图19中显示了Kaplan-Meier曲线,所述曲线代表根据预后划分的处于每种病理学分期的患者组的无疾病存活率。作为结果,由总计432位患者组成的队列划分成145位患者处于低风险Ib/II期(low-risk,stage Ib/II)(5年无疾病存活率为84.8%);90位患者处于高风险Ib/II期(high-risk,stage Ib/II)(5年无疾病存活率为61.1%);83位患者处于低风险III/IV期(low-risk,stage III/IV)(5年无疾病存活率为48.9%),和114位患者处于高风险III/IV期(high-risk,stage III/IV)(5年无疾病存活率36.9%)。具体而言,确定在Ib/II期中,与消极预后组(高风险Ib/II)的存活率相比,积极预后组(低风险Ib/II)的存活率显著地更高,并且甚至在III/IV期,与消极预后组(高风险III/IV)的存活率相比,积极预后组(低风险III/IV)的存活率显著地更高(图19)。To determine whether the prognostic results predicted by subdividing patients who had been divided into positive and negative prognostic groups according to pathological stage so that the prognosis could be predicted according to pathological stage coincided with actual clinical results, in Fig. 19 shows Kaplan-Meier curves representing disease-free survival by prognosis for groups of patients at each pathological stage. As a result, a cohort consisting of a total of 432 patients was divided into 145 patients in low-risk, stage Ib/II (5-year disease-free survival rate 84.8%); 90 patients in high Risk stage Ib/II (high-risk, stage Ib/II) (5-year disease-free survival rate was 61.1%); 83 patients were in low-risk stage III/IV (low-risk, stage III/IV) (5-year Disease-free survival rate was 48.9%), and 114 patients were in high-risk stage III/IV (high-risk, stage III/IV) (5-year disease-free survival rate was 36.9%). Specifically, it was determined that in stage Ib/II, the survival rate of the positive prognosis group (low risk Ib/II) was significantly higher compared to the survival rate of the negative prognosis group (high risk Ib/II), and even in stage III /Stage IV, the survival rate of the positive prognosis group (low risk III/IV) was significantly higher compared to the survival rate of the negative prognosis group (high risk III/IV) (Fig. 19).

结果表明,可以通过采用统计分析算法处理预后基因的表达水平、根据所述预后精确地将处于病理学分期的患者分类,并且可以根据预测的预后,通过选择适宜的治疗改善胃癌患者的存活率。例如,从诊断为Ib/II期的患者测量预后基因的表达水平,通过测量相对于参比基因的相对表达水平自我归一化,并且,随后如果根据梯度套索算法划分入消极预后组Ib/II期,则可以确定患者的预后与III期的预后相似,并且可以通过使用针对III期患者的治疗方法延长患者的存活。The results showed that it is possible to accurately classify patients in pathological stages according to the prognosis by processing the expression levels of prognostic genes using statistical analysis algorithms, and the survival rate of gastric cancer patients can be improved by selecting appropriate treatment according to the predicted prognosis. For example, the expression levels of prognostic genes measured from patients diagnosed as stage Ib/II, self-normalized by measuring the relative expression levels relative to a reference gene, and, subsequently, if classified into the negative prognosis group Ib/II according to the gradient lasso algorithm If it is stage II, it can be determined that the prognosis of the patient is similar to that of stage III, and the survival of the patient can be prolonged by using the treatment for stage III patients.

8-3:采用常规预后系数的对比评价8-3: Comparative evaluation using conventional prognostic coefficients

预测胃癌预后的已知预后因素为确定肿瘤细胞侵入深度(pT期)和由肿瘤细胞转移的淋巴结的数目(P Node)。本发明人使用多变量Cox分析作为标准统计分析来确定基于本发明中预后基因的预后预测是否比常规预后系数提供更有意义的预后信息。具体而言,研究了多变量Cox模型,所述模型显示由梯度套索指数(7表中列出的26种预后基因)和留一交叉验证法评价的无疾病存活率、肿瘤细胞侵入深度(pT期)、由肿瘤细胞转移的淋巴结的数目(P Node)或病理学分期(AJCC第6版)。在这种情况下,pT期被分为pT1/T2和T3,并且通过用0.1替换0求得P Node的对数。Known prognostic factors to predict the prognosis of gastric cancer are the determination of the depth of tumor cell invasion (pT stage) and the number of lymph nodes metastasized by tumor cells (P Node). The inventors used multivariate Cox analysis as a standard statistical analysis to determine whether prognostic predictions based on the prognostic genes of the present invention provide more meaningful prognostic information than conventional prognostic coefficients. Specifically, a multivariate Cox model was investigated showing disease-free survival, tumor cell invasion depth ( pT stage), the number of lymph nodes metastasized by tumor cells (P Node) or pathological stage (AJCC 6th edition). In this case, the pT period was divided into pT1/T2 and T3, and the logarithm of PNode was found by substituting 0.1 for 0.

多变量分析结果确定,与pT期和P Node无关的26种预后基因是接受治疗性胃切除术和辅助化疗的胃癌患者的无疾病存活率的优异预测物(HR=1.859,95%CI,1.367,2.530,P=0.000078,表8)。同样地,如表9中所示,确定可以利用26种预后基因独立地预测处于最末病理学分期的无疾病存活率(HR=1.773,95%CI,1.303,2.413,P<0.00001,表9中的Pstage是pTstage和PNode的组合)。Multivariate analysis identified 26 prognostic genes independent of pT stage and P Node as excellent predictors of disease-free survival in gastric cancer patients undergoing curative gastrectomy and adjuvant chemotherapy (HR = 1.859, 95% CI, 1.367 , 2.530, P=0.000078, Table 8). Likewise, as shown in Table 9, it was determined that 26 prognostic genes could independently predict disease-free survival at the last pathological stage (HR=1.773, 95% CI, 1.303, 2.413, P<0.00001, Table 9 The Pstage in is the combination of pTstage and PNode).

表8Table 8

Figure BDA00003539228900451
Figure BDA00003539228900451

表9Table 9

Figure BDA00003539228900452
Figure BDA00003539228900452

实施例9:开发和评价基于胃癌预后基因的预后预测模型-(3)Example 9: Development and evaluation of a prognostic prediction model based on gastric cancer prognostic genes - (3)

9-1:使用nCounter测定法开发和评价用于II期胃癌患者的胃癌预后评分9-1: Development and Evaluation of a Gastric Cancer Prognostic Score for Stage II Gastric Cancer Patients Using the nCounter Assay

通过将梯度套索算法应用于从WG-DASL测定法内所用的队列中获得的II期胃癌患者(N=186)的肿瘤样品,鉴定到提供稳健(robust)预后信息的8种胃癌预后基因的组合(表10)。利用8种基因的归一化表达水平和Cox回归估计值的线性组合(linearcombination)开发了胃癌预后评分(Gastric Cancer Prognostic Score,GCPS)。使用nCounter分析试剂盒(系统;NanoString Technologies)进行基因表达水平的测量。By applying the gradient lasso algorithm to tumor samples from stage II gastric cancer patients (N=186) obtained from the cohort used within the WG-DASL assay, 8 gastric cancer prognostic genes providing robust prognostic information were identified. combination (Table 10). The Gastric Cancer Prognostic Score (GCPS) was developed using a linear combination of the normalized expression levels of the 8 genes and the Cox regression estimates. Measurement of gene expression levels was performed using the nCounter Assay Kit (system; NanoString Technologies).

