[go: up one dir, main page]

CN103117975B - System of compensating MU-MAS communications and dynamically adapting communication characteristics of MU-MAS communication system - Google Patents

System of compensating MU-MAS communications and dynamically adapting communication characteristics of MU-MAS communication system Download PDF

Info

Publication number
CN103117975B
CN103117975B CN201210466082.XA CN201210466082A CN103117975B CN 103117975 B CN103117975 B CN 103117975B CN 201210466082 A CN201210466082 A CN 201210466082A CN 103117975 B CN103117975 B CN 103117975B
Authority
CN
China
Prior art keywords
dido
mas
channel
frequency
ofdm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210466082.XA
Other languages
Chinese (zh)
Other versions
CN103117975A (en
Inventor
A·福伦扎
R·W·J·希思
S·G·帕尔曼
R·范德拉恩
J·斯佩克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rearden LLC
Original Assignee
Rearden LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/894,362 external-priority patent/US7633994B2/en
Priority claimed from US11/894,540 external-priority patent/US7636381B2/en
Priority claimed from US11/894,394 external-priority patent/US7599420B2/en
Application filed by Rearden LLC filed Critical Rearden LLC
Publication of CN103117975A publication Critical patent/CN103117975A/en
Application granted granted Critical
Publication of CN103117975B publication Critical patent/CN103117975B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0684Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different training sequences per antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/003Interference mitigation or co-ordination of multi-user interference at the transmitter
    • H04J11/0033Interference mitigation or co-ordination of multi-user interference at the transmitter by pre-cancellation of known interference, e.g. using a matched filter, dirty paper coder or Thomlinson-Harashima precoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

描述了补偿MU‑MAS通信及动态适应MU‑MAS通信系统的通信特性的系统。该用于补偿MU‑MAS通信的系统包括:一个或多个编码调制单元,用于对针对多个无线客户装置中的每个无线客户装置的信息比特进行编码和调制以生成编码和调制后的信息比特;一个或多个映射单元,用于将所述编码和调制后的信息比特映射为复数符号;以及MU‑MAS频率/相位偏移感知预编码单元,用于采用通过反馈从所述无线客户装置获得的信道状况信息来计算MU‑MAS频率/相位偏移感知预编码权重,所述MU‑MAS频率/相位偏移感知预编码单元使用所述权重对从所述映射单元获得的复数符号进行预编码以预消除频率/相位偏移和/或用户间干扰。

A system for compensating for MU-MAS communication and dynamically adapting to communication characteristics of the MU-MAS communication system is described. The system for compensating MU-MAS communications includes one or more code modulation units for coding and modulating information bits for each of a plurality of wireless client devices to generate coded and modulated information bits; one or more mapping units for mapping the encoded and modulated information bits into complex symbols; and a MU‑MAS frequency/phase offset-aware precoding unit for adopting feedback from the wireless The channel condition information obtained by the client device is used to calculate MU-MAS frequency/phase offset-aware precoding weights, and the MU-MAS frequency/phase offset-aware precoding unit uses the weights to the complex symbols obtained from the mapping unit Precoding is performed to pre-cancel frequency/phase offset and/or inter-user interference.

Description

补偿MU-MAS通信及动态适应MU-MAS通信系统的通信特性的 系统Compensating MU-MAS communication and dynamically adapting to the communication characteristics of MU-MAS communication system system

本申请是申请日为2008年08月20日、申请号为200880102933.4、名称为“分布式输入分布式输出无线通信的系统和方法”的发明专利申请的分案申请。This application is a divisional application of an invention patent application with the filing date of August 20, 2008, the application number of 200880102933.4, and the title of "System and Method for Distributed Input and Distributed Output Wireless Communication".

优先权要求priority claim

本申请为2004年7月30提交的申请NO.10/902,978的继续申请。This application is a continuation of Application No. 10/902,978 filed on July 30, 2004.

技术领域technical field

本发明通常涉及通信系统领域。特别地,本发明涉及用于使用时空编码技术的分布式输入分布式输出的无线通信的系统和方法。The present invention generally relates to the field of communication systems. In particular, the present invention relates to systems and methods for distributed-input and distributed-output wireless communications using space-time coding techniques.

背景技术Background technique

通信信号的时空编码Space-time encoding of communication signals

空间多工和时空编码是无线技术中已知的较新的发展。由于有几个天线用在每个终端,所以一种特殊类型的时空编码被称为“多重输入多重输出”(MIMO)。通过使用多个天线来发送和接收,多个独立的无线电波可以在相同的频率范围内同时传送。下面的文章提供了MIMO的概述。Space multiplexing and space-time coding are relatively recent developments known in wireless technology. Since several antennas are used at each terminal, a special type of space-time coding is called "multiple-input multiple-output" (MIMO). By using multiple antennas for transmission and reception, multiple independent radio waves can be transmitted simultaneously in the same frequency range. The following article provides an overview of MIMO.

IEEE成员David Gesbert、IEEE会员Mansoor Shafi、IEEE成员Da-shanShiu,、IEEE成员Peter J.Smith和IEEE高级会员Ayman Naguib的IEEEJOURNAL ON SELECTED AREAS INCOMMUNICATIONS,VOL.21,NO.3,APRIL 2003:“From theory to Practice:An Overview ofMIMO Space-TimeCoded Wireless Systems”。IEEE JOURNAL ON SELECTED AREAS INCOMMUNICATIONS, VOL.21, NO.3, APRIL 2003 by IEEE Member David Gesbert, IEEE Member Mansoor Shafi, IEEE Member Da-shanShiu, IEEE Member Peter J. Smith and IEEE Senior Member Ayman Naguib to Practice: An Overview of MIMO Space-Time Coded Wireless Systems".

IEEE成员David Gesbert、IEEE成员Helmut Bolcskei、Dhananijay A.Gore和IEEE会员Arogyaswami J.Paulraj的IEEE TRANSCTIONS ONCOMMUNICATIONS,VOL.50,NO.12,DECEMBER 2000:”Outdoor MIMOWireless Channels:Models and PerformancePrediction”。IEEE Member David Gesbert, IEEE Member Helmut Bolcskei, Dhananijay A. Gore, and IEEE Member Arogyaswami J. Paulraj IEEE TRANSCTIONS ONCOMMUNICATIONS, VOL.50, NO.12, DECEMBER 2000: "Outdoor MIMO Wireless Channels: Models and Performance Prediction".

基本上,MIMO技术是基于用于在公共频带内产生并列空间数据流的空间分布式天线的应用。无线电波以这样的方式传播,从而可以在接收器分离和解调单个信号,即使它们在相同的频带内传输,这能造成多个统计学意义上独立(也就是有效地分离)的通信信道。因此,和努力抑制多径信号的标准无线通信系统相比(即,同一频率的多个时延信号,且振幅和相位存在修改),MIMO可以依赖于非相关或弱相关的多径信号,在给定的频带内实现较高的吞吐率和改善的信噪比。实例表明,在功率与信噪比(SNR)相当的条件下,MIMO技术实现了更高的吞吐量(throughput),而传统的非MIMO系统仅能够实现较低的吞吐量。高通公司(高通是最大的无线技术供应商)网站http://www.cdmatech.com/products/what mimo delivers.jsp:上标题为“What MIMO Delivers”的页面上描述了这一功能:“MIMO is theonlymultiple antenna technique that increases spectral capacity by deliveringtwo ormore times the peak data rate of a system per channel or per MHz ofspectrum.To be more specific,for wireless LAN or applicationsQUALCOMM'sfourth generation MIMO technology delivers speeds of 315Mbps in36MHz ofspectrum or 8.8Mbps/MHz.Compare this to the peak capacity of 802.11a/g(even with beam-forming or diversity techniques)which delivers only 54Mbpsin17MHz of spectrum or 3.18Mbps/MHz”。Basically, MIMO technology is based on the application of spatially distributed antennas for generating parallel spatial data streams within a common frequency band. Radio waves propagate in such a way that individual signals can be separated and demodulated at a receiver even though they are transmitted in the same frequency band, which can result in multiple statistically independent (that is, effectively separated) communication channels. Thus, in contrast to standard wireless communication systems that strive to suppress multipath signals (i.e., multiple time-delayed signals at the same frequency with modifications in amplitude and phase), MIMO can rely on uncorrelated or weakly correlated multipath signals, at Higher throughput and improved signal-to-noise ratio are achieved within a given frequency band. Examples show that under the condition of equivalent power and signal-to-noise ratio (SNR), MIMO technology achieves higher throughput (throughput), while traditional non-MIMO systems can only achieve lower throughput. The feature is described on a page titled "What MIMO Delivers" on the Qualcomm (QCOM is the largest supplier of wireless technology) website http://www.cdmatech.com/products/what mimo delivers.jsp: "MIMO is the only multiple antenna technique that increases spectral capacity by delivering two or more times the peak data rate of a system per channel or per MHz of spectrum. To be more specific, for wireless LAN or applicationsQUALCOMM's fourth generation MIMO technology delivers speeds of 315Mbps in36MHz ofspectrum or 8.8Mbps/MHz.Compare this to the peak capacity of 802.11a/g(even with beam-forming or diversity techniques)which delivers only 1Mbps ofspectrum/MHz.17 ".

通常上,由于几个原因,MIMO系统面对着每个装置少于10个天线的实际性限制(因此网络中的改善少于10×吞吐率):In general, MIMO systems face a practical limit of less than 10 antennas per device (and thus less than 10× throughput improvement in the network) for several reasons:

1.物理限制:给定装置上的MIMO天线之间必须具有足够的间隔,从而每个都接收统计独立的信号。尽管即使在波长分数的天线间隔时仍然可以看到MIMO吞吐量的改善,但当天线更加接近时效率迅速恶化,这导致了较低的MIMO吞吐量倍增器。1. Physical constraints: There must be sufficient separation between MIMO antennas on a given device so that each receives a statistically independent signal. Although improvements in MIMO throughput can still be seen even at antenna spacing of wavelength fractions, the efficiency deteriorates rapidly when the antennas are closer together, which results in a lower MIMO throughput multiplier.

参见例如以下参考文献:See for example the following references:

[1]D.-S.Shiu,G.J.Foschini,M.J.Gans,and J.M.Kahn,“Fadingcorrelationand its effect on the capacity of multielement antenna systems,”IEEE Trans,Comm.,vol.48,no.3,pp.502-513,Mar.2000.[1] D.-S.Shiu, G.J.Foschini, M.J.Gans, and J.M.Kahn, "Fading correlation and its effect on the capacity of multielement antenna systems," IEEE Trans, Comm., vol.48, no.3, pp.502 -513, Mar. 2000.

[2]V.Pohl,V.Jungnickel,T.Haustein,and C.von Helmolt,“Antennaspacingin MIMO indoor channels,”Proc.IEEE Veh.Technol.Conf.,vol.2,pp.749-753,May2002.[2] V.Pohl, V.Jungnickel, T.Haustein, and C.von Helmolt, "Antennaspacing in MIMO indoor channels," Proc.IEEE Veh.Technol.Conf., vol.2, pp.749-753, May2002.

[3]M.Stoytchev,H.Safar,A.L.Moustakas,and S.Simon,“Compactantennaarrays for MIMO applications,”Proc.IEEE Antennas and Prop.Symp.,vol.3,pp.708-711,July 2001.[3] M. Stoytchev, H. Safar, A.L. Moustakas, and S. Simon, "Compactantenna arrays for MIMO applications," Proc.IEEE Antennas and Prop.Symp., vol.3, pp.708-711, July 2001.

[4]A.Forenza and R.W.Heath Jr.,“Impact of antenna geometry onMIMOcommunication in indoor clustered channels,”Proc.IEEE Antennasand Prop.Symp.,vol.2,pp.1700-1703,June 2004.[4] A.Forenza and R.W.Heath Jr., "Impact of antenna geometry on MIMOcommunication in indoor clustered channels," Proc.IEEE Antennas and Prop.Symp., vol.2, pp.1700-1703, June 2004.

此外,对于小的天线间隔,彼此之间的耦合效应可能会降低MIMO系统的性能。In addition, for small antenna spacing, the coupling effect between each other may degrade the performance of the MIMO system.

参见例如以下参考文献:See for example the following references:

[5]M.J.Fakhereddin and K.R.Dandekar,“Combined effect ofpolarizationdiversity and mutual couplingon MIMO capacity,”Proc.IEEEAntennas andProp.Symp.,vol.2,pp.495-498,June 2003.[5] M.J.Fakhereddin and K.R.Dandekar, “Combined effect of polarization diversity and mutual coupling on MIMO capacity,” Proc.IEEE Antennas and Prop.Symp., vol.2, pp.495-498, June 2003.

[7]P.N.Fletcher,M.Dean,and A.R.Nix,“Mutual coupling in multi-elementarray antennas and its influence on MIMO channel capacity,”IEEEElectronicsLetters,vol.39,pp.342-344,Feb.2003.[7] P.N.Fletcher, M.Dean, and A.R.Nix, "Mutual coupling in multi-elementarray antennas and its influence on MIMO channel capacity," IEEE Electronics Letters, vol.39, pp.342-344, Feb.2003.

[8]V.Jungnickel,V.Pohl,and C.Von Hel molt,“Capacity of MIMOsystemswith closely spaced antennas,”IEEE Comm.Lett.,vol.7,pp.361-363,Aug.2003.[8] V. Jungnickel, V. Pohl, and C. Von Hel molt, "Capacity of MIMO systems with closely spaced antennas," IEEE Comm. Lett., vol.7, pp.361-363, Aug.2003.

[10]J.W.Wallace and M.A.Jensen,“Termination-dependentdiversityperformance of coupled antennas:Network theory analysis,”IEEETrans.Antennas Propagat.,vol.52,pp.98-105,Jan.2004.[10] J.W.Wallace and M.A.Jensen, "Termination-dependent diversity performance of coupled antennas: Network theory analysis," IEEE Trans. Antennas Propagat., vol.52, pp.98-105, Jan.2004.

[13]C.Waldsch midt,S.Schulteis,and W.Wiesbeck,“Complete RFsystemmodel for analysis of compact MIMO arrays,”IEEE Trans.on Veh.Technol.,vol.53,pp.579-586,May 2004.[13] C. Waldsch midt, S. Schulteis, and W. Wiesbeck, "Complete RFsystemmodel for analysis of compact MIMO arrays," IEEE Trans. on Veh. Technol., vol.53, pp.579-586, May 2004.

[14]M.L.Morris and M.A.Jensen,“Network model for MIMO systemswithcoupled antennas and noisy amplifiers,”IEEE Trans.AntennasPropagat.,vol.53,pp.545-552,Jan.2005.[14] M.L.Morris and M.A.Jensen, "Network model for MIMO systemswithcoupled antennas and noisy amplifiers," IEEE Trans.AntennasPropagat., vol.53, pp.545-552, Jan.2005.

而且,当天线拥挤到一起的时候,天线通常必须做得更小,这也能够影响天线效率。Also, when antennas are crowded together, the antennas usually have to be made smaller, which can also affect antenna efficiency.

参见例如以下参考文献:See for example the following references:

[15]H.A.Wheeler,“Small antennas,”IEEE Trans.AntennasPropagat.,vol.AP-23,n.4,pp.462-469,July 1975.[15] H.A. Wheeler, "Small antennas," IEEE Trans. Antennas Propagat., vol. AP-23, n.4, pp.462-469, July 1975.

[16]J.S.McLean,“A re-examination of the fundamental limits ontheradiation Q of electrically small antennas,”IEEE Trans.Antennas Propagat.,vol.44,n.5,pp.672-676,May 1996.[16] J.S.McLean, "A re-examination of the fundamental limits ontheradiation Q of electrically small antennas," IEEE Trans. Antennas Propagat., vol.44, n.5, pp.672-676, May 1996.

最后,用较低频率和较长波长的话,MIMO装置的物理尺寸就变得难以处理。一个极端的例子是在HF波段,这里MIMO装置天线必须互相分开10米或更大距离。Finally, with lower frequencies and longer wavelengths, the physical size of MIMO devices becomes intractable. An extreme example is at HF bands, where MIMO device antennas must be separated from each other by 10 meters or more.

2.噪声限制。每个MIMO的接收器/发送器子系统产生一定水平的噪声。当越来越多的这种子系统互相临近放置时,背景噪声就会上升。同时,当需要从多天线MIMO系统中识别出更多不同信号的时候,就要求更低的背景噪声。2. Noise limitation. Every MIMO receiver/transmitter subsystem generates some level of noise. When more and more of these subsystems are placed close to each other, the background noise increases. At the same time, when it is necessary to identify more different signals from a multi-antenna MIMO system, lower background noise is required.

3.成本和功率限制。尽管有些MIMO应用中成本和功耗不是焦点,但在典型的无线产品中,开发一种成功的产品时,成本和功耗都是至关重要的制约因素。对于每个MIMO天线,需要分离的RF子系统,包括分离的模-数(A/D)和数-模(D/A)转换器。不像以摩尔定律来衡量规模的数字系统的很多方面(英特尔的共同创立者戈登摩尔所作出的经验层面的观察结果,微型器件的集成电路上的晶体管数目大约每隔24个月便会翻两倍;来源:http://www.intel.com/technology/mooreslaw/),这样密集的模拟子系统通常具有一定的物理结构尺寸和功率要求,其尺寸与成本和功率线性成比例。因此,和单天线装置相比,多天线MIMO装置将变得极其昂贵并且具有惊人的能耗。3. Cost and power constraints. Although cost and power consumption are not the focus in some MIMO applications, in a typical wireless product, both cost and power consumption are critical constraints when developing a successful product. For each MIMO antenna, a separate RF subsystem is required, including separate analog-to-digital (A/D) and digital-to-analog (D/A) converters. Unlike many aspects of digital systems that are scaled by Moore's Law (an empirical observation made by Intel co-founder Gordon Moore that the number of transistors on an integrated circuit for a tiny device doubles approximately every 24 months twice; source: http://www.intel.com/technology/mooreslaw/), such dense analog subsystems typically have physical size and power requirements that scale linearly with cost and power. Therefore, a multi-antenna MIMO setup would be extremely expensive and consume a staggering amount of power compared to a single-antenna setup.