表10Table 10

基因符号gene symbol 回归估计值regression estimate C20orf103C20orf103 0.06360.0636 CDC25BCDC25B -0.0175-0.0175 CDK1CDK1 -0.1005-0.1005 CLIP4CLIP4 0.48220.4822 LTB4R2LTB4R2 -03950-03950 MATN3MATN3 0.29820.2982 NOX4NOX4 0.02880.0288 TFDP1TFDP1 -0.2886-0.2886

通过分析临界值(cut-off),确定将25%患者分配入消极预后组的GCPS为最稳健(robust)的(图28)。选择该临界值用于将来的独立验证队列中的验证。作为应用优化的临界值至该队列的结果,如图29中所示,与低风险组84.3%的5年无疾病存活率(顶部图)相比,基于该预测模型,通过基因表达水平确定高风险组的5年无疾病存活(底部图)为42.6%(p<0.0001)。The GCPS assigning 25% of patients to the negative prognosis group was determined to be the most robust by analyzing the cut-off (Figure 28). This cutoff was chosen for validation in a future independent validation cohort. As a result of applying optimized cut-offs to this cohort, as shown in Figure 29, compared to the 5-year disease-free survival rate of 84.3% for the low-risk group (top graph), based on the predictive model, high The 5-year disease-free survival for the risk group (bottom panel) was 42.6% (p<0.0001).

由于过度拟合问题,必需用修订算法和临界值,用未用于鉴定基因的独立患者队列作为对象验证GCPS。为此目的,首先获得用于验证的患者队列。将GPS应用于2期胃癌患者的独立验证队列,所述2期胃癌患者接受与用于鉴定患者胃癌预后基因的患者(n=186,发现队列)相同的化疗-放疗。作为结果,风险评分分布与图30十分相似,所述图30代表这种测定法(assay)的稳健分析性能。Due to the overfitting problem, it was necessary to validate the GCPS with a revised algorithm and cutoffs using an independent patient cohort that was not used to identify genes. For this purpose, a patient cohort for validation is first obtained. GPS was applied to an independent validation cohort of stage 2 gastric cancer patients who received the same chemo-radiotherapy as those used to identify patients with gastric cancer prognostic genes (n=186, discovery cohort). As a result, the risk score distribution is very similar to Figure 30, which represents the robust analytical performance of this assay.

应用从发现队列获得的预定义的GCPS临界值(0.2205)至验证队列并且基于等级分布产生Kaplan-Meier曲线的结果确定,这种算法可以精确鉴定接受化放疗的2期胃癌患者中患胃癌风险较高的患者(图31)。如图31中所示,这8种预后基因的GPS成功预测出高风险组(5年DFS,58.7%,底部图)和低风险组(5年DFS,86.3%,顶部图)中216位患有2期胃癌的患者(P=.00004,HR=3.15)。Applying the predefined GCPS cut-off value (0.2205) obtained from the discovery cohort to the validation cohort and generating Kaplan-Meier curves based on rank distributions, this algorithm can accurately identify gastric cancer risk in stage 2 gastric cancer patients receiving chemoradiation. High patients (Figure 31). As shown in Figure 31, GPS of these eight prognostic genes successfully predicted 216 patients in the high-risk group (5-year DFS, 58.7%, bottom graph) and low-risk group (5-year DFS, 86.3%, top graph). Patients with stage 2 gastric cancer (P=.00004, HR=3.15).

9-2:GCPS的优化9-2: Optimization of GCPS

根据该实施例,在验证可以通过胃癌预后基因的表达概况鉴定接受化放疗的2期患者中的高风险患者后,将发现队列和验证队列合并为一个队列以开发第二代GCPS。为了基于无疾病存活率的Cox比例风险模型开发预测模型,使用梯度套索(最小绝对收缩和选择算子)算法。表11代表使用2期数据集(phase2data set,N=402)时所获得的构成预测模型的13种基因(探针),其中所述2期数据集是发现集合和验证集合的组合。According to this example, after verifying that high-risk patients among stage 2 patients receiving chemoradiotherapy could be identified by the expression profile of gastric cancer prognostic genes, the discovery cohort and validation cohort were merged into one cohort to develop the second-generation GCPS. To develop a predictive model based on the Cox proportional hazards model of disease-free survival, the gradient lasso (least absolute shrinkage and selection operator) algorithm was used. Table 11 represents the 13 genes (probes) constituting the prediction model obtained when using a phase 2 data set (phase2 data set, N=402), wherein the phase 2 data set is a combination of a discovery set and a validation set.

表11Table 11

基因符号gene symbol 回归估计值regression estimate ADRA2CADRA2C -0.0156-0.0156 C20orf103C20orf103 0.10820.1082 CLIP4CLIP4 0.38910.3891 CSKCSK -0.6654-0.6654 FZD9FZD9 -0.0829-0.0829 GALR1GALR1 -0.0509-0.0509 GRM6GRM6 -0.0244-0.0244 INSRINSR 0.02510.0251 LPHN1LPHN1 -0.0126-0.0126 LYNLYN -0.0012-0.0012 MATN3MATN3 0.21340.2134 MRGPRX3MRGPRX3 -0.0009-0.0009 NOX4NOX4 0.09510.0951

将患者的GCPS计算为[S=β1x1+...+βnxn]。其中,xn是第n位基因的定量表达值,βn是表10和表11中列出的第n位基因的回归估计值(Regression estimate),并且S代表胃癌预后评分。随后,从2期数据集估计风险评分分布的第一个四分位数和第三个四分位数的临界值(Q1=-0.9842,Q3=-0.4478)。通过应用该临界值至最终验证集合的306位患者中,分别将GCPS低于Q1的患者和GCPS大于Q3的患者分配至低风险组和高风险组中。作为结果,如图24中所显示,Kaplan-Meier曲线确定,与其他组的患者相比,被预测为高风险组的患者的存活率(底部图)显著地较低(图32)。The patient's GCPS was calculated as [S=β 1 x 1 +...+β n x n ]. Wherein, x n is the quantitative expression value of the nth gene, β n is the regression estimate (Regression estimate) of the nth gene listed in Table 10 and Table 11, and S represents the gastric cancer prognosis score. Subsequently, critical values for the first and third quartiles of the risk score distribution (Q1 = -0.9842, Q3 = -0.4478) were estimated from the Phase 2 dataset. By applying this cutoff to the final validation set of 306 patients, patients with GCPS below Q1 and patients with GCPS above Q3 were assigned to low-risk and high-risk groups, respectively. As a result, as shown in FIG. 24 , the Kaplan-Meier curve determined that the survival rate (bottom graph) of patients in the group predicted to be high risk was significantly lower compared to patients in other groups ( FIG. 32 ).