作为上面的结果,今天预期的大多数MIMO系统是在2至4个天线的等级上,导致吞吐量2至4倍的上升和由于多天线系统的分集益处而引起的一些SNR(信噪比)的上升。已经预期到10个天线的MIMO系统(特别是由于较短的波长和较近的天线间隔的在较高的微波频率上),但是除了对于一些特殊的和对成本不敏感的应用以外,超过10个天线是很不实际的。As a result of the above, most MIMO systems expected today are on the order of 2 to 4 antennas, resulting in a 2 to 4 times increase in throughput and some SNR (Signal to Noise Ratio) due to the diversity benefits of multi-antenna systems rise. MIMO systems with 10 antennas have been anticipated (especially at higher microwave frequencies due to shorter wavelengths and closer antenna spacing), but except for some special and cost-insensitive applications, more than 10 Antenna is very impractical.

虚拟天线阵列virtual antenna array

MIMO类型的技术的一种特殊应用是虚拟天线阵列。欧洲科学技术领域研究协作组织提出的研究文件中建议了这种系统,EURO,Barcelona,Spain,2003年1月15-17日:Centerfor Telecommunication Research,King’s CollegeLondon,UK:”A step towards MIMO:Virtual Antenna Arrays”,Mischa Dohler&Hamid Aghvami。A particular application of MIMO-type techniques is virtual antenna arrays. Such a system is proposed in a research paper presented by the European Research Collaboration in the Field of Science and Technology, EURO, Barcelona, Spain, 15-17 January 2003: Center for Telecommunication Research, King's College London, UK: "A step towards MIMO: Virtual Antenna Arrays”, Mischa Dohler & Hamid Aghvami.

如文件中所述,虚拟天线阵列是协作无线装置系统(例如蜂窝电话),其在分离的通信信道上互相通信(假如当它们相互足够临近),而不是在它们主要的通信信道上与它们的基站通信,使得协作性地工作(例如,如果它们是UHF波段中的GSM蜂窝电话,那么这可以是5GHz的工业科学医学(ISM)无线波段)。通过在相互的中继范围(除了在基站范围内)内的几个装置之间转发信息,就好像他们是在物理上具有多个天线的一个装置工作一样,使得单天线装置潜在地实现象MIMO一样的吞吐量提升。As stated in the document, a virtual antenna array is a system of cooperating wireless devices (such as cellular phones) that communicate with each other on separate communication channels (provided they are in close enough proximity to each other), rather than on their primary communication channel with their The base stations communicate so as to work cooperatively (for example, if they are GSM cellular phones in the UHF band, this could be the Industrial Scientific Medical (ISM) wireless band at 5GHz). By forwarding information between several devices within mutual relay range (except within range of a base station) as if they were physically operating as one device with multiple antennas, single-antenna devices potentially implement MIMO-like Same throughput improvement.

然而,实际上,这样的系统极难实现并且用处有限。首先,必须保持每个装置现在最少有两个不同的通信路径以实现吞吐率提升,其第二中继链路的可用性经常是不确定的。而且,由于它们最少具有第二通信子系统并且有更大的计算需求,因此该装置更昂贵,物理尺寸更大,并且消耗更多的功率。此外,潜在地通过多个通信链路,该系统依赖于非常复杂的所有系统的实时协作。最后,由于同时发生的信道利用增加(例如,使用MIMO技术的同时发生的电话呼叫传输),对于各装置的计算负担也就增加了(通常随信道利用的线性增加而成指数增加),这对具有严格的功率和尺寸限制的便携装置是很不实际的。In practice, however, such a system is extremely difficult to implement and of limited use. First, each device must now have a minimum of two distinct communication paths to achieve increased throughput, and the availability of its second relay link is often uncertain. Also, since they have at least a second communication subsystem and greater computing needs, the devices are more expensive, physically larger, and consume more power. Furthermore, the system relies on a very complex real-time collaboration of all systems, potentially through multiple communication links. Finally, due to increased simultaneous channel utilization (e.g., simultaneous telephone call transmissions using MIMO techniques), the computational burden on each device increases (usually exponentially with linear increase in channel utilization), which has a negative effect on Portable devices with severe power and size constraints are far from practical.

发明内容Contents of the invention

本发明提供了一种用于补偿多用户多天线系统MU-MAS通信的频率和相位偏移的系统,该系统包括:一个或多个编码调制单元,用于对针对多个无线客户装置中的每个无线客户装置的信息比特进行编码和调制以生成编码和调制后的信息比特;一个或多个映射单元,用于将所述编码和调制后的信息比特映射为复数符号;以及MU-MAS频率/相位偏移感知预编码单元,用于采用通过反馈从所述无线客户装置获得的信道状况信息来计算MU-MAS频率/相位偏移感知预编码权重,所述MU-MAS频率/相位偏移感知预编码单元使用所述权重对从所述映射单元获得的复数符号进行预编码以预消除频率/相位偏移和/或用户间干扰。The present invention provides a system for compensating the frequency and phase offset of multi-user multi-antenna system MU-MAS communication, the system includes: one or more coding and modulation units for encoding and modulating the information bits for each wireless client device to generate encoded and modulated information bits; one or more mapping units for mapping the encoded and modulated information bits into complex symbols; and MU-MAS A frequency/phase offset-aware precoding unit, configured to calculate MU-MAS frequency/phase offset-aware precoding weights by using channel condition information obtained from the wireless client device through feedback, the MU-MAS frequency/phase offset The shift-aware precoding unit uses the weights to precode the complex symbols obtained from the mapping unit to pre-eliminate frequency/phase offset and/or inter-user interference.

本发明还提供了一种用于补偿多用户多天线系统MU-MAS通信的同相正交(I/Q)不平衡的系统,该系统包括:一个或多个编码调制单元,用于对针对多个无线客户装置中的每个无线客户装置的信息比特进行编码和调制以生成编码和调制后的信息比特;一个或多个映射单元,用于将所述编码和调制后的信息比特映射为复数符号;以及MU-MAS IQ感知预编码单元,用于采用通过反馈从所述无线客户装置获得的信道状况信息来计算MU-MAS IQ感知预编码权重,所述MU-MAS IQ感知预编码单元使用所述权重对从所述映射单元获得的复数符号进行预编码以预消除由于I/Q增益和相位不平衡带来的干扰和/或用户间干扰。The present invention also provides a system for compensating the in-phase quadrature (I/Q) imbalance of multi-user multi-antenna system MU-MAS communication, the system includes: one or more coding and modulation units for The information bits of each wireless client device in a wireless client device are encoded and modulated to generate encoded and modulated information bits; one or more mapping units are used to map the encoded and modulated information bits into complex numbers symbol; and a MU-MAS IQ perceptual precoding unit configured to calculate MU-MAS IQ perceptual precoding weights using channel condition information obtained from said wireless client device through feedback, said MU-MAS IQ perceptual precoding unit using The weights precode the complex symbols obtained from the mapping unit to pre-cancel interference and/or inter-user interference due to I/Q gain and phase imbalance.

本发明还提供了一种用于动态适应多用户多天线系统MU-MAS通信系统的通信特性的系统,该系统包括:一个或多个编码调制单元,用于对针对多个无线客户装置中的每个无线客户装置的信息比特进行编码和调制以生成编码和调制后的信息比特;一个或多个映射单元,用于将所述编码和调制后的信息比特映射为复数符号;以及MU-MAS配置器单元,用于基于通过反馈从所述无线客户装置获得的信道特征数据来确定用户的子集和MU-MAS发送模式,并响应地控制所述编码调制单元和所述映射单元。The present invention also provides a system for dynamically adapting to the communication characteristics of a multi-user multi-antenna system MU-MAS communication system, the system includes: one or more coding and modulation units for encoding and modulating the information bits for each wireless client device to generate encoded and modulated information bits; one or more mapping units for mapping the encoded and modulated information bits into complex symbols; and MU-MAS A configurator unit for determining a subset of users and a MU-MAS transmission pattern based on channel characteristic data obtained by feedback from the wireless client device, and responsively controlling the code modulation unit and the mapping unit.

描述了一种用于对具有多用户(MU)发送(“MU-MAS”)的多天线系统(MAS)中的频率和相位偏移进行补偿的系统和方法。例如,根据本发明一种实施方式的方法包括:将来自基站每一天线的训练信号发送至多个无线客户装置中的一个或每个无线客户装置,该客户装置中的一个或每个客户装置分析每个训练信号以生成频率偏移补偿数据,并在基站处接收频率偏移补偿数据;基于所述频率偏移补偿数据来计算MU-MAS预编码器权重以预消除发射机处的频率偏移;使用所述MU-MAS预编码器权重对训练信号进行预编码,以生成针对基站每一天线的预编码训练信号;将来自所述基站的每个天线的预编码后的训练信号发送到所述多个无线客户装置中的每一个无线客户装置,每个客户装置分析每个训练信号以生成信道特征数据,并在所述基站接收所述信道特征数据;基于该信道特征数据来计算多个MU-MAS预编码权重,该MU-MAS预编码器权重被计算来用于预消除频率和相位偏移和/或用户之间的干扰;使用MU-MAS预编码器权重来对数据进行预编码,以生成针对基站每一天线的预编码后的数据信号;以及将所述预编码后的预编码数据信号通过基站的每个天线发送至其每个的客户端设备。A system and method for compensating for frequency and phase offsets in a multiple antenna system (MAS) with multi-user (MU) transmission ("MU-MAS") is described. For example, a method according to one embodiment of the present invention includes: sending a training signal from each antenna of a base station to one or each of a plurality of wireless client devices, one or each of the client devices analyzing Each training signal to generate frequency offset compensation data, and receive the frequency offset compensation data at the base station; calculate MU-MAS precoder weights based on the frequency offset compensation data to pre-cancel the frequency offset at the transmitter ; use the MU-MAS precoder weights to precode the training signal to generate a precoded training signal for each antenna of the base station; send the precoded training signal from each antenna of the base station to the Each wireless client device in the plurality of wireless client devices, each client device analyzes each training signal to generate channel characteristic data, and receives the channel characteristic data at the base station; based on the channel characteristic data to calculate a plurality of MU-MAS precoding weights, the MU-MAS precoder weights are calculated to pre-cancel frequency and phase offsets and/or interference between users; use the MU-MAS precoder weights to precode data , to generate a precoded data signal for each antenna of the base station; and send the precoded precoded data signal to each client device through each antenna of the base station.

附图说明Description of drawings

结合附图,下面详尽的描述可以获得对本发明更好的理解,其中:In conjunction with the accompanying drawings, the following detailed description can obtain a better understanding of the present invention, wherein:

图1显示了现有技术的MIMO系统。Figure 1 shows a prior art MIMO system.

图2显示了与多个单天线客户装置进行通信的N天线基站。Figure 2 shows an N-antenna base station in communication with multiple single-antenna client devices.

图3显示了与三个单天线客户装置进行通信的三个天线的基站。Figure 3 shows a three antenna base station communicating with three single antenna client devices.

图4显示了本发明的一个实施例中使用的训练信号技术。Figure 4 shows the training signal technique used in one embodiment of the invention.

图5显示了根据本发明一个实施例的从客户装置传输到基站的信道特征数据。FIG. 5 shows channel characteristic data transmitted from a client device to a base station according to one embodiment of the present invention.

图6显示了根据本发明一个实施例的多重输入分布式输出(“MIDO”)下行传输。Figure 6 illustrates a multiple-input distributed-output ("MIDO") downstream transmission according to one embodiment of the present invention.

图7显示了根据本发明一个实施例的多重输入多重输出(“MIMO”)上行传输。Figure 7 illustrates a multiple-input multiple-output ("MIMO") uplink transmission according to one embodiment of the present invention.

图8显示了根据本发明的一个实施例的通过不同客户群循环以分配吞吐量的基站。Fig. 8 shows a base station cycling through different client groups to distribute throughput according to one embodiment of the present invention.

图9显示了根据本发明的一个实施例的基于临近的客户分组。FIG. 9 shows proximity based customer grouping according to one embodiment of the present invention.

图10显示了在NVIS系统中使用的本发明的实施例。Figure 10 shows an embodiment of the invention used in an NVIS system.

图11显示了具有I/Q补偿功能单元的DIDO发射机的实施方式。Figure 11 shows an embodiment of a DIDO transmitter with an I/Q compensation functional unit.

图12显示了具有I/Q补偿功能单元的DIDO接收机。Figure 12 shows a DIDO receiver with an I/Q compensation functional unit.

图13显示了具有I/Q补偿的DIDO-OFDM系统的一种实施方式。Figure 13 shows an embodiment of a DIDO-OFDM system with I/Q compensation.

图14显示了在具有和不具有I/Q补偿的情况下DIDO 2×2性能(performance)的一种实施方式。Figure 14 shows one embodiment of DIDO 2x2 performance with and without I/Q compensation.

图15显示了在具有和不具有I/Q补偿的情况下DIDO 2×2性能的一种实施方式。Figure 15 shows one embodiment of DIDO 2x2 performance with and without I/Q compensation.

图16显示了在具有和不具有I/Q补偿的情况下针对不同QAM星座图的SER(符号误码率)的一种实施方式。Figure 16 shows one embodiment of SER (Symbol Error Rate) for different QAM constellations with and without I/Q compensation.

图17显示了在不同用户设备位置具有和不具有I/Q补偿的情况下DIDO2×2性能的一种实施方式。Figure 17 shows one embodiment of DIDO2x2 performance with and without I/Q compensation at different UE locations.

图18显示了在理想(i.i.d.(独立且同分布))信道中具有和不具有I/Q补偿的情况下SER的一种实施方式。Fig. 18 shows one implementation of SER in an ideal (i.i.d. (independent and identically distributed)) channel with and without I/Q compensation.

图19显示了自适应DIDO系统的发射机架构的一种实施方式。Figure 19 shows one embodiment of a transmitter architecture for an adaptive DIDO system.

图20显示了自适应DIDO系统的接收机架构的一种实施方式。Figure 20 shows one embodiment of a receiver architecture for an adaptive DIDO system.

图21显示了自适应DIDO-OFDM的方法的一种实施方式。Fig. 21 shows an implementation manner of the adaptive DIDO-OFDM method.

图22显示了用于DIDO测量的天线布局的一种实施方式。Figure 22 shows one embodiment of an antenna layout for DIDO measurements.

图23显示了用于不同级别(order)DIDO系统的阵列配置的实施方式。Figure 23 shows an embodiment of an array configuration for different orders of DIDO systems.

图24显示了不同级别DIDO系统的性能。Figure 24 shows the performance of different levels of DIDO systems.

图25显示了用于DIDO测量的天线阵列的一种实施方式。Figure 25 shows one embodiment of an antenna array for DIDO measurements.

图26显示了4-QAM且1/2FEC率的DIDO 2×2性能与用户设备位置的函数关系的一种实施方式。Figure 26 shows one embodiment of DIDO 2x2 performance with 4-QAM and 1/2 FEC rate as a function of UE location.

图27显示了用于DIDO测量的天线布局的一种实施方式。Figure 27 shows one embodiment of an antenna layout for DIDO measurements.

图28显示了在一种实施方式中DIDO 8×8如何产生比具有低TX功率需求的DIDO 2×2更大的SE。Figure 28 shows how in one embodiment DIDO 8x8 produces a larger SE than DIDO 2x2 with low TX power requirements.

图29显示了在具有天线选择情况下的DIDO 2×2性能的一种实施方式。Figure 29 shows one embodiment of DIDO 2x2 performance with antenna selection.

图30显示了不同DIDO预编码方案在i.i.d.信道中的平均比特误码率(BER)性能。Figure 30 shows the average bit error rate (BER) performance of different DIDO precoding schemes in the i.i.d. channel.

图31显示了ASel的信噪比增益与i.i.d.信道中额外发射天线的数量之间的函数关系。Figure 31 shows the SNR gain of ASel as a function of the number of additional transmit antennas in the i.i.d. channel.

图32显示了在i.i.d.信道中具有1和2个外部天线的情况下SNR阈值与用于块对角化(BD)和ASel的用户数量(M)之间的函数关系。Figure 32 shows the SNR threshold as a function of the number of users (M) for block diagonalization (BD) and ASel with 1 and 2 external antennas in the i.i.d. channel.

图33显示了针对位于相同角度方向且具有不同角度扩展(AS)值的两个用户的BER与每用户平均SNR。Figure 33 shows the BER versus per-user average SNR for two users located in the same angular direction and with different angular spread (AS) values.

图34显示了与图33相类似的结果,但用户之间具有更高的角度间隔。Figure 34 shows similar results to Figure 33, but with a higher angular separation between users.

图35绘制了针对用户的平均到达角度(AOA)的不同值,AS与SNR阈值之间的函数关系。Figure 35 plots AS as a function of the SNR threshold for different values of the average Angle of Arrival (AOA) for users.

图36显示了针对5个用户的示例性情况的SNR阈值。Figure 36 shows the SNR thresholds for an exemplary case of 5 users.

图37针对2个用户的情况,提供了在具有1和2个额外天线的情况下,SNR阈值BD与ASel的比较。Figure 37 provides a comparison of the SNR threshold BD versus ASel with 1 and 2 additional antennas for the 2-user case.

图38显示了与图37相类似的结果,但是针对5个用户的情况。Figure 38 shows similar results to Figure 37, but for 5 users.

图39显示了针对具有不同AS值的BD方案的SNR阈值。Figure 39 shows the SNR thresholds for BD schemes with different AS values.

图40显示了对于具有1和2个额外天线的BD和ASel,在具有AS=0.1°的空间关联信道中的SNR阈值。Figure 40 shows the SNR thresholds in spatially correlated channels with AS = 0.1° for BD and ASel with 1 and 2 extra antennas.

图41显示了针对AS=5°的另外两个信道情形的SNR阈值的计算。Figure 41 shows the calculation of the SNR thresholds for two other channel scenarios with AS=5°.

图42显示了针对AS=10°的另外两个信道情形的SNR阈值的计算。Figure 42 shows the calculation of the SNR thresholds for two other channel scenarios with AS=10°.

图43-图44分别显示了在1和2个额外天线的情况下,SNR阈值与用户数量(M)与BD和ASel方案的角度扩展(AS)之间的函数关系。Figures 43-44 show the SNR threshold as a function of the number of users (M) and the angular spread (AS) of the BD and ASel schemes for the case of 1 and 2 additional antennas, respectively.

图45显示了配备有频率偏移估计器/补偿器的接收机;Figure 45 shows a receiver equipped with a frequency offset estimator/compensator;

图46显示了根据本发明一种实施方式的DIDO 2×2系统模型。Figure 46 shows a DIDO 2x2 system model according to one embodiment of the present invention.

图47显示了根据本发明一种实施方式的方法。Figure 47 shows a method according to one embodiment of the invention.

图48显示了在具有和不具有频率偏移的情况下,DIDO 2×2系统的SER结果。Figure 48 shows the SER results for the DIDO 2×2 system with and without frequency offset.

图49将不同DIDO方案的SNR阈值性能进行了比较。Figure 49 compares the SNR threshold performance of different DIDO schemes.

图50将不同方法实施方式所需的开销量进行了比较。Figure 50 compares the amount of overhead required for different method implementations.

图51显示了在fmax=2Hz的小频率偏移且没有整数偏移校正的情况下的仿真。Fig. 51 shows the simulation with a small frequency offset of fmax = 2 Hz and no integer offset correction.

图52显示了当关闭整数偏移估计器时的结果。Figure 52 shows the results when the integer offset estimator is turned off.

具体实施方式detailed description

在下列描述中,为了解释的目的,为了提供对本发明彻底的理解,阐明了多个特殊细节。然而,很明显的是,对于本领域内的普通技术人员,即使没有一些特殊细节,仍然可以实现本发明。此外,公知的结构和装置显示为框图形式,以避免将本发明根本的原理模糊化。In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one of ordinary skill in the art that the present invention can be practiced without some of the specific details. In addition, well-known structures and devices are shown in block diagram form in order to avoid obscuring the underlying principles of the invention.

图1显示了具有发射天线104和接收天线105的现有技术MIMO系统。这样的系统的吞吐率可以实现通常在可用信道中实现的吞吐率的3倍。有多种不同的方法来实现这种MIMO系统的细节,其在关于该主题的出版文献中有过描述,下面的解释将描述一个这样的方法。FIG. 1 shows a prior art MIMO system with a transmit antenna 104 and a receive antenna 105 . The throughput of such a system can achieve 3 times the throughput that is usually achieved in the available channels. There are a number of different ways to implement the details of such a MIMO system, which are described in published literature on the subject, the following explanation will describe one such way.

数据在图1的MIMO系统中传输之前,信道被“特征化”。这是通过在开始将“训练信号”从每个发射天线104传输到每个接收器105来实现的。训练信号有编码和调制子系统102生成,并被D/A转换器(没有示出)转换成模拟信号,然后由每个发送器103从基带信号转换为RF信号。每个耦合到其RF接收器106的接收天线105接收每个训练信号并将其转换为基带信号。基带信号由D/A转换器(没有示出)转换为数字信号,然后信号处理子系统107特征化该训练信号。每个信号的特征可以包括很多因素,例如,其包括,相对于接收器内部的参考信号的相位和振幅、绝对参考信号、相对参考信号、特征噪声或其他因素。每个信号的特征通常定义为当信号通过信道传送时表现信号几个方面的相位和振幅变化的向量。例如,在正交幅度调制(“QAM”)的调制信号中,所述特征可能是信号的几个多径映像的相位与振幅偏移的向量。另外一个例子是,在正交频分复用(“OFDM”)调制的信号中,它可能是OFDM频谱中几个或所有单个分量信号(sub-signal)的相位与振幅偏移的向量。Before the data is transmitted in the MIMO system of Figure 1, the channel is "characterized". This is achieved by initially transmitting a "training signal" from each transmit antenna 104 to each receiver 105 . The training signal is generated by the encoding and modulation subsystem 102 and converted to an analog signal by a D/A converter (not shown) and then converted from baseband to RF by each transmitter 103 . Each receive antenna 105 coupled to its RF receiver 106 receives and converts each training signal to a baseband signal. The baseband signal is converted to a digital signal by a D/A converter (not shown), and then the signal processing subsystem 107 characterizes the training signal. The characteristics of each signal may include many factors including, for example, phase and amplitude relative to a reference signal internal to the receiver, an absolute reference signal, a relative reference signal, characteristic noise, or other factors. The characteristics of each signal are usually defined as a vector representing the phase and amplitude changes of several aspects of the signal as it travels through the channel. For example, in a quadrature amplitude modulated ("QAM") modulated signal, the feature may be a vector of phase and amplitude offsets of several multipath images of the signal. As another example, in an orthogonal frequency-division multiplexing ("OFDM") modulated signal, it may be a vector of phase and amplitude offsets for several or all of the individual sub-signals in the OFDM spectrum.

信号处理子系统107将由每个接收天线105和相应接收器106接收到的信道特征存储起来。所有的三个发射天线104完成它们的训练信号传输之后,信号处理子系统107将已经存储了三个对于三个接收天线105中每一个的信道特征,这形成了3×3的矩阵108,其表示为信道特征矩阵“H”。每个单独的矩阵元素Hi,j是接收天线105j接收到的传输天线104i的训练信号传输的信道特征。The signal processing subsystem 107 stores the channel characteristics received by each receive antenna 105 and corresponding receiver 106 . After all three transmit antennas 104 have completed their training signal transmissions, the signal processing subsystem 107 will have stored three channel signatures for each of the three receive antennas 105, which form a 3×3 matrix 108, which Denoted as the channel characteristic matrix "H". Each individual matrix element Hi,j is the channel characteristic of the training signal transmission from transmit antenna 104i received by receive antenna 105j.

在这点上,信号处理子系统107将矩阵H108求逆以产生H-1,并且等待从发射天线104来的实际数据的传输。注意,多种在可用文献中描述的现有MIMO技术可用于确保H矩阵108可逆。At this point, the signal processing subsystem 107 inverts the matrix H 108 to produce H −1 , and awaits transmission of the actual data from the transmit antenna 104 . Note that a variety of existing MIMO techniques described in the available literature can be used to ensure that the H-matrix 108 is invertible.

在实施中,要传输的数据的内容(payload)送到数据输入子系统100。然后在送到编码和调制子系统102之前,其被分配器(splitter)101分割为三部分。例如,如果内容是“abcdef”的ASCII比特,它就可以被分配器分割为三个子内容“ad”、“be”和“cf”。然后,每个子内容单独发送给编码和调制子系统102。In an implementation, the content (payload) of the data to be transmitted is sent to the data input subsystem 100 . It is then split into three parts by a splitter 101 before being sent to the encoding and modulation subsystem 102 . For example, if the content is ASCII bits of "abcdef", it can be split into three sub-contents "ad", "be" and "cf" by the allocator. Each sub-content is then sent to the encoding and modulation subsystem 102 individually.

通过使用适合每个信号的统计独立性和纠错能力的编码系统,单独地对每个子内容进行编码。这些包括,而不仅仅限于,Reed-Solomon编码、维特比编码(Viterbi coding)和增强编码(Turbo Codes)。最后,使用对信道合适的调制方法对这三个编码后的子内容中的每一个进行调制。示例性的调制方法是差分相移键控调制(“DPSK”)、64-QAM调制和OFDM。这里应该注意的是,MIMO提供的分集增益允许较高级数的调制星座图,所述调制星座图在使用相同信道的SISO(单输入单输出)系统中也是可行的。然后,每个编码并且调制后的信号通过它自己的天线104传输出去,所述传输跟随在D/A转换单元(没有示出)的D/A转换和每个发送器103的RF生成之后。Each sub-content is encoded individually by using an encoding system suitable for the statistical independence and error correction capabilities of each signal. These include, but are not limited to, Reed-Solomon coding, Viterbi coding, and Turbo Codes. Finally, each of the three encoded sub-contents is modulated using an appropriate modulation method for the channel. Exemplary modulation methods are Differential Phase Shift Keying ("DPSK"), 64-QAM modulation, and OFDM. It should be noted here that the diversity gain provided by MIMO allows higher orders of modulation constellations that are also feasible in SISO (Single Input Single Output) systems using the same channel. Each coded and modulated signal is then transmitted out through its own antenna 104 following D/A conversion by a D/A conversion unit (not shown) and RF generation by each transmitter 103 .

假设有足够的空间分集存在于发送和接收天线之间,每个接收天线105将从天线104接收三个传输信号的不同组合。每个RF接收器106将每个信号接收到并将它们转换为基带信号,然后A/D转换器(没有示出)再对信号进行数字化。如果yn是由第n个接收天线105接收到的信号,xn是由第n个发射天线104发送的信号,N是噪声,那么这就能以下列等式描述。Assuming that sufficient spatial diversity exists between the transmit and receive antennas, each receive antenna 105 will receive a different combination of the three transmitted signals from antenna 104 . Each RF receiver 106 receives each signal and converts them to baseband signals before an A/D converter (not shown) digitizes the signals. If y n is the signal received by the nth receive antenna 105, x n is the signal transmitted by the nth transmit antenna 104, and N is noise, then this can be described by the following equation.

y1=x1H11+x2H12+x3H13+Ny 1 =x 1 H 11 +x 2 H 12 +x 3 H 13 +N

y2=x1H12+x2H22+x3H23+Ny 2 =x 1 H 12 +x 2 H 22 +x 3 H 23 +N

y3=x1H13+x2H32+x3H33+Ny 3 =x 1 H 13 +x 2 H 32 +x 3 H 33 +N

假设这是一个具有三个未知量的三个等式的系统,那么这就是信号处理子系统107推导出x1、x2和x3的线性代数的问题了(假设N在足够低的水平,允许对信号进行解码):Assuming this is a system of three equations with three unknowns, then it is a matter of the signal processing subsystem 107 deriving the linear algebra for x 1 , x 2 and x 3 (assuming N is at a sufficiently low level, to allow decoding of the signal):

x1=y1H-1 11+y2H-1 12+y3H-1 13 x 1 =y 1 H -1 11 +y 2 H -1 12 +y 3 H -1 13

x2=y1H-1 21+y2H-1 22+y3H-1 23 x 2 =y 1 H -1 21 +y 2 H -1 22 +y 3 H -1 23

x3=y1H-1 31+y2H-1 32+y3H-1 33 x 3 =y 1 H -1 31 +y 2 H -1 32 +y 3 H -1 33

一旦推导出三个传送的信号xn,它们就被信号处理子系统107解调、解码和纠错,以恢复出原来由分配器101分开的三个比特流。这些比特流在合并器单元108中合并,并从数据输出109中输出为单数据流。假设系统强健性可以克服噪声损伤,那么数据输出109产生的比特流将和引入到数据输入100中的比特流一样。Once the three transmitted signals x n are derived, they are demodulated, decoded and error corrected by the signal processing subsystem 107 to recover the three bit streams originally separated by the splitter 101 . These bit streams are combined in a combiner unit 108 and output from a data output 109 as a single data stream. Assuming system robustness against noise impairments, the bitstream produced by data output 109 will be the same as the bitstream introduced into data input 100 .

尽管所描述的现有技术系统通常有效直到四个天线,或许直到10个之多的天线,由于在该公开的背景部分中描述的原因,具有大量天线(例如25、100或1000)时其变得很不实际。Although the described prior art systems are generally effective up to four antennas, perhaps up to 10 antennas, for reasons described in the background section of this disclosure, it becomes difficult to Very unrealistic.

通常,这样的现有技术系统是双向的,返回路径以完全相同的方式实现,但是反过来,在通信信道的每一侧都具有发送和接收子系统。Typically, such prior art systems are bi-directional, with the return path implemented in exactly the same way, but reversed, with a transmit and receive subsystem on each side of the communication channel.

图2显示了本发明的一个实施例,在其中,基站(BS)200配置有广域网(WAN)接口(例如通过T1或其它高速连接)201并且提供有一定数量的(N个)天线202。我们暂且使用术语“基站”来指代与固定位置的一组客户进行无线通信的任何无线站点。基站的示例可为无线局域网(WLAN)中的接入点,或WAN天线或天线阵列。有一些客户装置203-207,每个具有单天线,基站200通过无线方式对它们进行服务。尽管对于这个例子的目的,非常容易想到位于办公室环境的基站,在这种环境中,其为装备有无线网络的个人计算机的用户装置203-207提供服务,但这种结构将运用于大量的应用情况,室内和室外,在这里基站服务于无线客户。例如,所述基站可以位于蜂窝电话塔上,或者位于电视广播塔上。在一个实施例中,基站200被安置于地面,用于HF频率的(例如24MHz的频率)上行传送,以将信号从电离层反射回来,如2004年4月20日提出的,序列号为No.10/817,731,题目为SYSTEM AND METHOD FORENHANCING NEAR VERTICALINCIDENTCE SKYWAVE(“NVIS”)COMMUNICATION USINGSPACE-TIME CODING的同时未决的申请描述的一样,其被支配给本申请的代理人,在这里作为参考。Figure 2 shows an embodiment of the invention, in which a Base Station (BS) 200 is configured with a Wide Area Network (WAN) interface (eg via T1 or other high speed connection) 201 and provided with a certain number (N) of antennas 202 . For the time being, we will use the term "base station" to refer to any wireless station that communicates wirelessly with a set of clients at fixed locations. Examples of base stations may be access points in a Wireless Local Area Network (WLAN), or WAN antennas or antenna arrays. There are a number of client devices 203-207, each having a single antenna, which are served wirelessly by the base station 200. Although for the purposes of this example it is quite easy to think of a base station located in an office environment in which it serves user devices 203-207 equipped with wireless networked personal computers, this configuration will find use in a wide variety of applications Situations, indoors and outdoors, where base stations serve wireless clients. For example, the base station may be located on a cellular telephone tower, or on a television broadcast tower. In one embodiment, the base station 200 is placed on the ground for uplink transmission at HF frequencies (such as a frequency of 24 MHz) to reflect signals from the ionosphere, as proposed on April 20, 2004, serial number No. .10/817,731, titled SYSTEM AND METHOD FORENHANCING NEAR VERTICALINCIDENTCE SKYWAVE ("NVIS") COMMUNICATION USINGSPACE-TIME CODING, as described in the co-pending application, assigned to the attorney of the present application, is hereby incorporated by reference.

与基站200相联系的某些细节和所阐明的客户装置仅仅是为了例证的目的,而不是根据本发明的根本原理必需的。例如,该基站可以经由WAN接口201连接于多个不同类型的广域网,其包括专用广域网,例如那些用于数字视频发送的广域网。类似地,客户装置可以是任何种类的无线数据处理和/或通信装置,其包括,而不仅仅局限于,蜂窝电话、个人数字助理(“PDA”)、接收器和无线相机。Certain details associated with base station 200 and client devices illustrated are for illustrative purposes only and are not necessary in accordance with the underlying principles of the invention. For example, the base station may be connected via the WAN interface 201 to a number of different types of wide area networks, including dedicated wide area networks such as those used for digital video distribution. Similarly, a client device may be any kind of wireless data processing and/or communication device including, but not limited to, cellular telephones, personal digital assistants ("PDAs"), receivers, and wireless cameras.

在一个实施例中,基站的n个天线202在空间上是分开的,从而每一个发送和接收非空间相关的信号,就好像所述基站是现有技术MIMO的收发器一样。如在背景技术中所描述的,天线以λ6(即1/6波长)间隔放置的实验已经做出,其成功地实现了从MIMO的吞吐量提升,但一般来说,这些基站天线越进一步分开放置,系统的性能就越好,λ2是令人满意的最小距离。当然,本发明的根本原理不限于天线间任何特定的分离。In one embodiment, the n antennas 202 of the base station are spatially separated so that each transmits and receives non-spatially correlated signals as if the base station were a prior art MIMO transceiver. As described in the background, experiments with antennas placed at λ6 (i.e. 1/6 wavelength) intervals have been done, which successfully achieved a throughput boost from MIMO, but in general, the further apart these base station antennas are Placement, the better the performance of the system, λ2 is the minimum satisfactory distance. Of course, the underlying principles of the invention are not limited to any particular separation between the antennas.

注意,单基站200可以很好地将其天线放置于很远的距离。例如,在HF频谱中,天线可以有10米或更远(例如,在上面提到的NVIS实现中)。如果使用100个这样的天线,该基站的天线阵列就可以占有几个平方公里的面积。Note that a single base station 200 can well place its antennas at great distances. For example, in the HF spectrum, the antennas can be 10 meters or more away (eg, in the NVIS implementation mentioned above). If 100 such antennas are used, the antenna array of the base station can occupy an area of several square kilometers.