9-3:在仅接受手术的II期胃癌患者中验证第二代GCPS9-3: Validation of second-generation GCPS in surgery-only stage II gastric cancer patients

为了测试GCPS对仅接受手术而未接受化疗或放射疗的患者的性能,检查了306位诊断患有2期胃癌的患者的癌组织,其中所述患者在三星医学中心仅接受根治性胃切除术而不接受辅助化疗(adjuvant chemotherapy)或手术后放射疗法。根据以下标准选择患者。To test the performance of GCPS on patients who underwent only surgery without chemotherapy or radiation, cancer tissue from 306 patients diagnosed with stage 2 gastric cancer who underwent only radical gastrectomy at Samsung Medical Center was examined Without receiving adjuvant chemotherapy (adjuvant chemotherapy) or radiation therapy after surgery. Patients were selected according to the following criteria.

在诊断患有2期病理学分期的476位胃癌患者中(这些患者从1995年4月至2006年9月在三星医学中心仅接受根治性胃切除术(curative gastrectomy)而不接受辅助化疗或手术后放射疗法),根据以下标准选择306位患者。Among 476 gastric cancer patients diagnosed with stage 2 pathological stage who underwent curative gastrectomy alone without adjuvant chemotherapy or surgery at Samsung Medical Center from April 1995 to September 2006 After radiotherapy), 306 patients were selected according to the following criteria.

1)腺瘤组织学诊断,1) Histological diagnosis of adenoma,

2)切除肿瘤,无残余肿瘤,2) tumor resection, no residual tumor,

3)D2淋巴结清扫术,3) D2 lymph node dissection,

4)年满18岁,4) At least 18 years old,

5)根据AJCC(美国癌症联合委员会)第6版,病理学分期II(T1N2、T2aN1、T2bN1和T3N0),5) According to AJCC (American Joint Committee on Cancer) 6th edition, pathological stage II (T1N2, T2aN1, T2bN1 and T3N0),

6)完整保留手术记录和治疗记录。6) Completely keep the operation records and treatment records.

在476位患者的队列中170位患者被从本分析中排除,归因于如下原因:170 patients in a cohort of 476 patients were excluded from this analysis due to the following reasons:

1)无完整医疗记录的患者(N=66),1) Patients without complete medical records (N=66),

2)无疾病死亡或无法解释的死亡(N=43),2) Disease-free death or unexplained death (N=43),

3)纠正的病理学分期(N=45)3) Corrected pathological staging (N=45)

4)石蜡块不可获得(N=15),4) Paraffin blocks are not available (N=15),

5)双重原发性癌症(N=1)。5) Double primary cancer (N=1).

如图33中所示,作为应用第二代GCPS至仅接受手术的2期胃癌患者队列的结果,虽然使用接受化放疗的患者队列开发了GCPS,但是与低风险组相比,根据GCPS划入高风险组的患者(底部图)经鉴定具有不良预后(p=0.00287)。这个结果表明,由GCPS定义的高风险患者基本上具有未被抗癌药物和放射疗法改善的不良预后,并且需要为这些患者开发新疗法。As shown in Figure 33, as a result of application of second-generation GCPS to a cohort of patients with stage 2 gastric cancer who underwent surgery only, although GCPS was developed using a cohort of patients who Patients in the high-risk group (bottom panel) were identified as having poor prognosis (p=0.00287). This result suggests that high-risk patients defined by GCPS essentially have a poor prognosis that is not improved by anticancer drugs and radiotherapy, and that new therapies need to be developed for these patients.

Claims (24)