除了空间分集技术之外,为了提高系统的有效吞吐量,本发明的一个实施例将信号极化。通过极化来提高信道容量是一种公知的技术,其已经被卫星电视供应商使用了很多年。使用极化技术,可以使多个(例如三个)基站或用户天线互相间非常接近,并且仍然是非空间相关的。尽管传统的RF系统通常仅仅受益于极化的二维(例如x和y)分集,但这里描述的结构可进一步受益于极化的三维(x、y和z)分集。In addition to the space diversity technique, in order to improve the effective throughput of the system, an embodiment of the present invention polarizes the signal. Improving channel capacity through polarization is a well-known technique that has been used by satellite television providers for many years. Using polarization techniques, multiple (eg three) base station or user antennas can be brought very close to each other and still be non-spatially correlated. While conventional RF systems typically only benefit from two-dimensional (eg, x and y) diversity of polarization, the structures described here can further benefit from three-dimensional (x, y, and z) diversity of polarization.

除了空间和极化分集之外,本发明的一种实施方式采用近乎正交的辐射方向图(pattern),以经由方向图分集来改善链路性能。方向图分集可改善MIMO系统的容量和误码率性能,且其相比于其他天线分集技术的优点可参见以下文章:In addition to spatial and polarization diversity, one embodiment of the invention employs near-orthogonal radiation patterns to improve link performance via pattern diversity. Pattern diversity can improve the capacity and bit error rate performance of MIMO systems, and its advantages over other antenna diversity techniques can be found in the following articles:

[17]L.Dong,H.Ling,and R.W.Heath Jr.,“Multiple-input multiple-output[17] L. Dong, H. Ling, and R. W. Heath Jr., "Multiple-input multiple-output

wireless communication systems using antenna pattern diversity,”Proc.IEEE Glob.Telecom.Conf.,vol.1,pp.997-1001,Nov.2002.wireless communication systems using antenna pattern diversity,"Proc.IEEE Glob.Telecom.Conf.,vol.1,pp.997-1001,Nov.2002.

[18]R.Vaughan,“Switched parasitic elements for antenna diversity,”IEEE[18] R. Vaughan, "Switched parasitic elements for antenna diversity," IEEE

Trans.Antennas Propagat.,vol.47,pp.399-405,Feb.1999.Trans.Antennas Propagat., vol.47, pp.399-405, Feb.1999.

[19]P.Mattheijssen,M.H.A.J.Herben,G.Dolmans,and L.Leyten,“Antenna-pattern diversity versus space diversity fof use at handhelds,”IEEETrans.onVeh.Technol.,vol.53,pp.1035-1042,July 2004.[19] P. Mattheijssen, M.H.A.J. Herben, G. Dolmans, and L. Leyten, "Antenna-pattern diversity versus space diversity of of use at handhelds," IEEE Trans. on Veh. Technol., vol.53, pp.1035-1042, July 2004.

[20]C.B.Dietrich Jr,K.Dietze,J.R.Nealy,and W.L.Stutzman,“Spatial,polarization,and pattern diversity for wireless handheld terminals,”Proc.IEEEAntennas and Prop.Symp.,vol.49,pp.1271-1281,Sep.2001.[20] C.B.Dietrich Jr, K.Dietze, J.R.Nealy, and W.L.Stutzman, "Spatial, polarization, and pattern diversity for wireless handheld terminals," Proc.IEEEAntennas and Prop.Symp., vol.49, pp.1271-1281 , Sep.2001.

[21]A.Forenza and R.W.Heath,Jr,″Benefit of Pattern Diversity Via2-element Array of Circular Patch Antennas in Indoor Clustered MIMOChannels″,IEEE Trans.on Communications,vol.54,no.5,pp.943-954,May2006.[21] A.Forenza and R.W.Heath, Jr, "Benefit of Pattern Diversity Via2-element Array of Circular Patch Antennas in Indoor Clustered MIMOChannels", IEEE Trans.on Communications, vol.54, no.5, pp.943-954 , May 2006.

通过使用方向图分集,可使得多个基站或用户天线相互之间非常接近,且尽管如此也不会在空间上相关联。By using pattern diversity, multiple base station or user antennas can be brought into close proximity to each other and nonetheless not be spatially correlated.

图3提供了图2中所示的基站200和客户装置203-207的一个实施例的额外细节。为了简化的目的,该基站300仅仅显示为三个天线305和三个客户装置306-308。然而,需要注意的是,这里描述的本发明的实施例可以用几乎无限数量的天线305(即,仅仅由可用的空间和噪声来限制)和客户装置306-308来实现。Figure 3 provides additional details of one embodiment of the base station 200 and client devices 203-207 shown in Figure 2 . For purposes of simplicity, the base station 300 is shown with only three antennas 305 and three client devices 306-308. It should be noted, however, that embodiments of the invention described herein may be implemented with an almost unlimited number of antennas 305 (ie, limited only by available space and noise) and client devices 306-308.

图3与图1所示的现有技术MIMO结构类似,其中,两者在通信信道的每一端有三个天线。显著的区别是,在现有技术的MIMO系统中,图1右侧的三个天线105互相之间是固定距离(例如,集成在单一装置中),从每个天线105接收到的信号一起在信号处理子系统107中得到处理。相比之下,在图3中,图右侧的三个天线309每一个都耦合到不同的客户装置306-308上,每个所述客户装置都可以分布于基站305的范围内的任何地方。这样,每个客户装置接收到的信号可以在其编码、调制、信号处理子系统311中独立于其它两个接收到的信号而得到处理。因此,与多重输入(即天线105)多重输出(即天线104)的“MIMO”系统相比较,图3显示了多重输入(即天线305)分布式输出(即天线305)系统,以下指“MIDO”系统。Figure 3 is similar to the prior art MIMO structure shown in Figure 1, in that both have three antennas at each end of the communication channel. The notable difference is that in prior art MIMO systems, the three antennas 105 on the right side of FIG. The signal processing subsystem 107 is processed. In contrast, in FIG. 3, the three antennas 309 on the right side of the figure are each coupled to a different client device 306-308, each of which may be distributed anywhere within range of the base station 305 . In this way, each client device's received signal can be processed in its coding, modulation, signal processing subsystem 311 independently of the other two received signals. Thus, Figure 3 shows a multiple-input (ie, antenna 305) distributed output (ie, antenna 305) system, hereinafter referred to as "MIMO "system.

注意,本申请使用与之前的申请不同的术语用法,以更好地符合学术界及行业惯例。在之前所引用的2004年4月20日提交的题为“SYSTEMANDMETHOD FOR ENHANCING NEARVERTICAL INCIDENCE SKYWAVE(“NVIS”)COMMUNICATION USING SPACE-TIME CODING”的共同待审的申请NO.10/817,731以及2004年7月30日提交的申请NO.10/902,978(本申请是该申请的继续申请)中,“输入”和“输出”(在SIMO、MISO、DIMO以及MIDO的环境中)的意思与该术语在本申请中的表意是相反的。在之前的申请中,“输入”指输入至接收天线(例如,图3中的天线309)的无线信号,而“输出”指发射天线(例如,天线305)输出的无线信号。在学术界和无线行业中,通常使用“输入”和“输出”的反义,其中“输入”指输入至信道的无线信号(即,从天线305发送的无线信号),而“输出”指从信道输出的无线信号(即,天线309所接收的无线信号)。本申请采用此术语用法,该用法与本段之前所引用的申请中的用法相反。因此,以下绘示了几个申请之间的术语用法等价形式:Note that this application uses a different terminology usage than previous applications to better align with academic and industry practice. Copending Application No. 10/817,731, entitled "SYSTEMANDMETHOD FOR ENHANCING NEARVERTICAL INCIDENCE SKYWAVE ("NVIS") COMMUNICATION USING SPACE-TIME CODING," filed April 20, 2004, previously cited, and July 2004 In application No. 10/902,978 filed on the 30th (this application is a continuation of that application), "input" and "output" (in the context of SIMO, MISO, DIMO, and MIDO) have the same meaning as that term in this application The meaning in is the opposite. In the previous application, "input" refers to a wireless signal input to a receiving antenna (eg, antenna 309 in FIG. 3 ), and "output" refers to a wireless signal output from a transmitting antenna (eg, antenna 305 ). In academia and the wireless industry, the opposites of "input" and "output" are commonly used, where "input" refers to the wireless signal input to the channel (i.e., the wireless signal sent from antenna 305), and "output" refers to the wireless signal from The wireless signal output by the channel (that is, the wireless signal received by the antenna 309). This application adopts a usage of this term that is contrary to the usage in the applications cited earlier in this paragraph. Accordingly, the following depicts equivalents of term usage between several applications:

10/817,731和10/902,978 本申请10/817,731 and 10/902,978 this application

SIMO = MISOSIMO = MISO

MISO = SIMOMISO = SIMO

DIMO = MIDODIMO = MIDO

MIDO = DIMOMIDO = DIMO

图3所示的MIDO结构对于给定数量的发射天线实现了类似于MIMO在SISO系统上实现的容量提升。然而,MIMO和图3所示的特定MIDO实施例的一个区别是,为实现多个基站天线提供的容量提升,每个MIDO客户装置306-308仅仅要求单个接收天线,而对于MIMO,每个客户装置至少要求与希望实现的容量倍数一样多的接收天线。假设通常有一实行的限制,其限制能够在客户装置放置多少天线(如在背景技术中解释的),典型上这就将MIMO系统限制在4个至10个天线之间(4倍至10倍的容量)。由于基站300通常从固定和装有动力的位置服务于很多客户装置,将其扩展为远超过10个天线,和用适当的距离分离天线以实现空间分集是很实际的。如所述,每个天线装备有收发器304和一部分编码、调制和信号处理部件303的处理能力。值得注意的是,在此实施例中,无论基站300扩展多少,每个客户装置306-308将仅仅要求一个天线309,因此对于单用户客户装置306-308的成本将很低,并且基站300的成本可以在大基数的用户中分担。The MIDO structure shown in Figure 3 achieves a capacity boost similar to that achieved by MIMO on SISO systems for a given number of transmit antennas. However, one difference between MIMO and the particular MIDO embodiment shown in FIG. 3 is that each MIDO client device 306-308 requires only a single receive antenna to realize the capacity boost provided by multiple base station antennas, whereas with MIMO, each client The device requires at least as many receive antennas as the desired capacity multiple. Given that there is usually an enforced limit on how many antennas can be placed at a client device (as explained in the background), this typically limits MIMO systems to between 4 and 10 antennas (4x to 10x capacity). Since the base station 300 typically serves many client devices from fixed and powered locations, it is practical to expand it to well beyond 10 antennas, and to separate the antennas by an appropriate distance to achieve space diversity. As mentioned, each antenna is equipped with a transceiver 304 and a portion of the processing power of the coding, modulation and signal processing section 303 . It is worth noting that in this embodiment, no matter how much the base station 300 is extended, each client device 306-308 will only require one antenna 309, so the cost for single-user client devices 306-308 will be very low, and the base station 300 Costs can be shared among a large base of users.

在图4至图6中,显示了如何完成从基站300到客户装置306-308的MIDO传输的例子。In FIGS. 4-6, examples of how MIDO transmissions from base station 300 to client devices 306-308 are accomplished are shown.

在本发明的一个实施例中,MIDO传输开始之前,信道被特征化。对于MIMO系统,每个天线405对训练信号一个接一个进行传输。图4仅仅显示了第一个训练信号的传输,但对于三个天线405来说,共有三个分开的传输。每个训练信号由编码、调制和信号处理子系统403生成,通过D/A转换器转换成模拟信号,并作为RF信号通过每个RF收发器404发送出去。可用的各种不同的编码、调制和信号处理技术包括,而不局限于那些上面描述的技术(例如,Reed Solomon、维特比编码(Viterbi Coding);QAM、DPSK、QPSK调制等等)。In one embodiment of the invention, the channel is characterized before MIDO transmission begins. For a MIMO system, each antenna 405 transmits training signals one by one. FIG. 4 only shows the transmission of the first training signal, but for three antennas 405 there are three separate transmissions. Each training signal is generated by the coding, modulation and signal processing subsystem 403 , converted into an analog signal through a D/A converter, and sent out through each RF transceiver 404 as an RF signal. A variety of different coding, modulation, and signal processing techniques may be used including, but not limited to, those described above (eg, Reed Solomon, Viterbi Coding; QAM, DPSK, QPSK modulation, etc.).

每个客户装置406-408通过其天线409接收训练信号并通过收发器410将该训练信号转换成基带信号。A/D转换器(没有示出)在该信号被编码、调制和信号处理子系统411处理的地方将其转换成数字信号。然后信号特征逻辑单元320识别所得信号的特征(例如,识别上述的相位和振幅失真)并将该特征存放到存储器中。这个特征处理过程类似于现有技术的MIMO系统的处理过程,一个显著的区别是,每个客户装置仅仅计算其一个天线,而不是n个天线的特征向量。例如,已知模式的所述训练信号将客户装置406的编码、调制和信号处理子系统420初始化(在产生时通过在发送的信息中接收它,或通过其他初始化处理)。当天线405以已知模式发送该训练信号的时候,编码、调制和信号处理子系统420使用相关法来找到最强的训练信号接收模式,其将相位和振幅偏移保存起来,然后其将该模式从接收到的信号中间减掉。接下来,其找到与所述训练信号相关的第二强接收模式,将相位和振幅偏移保存起来,然后其将第二强模式从所述接收到的信号中减掉。该处理一直进行,直到保存了某固定数量的相位和振幅偏移(例如,8个)或可探测的训练信号模式下降到给定的背景噪声之下。该相位/振幅偏移的向量成为向量413的元素H11。与此同时,客户装置407和408的编码、调制和信号处理子系统执行同样的处理,产生它们的向量元素H21和H31Each client device 406-408 receives the training signal through its antenna 409 and through the transceiver 410 converts the training signal into a baseband signal. An A/D converter (not shown) converts the signal to a digital signal where it is processed by encoding, modulation and signal processing subsystem 411 . The signal characteristics logic unit 320 then identifies characteristics of the resulting signal (eg, identifying the phase and amplitude distortions described above) and stores the characteristics in memory. This feature processing process is similar to the processing process of the MIMO system in the prior art, and a significant difference is that each client device only calculates the feature vectors of one antenna instead of n antennas. For example, the training signal of a known pattern initializes the coding, modulation and signal processing subsystem 420 of the client device 406 (either by receiving it in a transmitted message when generated, or by other initialization processes). When the antenna 405 transmits the training signal in a known pattern, the coding, modulation and signal processing subsystem 420 uses correlation to find the strongest training signal reception pattern, which saves the phase and amplitude offsets, which it then The mode is subtracted from the middle of the received signal. Next, it finds the second strongest received pattern associated with the training signal, saves the phase and amplitude offsets, then it subtracts the second strongest pattern from the received signal. This process continues until some fixed number of phase and amplitude shifts (eg, 8) are preserved or the detectable training signal pattern falls below a given background noise. This vector of phase/amplitude shifts becomes element H 11 of vector 413 . At the same time, the encoding, modulation and signal processing subsystems of client devices 407 and 408 perform the same process, producing their vector elements H21 and H31 .

信道特征存放的存储器可以是非易失性存储器,例如闪存,或硬盘,和/或易失性存储器,例如随机存取存储器(例如,SDRAM、RDAM)。此外,不同的用户装置可以同时使用不同类型的存储器来存储特征信息(例如PDA可是使用闪存,而笔记本电脑可是使用硬盘)。在各种客户装置或基站上,本发明根本的原理不限于任何特定类型的存储机构。The memory for storing channel characteristics may be a non-volatile memory, such as a flash memory, or a hard disk, and/or a volatile memory, such as a random access memory (eg, SDRAM, RDAM). In addition, different user devices may simultaneously use different types of memory to store characteristic information (for example, a PDA may use a flash memory, while a notebook computer may use a hard disk). The principles underlying the present invention are not limited to any particular type of storage mechanism at the various client devices or base stations.

如上所述,根据所使用的方案,由于每个客户装置406-408仅有一个天线,每个仅仅存储H矩阵的1×3行413-415。图4显示了第一训练信号传输后的阶段,这里,1×3行413-415的第一列存储了三个基站天线405的第一个天线的信道特征信息。其余两列存储了从其余两个基站天线的接下来的两个训练信号传输的信道特征。注意,为了例证的目的,所述三个训练信号模式在分开的时间传输。如果选择了三个训练信号模式从而互不相关,那么它们可以同时传输,因此减少训练时间。As noted above, since each client device 406-408 has only one antenna, each stores only 1x3 rows 413-415 of the H matrix, depending on the scheme used. FIG. 4 shows the stage after the transmission of the first training signal. Here, the first column of 1×3 rows 413-415 stores the channel characteristic information of the first antenna of the three base station antennas 405. The remaining two columns store the channel characteristics of the next two training signal transmissions from the remaining two base station antennas. Note that the three training signal patterns are transmitted at separate times for illustrative purposes. If the three training signal patterns are chosen so as to be independent of each other, they can be transmitted simultaneously, thus reducing the training time.