1.一种用于预测胃癌预后的标记,其包含选自以下基因的一种或多种:C20orf103(染色体20可读框103)、COL10A1(X型胶原蛋白α1)、MATN3(母系蛋白3)、FMO2(含黄素的单加氧酶2)、FOXS1(叉头框蛋白S1)、COL8A1(VIII型胶原蛋白α1)、THBS4(血小板应答蛋白4)、CDC25B(细胞分裂蛋白25同源物B)、CDK1(细胞周期蛋白依赖性激酶1)、CLIP4(含有CAP-GLY结构域的接头蛋白家族成员4)、LTB4R2(白三烯B4受体2)、NOX4(NADPH氧化酶4)、TFDP1(转录因子Dp-1)、ADRA2C(α-2C-肾上腺素能受体)、CSK(c-src酪氨酸激酶)、FZD9(卷曲家族受体9)、GALR1(甘丙肽受体1)、GRM6(谷氨酸受体促代谢型6)、INSR(胰岛素受体)、LPHN1(蛛毒素受体1)、LYN(v-yes-1 Yamaguchi肉瘤病毒相关癌基因同源物)、MRGPRX3(MAS相关性GPR成员X3)、ALAS1(δ-氨基乙酰丙酸合酶1)、CASP8(胱天蛋白酶8,凋亡相关性半胱氨酸肽酶)、CLYBL(类柠檬酸裂合酶β)、CST2(半胱氨酸蛋白酶抑制物SA)、HSPC159(半乳糖苷结合样凝集素)、MADCAM1(粘膜血管地址素细胞黏附分子1)、MAF(v-maf肌腱膜纤维肉瘤癌基因同源物(禽))、REG3A(再生性胰岛起源蛋白3α)、RNF152(环指蛋白152)、UCHL1(遍在蛋白羧基端酯酶L1(遍在蛋白硫酯酶))、ZBED5(含有BED型的锌指蛋白5)、GPNMB(糖蛋白(跨膜)nmb)、HIST1H2AJ(组蛋白簇1,H2aj)、RPL9(核糖体蛋白L9)、DPP6(二肽基肽酶6)、ARL10(ADP-核糖基化因子样10)、ISLR2(富含亮氨酸重复的免疫球蛋白超家族2)、GPBAR1(G蛋白偶联胆酸受体1)、CPS1(氨甲酰基-磷酸合酶1)、BCL11B(B-细胞CLL/淋巴瘤11B(锌指蛋白))和PCDHGA8(原钙粘蛋白γ亚家族A8)基因。1. A marker for predicting the prognosis of gastric cancer, comprising one or more genes selected from the following genes: C20orf103 (chromosome 20 open reading frame 103), COL10A1 (type X collagen α1), MATN3 (maternal protein 3) , FMO2 (flavin-containing monooxygenase 2), FOXS1 (forkhead box protein S1), COL8A1 (type VIII collagen α1), THBS4 (platelet response protein 4), CDC25B (cytokinesin 25 homologue B ), CDK1 (cyclin-dependent kinase 1), CLIP4 (adapter protein family member 4 containing CAP-GLY domain), LTB4R2 (leukotriene B4 receptor 2), NOX4 (NADPH oxidase 4), TFDP1 ( Transcription factor Dp-1), ADRA2C (α-2C-adrenergic receptor), CSK (c-src tyrosine kinase), FZD9 (Frizzled family receptor 9), GALR1 (galanin receptor 1), GRM6 (Glutamate receptor metabotropic type 6), INSR (Insulin receptor), LPHN1 (Spider toxin receptor 1), LYN (v-yes-1 Yamaguchi sarcoma virus-related oncogene homolog), MRGPRX3 (MAS Related GPR member X3), ALAS1 (delta-aminolevulinic acid synthase 1), CASP8 (caspase 8, apoptosis-associated cysteine peptidase), CLYBL (citrate lyase-like beta), CST2 (cysteine protease inhibitor SA), HSPC159 (galectin-binding lectin), MADCAM1 (mucosal angioaddressin cell adhesion molecule 1), MAF (v-maf aponeurotic fibrosarcoma oncogene homolog ( avian), REG3A (regenerating islet-derived protein 3α), RNF152 (ring finger protein 152), UCHL1 (ubiquitin carboxy-terminal esterase L1 (ubiquitin thioesterase)), ZBED5 (zinc finger containing BED-type protein 5), GPNMB (glycoprotein (transmembrane) nmb), HIST1H2AJ (histone cluster 1, H2aj), RPL9 (ribosomal protein L9), DPP6 (dipeptidyl peptidase 6), ARL10 (ADP-ribosylated Factor-like 10), ISLR2 (leucine-rich repeat immunoglobulin superfamily 2), GPBAR1 (G protein-coupled bile acid receptor 1), CPS1 (carbamoyl-phosphate synthase 1), BCL11B (B -CLL/Lymphoma 11B (zinc finger protein)) and PCDHGA8 (protocadherin gamma subfamily A8) genes. 2.根据权利要求1所述的标记,其中所述标记是C20orf103、COL10A1、MATN3、FMO2、FOXS1、COL8A1和THBS4基因。2. The marker according to claim 1, wherein said marker is the C20orf103, COL10A1, MATN3, FMO2, FOXS1, COL8A1 and THBS4 genes. 3.根据权利要求1所述的标记,其中所述标记是ALAS1、C20orf103、CASP8、CLYBL、COL10A1、CST2、FMO2、FOXS1、HSPC159、MADCAM1、MAF、REG3A、RNF152、THBS4、UCHL1、ZBED5、GPNMB、HIST1H2AJ、RPL9、DPP6、ARL10、ISLR2、GPBAR1、CPS1、BCL11B和PCDHGA8基因。3. The marker according to claim 1, wherein the marker is ALAS1, C20orf103, CASP8, CLYBL, COL10A1, CST2, FMO2, FOXS1, HSPC159, MADCAM1, MAF, REG3A, RNF152, THBS4, UCHL1, ZBED5, GPNMB, HIST1H2AJ, RPL9, DPP6, ARL10, ISLR2, GPBAR1, CPS1, BCL11B, and PCDHGA8 genes. 4.根据权利要求1所述的标记,其中所述标记是C20orf103、CDC25B、CDK1、CLIP4、LTB4R2、MATN3、NOX4和TFDP1基因。4. The marker of claim 1, wherein the marker is the C20orf103, CDC25B, CDK1, CLIP4, LTB4R2, MATN3, NOX4, and TFDP1 genes. 5.根据权利要求1所述的标记、其中所述标记是ADRA2C、C20orf103、CLIP4、CSK、FZD9、GALR1、GRM6、INSR、LPHN1、LYN、MATN3、MRGPRX3和NOX4基因。5. The marker of claim 1, wherein the marker is ADRA2C, C20orf103, CLIP4, CSK, FZD9, GALR1, GRM6, INSR, LPHN1, LYN, MATN3, MRGPRX3 and NOX4 genes. 6.根据权利要求1所述的标记,其中所述胃癌是Ib或II期胃癌。6. The marker of claim 1, wherein the gastric cancer is stage Ib or II gastric cancer. 7.一种用于预测胃癌预后的组合物,其包含用于测量根据权利要求1至6任一项所述的用于预测胃癌预后的标记的mRNA或蛋白质的表达水平的试剂。7. A composition for predicting the prognosis of gastric cancer, comprising a reagent for measuring the expression level of mRNA or protein of the marker for predicting the prognosis of gastric cancer according to any one of claims 1 to 6. 8.根据权利要求7所述的组合物,其中用于测量所述基因的mRNA表达水平的试剂是与所述基因特异性结合的引物对或探针。8. The composition according to claim 7, wherein the reagent for measuring the mRNA expression level of the gene is a primer pair or a probe specifically binding to the gene. 9.根据权利要求7所述的组合物,其中用于测量所述蛋白质表达水平的试剂是对所述基因编码的蛋白质特异的抗体。9. The composition of claim 7, wherein the reagent for measuring the expression level of the protein is an antibody specific for the protein encoded by the gene. 10.一种用于预测胃癌预后的试剂盒,其包含用于测量根据权利要求1至6任一项所述的用于预测胃癌预后的标记的mRNA或蛋白质的表达水平的试剂。10. A kit for predicting the prognosis of gastric cancer, comprising a reagent for measuring the expression level of the mRNA or protein of the marker for predicting the prognosis of gastric cancer according to any one of claims 1 to 6. 11.一种用于预测胃癌预后的方法,其包括a)获得从胃癌患者采集的样品中根据权利要求1至6任一项所述的用于预测胃癌预后的标记的mRNA或蛋白质的表达水平或表达模式;和b)比较步骤a)中获得的表达水平或表达模式与预后已知的胃癌患者中相应基因的mRNA或蛋白质的表达水平或表达模式。11. A method for predicting the prognosis of gastric cancer, comprising a) obtaining the expression level of the mRNA or protein of the marker for predicting the prognosis of gastric cancer according to any one of claims 1 to 6 in a sample collected from a gastric cancer patient or expression pattern; and b) comparing the expression level or expression pattern obtained in step a) with the expression level or expression pattern of mRNA or protein of the corresponding gene in gastric cancer patients whose prognosis is known. 12.根据权利要求11所述的方法,其中所述样品是胃肿瘤组织。12. The method of claim 11, wherein the sample is gastric tumor tissue. 13.根据权利要求11所述的方法,其中通过使用与所述基因特异性结合的引物对或探针测量所述基因的mRNA的表达水平并且通过使用对相应蛋白质特异的抗体测量所述蛋白质的表达水平。13. The method according to claim 11, wherein the expression level of the mRNA of the gene is measured by using a primer pair or a probe specifically combined with the gene and the expression level of the protein is measured by using an antibody specific to the corresponding protein. The expression level. 14.根据权利要求11所述的方法,其中通过与选自表4中列出的参比基因的一个或多个参比基因的mRNA表达水平或由所述参比基因编码的蛋白质的表达水平比较,将所述基因的mRNA或由所述基因编码的蛋白质的表达水平归一化。14. The method according to claim 11 , wherein the mRNA expression level of one or more reference genes selected from the reference genes listed in Table 4 or the expression level of the protein encoded by the reference gene For comparison, the expression levels of the mRNA of the gene or the protein encoded by the gene are normalized. 15.根据权利要求11所述的方法,其中在步骤a)和b)中的胃癌患者是接受相同治疗的患者,并所述治疗选自放射性疗法、化疗、化放疗、辅助化疗、胃切除术、胃切除术后的化疗或化放疗,和辅助化疗或手术后无放射性疗法情况下的胃切除术。15. The method according to claim 11, wherein the gastric cancer patient in steps a) and b) is a patient receiving the same treatment, and said treatment is selected from radiotherapy, chemotherapy, chemoradiotherapy, adjuvant chemotherapy, gastrectomy , chemotherapy or chemoradiation after gastrectomy, and gastrectomy without radiation therapy after adjuvant chemotherapy or surgery. 16.一种用于预测胃癌预后的方法,包括a)测量从胃癌患者采集的样品中根据权利要求1至6任一项所述的用于预测胃癌预后的标记的mRNA或蛋白质的表达水平或表达模式,以获得定量的表达值;b)将步骤a)中获得的表达值应用于预后预测模型以获得胃癌预后评分;和c)将步骤b)中获得的胃癌预后评分与参比值比较以确定所述患者的预后。16. A method for predicting the prognosis of gastric cancer, comprising a) measuring the mRNA or protein expression level of the marker for predicting the prognosis of gastric cancer according to any one of claims 1 to 6 in a sample collected from a gastric cancer patient or b) apply the expression value obtained in step a) to the prognosis prediction model to obtain the gastric cancer prognosis score; and c) compare the gastric cancer prognosis score obtained in step b) with the reference value to obtain The prognosis of the patient is determined. 17.根据权利要求16所述的方法,其中在步骤a)中测量C20orf103、CDC25B、CDK1、CLIP4、LTB4R2、MATN3、NOX4和TFDP1基因;或ADRA2C、C20orf103、CLIP4、CSK、FZD9、GALR1、GRM6、INSR、LPHN1、LYN、MATN3、MRGPRX3和NOX4基因的mRNA或蛋白质的表达水平。17. The method according to claim 16, wherein in step a) C20orf103, CDC25B, CDK1, CLIP4, LTB4R2, MATN3, NOX4 and TFDP1 genes; or ADRA2C, C20orf103, CLIP4, CSK, FZD9, GALR1, GRM6, Expression levels of mRNA or protein of INSR, LPHN1, LYN, MATN3, MRGPRX3 and NOX4 genes. 18.根据权利要求16所述的方法,其中步骤b)中的预后预测模型表述为:18. The method according to claim 16, wherein the prognosis prediction model in step b) is expressed as: [S=β1x1+...+βnxn][S=β 1 x 1 +...+β n x n ] 其中,xn是第n位基因的定量表达值,Among them, x n is the quantitative expression value of the nth gene, βn是第n位基因的Cox回归估计值,并且 βn is the Cox regression estimate for the nth gene, and S代表胃癌预后评分。S stands for gastric cancer prognosis score. 19.根据权利要求16所述的方法,其中将步骤c)中的参比值定义为在胃癌预后评分分布中第三个四分位数临界值至第四个四分位数临界值范围内的值,所述胃癌预后评分根据下式从多位胃癌患者获得:19. The method according to claim 16, wherein the reference value in step c) is defined as the third quartile critical value to the fourth quartile critical value in the distribution of gastric cancer prognosis score Value, the gastric cancer prognosis score is obtained from multiple gastric cancer patients according to the following formula: [S=β1x1+...+βnxn][S=β 1 x 1 +...+β n x n ] 其中,xn是第n位基因的定量表达值,Among them, x n is the quantitative expression value of the nth gene, βn是第n位基因的Cox回归估计值,并且 βn is the Cox regression estimate for the nth gene, and S代表胃癌预后评分。S stands for gastric cancer prognosis score. 20.根据权利要求16所述的方法,其中将步骤c)中的参比值定义为在胃癌预后评分分布中第二个四分位数临界值至第三个四分位数临界值范围内的值,所述胃癌预后评分根据下式从多位胃癌患者获得:20. The method according to claim 16, wherein the reference value in step c) is defined as the value within the range of the second quartile critical value to the third quartile critical value in the gastric cancer prognostic score distribution Value, the gastric cancer prognosis score is obtained from multiple gastric cancer patients according to the following formula: [S=β1x1+...+βnxn][S=β 1 x 1 +...+β n x n ] 其中,xn是第n位基因的定量表达值,Among them, x n is the quantitative expression value of the nth gene, βn是第n位基因的Cox回归估计值,并且 βn is the Cox regression estimate for the nth gene, and S代表胃癌预后评分。S stands for gastric cancer prognosis score. 21.根据权利要求16所述的方法,其中确定具有步骤b)中获得的与所述参比值相同或较之更大的胃癌预后评分的病例具有消极预后。21. The method according to claim 16, wherein it is determined that a case having a gastric cancer prognostic score obtained in step b) which is equal to or greater than the reference value has a negative prognosis. 22.根据权利要求19所述的方法,其中第三个四分位数的临界值是0.2205或-0.4478,并且确定具有步骤b)中获得的与所述临界值相同或较之更大的胃癌预后评分的病例具有消极预后。22. The method according to claim 19, wherein the cut-off value of the third quartile is 0.2205 or -0.4478, and it is determined to have a gastric cancer equal to or greater than the cut-off value obtained in step b) Cases with a prognostic score had a negative prognosis. 23.根据权利要求22所述的方法,其中在步骤a)中测量C20orf103、CDC25B、CDK1、CLIP4,LTB4R2、MATN3、NOX4和TFDP1基因的表达水平的情况下,所述临界值是0.2205。23. The method according to claim 22, wherein in the case of measuring the expression levels of C20orf103, CDC25B, CDK1, CLIP4, LTB4R2, MATN3, NOX4 and TFDP1 genes in step a), the cutoff value is 0.2205. 24.根据权利要求22所述的方法,其中在步骤a)中测量ADRA2C、C20orf103、CLIP4、CSK、FZD9、GALR1、GRM6、INSR、LPHN1、LYN、MATN3、MRGPRX3和NOX4基因的表达水平的情况下,所述临界值是-0.4478。24. The method according to claim 22, wherein in the case of measuring the expression levels of ADRA2C, C20orf103, CLIP4, CSK, FZD9, GALR1, GRM6, INSR, LPHN1, LYN, MATN3, MRGPRX3 and NOX4 genes in step a) , the critical value is -0.4478.
CN201180065578.XA 2010-12-13 2011-12-13 Marker for predicting prognosis of gastric cancer and method for predicting prognosis of gastric cancer using the marker Expired - Fee Related CN103459597B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2010-0127197 2010-12-13
KR20100127197 2010-12-13
US201161432542P 2011-01-13 2011-01-13
US61/432,542 2011-01-13
PCT/KR2011/009603 WO2012081898A2 (en) 2010-12-13 2011-12-13 Marker for predicting stomach cancer prognosis and method for predicting stomach cancer prognosis