如图5所示,所有三个导频传输完成之后,每个客户装置506-508将已经存储起来的矩阵H的1×3行513-515发送回基站500。为了简化的目的,在图5中仅显示有一个客户装置506传送其特征信息。结合适当的纠错编码(例如Reed Solomon、维特比编码(ViterbiCoding)和/或增强编码(TurboCodes)),可以使用合适的调制方法(例如DPSK、64QAM、OFDM)来确保基站500准确地接收行513-515中的数据。As shown in FIG. 5, after all three pilot transmissions are complete, each client device 506-508 sends back to the base station 500 the 1x3 rows 513-515 of matrix H that it has stored. For purposes of simplicity, only one client device 506 is shown in FIG. 5 transmitting its characteristic information. A suitable modulation method (eg DPSK, 64QAM, OFDM) can be used in conjunction with appropriate error correction coding (eg Reed Solomon, Viterbi Coding and/or TurboCodes) to ensure that the base station 500 receives the line 513 accurately Data in -515.

图5中,尽管所有三个天线505显示出接收信号,但是对于接收每1×3行513-515的传输,基站500的单天线和单收发器已经足够了。然而,在一定条件下,使用很多或所有天线505和收发器504来接收每个传输(即,在编码、调制和信号处理子系统503中使用现有技术的单输入多重输出(“SIMO”)处理技术)可以实现比单天线505和收发器504更好的信噪比(SNR)。In Figure 5, although all three antennas 505 are shown receiving signals, the single antenna and single transceiver of the base station 500 is sufficient for receiving transmissions per 1x3 row 513-515. Under certain conditions, however, many or all of antennas 505 and transceivers 504 are used to receive each transmission (i.e., using prior art single-input multiple-output (“SIMO”) in coding, modulation, and signal processing subsystem 503 processing technology) can achieve better signal-to-noise ratio (SNR) than single antenna 505 and transceiver 504.

当基站500的编码、调制和信号处理子系统503从每个客户装置507-508接收所述1×3行513-515的时候,其将所述1×3行513-515存入3×3的H矩阵516中。对于客户装置,基站可以使用很多不同的存储技术来存储矩阵516,其包括,但不局限于,非易失性海量存储器(例如硬盘)和/或易失性存储器(例如SDRAM)。图5显示了基站已经接收和存储了来自客户装置509的1×3行513的阶段。当1×3行514和515从其余客户装置传输的时候,它们可以被传输并保存在H矩阵516中,直到整个H矩阵516被存储起来。When the coding, modulation and signal processing subsystem 503 of the base station 500 receives the 1x3 rows 513-515 from each client device 507-508, it stores the 1x3 rows 513-515 in a 3x3 The H matrix 516. For client devices, the base station may store matrix 516 using a number of different storage technologies including, but not limited to, non-volatile mass memory (eg, hard disk) and/or volatile memory (eg, SDRAM). FIG. 5 shows the stage at which the base station has received and stored the 1×3 row 513 from the client device 509 . As the 1x3 rows 514 and 515 are transmitted from the remaining client devices, they may be transmitted and stored in the H-matrix 516 until the entire H-matrix 516 is stored.

参考图6,现在将描述从基站600到客户装置606-608的MIDO传输的实施例。因为每个客户装置606-608是独立的装置,所以每个装置接收不同的数据传输。这样,基站600的实施例包括位于WAN接口601和编码、调制与信号处理子系统603之间对它们进行通信联络的路由器602,其从WAN接口601接收多个数据流(格式为比特流),分别对应于每个客户装置606-608将所述数据流按分开的数据流u1-u3发送。为此目的,该路由器602可以使用各种已知的路由技术。Referring to FIG. 6, an embodiment of MIDO transmission from base station 600 to client devices 606-608 will now be described. Because each client device 606-608 is an independent device, each device receives a different data transmission. Thus, an embodiment of the base station 600 includes a router 602 positioned in communication between the WAN interface 601 and the coding, modulation and signal processing subsystem 603, which receives a plurality of data streams (in the form of a bit stream) from the WAN interface 601, The data streams are sent as separate data streams u1-u3 corresponding to each client device 606-608, respectively. To this end, the router 602 may use various known routing techniques.

如图6所示,将所述三个比特流,u1-u3,路由进所述编码、调制和信号处理子系统603中,将它们编码为统计独立的纠错流(例如,使用ReedSolomon、维特比或增强编码),并用对信道合适的调制方法(例如DPSK、64QAM或OFDM)将它们调制。此外,图6显示的实施例包括信号预编码逻辑单元630,基于信号特征矩阵616,该信号预编码逻辑单元630用于对从每个天线605发送来的信号进行唯一编码。特别地,在该实施例中,预编码逻辑单元630将图6中的三个比特流u1-u3与H矩阵616的逆矩阵相乘以生成三个新的比特流u'1-u'3,而不是将每个编码和调制过的比特流路由到分开的天线(如图1中所做)。然后,D/A转换器(没有示出)将所述的三个预编码比特流转换为模拟信号,收发器604和天线605将其作为RF信号发送出去。As shown in Figure 6, the three bit streams, u 1 -u 3 , are routed into the coding, modulation and signal processing subsystem 603, which encodes them into statistically independent error-corrected streams (e.g., using ReedSolomon , Viterbi or enhanced coding) and modulate them with the appropriate modulation method for the channel (such as DPSK, 64QAM or OFDM). Furthermore, the embodiment shown in FIG. 6 includes a signal precoding logic unit 630 for uniquely encoding the signal transmitted from each antenna 605 based on the signal characteristic matrix 616 . Specifically, in this embodiment, the precoding logic unit 630 multiplies the three bit streams u 1 -u 3 in FIG. 6 by the inverse matrix of the H matrix 616 to generate three new bit streams u' 1 -u ' 3 instead of routing each coded and modulated bit stream to a separate antenna (as done in Figure 1). Then, a D/A converter (not shown) converts the three precoded bit streams into analog signals, which are sent out as RF signals by the transceiver 604 and the antenna 605 .

在解释客户装置606-608如何接收所述别特流之前,将描述预编码模块630执行的操作。类似于上面图1中MIMO的例子,三个原始比特流中每一个比特流的编码和调制过的信号将表示为un。在图6所示的实施例中,每个ui包含路由器602所路由的三个比特流来的数据,每个这样的比特流将成为三个用户装置606-608其中的一个。Before explaining how client devices 606-608 receive the particular stream, the operations performed by precoding module 630 will be described. Similar to the MIMO example in Figure 1 above, the encoded and modulated signal for each of the three original bitstreams will be denoted as u n . In the embodiment shown in FIG. 6, each ui contains data from three bitstreams routed by router 602, each such bitstream to be one of three user devices 606-608.

然而,不象图1中的MIMO例子,那里,每个xi有各天线104发送,在图6所示的本发明的实施例中,在每个客户装置天线609接收各ui(加上信道中任何的噪声N)。为实现这样的结果,三个天线605中的每一个的输出(我们将其表示为vi)是ui和特征化每个客户装置的H矩阵的函数。在实施例中,编码、调制和信号处理子系统中的预编码逻辑单元630通过执行下列等式来计算各viHowever, unlike the MIMO example in FIG. 1, where each xi has each antenna 104 transmitting, in the embodiment of the invention shown in FIG. 6, each u i is received at each client device antenna 609 (plus any noise in the channel N). To achieve this result, the output of each of the three antennas 605 (which we denote as v i ) is a function of u i and the H matrix characterizing each client device. In an embodiment, the precoding logic unit 630 in the encoding, modulation and signal processing subsystem calculates each v i by implementing the following equation:

v1=u1H-1 11+u2H-1 12+u3H-1 13 v 1 =u 1 H -1 11 +u 2 H -1 12 +u 3 H -1 13

v2=u1H-1 21+u2H-1 22+u3H-1 23 v 2 =u 1 H -1 21 +u 2 H -1 22 +u 3 H -1 23

v3=u1H-1 31+u2H-1 32+u3H-1 33 v 3 =u 1 H -1 31 +u 2 H -1 32 +u 3 H -1 33

因此,不像MIMO,那里,信道将信号变换之后在接收器计算各xi,而这里描述的本发明的实施例在信道将信号变换之前在发送器求解每个vi。每个天线609接收已经从其它用于其它天线609的un-1比特流中分离出来的ui。每个收发器610将各接收到的信号转换成基带信号,这里A/D转换器(没有示出)对其进行数字化,各编码、调制和信号处理子系统611对其xi比特流进行解调和解码,并将其比特流送到客户装置使用的数据接口612(例如,客户装置上的应用程序)。Thus, unlike MIMO, where each xi is computed at the receiver after the channel transforms the signal, the embodiments of the invention described here solve for each vi at the transmitter before the channel transforms the signal. Each antenna 609 receives u i which has been separated from the other un -1 bit streams for the other antennas 609 . Each transceiver 610 converts each received signal to a baseband signal, where an A/D converter (not shown) digitizes it, and each encoding, modulation, and signal processing subsystem 611 decodes its x i bit stream The reconciliation decodes and sends its bit stream to the data interface 612 for use by the client device (eg, an application on the client device).

这里描述的本发明的实施例可以使用多种不同的编码和调制方法来实现。例如,在OFDM实现中,其中频谱被分为多个分频带,这里描述的技术可用于特征化每个单独的分频带。然而,如上所述,本发明的根本原理不限于任何特定的调制方法。Embodiments of the invention described herein can be implemented using a variety of different encoding and modulation methods. For example, in OFDM implementations where the frequency spectrum is divided into multiple sub-bands, the techniques described here can be used to characterize each individual sub-band. However, as mentioned above, the underlying principles of the invention are not limited to any particular modulation method.

如果客户装置606-608是便携式数据处理装置,例如PDA、笔记本电脑和/或无线电话的话,那么由于客户装置可能会从一个位置移动到另外一个,则信道特征会频繁发生改变。这样,在本发明的一个实施例中,基站的信道特征矩阵616不断地得到更新。在一个实施例中,基站600周期地(每250毫秒)发出新的训练信号到每个客户装置,每个客户装置将其信道特征向量不断地发送回基站600以确保信道特征保持准确(例如,如果环境改变或客户装置移动从而影响到信道)。在一个实施例中,在发送到每个客户装置的实际数据信号中对训练信号进行交织。典型地,所述训练信号的吞吐量远低于所述数据信号的吞吐量,因此这对系统总的吞吐率将几乎没有影响。相应地,在该实施例中,信道特征矩阵616在基站主动与各客户装置进行通信时可以不断得到更新,从而当客户装置从一个位置移动到下一个位置,或环境发生改变从而影响到信道的时候保持准确的信道特征。If client devices 606-608 are portable data processing devices, such as PDAs, notebook computers, and/or wireless telephones, channel characteristics may change frequently as client devices may move from one location to another. In this way, in one embodiment of the present invention, the channel characteristic matrix 616 of the base station is constantly updated. In one embodiment, the base station 600 periodically (every 250 milliseconds) sends a new training signal to each client device, and each client device continuously sends its channel eigenvector back to the base station 600 to ensure that the channel characteristics remain accurate (e.g., If the environment changes or the client device moves thereby affecting the channel). In one embodiment, the training signal is interleaved in the actual data signal sent to each client device. Typically, the throughput of the training signal is much lower than the throughput of the data signal, so this will have little effect on the overall system throughput. Correspondingly, in this embodiment, the channel feature matrix 616 can be continuously updated when the base station actively communicates with each client device, so that when the client device moves from one location to the next, or the environment changes, the channel characteristics will be affected. maintain accurate channel characteristics at all times.

图7中所示的本发明的一个实施例使用MIMO技术来改善上行通信信道(即,从客户装置706-708到基站700的信道)。在该实施例中,基站中的上行信道特征逻辑单元741不断对从每个客户装置来的信道进行分析和特征化。特别地,每个客户装置706-708发送训练信号到基站700,那里信道特征逻辑单元741分析以产生N×M的信道特征矩阵741,这里N是客户装置的数量,M是基站所使用的天线的数量。图7所示的实施例在基站使用三个天线705和三个客户装置706-708,这导致了存放于基站700的3×3信道特征矩阵741。客户装置可以将图7所示的MIMO上行传输用于将数据发送回基站700和将信道特征向量传送回基站700,如图5所示。但是和图5所示的实施例不同的是,在图5中,每个客户装置的信道特征向量以分开的时间进行传输,而图7所示的方法允许从多个客户装置同时将信道特征向量传输回基站700,从而大大降低信道特征向量对回程信道吞吐率的影响。One embodiment of the invention shown in FIG. 7 uses MIMO technology to improve the uplink communication channel (ie, the channel from client devices 706-708 to base station 700). In this embodiment, the uplink channel characterization logic unit 741 in the base station continuously analyzes and characterizes the channel from each client device. Specifically, each client device 706-708 sends a training signal to the base station 700, where the channel characteristic logic unit 741 analyzes to generate an N x M channel characteristic matrix 741, where N is the number of client devices and M is the antenna used by the base station quantity. The embodiment shown in FIG. 7 uses three antennas 705 and three client devices 706-708 at the base station, which results in a 3×3 channel eigenmatrix 741 stored at the base station 700 . The client device may use the MIMO uplink transmission shown in FIG. 7 for sending data back to the base station 700 and transmitting the channel eigenvector back to the base station 700, as shown in FIG. 5 . However, unlike the embodiment shown in FIG. 5, in FIG. 5, the channel eigenvectors of each client device are transmitted at separate times, while the method shown in FIG. The vectors are transmitted back to the base station 700, thereby greatly reducing the impact of the channel eigenvectors on the throughput of the backhaul channel.

如上所述,每个信号的特征可以包括很多因素,例如,其包括相对于接收器内部的参考信号、绝对参考信号、相对参考信号、特征噪声或其他因素的相位和振幅。例如,在正交幅度调制所调制的信号中,所述特征可以是信号的几个多径映像的相位和振幅偏移向量。另一个例子是,在正交频分复用所调制的信号中,所述特征可以是OFDM频谱中几个或所有单个分量信号的相位和振幅偏移向量。所述训练信号可以由各客户装置的编码和调制子系统711生成,D/A转换器(未示出)将该训练信号转换成模拟信号,然后各客户装置的发送器709将其从基带信号转换成RF信号。在一个实施例中,为了确保训练信号的同步,客户装置仅仅在基站请求的时候传送训练信号(例如,在循环(round robin)的情况下)。此外,可以在从各客户装置发送来的实际数据信号中对训练信号进行交织,或者训练信号可以和所述实际数据信号一起传输。因此,即使客户装置706-708是移动的,上行信道特征逻辑单元741也可以连续地传输和分析该训练信号,从而确保信道特征矩阵741保持更新。As noted above, the characteristics of each signal may include many factors including, for example, its phase and amplitude relative to a reference signal internal to the receiver, an absolute reference signal, a relative reference signal, characteristic noise, or other factors. For example, in a signal modulated by quadrature amplitude modulation, the feature may be the phase and amplitude offset vectors of several multipath images of the signal. As another example, in a signal modulated by Orthogonal Frequency Division Multiplexing, the feature may be the phase and amplitude offset vectors of several or all of the individual component signals in the OFDM spectrum. The training signal may be generated by the encoding and modulation subsystem 711 of each client device, the D/A converter (not shown) converts the training signal into an analog signal, and then the transmitter 709 of each client device converts it from the baseband signal converted into an RF signal. In one embodiment, to ensure synchronization of training signals, client devices transmit training signals only when requested by the base station (eg, in the case of round robin). Furthermore, the training signal may be interleaved within the actual data signal sent from each client device, or the training signal may be transmitted together with the actual data signal. Therefore, even if the client devices 706-708 are mobile, the upstream channel characteristic logic unit 741 can continuously transmit and analyze the training signal, thereby ensuring that the channel characteristic matrix 741 is kept updated.

本发明的前述实施例所支持的总的信道容量可以被定义为min(N,M),这里,M是客户装置的数量,而N是基站天线的数量。也就是说,容量由基站侧或客户侧的天线数量所限定。如此,本发明的一个实施例使用同步技术来确保在给定时间内不超过min(N,M)个天线在发送/接收。The total channel capacity supported by the foregoing embodiments of the present invention can be defined as min(N, M), where M is the number of client devices and N is the number of base station antennas. That is, the capacity is limited by the number of antennas on the base station side or the client side. As such, one embodiment of the invention uses synchronization techniques to ensure that no more than min(N,M) antennas are transmitting/receiving at a given time.

在典型的情况下,基站700的天线705的数量将少于客户装置706-708的数量。图8显示了一个示例性的情况,其允许5个客户装置804-808与具有三个天线802的基站进行通信。在这个实施例中,确定总的客户装置804-808的数量并且检测到必要的信道特征信息(例如,上面的描述)之后,基站800选择第一群与其进行通信的三个客户810(因为min(N,M)=3,所以在此例中是三个客户)。在与第一群客户810通信了指定时间之后,基站就选择另一群与其通信的三个客户811。为了均匀分配通信信道,基站800选择没有包含在第一群中的两个客户装置807、808。此外,由于额外的天线是可用的,基站800就选择包含在第一群中的额外的客户装置806。在一个实施例中,基站800以这种方式在客户群众循环,从而能够有效地分配给每个客户在时间上相同数量的吞吐量。例如,为了均匀分配吞吐量,基站可以接着选择除客户装置806之外的三个客户装置的任何组合(即,由于客户装置806用于在开始的两个循环中与基站进行通信)。In a typical case, the base station 700 will have fewer antennas 705 than the number of client devices 706-708. FIG. 8 shows an exemplary scenario that allows five client devices 804-808 to communicate with a base station having three antennas 802. In this embodiment, after determining the total number of client devices 804-808 and detecting the necessary channel characteristic information (eg, as described above), the base station 800 selects a first group of three clients 810 to communicate with (because min (N,M) = 3, so three customers in this example). After communicating with the first group of clients 810 for a specified time, the base station selects another group of three clients 811 with which to communicate. In order to evenly distribute the communication channels, the base station 800 selects two client devices 807, 808 not included in the first group. Additionally, base station 800 selects additional client devices 806 to be included in the first group as additional antennas are available. In one embodiment, the base station 800 cycles through the customer population in such a manner that each customer can be effectively allocated the same amount of throughput over time. For example, to distribute throughput evenly, the base station may then select any combination of three client devices other than client device 806 (ie, since client device 806 is used to communicate with the base station in the first two cycles).

在一个实施例中,除了标准的数据通信之外,基站可以使用前述技术来传送训练信号到各客户装置和从各客户装置接收训练信号和信号特征数据。In one embodiment, in addition to standard data communications, the base station may use the aforementioned techniques to transmit training signals to and receive training signals and signal characterization data from client devices.

在一个实施例中,某些客户装置或客户装置群可以分配到不同水平的吞吐量,例如,可以把客户装置区分优先次序,从而可以确保相对较高优先级的客户装置必较低优先级的客户装户有更多的通信周期(即,更多的吞吐量)。基于一定数量的变量,可以对客户的“优先级”进行选择,所述变量包括,例如,用户的对无线带宽的预订费(例如,用于愿意为额外吞吐量付出更多),和/或通信到/从客户装置的数据类型(例如,实时通信,譬如电话语音和视频,获得高于非实时通信的优先级,例如电子邮件)。In one embodiment, certain client devices or groups of client devices may be assigned different levels of throughput, e.g., client devices may be prioritized so that relatively higher priority client devices may be assigned lower priority client devices. Clients have more communication cycles (ie, more throughput). A customer's "priority" can be selected based on a number of variables, including, for example, the user's subscription fee for wireless bandwidth (e.g., users' willingness to pay more for extra throughput), and/or The type of data communicated to/from the client device (eg, real-time communications, such as telephone voice and video, receive priority over non-real-time communications, such as email).

在基于各客户装置要求的当前负载,基站动态分配吞吐量的实施例中。例如,如果客户装置804直播视频流,而其它装置805-808在执行例如电子邮件的非实时功能,那么基站800可以给该客户804分配相对较多的吞吐量。然而,应该注意的是,本发明的根本原理不限于任何特定的吞吐量分配技术。In embodiments where the base station dynamically allocates throughput based on the current load required by each client device. For example, if a client device 804 is streaming live video while the other devices 805-808 are performing non-real-time functions such as email, the base station 800 may allocate relatively more throughput to the client 804. It should be noted, however, that the underlying principles of the invention are not limited to any particular throughput allocation technique.

如图9所示,两个客户装置907、908可以非常接近,使得所述客户的信道特征在实际上是一样的。结果,基站将接收和存储两个客户装置907、908的实际上相等的信道特征向量,因此这将不能产生对于各客户唯一的、空间分布的信号。相应地,在一个实施例中,基站将确保相互距离非常接近的任何两个或更多客户装置被分配给不同的群。例如,在图9中,基站900首先和客户装置904、905以及908的第一群910通信,然后和客户装置905、906、907的第二群911通信,这确保了客户装置907和908在不同的群中。As shown in Figure 9, two client devices 907, 908 may be in close proximity such that the channel characteristics of the clients are virtually the same. As a result, the base station will receive and store virtually equal channel eigenvectors for the two client devices 907, 908, so this will not produce a unique, spatially distributed signal for each client. Accordingly, in one embodiment, the base station will ensure that any two or more client devices that are in close proximity to each other are assigned to different groups. For example, in FIG. 9, the base station 900 first communicates with a first group 910 of client devices 904, 905, and 908, and then communicates with a second group 911 of client devices 905, 906, 907, which ensures that the client devices 907 and 908 are in different groups.

可选择地,在一个实施例中,基站900同时和客户装置907以及908进行通信,但使用已知的信道复用技术来对通信信道进行复用。例如,基站可以使用时分复用(“TDM”)、频分复用(“FDM”)或码分多址(“CDMA”)技术来分开客户装置907和908之间单个的、空间相关的信号。Alternatively, in one embodiment, base station 900 communicates with client devices 907 and 908 simultaneously, but multiplexes the communication channels using known channel multiplexing techniques. For example, the base station may use time division multiplexing ("TDM"), frequency division multiplexing ("FDM"), or code division multiple access ("CDMA") techniques to separate individual, spatially correlated signals between client devices 907 and 908 .

尽管上述各客户装置装备有单天线,但可以通过使用具有多个天线的客户装置来实现本发明的根本原理以提高吞吐量。例如,当用在上述的无线系统上时,具有2个天线的客户将实现2倍的吞吐量提升,具有3个天线的客户将实现3倍的吞吐量提升,等等(即,假设天线之间的空间和角度分离是足够的)。当通过具有多个天线的客户装置循环的时候,基站可以应用同样的一般规则。例如,其可以将每个天线看作分开的客户,并将吞吐量分配给那个“客户”,就如同它是任何其它客户一样(例如,确保每个客户提供有足够或相当的通信周期)。Although each client device described above is equipped with a single antenna, the underlying principles of the present invention can be implemented by using client devices with multiple antennas to increase throughput. For example, when used on the wireless system described above, a client with 2 antennas will achieve a 2X increase in throughput, a client with 3 antennas will achieve a 3X increase in throughput, etc. (i.e., assuming space and angular separation between them are sufficient). The base station can apply the same general rules when cycling through client devices with multiple antennas. For example, it may treat each antenna as a separate client and allocate throughput to that "client" as it would any other client (eg, ensuring that each client provides enough or comparable communication cycles).

如上所述,本发明的一个实施例使用上述的MIDO和/或MIMO信号传输技术在近乎垂直入射天波(“NVIS”)中提高信噪比和吞吐量。参考图10,在本发明的一个实施例中,装备有N个天线1002的矩阵的第一NVIS基站1001用于和M个客户装置1004进行通信。所述NVIS天线1002和多种用户装置的天线1004以和垂直方向约成15度以内的角度将信号上行传送以获得想要的NVIS并且将地面波干扰效应降到最低。在一个实施例中,天线1002和客户装置1004使用上述的多种MIDO和MIMO技术在NVIS频谱中的指定频率(例如在载波频率或低于23MHz的频率,但通常低于10MHz的频率上)支持多个独立的数据流1006,从而显著提高了在指定频率的吞吐量(即,以和统计独立的数据流的数量成正比)。As noted above, one embodiment of the present invention improves signal-to-noise ratio and throughput in near-normal-incidence sky-wave ("NVIS") using the MIDO and/or MIMO signaling techniques described above. Referring to FIG. 10 , in one embodiment of the present invention, a first NVIS base station 1001 equipped with a matrix of N antennas 1002 is used to communicate with M client devices 1004 . The NVIS antenna 1002 and various user equipment antennas 1004 transmit signals uplink at an angle within approximately 15 degrees from vertical to achieve desired NVIS and minimize ground wave interference effects. In one embodiment, the antenna 1002 and client device 1004 support at specified frequencies in the NVIS spectrum (e.g., at the carrier frequency or below 23 MHz, but typically below 10 MHz) using the various MIDO and MIMO techniques described above. Multiple independent data streams 1006, thereby significantly increasing throughput at a given frequency (ie, in direct proportion to the number of statistically independent data streams).

服务于给定基站的所述NVIS天线相互之间可以有很远的物理距离。假设低于10MHz的长波长和信号传播的长距离(300英里的往返距离),几百码,甚至是几英里的天线物理间隔能够在分集上提供益处。在这样的条件下,单独的天线信号可以被收回到中心位置,用传统的有线或无线通信系统对其进行处理。可选择地,每个天线可以具有本地设备来处理其信号,然后使用传统的有线或无线通信系统来将该数据传输回中心位置。在本发明的一个实施例中,NVIS基站1001具有到因特网1010(或其它广域网)的宽带链路1015,从而提供给客户装置1003远程、高速、无线网络访问。The NVIS antennas serving a given base station may be at a great physical distance from each other. Given the long wavelengths below 10 MHz and the long distances over which signals travel (300 miles round trip), physical separation of antennas by hundreds of yards, or even miles, can provide diversity benefits. Under such conditions, individual antenna signals can be retrieved to a central location for processing using conventional wired or wireless communication systems. Alternatively, each antenna may have local equipment to process its signal and then use conventional wired or wireless communication systems to transmit this data back to the central location. In one embodiment of the invention, NVIS base station 1001 has a broadband link 1015 to the Internet 1010 (or other wide area network), thereby providing client devices 1003 with remote, high-speed, wireless network access.

在一种实施方式中,基站和/或用户可利用极化/方向图分集(patterndiversity)技术,以在提供分集与提升吞吐量的同时,减小阵列大小和/或用户距离。例如,在具有HF传输的DIMO系统中,由于极化/方向图分集,用户可位于同一位置且他们的信号不会相关联。特别地,通过使用方向图分集,一用户可经由地波而与基站进行通信,而其他用户可经由NVIS而与基站进行通信。In one embodiment, the base station and/or the user may utilize polarization/pattern diversity technology to reduce array size and/or user distance while providing diversity and improving throughput. For example, in a DIMO system with HF transmission, due to polarization/pattern diversity, users can be co-located and their signals will not be correlated. In particular, by using pattern diversity, one user can communicate with the base station via ground wave, while other users can communicate with the base station via NVIS.

本发明的附加实施方式Additional Embodiments of the Invention

Ⅰ、利用I/Q不平衡来进行DIDO-OFDM预编码 Ⅰ. Using I/Q imbalance for DIDO-OFDM precoding

本发明的一种实施方式采用用于对具有正交频分复用(OFDM)的分布式输入分布式输出(DIDO)系统中的同相正交(I/Q)不平衡进行补偿的系统和方法。简言之,根据本实施方式,用户设备对信道进行估计,并将该信息回馈至基站;基站计算出预编码矩阵,以消除I/Q不平衡所导致的载波之间和用户之间的干扰;以及并行数据流经由DIDO预编码而被发送至多个用户设备;该用户设备经由零强制(ZF)、最小均方误差(MMSE)或最大似然(ML)接收机来对数据进行解调,以抑制剩余干扰。One embodiment of the present invention employs a system and method for compensating for in-phase quadrature (I/Q) imbalance in a distributed-input distributed-output (DIDO) system with orthogonal frequency division multiplexing (OFDM) . In short, according to this embodiment, the user equipment estimates the channel and feeds the information back to the base station; the base station calculates the precoding matrix to eliminate the interference between carriers and users caused by I/Q imbalance ; and parallel data streams are sent via DIDO precoding to multiple user equipments; the user equipments demodulate the data via a zero forcing (ZF), minimum mean square error (MMSE) or maximum likelihood (ML) receiver, to suppress residual interference.

如下所详述的,本发明该实施方式的一些显著特征包括,但不限于:As detailed below, some salient features of this embodiment of the invention include, but are not limited to:

预编码以用于消除OFDM系统中来自镜像调(mirror tone)的载波间干扰(ICI)(因I/Q不匹配所导致);Precoding is used to eliminate inter-carrier interference (ICI) from mirror tone (mirror tone) in OFDM systems (caused by I/Q mismatch);

预编码以用于消除DIDO-OFDM系统中的用户间干扰和ICI(因I/Q不匹配所导致);Precoding for eliminating inter-user interference and ICI (caused by I/Q mismatch) in DIDO-OFDM systems;

用于经由采用块对角化(BD)的DIDO-OFDM系统中的ZF接收机来消除ICI(因I/Q不匹配所导致)的技术;Techniques for canceling ICI (caused by I/Q mismatch) via ZF receivers in DIDO-OFDM systems using block diagonalization (BD);

用于经由DIDO-OFDM系统中的预编码(在发射机处)和ZF或MMSE滤波器(在接收机处)来消除用户间干扰和ICI(因I/Q不匹配所导致)的技术;Techniques for canceling inter-user interference and ICI (due to I/Q mismatch) via precoding (at transmitter) and ZF or MMSE filter (at receiver) in DIDO-OFDM systems;

用于经由DIDO-OFDM系统中的预编码(在发射机处)和类似于最大似然(ML)检测器的非线性检测器(在接收机处)来消除用户间干扰和ICI(因I/Q不匹配所导致)的技术;Used to cancel inter-user interference and ICI (due to I/ Q mismatch caused by) technology;

使用基于信道状况信息的预编码以用于消除OFDM系统中来自镜像调的载波间干扰(ICI)(因I/Q不匹配所导致);Use of precoding based on channel condition information for canceling inter-carrier interference (ICI) from image modulation in OFDM systems (caused by I/Q mismatch);

使用基于信道状况信息的预编码以用于消除DIDO-OFDM系统中来自镜像调的载波间干扰(ICI)(因I/Q不匹配所导致);Use precoding based on channel condition information for canceling inter-carrier interference (ICI) from image modulation in DIDO-OFDM systems (caused by I/Q mismatch);

在基站处使用I/Q不匹配已知DIDO预编码器(I/Q mismatch awareDIDOprecoder),以及在用户终端处使用I/Q已知DIDO接收机;Use of I/Q mismatch aware DIDO precoder at base station and I/Q aware DIDO receiver at user terminal;

在基站处使用I/Q不匹配已知DIDO预编码器(I/Q mismatch awareDIDOprecoder),在用户终端处使用I/Q已知DIDO接收机,以及使用I/Q已知信道估计器;Using an I/Q mismatch aware DIDO precoder at the base station, using an I/Q aware DIDO receiver at the user terminal, and using an I/Q aware channel estimator;

在基站处使用I/Q不匹配已知DIDO预编码器,在用户终端处使用I/Q已知DIDO接收机,以及使用I/Q已知信道估计器和I/Q已知DIDO反馈生成器(该生成器将信道状况信息从用户终端发送至站点);Using an I/Q mismatch known DIDO precoder at the base station, an I/Q known DIDO receiver at the user terminal, and an I/Q known channel estimator and I/Q known DIDO feedback generator (the generator sends channel condition information from the user terminal to the station);

在基站处使用I/Q不匹配已知DIDO预编码器,以及使用I/Q已知DIDO配置器(该配置器使用I/Q信道信息来执行各种功能,包括用户选择、自适应编码和调制、空时频映射或预编码器选择);Using an I/Q mismatch-aware DIDO precoder at the base station, and an I/Q-aware DIDO configurator that uses I/Q channel information to perform various functions including user selection, adaptive coding, and modulation, space-time-frequency mapping or precoder selection);

使用I/Q已知DIDO接收机(该接收机经由采用块对角化(BD)预编码器的DIDO-OFDM系统中的ZF接收机来消除ICI(因I/Q不匹配所导致));Using an I/Q-aware DIDO receiver that cancels ICI (caused by I/Q mismatch) via a ZF receiver in a DIDO-OFDM system with a Block Diagonalization (BD) precoder);

使用I/Q已知DIDO接收机(该接收机经由DIDO-OFDM系统中的预编码(在发射机处)和类似于最大似然(ML)检测器的非线性检测器(在接收机处)来消除用户间干扰和ICI(因I/Q不匹配所导致));以及Using an I/Q-aware DIDO receiver via precoding (at the transmitter) in a DIDO-OFDM system and a non-linear detector (at the receiver) similar to a maximum likelihood (ML) detector to eliminate inter-user interference and ICI (caused by I/Q mismatch)); and

使用I/Q已知DIDO接收机(该接收机经由DIDO-OFDM系统中的ZF或MMSE滤波器来消除ICI(因I/Q不匹配所导致))。Use an I/Q-aware DIDO receiver that removes ICI (caused by I/Q mismatch) via a ZF or MMSE filter in a DIDO-OFDM system.

a、背景 a. Background

典型无线通信系统的发送和接收信号包含同相正交(I/Q)分量。在实际的系统中,该同相正交分量可能会由于混频和基带操作中的缺陷而失真。这些失真(distortion)表现为I/Q相位、增益和延迟不匹配。相位不平衡是由调制器/解调器中的正弦(sine)和余弦(cosine)并未正确正交而导致的。增益不平衡是由同相正交分量之间的不同增幅而导致的。由于模拟电路中的I和Q轨道(rail)之间的延迟不同,还可能存在附加失真,该失真称之为延迟不平衡。The transmit and receive signals of a typical wireless communication system contain in-phase quadrature (I/Q) components. In a real system, the in-phase and quadrature components may be distorted by imperfections in mixing and baseband operation. These distortions manifest as I/Q phase, gain, and delay mismatches. Phase imbalance is caused by the sine and cosine in the modulator/demodulator not being in proper quadrature. Gain imbalance is caused by different gain between in-phase and quadrature components. Due to the difference in delay between the I and Q rails in an analog circuit, there may also be additional distortion known as delay imbalance.