Publications (2)

Publication Number Publication Date
CN103459597A true CN103459597A (en) 2013-12-18
CN103459597B CN103459597B (en) 2016-03-30

Family

ID=46245217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180065578.XA Expired - Fee Related CN103459597B (en) 2010-12-13 2011-12-13 Marker for predicting prognosis of gastric cancer and method for predicting prognosis of gastric cancer using the marker

Country Status (7)

Country Link
US (1) US9315869B2 (en)
EP (1) EP2653546B1 (en)
KR (1) KR101437718B1 (en)
CN (1) CN103459597B (en)
ES (1) ES2689958T3 (en)
PL (1) PL2653546T3 (en)
WO (1) WO2012081898A2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483226A (en) * 2015-12-21 2016-04-13 中国人民解放军第三军医大学第三附属医院 Method and kit for detecting STRAP gene transcription level
CN106399534A (en) * 2016-10-20 2017-02-15 上海厚承医学科技有限公司 Tumor blood platelet RNA quantitative detection model and method for tumor early screening
CN106834462A (en) * 2016-06-15 2017-06-13 南京卡迪睿伯生物技术有限公司 One group of application of stomach oncogene
CN107385100A (en) * 2017-09-13 2017-11-24 北京泱深生物信息技术有限公司 Purposes of the MCM8 as sdenocarcinoma of stomach Metastatic Marker
CN107641653A (en) * 2017-10-20 2018-01-30 南方医科大学南方医院 MACC1 AS1 probes are preparing the application in being used to predict the diagnostic reagent of stomach cancer clinical prognosis
CN108272829A (en) * 2018-02-14 2018-07-13 南方医科大学南方医院 Applications of the PITPNC1 in the drug for preparing treatment gastric cancer
CN109576373A (en) * 2019-01-02 2019-04-05 首都医科大学附属北京朝阳医院 Application of the circ-VAPA as gastric cancer and diagnosis of colorectal carcinoma biomarker and therapy target
WO2019129144A1 (en) * 2017-12-27 2019-07-04 立森印迹诊断技术有限公司 Grading model for detecting degree of malignancy of esophageal neoplasm and/or gastric neoplasm and use thereof
CN110168106A (en) * 2017-03-14 2019-08-23 洛博生物科技有限公司 System for predicting postoperative prognosis or anticancer drug suitability in patients with advanced gastric cancer
CN110656178A (en) * 2019-10-28 2020-01-07 上海交通大学 Application of gastric cancer prognostic diagnosis marker TREM1 and detection kit
CN111323604A (en) * 2020-04-14 2020-06-23 郑州大学第一附属医院 Cardiac adenocarcinoma prognosis prediction marker and application thereof
CN111739641A (en) * 2020-06-23 2020-10-02 杭州和壹医学检验所有限公司 A kind of gastric cancer risk prediction method, system, computer equipment and readable storage medium
CN111735946A (en) * 2020-05-22 2020-10-02 首都医科大学附属北京友谊医院 Serum ALDH1B1 autoantibody quantitative detection kit and its application
CN112133369A (en) * 2020-08-26 2020-12-25 吴安华 A system for evaluating the prognosis of tumor patients based on reactive oxygen species and a method for evaluating and improving drug sensitivity
CN112280857A (en) * 2020-10-19 2021-01-29 郑州大学 A biomarker for the diagnosis of hepatocellular carcinoma and its application
CN113604576A (en) * 2021-10-09 2021-11-05 上海晟燃生物科技有限公司 Lung adenocarcinoma detection kit, storage medium and electronic equipment
CN113774142A (en) * 2021-10-11 2021-12-10 北京化工大学 Application of TGR5 in the preparation of drugs and diagnostic kits for the treatment of colorectal cancer
CN114107509A (en) * 2021-12-09 2022-03-01 江苏省肿瘤医院 Liver cancer prognosis marker and application thereof
CN114934116A (en) * 2022-01-28 2022-08-23 中国医学科学院北京协和医院 Early gastric cancer prognosis differential gene and recurrence prediction model
CN115466793A (en) * 2022-09-26 2022-12-13 山东大学 Application of detection reagent of ACOT9 gene in preparation of gastric cancer detection kit and gastric cancer detection kit
CN116064806A (en) * 2022-10-19 2023-05-05 常州国药医学检验实验室有限公司 Composition for evaluating early gastric cancer lymph node metastasis risk and application thereof
CN116106549A (en) * 2023-02-20 2023-05-12 山东大学齐鲁医院 Application of biomarkers in the preparation of products for predicting the prognosis of cholangiocarcinoma
WO2023207072A1 (en) * 2022-04-26 2023-11-02 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) Biomarker for diagnosis, treatment and prognosis of liver cancer bone metastases and use thereof
CN117757947A (en) * 2024-02-21 2024-03-26 上海金翌生物科技有限公司 Primer group, probe group, kit and method for detecting methylation level of bladder cancer biomarker
CN118584103A (en) * 2024-07-05 2024-09-03 中国医科大学附属第一医院 CSF diagnostic markers and their application in central nervous system psychiatric lupus
CN119799884A (en) * 2025-01-24 2025-04-11 中国农业大学 New applications of BCAS2 gene