在正交频分复用(OFDM)系统中,I/Q不平衡会导致来自发射调的载波间不平衡(ICI)。该影响已在一些资料中得到了研究,且在以下资料中,已提出了用于对单输入单输出SISO-OFDM系统中的I/Q不匹配进行补偿的方法:M.D.Benedetto和P.Mandarini,“Analysis of the effect of the I/Qbaseband filter mismatch in an OFDM modem,”Wireless personalcommunications,pp.175-186,2000;S.Schuchert和R.Hasholzner,“AnovelI/Q imbalance compensation scheme for the reception of OFDM signals,”IEEETransaction on Consumer Electronics,Aug.2001;M.Valkama,M.Renfors和V.Koivunen,“Advanced methods for I/Q imbalance compensation incommunicationreceivers,”IEEE Trans.Sig.Proc,Oct.2001;R.Rao和B.Daneshrad,"Analysis of I/Qmismatch and a cancellation scheme for OFDMsystems,"IST Mobile CommunicationSummit,June 2004;A.Tarighat,R.Bagheri和A.H.Sayed,“Compensation schemes andperformance analysis of IQimbalances in OFDM receivers,”Signal Processing,IEEE Transactions on[还可参见Acoustics,Speech,and Signal Processing,IEEETransactions on],vol.53,pp.3257-3268,Aug.2005。In an Orthogonal Frequency Division Multiplexing (OFDM) system, I/Q imbalance causes inter-carrier imbalance (ICI) from the transmitted tone. This effect has been studied in several sources, and in the following sources, methods for compensating for I/Q mismatch in single-input single-output SISO-OFDM systems have been proposed: M.D.Benedetto and P.Mandarini, "Analysis of the effect of the I/Q baseband filter mismatch in an OFDM modem," Wireless personal communications, pp.175-186, 2000; S.Schuchert and R. Hasholzner, "Anovel I/Q imbalance compensation scheme for the reception of OFDM signals ,” IEEE Transaction on Consumer Electronics, Aug.2001; M.Valkama, M.Renfors and V.Koivunen, “Advanced methods for I/Q imbalance compensation incommunication receivers,” IEEE Trans.Sig.Proc, Oct.2001; R.Rao and B. Daneshrad, "Analysis of I/Qmismatch and a cancellation scheme for OFDM systems," IST Mobile Communication Summit, June 2004; A. Tarighat, R. Bagheri, and A.H. Sayed, "Compensation schemes and performance analysis of IQ imbalances in OFDM receivers," Signal Processing , IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], vol.53, pp.3257-3268, Aug.2005.

以下资料中示出了该工作向多输入多输出MIMO-OFDM系统的扩展:R.Rao和B.Daneshrad,“I/Q mismatch cancellation for MIMO OFDM systems,”in Personal,Indoor and Mobile Radio Communications,2004;PIMRC 2004.15th IEEEInternational Symposium on,vol.4,2004,pp.2710-2714。对于空间复用(SM),请参见R.M.Rao,W.Zhu,S.Lang,C.Oberli,D.Browne,J.Bhatia,J.F.Frigon,J.Wang,P;Gupta,H.Lee,D.N.Liu,S.G.Wong,M.Fitz,B.Daneshrad,和O.Takeshita,“Multiantennatestbeds for research and education inwireless communications,”IEEECommunications Magazine,vol.42,no.12,pp.72-81,Dec.2004;S.Lang,M.R.Rao和B.Daneshrad,“Design anddevelopment of a 5.25GHz software defned wireless OFDMcommunicationplatform,”IEEE Communications Magazine,vol.42,no.6,pp.6-12,June2004;对于正交空时分组码(OSTBC),请参见A.Tarighat和A.H.Sayed,"MIMOOFDMreceivers for systems with IQ imbalances,"IEEE Trans.Sig.Proc,vol.53,pp.3583-3596,Sep.2005。An extension of this work to multiple-input multiple-output MIMO-OFDM systems is shown in: R. Rao and B. Daneshrad, "I/Q mismatch cancellation for MIMO OFDM systems," in Personal, Indoor and Mobile Radio Communications, 2004 ; PIMRC 2004.15th IEEE International Symposium on, vol.4, 2004, pp.2710-2714. For spatial multiplexing (SM), see R.M.Rao, W.Zhu, S.Lang, C.Oberli, D.Browne, J.Bhatia, J.F.Frigon, J.Wang, P; Gupta, H.Lee, D.N.Liu , S.G. Wong, M. Fitz, B. Daneshrad, and O. Takeshita, “Multitantennatestbeds for research and education in wireless communications,” IEEE Communications Magazine, vol.42, no.12, pp.72-81, Dec.2004; S. Lang, M.R.Rao and B.Daneshrad, "Design and development of a 5.25GHz software defned wireless OFDM communication platform," IEEE Communications Magazine, vol.42, no.6, pp.6-12, June2004; for orthogonal space-time block codes ( OSTBC), see A.Tarighat and A.H.Sayed, "MIMOOFDM receivers for systems with IQ imbalances," IEEE Trans.Sig.Proc, vol.53, pp.3583-3596, Sep.2005.

不幸的是,目前并不存在介绍如何对分布式输入分布式输出(DIDO)通信系统中的I/Q增益和相位不平衡误差进行校正的资料。以下所述的本发明实施方式提供了一种解决这些问题的方案。Unfortunately, there is currently no literature describing how to correct for I/Q gain and phase imbalance errors in Distributed-Input Distributed-Output (DIDO) communication systems. Embodiments of the present invention described below provide a solution to these problems.

DIDO系统包括一具有分布式天线的基站,该基站在利用相同于传统SIO系统的无线资源(即,相同的时隙持续时间和频带),发送并行数据流(经预编码的)至多个用户,以增强下行链路吞吐量。S.G.Perlman和T.Cotter于2004年7月30提交的题为“System andMethod for DistributedInput-Distributed Output Wireless Communications”的申请No.10/902,978(“在先申请”)给出了DIDO系统的详细说明,该申请被转让给了本申请的受让人,且该申请作为参考而被结合于此。The DIDO system consists of a base station with distributed antennas, which transmits parallel data streams (precoded) to multiple users while utilizing the same radio resources (i.e., the same slot duration and frequency band) as conventional SIO systems, to enhance downlink throughput. Application No. 10/902,978, filed July 30, 2004 by S.G. Perlman and T. Cotter, entitled "System and Method for Distributed Input-Distributed Output Wireless Communications" ("the earlier application") gives a detailed description of the DIDO system, This application is assigned to the assignee of the present application and is hereby incorporated by reference.

存在多种方式实现DIDO预编码器。一种方案是以下资料中所描述的块对角化(BD):Q.H.Spencer,A.L.Swindlehurst和M.Haardt,“Zero forcingmethods for downlinkspatial multiplexing in multiuser MIMO channels,”IEEETrans.Sig.Proc,vol.52,pp.461-471,Feb.2004;K.K.Wong,R.D.Murch,和K.B.Letaief,“A joint channeldiagonalization for multiuser MIMO antennasystems,”IEEE Trans.Wireless Comm.,vol.2,pp.773-786,JuI 2003;L.U.Choi和R.D.Murch,“A transmit preprocessingtechnique for multiuser MIMOsystems using a decomposition approach,”IEEETrans.Wireless Comm.,vol.3,pp.20-24,Jan 2004;Z.Shen,J.G.Andrews,R.W.Heath和B.L.Evans,“Lowcomplexity user selection algorithms for multiuser MIMO systemswith blockdiagonalization,”被接受发表在IEEE Trans.Sig.Proc,Sep.2005;Z.Shen,R.Chen,J.G.Andrews,R.W.Heath和B.L.Evans,“Sum capacity of multiuserMIMObroadcast channels with block diagonalization,”被提交至IEEE Trans.WirelessComm.,Oct.2005;R.Chen,R.W.Heath,和J.G.Andrews,“Transmitselection diversityfor unitary precoded multiuser spatial multiplexing systemswith linearreceivers,”被接受至IEEE Trans,on Signal Processing,2005。这些材料中所给出的用于I/Q补偿的方法设想了BD预编码器,且该预编码器可被扩展至DIDO预编码的任何类型。There are various ways to implement a DIDO precoder. One scheme is block diagonalization (BD) as described in: Q.H.Spencer, A.L.Swindlehurst and M.Haardt, "Zero forcing methods for downlinkspatial multiplexing in multipleuser MIMO channels," IEEETrans.Sig.Proc, vol.52, pp.461-471, Feb.2004; K.K.Wong, R.D.Murch, and K.B.Letaief, "A joint channel diagonalization for multiuser MIMO antennasystems," IEEE Trans.Wireless Comm., vol.2, pp.773-786, JuI 2003; L.U.Choi and R.D.Murch, “A transmit preprocessing technique for multiuser MIMOsystems using a decomposition approach,” IEEE Trans. Wireless Comm., vol.3, pp.20-24, Jan 2004; Z. Shen, J.G. Andrews, R.W. Heath and B.L. Evans , "Lowcomplexity user selection algorithms for multiuser MIMO system with blockdiagonalization," accepted for publication in IEEE Trans.Sig.Proc, Sep.2005; Z.Shen, R.Chen, J.G.Andrews, R.W.Heath and B.L.Evans, "Sum capacity of multiuserMIMObroadcast channels with block diagonalization," submitted to IEEE Trans.WirelessComm., Oct. 2005; R. Chen, R.W. Heath, and J.G. Andrews, "Transmitselection diversity for unitary precoded multipleuser spatial multiplexing systems with linear receivers," accepted to IEEE Trans, on Signal Process sing, 2005. The methods for I/Q compensation presented in these materials envisage a BD precoder, and this precoder can be extended to any type of DIDO precoding.

在DIDO-OFDM系统中,I/Q不匹配会导致两种影响:ICI和用户间干扰。与SISO-OFDM系统中相类似,前者是由于来自镜像调的干扰造成的。后者是由于以下事实引起的,即I/Q不匹配会破坏DIDO预编码器的正交,从而在用户之间产生干扰。可通过在此所述的方法,在发射机和接收机处消除此两类干扰。在此描述了三种用于DIDO-OFDM系统中的I/Q补偿的方法,且针对具有和不具有I/Q不匹配,比较了他们的性能。基于利用DIDO-OFDM原型所执行的仿真和实际测量,展示了结果。In DIDO-OFDM systems, I/Q mismatch can cause two effects: ICI and inter-user interference. Similar to that in the SISO-OFDM system, the former is due to the interference from the image tone. The latter is caused by the fact that the I/Q mismatch destroys the quadrature of the DIDO precoder, thereby creating interference between users. Both types of interference can be canceled at the transmitter and receiver by the methods described herein. Three methods for I/Q compensation in DIDO-OFDM systems are described here and their performance is compared with and without I/Q mismatch. Results are presented based on simulations and actual measurements performed with a DIDO-OFDM prototype.

本实施方式是在先申请的扩展。特别地,这些实施方式与在先申请的以下特征有关:This embodiment is an extension of the earlier application. In particular, these embodiments relate to the following features of the prior application:

在先申请中所描述的系统,其中I/Q轨道会受到增益和相位不平衡的影响;The system described in the earlier application, where the I/Q rails are affected by gain and phase imbalance;

在发射机处,使用针对信道估计所采用的训练信号来计算具有I/Q补偿的DIDO预编码器;以及At the transmitter, a DIDO precoder with I/Q compensation is computed using the training signal employed for channel estimation; and

信号特征数据考虑到了由于I/Q不平衡所导致的失真,且在发射机处,根据本材料所提出的方法,使用该信号特征数据来计算DIDO预编码器。The signal characterization data takes into account the distortion due to I/Q imbalance and is used at the transmitter to calculate the DIDO precoder according to the method proposed in this material.

b、本发明的实施方式 b. Embodiments of the present invention

首先,将描述本发明的数学模型和架构。First, the mathematical model and architecture of the present invention will be described.

在展示本方案之前,解释核心数学概念是非常有用的。我们通过假设I/Q增益和相位不平衡(本描述中并未包含相位延迟,但该相位延迟将在DIDO-OFDM形式的算法中被自动处理)来对其进行解释。为解释基本思想,假设我们想将两个复数s=sI+jsQ和h=hI+jho相乘,且使得x=h*s。我们使用下标来代表同相正交分量。调用以下等式:Before presenting the solution, it is useful to explain the core mathematical concepts. We explain it by assuming I/Q gain and phase imbalance (phase delay is not included in this description, but it will be handled automatically in the algorithm of DIDO-OFDM form). To explain the basic idea, suppose we want to multiply two complex numbers s=sI+jsQ and h=hI+jho such that x=h*s. We use subscripts to represent the in-phase quadrature components. Call the following equation:

xI=sIhI-sQhQ x I =s I h I -s Q h Q

and

xQ=sIhQ+sQhI x Q =s I h Q +s Q h I

其矩阵形式可重写为:Its matrix form can be rewritten as:

通过信道矩阵(H)来标记归一化变换。现假设s为所发送的符号,且h为信道。可通过创建以下非归一化变换来对I/Q增益和相位不平衡的存在进行建模:The normalization transformation is denoted by the channel matrix (H). Now assume that s is the transmitted symbol and h is the channel. The presence of I/Q gain and phase imbalance can be modeled by creating the following unnormalized transform:

该技巧的作用是确认可写为:What this trick does is confirm that it can be written as:

现对(A)进行重写:Now rewrite (A):

我们进行以下定义:We make the following definitions:

and

这两个矩阵具有归一化结构,因此可被表示为复数形式:These two matrices have a normalized structure and can therefore be represented as complex numbers:

he=h11+h22+j(h21-h12)h e =h 11 +h 22 +j(h 21 -h 12 )

and

hc=h11-h22+j(h21+h12)h c =h 11 -h 22 +j(h 21 +h 12 )

通过使用所有这些知识,我们可将有效等式推导回具有两个信道(等价信道he和共轭信道hc)的标量形式。因此,(5)中的有效变换变为:Using all this knowledge, we can derive the efficient equation back to a scalar form with two channels, the equivalent channel he and the conjugate channel hc. Thus, the effective transformation in (5) becomes:

x=hes+hcs* x=h e s+h c s *

我们将第一信道称为等价信道,第二信道称为共轭信道。如果不存在I/Q增益和相位不平衡,则该等价信道即为我们所要观察的信道。We call the first channel the equivalent channel and the second channel the conjugate channel. If there is no I/Q gain and phase imbalance, then the equivalent channel is the channel we want to observe.

通过使用相类似的论据,具有I/Q增益和相位不平衡的离散时间MIMON×M系统的输入-输出关系可示为(通过使用标量等价形式来建立他们的矩阵对应形式):Using similar arguments, the input-output relations of discrete-time MIMON×M systems with I/Q gain and phase imbalance can be shown as (by using scalar equivalents to establish their matrix counterparts):

其中,t为离散时间指数,he,hc∈CM×N,s=[s1,...,sN],x=[x1,...,xM]且L为信道抽头(channel tap)数。where t is the discrete time index, he e , h c ∈ C M×N , s=[s 1 ,...,s N ], x=[x 1 ,...,x M ] and L is the channel The number of taps (channel tap).

在DIDO-OFDM系统中,表示了频域中所接收的信号。如果满足以下等式,则从信号和系统重新调用:In DIDO-OFDM systems, the received signal is represented in the frequency domain. Recall from signal and system if the following equations are satisfied:

FFTK{s[t]}=S[k]则FFTK{s*[t]}=S*[(-k)]=S*[K-k]for k=0,1,...,K-1FFT K {s[t]}=S[k] then FFT K {s * [t]}=S * [(-k)]=S * [Kk]for k=0,1,...,K -1

利用OFDM,对于副载波k,MIMO-OFDM系统的等价输入-输出关系为:Using OFDM, for subcarrier k, the equivalent input-output relationship of MIMO-OFDM system is:

其中,k=0,1,...,K-1为OFDM副载波索引,He和Hc分别代表等价和共轭信道矩阵,定义如下:Among them, k=0,1,..., K-1 is the OFDM subcarrier index, He and H c represent the equivalent and conjugate channel matrix respectively, defined as follows:

and

(1)中的第二基值为来自镜像调的干扰。可通过构建以下迭式(stacked)矩阵系统(请仔细注意共轭值)来对其进行处理:The second base value in (1) is the interference from the image tone. It can be handled by constructing the following stacked matrix system (note the conjugate values carefully):

其中分别为发送和接收符号在频域中的向量。in with are the vectors of the transmitted and received symbols in the frequency domain, respectively.

通过使用该方法,可建立有效矩阵,以用于DIDO操作。例如,利用DIDO 2×2输入-输出关系(假设每个用户具有单个接收天线),第一用户设备可考虑以下等式(在不存在噪声时):Using this method, an effective matrix can be built for DIDO operations. For example, with a DIDO 2×2 input-output relationship (assuming each user has a single receive antenna), the first user equipment may consider the following equation (in the absence of noise):

而第二用户注意以下等式:And the second user notices the following equation:

其中,分别代表矩阵He和Hc的第m行,且W∈C4x4为DIDO预编码矩阵。根据(2)和(3),可注意到用户m所接收的符号受I/Q不平衡所导致的两个干扰源(即,来自镜像调的载波间干扰(即,)以及用户间干扰(即,以及p≠m))的影响。(3)中的DIDO预编码矩阵W被设计成用于消除这两个干扰项。in, represent the m-th row of matrices He and H c respectively, and W∈C 4x4 is the DIDO precoding matrix. According to (2) and (3), it can be noticed that the symbol received by user m Two sources of interference caused by I/Q imbalance (i.e., intercarrier interference from image tone (i.e., ) and inter-user interference (ie, as well as p≠m)). The DIDO precoding matrix W in (3) is designed to cancel these two interference terms.