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013155633A1 (en) * 2012-04-19 2013-10-24 Leong Hon Sing Method for detecting or monitoring prostate cancer
KR101501826B1 (en) * 2013-04-05 2015-03-13 연세대학교 산학협력단 Method for preparing prognosis prediction model of gastric cancer
KR101504818B1 (en) * 2013-04-05 2015-03-24 연세대학교 산학협력단 Novel system for predicting prognosis of gastric cancer
KR101504817B1 (en) * 2013-04-05 2015-03-24 연세대학교 산학협력단 Novel system for predicting prognosis of locally advanced gastric cancer
CN105624279A (en) * 2015-01-22 2016-06-01 香港中文大学深圳研究院 Stomach cancer marker as well as expression and methylation detection method, kit and application thereof
WO2016160932A1 (en) * 2015-03-30 2016-10-06 The Trustees Of The University Of Pennsylvania System and method for virtual radiation therapy quality assurance
KR101906657B1 (en) 2015-12-31 2018-10-10 아주대학교산학협력단 Biomarker composition for predicting prognosis of gastric cancer
WO2017210662A1 (en) * 2016-06-03 2017-12-07 Castle Biosciences, Inc. Methods for predicting risk of recurrence and/or metastasis in soft tissue sarcoma
KR101941054B1 (en) * 2016-07-20 2019-01-23 연세대학교 산학협력단 Composition for predicting prognosis of cancer and kit comprising the same
KR101940657B1 (en) * 2017-04-24 2019-01-21 (주) 노보믹스 System for predicting prognosis and group classification based on gastric cancer reveal subtype-associated biological implication
KR102129066B1 (en) * 2018-04-11 2020-07-15 한국과학기술연구원 Blood markers for the selection of adjuvant chemotherapy and the method using thereof
CN109112214A (en) * 2018-07-27 2019-01-01 复旦大学附属中山医院 Application of the pattern recognition receptors TREM2 in prognosis in hcc and treatment
CN109706243A (en) * 2018-12-18 2019-05-03 南通大学附属医院 Application of DPP9 gene in the preparation of gastric cancer drug and its diagnostic kit
JP7232922B2 (en) * 2019-01-17 2023-03-03 ジーニナス インコーポレイテッド Biomarkers for predicting anticancer drug responsiveness and their uses
CN109902421A (en) * 2019-03-08 2019-06-18 山东大学齐鲁医院 A cervical cancer prognosis evaluation method, system, storage medium and computer equipment
KR102168304B1 (en) * 2019-08-07 2020-10-21 한림대학교 산학협력단 Prediction method for Successful liberation or 28-Day Mortality by Measuring NOX4 Concentration in Artificial Respiratory Intubation Patients
WO2022193097A1 (en) * 2021-03-15 2022-09-22 杭州诺辉健康科技有限公司 Nucleic acid and protein detection target combination for early screening of liver cancer, and joint detection method therefor
CN113270188B (en) * 2021-05-10 2024-07-02 北京市肿瘤防治研究所 Method and device for constructing prognosis prediction model of patient after radical esophageal squamous carcinoma treatment
CN113462773A (en) * 2021-05-19 2021-10-01 山东大学 Marker for predicting survival risk, immunotherapy response and applicability of cell apoptosis inducer of gastric cancer patient and application thereof
CN113555121B (en) * 2021-08-25 2024-05-28 南方医科大学南方医院 A method for screening and classifying gastric cancer prognostic markers, gastric cancer prognostic markers, and reagents for detecting gastric cancer prognosis and their applications
CN114814023B (en) * 2022-04-24 2024-07-30 江苏省中医院 Application of lipid molecules as predictive markers of gastric cancer chemotherapeutic drug resistance
KR102560831B1 (en) * 2022-05-31 2023-08-02 서울대학교병원 Biomarker for predicting probability for onset of gastric cancer and Use thereof
CN116500268B (en) * 2023-04-23 2024-04-09 武汉大学人民医院(湖北省人民医院) Use of HOX gene related to osteosarcoma
CN116870138A (en) * 2023-07-31 2023-10-13 复旦大学附属中山医院 Application of RNF152 protein in the preparation of anti-gallbladder cancer chemotherapeutic drug resistance sensitizers
CN117169504B (en) * 2023-08-29 2024-06-07 杭州广科安德生物科技有限公司 Biomarker for gastric cancer related parameter detection and related prediction system and application
CN118782159B (en) * 2024-09-10 2024-12-03 中国科学院杭州医学研究所 Gastric adenocarcinoma prognosis related molecular marker combination and gastric adenocarcinoma prognosis evaluation model

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070092529A1 (en) * 2003-05-20 2007-04-26 Wyeth Compositions and methods for diagnosing and treating cancers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060134671A1 (en) 2004-11-22 2006-06-22 Wyeth Methods and systems for prognosis and treatment of solid tumors
TWI359198B (en) * 2005-08-30 2012-03-01 Univ Nat Taiwan Gene expression profile predicts patient survival
RU2008123406A (en) 2005-11-14 2009-12-27 Байер Хелскеа эЛэЛСи (US) METHOD FOR MONITORING EFFECT FROM TREATMENT IN A PATIENT WITH A CANCER PATIENT (OPTIONS) AND METHOD FOR EVALUATING THE CONDITION OF A CANCER PATIENT WITH A CANCER PATIENT
KR101416475B1 (en) 2006-02-27 2014-07-16 사회복지법인 삼성생명공익재단 Marker protein for diagnosis of a cancer, diagnosing method and kit for cancer using the same
US9765334B2 (en) * 2008-06-01 2017-09-19 Rosetta Genomics, Ltd. Compositions and methods for prognosis of gastric cancer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070092529A1 (en) * 2003-05-20 2007-04-26 Wyeth Compositions and methods for diagnosing and treating cancers

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ATSUSHI TAKENO ET AL.: "Gene Expression Profile Prospectively Predicts Peritoneal Relapse After Curative Surgery of Gastric Cancer", 《ANN SURG ONCOL》 *
DAKE CHU ET AL.: "Matrix metalloproteinase-9 is associated with desease-free survival and overall survival in patients with gastric cancer", 《INT.J.CANCER》 *
YOUNG-EUN CHO MSC ET AL.: "Expression and prognostic significance of human growth and transformation-dependent protein in gastric carcinoma and gastric adenoma", 《HUMAN PATHOLOGY》 *
ZHEN-YU XU ET AL.: "Gene expression profile towards the prediction of patient survival of gastric cancer", 《BIOMEDICINE AND PHARMACOTHERAPY》 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483226A (en) * 2015-12-21 2016-04-13 中国人民解放军第三军医大学第三附属医院 Method and kit for detecting STRAP gene transcription level
CN105483226B (en) * 2015-12-21 2018-06-19 中国人民解放军第三军医大学第三附属医院 A kind of method and kit for detecting STRAP gene transcription levels
CN106834462A (en) * 2016-06-15 2017-06-13 南京卡迪睿伯生物技术有限公司 One group of application of stomach oncogene
CN106834462B (en) * 2016-06-15 2020-11-06 南京卡迪睿伯生物技术有限公司 Application of gastric cancer genes
WO2017215230A1 (en) * 2016-06-15 2017-12-21 南京卡迪睿伯生物技术有限公司 Use of a group of gastric cancer genes
CN106399534A (en) * 2016-10-20 2017-02-15 上海厚承医学科技有限公司 Tumor blood platelet RNA quantitative detection model and method for tumor early screening
CN110168106A (en) * 2017-03-14 2019-08-23 洛博生物科技有限公司 System for predicting postoperative prognosis or anticancer drug suitability in patients with advanced gastric cancer
CN110168106B (en) * 2017-03-14 2024-02-20 洛博生物科技有限公司 System for predicting postoperative prognosis or suitability of anticancer drugs for patients with advanced gastric cancer
CN107385100B (en) * 2017-09-13 2020-03-17 成都望路医药技术有限公司 Application of MCM8 as gastric adenocarcinoma metastasis marker
CN107385100A (en) * 2017-09-13 2017-11-24 北京泱深生物信息技术有限公司 Purposes of the MCM8 as sdenocarcinoma of stomach Metastatic Marker
CN107641653B (en) * 2017-10-20 2021-02-19 南方医科大学南方医院 Application of MACC1-AS1 probe in preparation of diagnostic reagent for predicting clinical prognosis of gastric cancer
CN107641653A (en) * 2017-10-20 2018-01-30 南方医科大学南方医院 MACC1 AS1 probes are preparing the application in being used to predict the diagnostic reagent of stomach cancer clinical prognosis
WO2019129144A1 (en) * 2017-12-27 2019-07-04 立森印迹诊断技术有限公司 Grading model for detecting degree of malignancy of esophageal neoplasm and/or gastric neoplasm and use thereof
CN108272829A (en) * 2018-02-14 2018-07-13 南方医科大学南方医院 Applications of the PITPNC1 in the drug for preparing treatment gastric cancer
CN109576373A (en) * 2019-01-02 2019-04-05 首都医科大学附属北京朝阳医院 Application of the circ-VAPA as gastric cancer and diagnosis of colorectal carcinoma biomarker and therapy target
CN110656178A (en) * 2019-10-28 2020-01-07 上海交通大学 Application of gastric cancer prognostic diagnosis marker TREM1 and detection kit
CN111323604A (en) * 2020-04-14 2020-06-23 郑州大学第一附属医院 Cardiac adenocarcinoma prognosis prediction marker and application thereof
CN111323604B (en) * 2020-04-14 2023-04-07 郑州大学第一附属医院 Cardiac adenocarcinoma prognosis prediction marker and application thereof
CN111735946B (en) * 2020-05-22 2023-07-07 首都医科大学附属北京友谊医院 Serum ALDH1B1 autoantibody quantitative detection kit and application thereof
CN111735946A (en) * 2020-05-22 2020-10-02 首都医科大学附属北京友谊医院 Serum ALDH1B1 autoantibody quantitative detection kit and its application
CN111739641A (en) * 2020-06-23 2020-10-02 杭州和壹医学检验所有限公司 A kind of gastric cancer risk prediction method, system, computer equipment and readable storage medium
CN112133369A (en) * 2020-08-26 2020-12-25 吴安华 A system for evaluating the prognosis of tumor patients based on reactive oxygen species and a method for evaluating and improving drug sensitivity
CN112133369B (en) * 2020-08-26 2023-09-22 吴安华 A system for evaluating the prognosis of tumor patients based on reactive oxygen species and a method for evaluating and improving drug sensitivity
CN112280857B (en) * 2020-10-19 2022-07-08 郑州大学 A biomarker for the diagnosis of hepatocellular carcinoma and its application
CN112280857A (en) * 2020-10-19 2021-01-29 郑州大学 A biomarker for the diagnosis of hepatocellular carcinoma and its application
CN113604576A (en) * 2021-10-09 2021-11-05 上海晟燃生物科技有限公司 Lung adenocarcinoma detection kit, storage medium and electronic equipment
CN113604576B (en) * 2021-10-09 2022-01-07 上海晟燃生物科技有限公司 Lung adenocarcinoma detection kit, storage medium and electronic device
CN113774142A (en) * 2021-10-11 2021-12-10 北京化工大学 Application of TGR5 in the preparation of drugs and diagnostic kits for the treatment of colorectal cancer
CN114107509A (en) * 2021-12-09 2022-03-01 江苏省肿瘤医院 Liver cancer prognosis marker and application thereof
CN114934116A (en) * 2022-01-28 2022-08-23 中国医学科学院北京协和医院 Early gastric cancer prognosis differential gene and recurrence prediction model
WO2023207072A1 (en) * 2022-04-26 2023-11-02 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) Biomarker for diagnosis, treatment and prognosis of liver cancer bone metastases and use thereof
CN115466793B (en) * 2022-09-26 2023-09-01 山东大学 Application of ACOT9 gene detection reagent in preparation of gastric cancer detection kit and gastric cancer detection kit
CN115466793A (en) * 2022-09-26 2022-12-13 山东大学 Application of detection reagent of ACOT9 gene in preparation of gastric cancer detection kit and gastric cancer detection kit
CN116064806B (en) * 2022-10-19 2023-09-22 常州国药医学检验实验室有限公司 Composition for evaluating early gastric cancer lymph node metastasis risk and application thereof
CN116064806A (en) * 2022-10-19 2023-05-05 常州国药医学检验实验室有限公司 Composition for evaluating early gastric cancer lymph node metastasis risk and application thereof
CN116106549A (en) * 2023-02-20 2023-05-12 山东大学齐鲁医院 Application of biomarkers in the preparation of products for predicting the prognosis of cholangiocarcinoma
CN117757947A (en) * 2024-02-21 2024-03-26 上海金翌生物科技有限公司 Primer group, probe group, kit and method for detecting methylation level of bladder cancer biomarker
WO2025175953A1 (en) * 2024-02-21 2025-08-28 上海锐翌生物科技有限公司 Primer set, probe set, kit, and method for detecting methylation level of bladder cancer biomarker
CN118584103A (en) * 2024-07-05 2024-09-03 中国医科大学附属第一医院 CSF diagnostic markers and their application in central nervous system psychiatric lupus
CN118584103B (en) * 2024-07-05 2025-06-17 中国医科大学附属第一医院 CSF diagnostic markers and their application in central nervous system psychiatric lupus
CN119799884A (en) * 2025-01-24 2025-04-11 中国农业大学 New applications of BCAS2 gene

Also Published As

Publication number Publication date
KR101437718B1 (en) 2014-09-11
KR20120065959A (en) 2012-06-21
CN103459597B (en) 2016-03-30
WO2012081898A2 (en) 2012-06-21
EP2653546B1 (en) 2018-08-08
EP2653546A2 (en) 2013-10-23
US20130337449A1 (en) 2013-12-19
WO2012081898A3 (en) 2012-10-11
ES2689958T3 (en) 2018-11-16
EP2653546A4 (en) 2016-11-09
PL2653546T3 (en) 2019-06-28
US9315869B2 (en) 2016-04-19

Similar Documents

Publication Publication Date Title
CN103459597B (en) Marker for predicting prognosis of gastric cancer and method for predicting prognosis of gastric cancer using the marker
US20230349000A1 (en) Classification and prognosis of cancer
US8877445B2 (en) Methods for identification of tumor phenotype and treatment
ES2537403T3 (en) Method to use gene expression to determine the prognosis of prostate cancer
US20110217297A1 (en) Methods for classifying and treating breast cancers
JP2017158573A (en) Diagnostic methods for determining prognosis of non small cell lung cancer
US20060183141A1 (en) Gene expression signature for prediction of human cancer progression
JP2019004907A (en) Prognosis prediction of melanoma cancer
JP2011500071A (en) Gene-based algorithmic cancer prognosis and patient clinical outcome
JP7043404B2 (en) Gene signature of residual risk after endocrine treatment in early-stage breast cancer
US20180230545A1 (en) Method for the prediction of progression of bladder cancer
WO2022053065A1 (en) Biomarker used for predicting or evaluating lung cancer patients, detection method, and application
EP2958999A1 (en) Gene signatures for lung cancer prognosis and therapy selection
AU2018244758B2 (en) Method and kit for diagnosing early stage pancreatic cancer
US20250051848A1 (en) High-accuracy prediction of colorectal cancer chemotherapy efficacy using machine learning applied to gene expression data
US20250273346A1 (en) Identification and methods of treatment of breast cancer
WO2023089146A1 (en) Prognostic and treatment response predictive method
EP3551761B1 (en) Her2 as a predictor of response to dual her2 blockade in the absence of cytotoxic therapy
US10066270B2 (en) Methods and kits used in classifying adrenocortical carcinoma
US20230348990A1 (en) Prognostic and treatment response predictive method
Yao et al. A Framework to Predict the Applicability of Gene Signatures for Improving Prognostic Prediction
WO2024177934A2 (en) Renal cancer gene expression signature
NZ612471A (en) Colon cancer gene expression signatures and methods of use

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160330