可用于此处的DIDO预编码器存在多个不同的实施方式,这取决于接收机处所应用的联合检测。在一种实施方式中,可采用根据合成信道(而非)所计算的块对角化(BD)(请参见例如,Q.H.Spencer,A.L.Swindlehurst,和M.Haardt,“Zeroforcingmethods for downlink spatialmultiplexing in multiuser MIMO channels,”IEEETrans.Sig.Proc,vol.52,pp.461-471,Feb.2004.K.K;Wong,R.D.Murch,和K.B.Letaief,“Ajointchannel diagonalization for multiuser MIMO antenna systems,”IEEETrans.Wireless Comm.,vol.2,pp.773-786,JuI 2003;L.U.Choi和R.D.Murch,“Atransmitpreprocessing technique for multiuser MIMO systems using adecompositionapproach,”IEEE Trans.Wireless Comm.,vol.3,pp.20-24,Jan2004;Z.Shen,J.G.Andrews,R.W.Heath,和B.L Evans,“Low complexityuser selection algorithmsfor multiuser MIMO systems with blockdiagonalization,”被接受发表在IEEETrans.Sig.Proc,Sep.2005;Z.Shen,R.Chen,J.G.Andrews,R.W.Heath,和B.L Evans,“Sumcapacity of multiuserMIMO broadcast channels with block diagonalization,”被提交至IEEE Trans.Wireless Comm.,Oct.2005)。因此,目前DIDO系统选择预编码器,以使得:There are several different implementations of DIDO precoders that can be used here, depending on the joint detection applied at the receiver. In one embodiment, it is possible to use the synthetic channel based on (instead of ) computed block diagonalization (BD) (see, e.g., QHSpencer, ALSwindlehurst, and M.Haardt, "Zeroforcing methods for downlink spatialmultiplexing in multiuser MIMO channels," IEEETrans.Sig.Proc, vol.52, pp.461- 471, Feb.2004.KK; Wong, RDMurch, and KBLetaief, "Ajointchannel diagonalization for multiuser MIMO antenna systems," IEEETrans.Wireless Comm., vol.2, pp.773-786, JuI 2003; LUChoi and RDMurch, "Atransmitpreprocessing technique for multiuser MIMO systems using adecomposition approach,” IEEE Trans.Wireless Comm., vol.3, pp.20-24, Jan2004; Z. Shen, JG Andrews, RW Heath, and BL Evans, “Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization ,” accepted for publication in IEEE Trans.Sig.Proc, Sep.2005; Z.Shen, R.Chen, JG Andrews, RW Heath, and BL Evans, “Sumcapacity of multiuserMIMO broadcast channels with block diagonalization,” submitted to IEEE Trans.Wireless Comm., Oct. 2005). Therefore, currently the DIDO system selects the precoder such that:

其中,αi,j为常数,且该方法是非常有益的,因为通过使用该预编码器,由于在发射机处完全消除了I/Q增益和相位不平衡的影响可使DIDO预编码器的其他方面保持原样。Among them, α i, j are constants, and This approach is very beneficial because by using this precoder the other aspects of the DIDO precoder can be kept intact as the effects of I/Q gain and phase imbalance are completely removed at the transmitter.

还可将DIDO预编码器设计为预先消除用户间干扰,而不预先消除因IQ不平衡所导致的ICI。利用该方法,接收机(而非发射机)可通过采用以下所述的接收滤波器之一来对IQ不平衡进行补偿。因此,(4)中的预编码设计标准可被修改为:The DIDO precoder can also be designed to pre-cancel inter-user interference without pre-cancelling ICI due to IQ imbalance. Using this approach, the receiver (rather than the transmitter) can compensate for IQ imbalance by employing one of the receive filters described below. Therefore, the precoding design criteria in (4) can be modified as:

and

其中对于第m个发送信号而言,为用户m所接收的符号向量。where for the mth transmitted signal, and is the symbol vector received by user m.

在接收侧,为了对发送符号向量进行估计,用户m采用ZF滤波器,且所估计的符号向量被给定为:On the receiving side, in order to send symbol vectors to For estimation, user m applies a ZF filter, and the estimated symbol vector is given as:

虽然ZF滤波器最易于理解,但接收机还可应用任意数量的本领域技术人员所公知的其他滤波器。一种大众选择为MMSE滤波器,其中:While the ZF filter is the easiest to understand, the receiver can apply any number of other filters known to those skilled in the art. A popular choice is the MMSE filter, where:

且ρ为信噪比。可选地,用户可执行最大似然符号检测(或者球解码器、迭代变化)。例如,第一用户可使用ML接收机,并求解以下优化:And ρ is the signal-to-noise ratio. Optionally, the user can perform maximum likelihood symbol detection (or sphere decoder, iterative variation). For example, a first user may use an ML receiver and solve the following optimization:

其中,S为所有可能的向量s的集合,且取决于星座图大小。该ML接收机给出可较好的性能,但在接收机处要求更高的复杂度。类似的一组等式可应用于第二用户。Among them, S is the set of all possible vectors s, and depends on the size of the constellation diagram. The ML receiver gives better performance but requires higher complexity at the receiver. A similar set of equations can be applied to the second user.

注意,(6)和(7)中的被假设为具有零项。该假设仅在发射预编码器能够完全消除针对(4)中的标准的用户间干扰的情况下有效。类似的,仅在发射预编码器能够完全消除载波间干扰(即,来自镜像调)的情况下为对角矩阵。Note that in (6) and (7) with is assumed to have zero entries. This assumption is only valid if the transmit precoder is able to completely cancel the inter-user interference for the criterion in (4). akin, with Diagonal matrix only if the transmit precoder is able to completely cancel the intercarrier interference (i.e. from image tone).

图13显示了具有I/Q补偿的DIDO-OFDM系统的架构的一种实施方式,所述DIDO-OFDM系统包括位于基站(BS)内的IQ-DIDO预编码器1302、发送信道1304、位于用户设备内的信道估计逻辑1306以及ZF、MMSE或ML接收机1308。所述信道估计逻辑1306经由训练信号而对信道进行估计,并将这些估计反馈至AP内的预编码器。BS计算DIDO预编码器权重(矩阵W),以预先消除因I/Q增益和相位不平衡所导致的干扰以及用户干扰,并将数据通过无线信道1304发送至用户。用户设备m采用ZF、MMSE或ML接收机1308,通过利用单元1304所提供的信道估计来消除剩余干扰,并对数据进行解调。Figure 13 shows an embodiment of the architecture of a DIDO-OFDM system with I/Q compensation, the DIDO-OFDM system includes an IQ-DIDO precoder 1302 located in the base station (BS), a transmission channel 1304, located in the user Channel estimation logic 1306 and ZF, MMSE or ML receiver 1308 within the device. The channel estimation logic 1306 estimates the channel via the training signal with Estimates are made and these estimates are fed back to the precoder within the AP. The BS calculates DIDO precoder weights (matrix W) to pre-cancel interference caused by I/Q gain and phase imbalance and user interference, and transmits data to users through the wireless channel 1304 . User equipment m employs a ZF, MMSE or ML receiver 1308 to cancel the remaining interference by utilizing the channel estimate provided by unit 1304 and demodulates the data.

可采用以下三个实施方式来实现这I/Q补偿算法。The following three implementations can be used to implement the I/Q compensation algorithm.

方法1-TX补偿:在该实施方式中,发射机根据(4)中的标准来计算预编码矩阵。在接收机处,用户设备采用“简化的”ZF接收机,其中被假设为对角矩阵。因此,公式(8)简化为:Method 1 - TX Compensation: In this embodiment, the transmitter calculates the precoding matrix according to the criteria in (4). At the receiver, the UE employs a "simplified" ZF receiver, where with is assumed to be a diagonal matrix. Therefore, formula (8) simplifies to:

方法2-RX补偿:在该实施方式中,发射机基于R.Chen,R.W.Heath,andJ.G.Andrews,"Transmit selection diversity for unitary precodedmultiuserspatial multiplexing systems with linear receivers,"accepted to IEEETrans,onSignal Processing,2005中描述的传统BD方法,计算预编码矩阵,且不针对(4)中的标准来消除载波间和用户间干扰。利用该方法,(2)和(3)中的预编码矩阵简化为:Method 2 - RX Compensation: In this embodiment, the transmitter is based on R.Chen, R.W.Heath, and J.G.Andrews, "Transmit selection diversity for unitary precodedmultiuserspatial multiplexing systems with linear receivers," accepted to IEEETrans, onSignal Processing, 2005 The traditional BD method described in , calculates the precoding matrix, and does not address the criteria in (4) to eliminate inter-carrier and inter-user interference. Using this approach, the precoding matrices in (2) and (3) simplify to:

在接收机处,用户设备如(8)中那样采用ZF滤波器。注意,该方法并不如上述方法1那样,在发射机处预先消除干扰。因此,其在接收机处消除载波间干扰,但并不能消除用户间干扰。此外,相比于方法1要求反馈在方法2中,用户仅需要反馈针对发射机的向量以计算DIDO预编码器。因此,方法2特别适于具有低速率反馈信道的DIDO系统。另一方面,方法2需要用户设备处具有稍微较高的计算复杂度,以在(8)(而非(11))中计算ZF接收机。At the receiver, the user equipment employs a ZF filter as in (8). Note that this method does not pre-cancel interference at the transmitter as in Method 1 above. Therefore, it cancels inter-carrier interference at the receiver, but not inter-user interference. Also, compared to method 1 requiring feedback with In method 2, the user only needs to feed back the vector for the transmitter to compute the DIDO precoder. Therefore, Method 2 is especially suitable for DIDO systems with low-rate feedback channels. On the other hand, Method 2 requires a slightly higher computational complexity at the user equipment to compute the ZF receiver in (8) instead of (11).

方法3-TX-RX补偿:在一种实施方式中,将上述两个方法合并。发射机如(4)那样计算预编码矩阵,而接收机根据(8)来对发送符号进行估计。Method 3-TX-RX Compensation: In one embodiment, the above two methods are combined. The transmitter calculates the precoding matrix as in (4), and the receiver estimates the transmitted symbols according to (8).

I/Q不平衡(无论是相位不平衡、增益不平衡,抑或是延迟不平衡)会对无线通信系统中的信号质量造成有害的降级。针对此原因,以往的电路均被设计成具有较低的不平衡。然而,如上所述,可通过使用发射预编码形式的数字信号处理和/或特定接收机,修正该问题。本发明的一种实施方式包括具有多个新功能单元的系统,每个单元对于实现OFDM通信系统或DIDO-OFDM通信系统中的I/Q校正均是很重要的。I/Q imbalances (whether phase imbalances, gain imbalances, or delay imbalances) can detrimentally degrade signal quality in wireless communication systems. For this reason, conventional circuits have been designed to have low unbalance. However, as mentioned above, this problem can be corrected by using digital signal processing in the form of transmit precoding and/or specific receivers. One embodiment of the present invention includes a system with several new functional units, each of which is important for realizing I/Q correction in an OFDM communication system or a DIDO-OFDM communication system.

本发明的一种实施方式使用基于信道状况信息的预编码,以消除OFDM系统中来自镜像调的载波间干扰(ICI)(因I/Q不匹配导致)。如图11所示,根据本实施方式的DIDO发射机包括用户选择器单元1102、多个编码调制单元1104、对应的多个映射单元1106、DIDO IQ已知预编码单元1108、多个RF发射机单元1114、用户反馈单元1112以及DIDO配置器单元1110。One embodiment of the present invention uses precoding based on channel condition information to eliminate inter-carrier interference (ICI) (caused by I/Q mismatch) from image modulation in OFDM systems. As shown in Figure 11, the DIDO transmitter according to this embodiment includes a user selector unit 1102, a plurality of code modulation units 1104, a plurality of corresponding mapping units 1106, a DIDO IQ known precoding unit 1108, and a plurality of RF transmitters unit 1114 , user feedback unit 1112 , and DIDO configurator unit 1110 .

所述用户选择器单元1102基于反馈单元1112所获取的反馈信息,选择与多个用户U1-UM相关联的数据,并将该信息提供给多个编码调制单元1104中的每个编码调制单元1104。每个编码调制单元1104对每个用户的信息比特进行编码和解调,并将它们发送至映射单元1106。该映射单元1106将输入比特映射至复数符号,并将结果发送至DIDO IQ已知预编码单元1108。该DIDO IQ已知预编码单元1108利用反馈单元1112从用户获取的信道状况信息,计算DIDO IQ已知预编码权重,并对从映射单元1106获取的输入符号进行预编码。每一个预编码数据流均由DIDO IQ已知预编码单元1108发送至OFDM单元1115,该OFDM单元1115计算IFFT,并加入循环前缀。该信息被发送至D/A单元1116,该D/A单元1116进行数模转换,并将其发送至RF单元1114。该RF单元1114将基带信号升频至中频/射频,并将其发送至发射天线。The user selector unit 1102 selects data associated with a plurality of users U 1 -U M based on the feedback information obtained by the feedback unit 1112, and provides the information to each coded modulation unit 1104 in the plurality of coded modulation units 1104 Unit 1104. Each coding and modulating unit 1104 codes and demodulates the information bits of each user, and sends them to the mapping unit 1106 . The mapping unit 1106 maps the input bits to complex symbols and sends the result to the DIDO IQ-aware precoding unit 1108 . The DIDO IQ known precoding unit 1108 calculates DIDO IQ known precoding weights by using the channel state information obtained from the user by the feedback unit 1112 , and precodes the input symbols obtained from the mapping unit 1106 . Each precoded data stream is sent by the DIDO IQ known precoding unit 1108 to the OFDM unit 1115, and the OFDM unit 1115 calculates IFFT and adds a cyclic prefix. This information is sent to the D/A unit 1116 which performs digital to analog conversion and sends it to the RF unit 1114 . The RF unit 1114 upconverts the baseband signal to IF/RF and sends it to the transmit antenna.

所述预编码器对常规调和镜像调一起进行操作,以补偿I/Q不平衡。可使用任意数量的预编码器设计标准,包括ZF、MMSE或加权MMSE设计。在优选实施方式中,预编码器可完全移除因I/Q不匹配所导致的ICI,从而使得接收机不需要执行任何附加补偿。The precoder operates on both normal and mirrored modulation to compensate for I/Q imbalance. Any number of precoder design criteria can be used, including ZF, MMSE or weighted MMSE designs. In a preferred embodiment, the precoder can completely remove the ICI caused by the I/Q mismatch, so that the receiver does not need to perform any additional compensation.

在一种实施方式中,所述预编码器使用块对角化标准,以在不完全消除每一用户的I/Q影响(这需要附加接收机处理)的情况下,完全消除用户间干扰。在另一实施方式中,所述预编码器使用零强制标准来完全消除因I/Q不平衡所导致的用户间干扰以及ICI干扰。该实施方式可在接收机处使用传统的DIDO-OFDM处理器。In one embodiment, the precoder uses a block diagonalization criterion to completely cancel inter-user interference without completely canceling the I/Q impact of each user, which requires additional receiver processing. In another embodiment, the precoder uses a zero forcing criterion to completely eliminate inter-user interference and ICI interference caused by I/Q imbalance. This embodiment can use a conventional DIDO-OFDM processor at the receiver.

本发明的一种实施方式使用基于信道状况信息的预编码,以消除DIDO-OFDM系统中来自镜像调的载波间干扰(ICI)(因I/Q不匹配所导致),且每一用户采用IQ已知DIDO接收机。如图12所示,在本发明的一种实施方式中,系统(包括接收机1202)包括多个RF单元1208、相应地多个A/D单元1210、IQ已知信道估计器单元1204以及DIDO反馈生成器单元1206。One embodiment of the present invention uses precoding based on channel condition information to eliminate inter-carrier interference (ICI) (caused by I/Q mismatch) from image modulation in DIDO-OFDM systems, and each user adopts IQ DIDO receivers are known. As shown in FIG. 12, in one embodiment of the present invention, the system (including the receiver 1202) includes a plurality of RF units 1208, a corresponding plurality of A/D units 1210, an IQ known channel estimator unit 1204, and a DIDO Feedback generator unit 1206 .

所述RF单元1208接收从DIDO发射机单元1114发送的信号,将该信号降频至基带,并将该降频后的信号提供给A/D单元1210。之后,该A/D单元1210对该信号进行模数转换,并将其发送至OFDM单元1213。该OFDM单元1213移除循环前缀,并进行FFT,以将该信号报告至频域。在训练周期期间,OFDM单元1213将输出发送至IQ已知信道估计单元1204,该IQ已知信道估计单元1204在频域中计算信道估计。可选地,可在时域中计算所述信道估计。在数据周期(data period)期间,OFDM单元1213将输出发送至IQ已知接收机单元1202。该IQ已知接收机单元计算IQ接收机,并对所述信号进行解调/解码,以获取数据1214。所述IQ已知信道估计单元1204发送所述信道估计至DIDO反馈生成器单元1206,该反馈生成器单元1204可对所述信道估计进行量化,并经由反馈控制信道1112而将其发回发射机。The RF unit 1208 receives the signal transmitted from the DIDO transmitter unit 1114 , down-converts the signal to baseband, and provides the down-converted signal to the A/D unit 1210 . Afterwards, the A/D unit 1210 performs analog-to-digital conversion on the signal and sends it to the OFDM unit 1213 . The OFDM unit 1213 removes the cyclic prefix and performs FFT to report the signal to the frequency domain. During the training period, the OFDM unit 1213 sends output to the IQ-aware channel estimation unit 1204, which computes the channel estimate in the frequency domain. Optionally, the channel estimate may be computed in the time domain. During a data period, the OFDM unit 1213 sends an output to the IQ-aware receiver unit 1202 . The IQ known receiver unit calculates an IQ receiver and demodulates/decodes the signal to obtain data 1214. The IQ-aware channel estimation unit 1204 sends the channel estimate to the DIDO feedback generator unit 1206, which may quantize the channel estimate and send it back to the transmitter via the feedback control channel 1112 .

图12所示的接收机1202可在任意数量的本领域技术人员所公知的标准(包括ZF、MMSE、最大似然或MAP接收机)下工作。在一优选实施方式中,接收机使用MMSE滤波器来消除因镜像调上的IQ不平衡所导致的ICI。在另一优选实施方式中,接收机使用类似于最大似然搜索的非线性检测器来联合检测镜像调上的符号。该方法具有良好的性能,但具有更高的复杂度。The receiver 1202 shown in FIG. 12 may operate under any number of standards known to those skilled in the art, including ZF, MMSE, maximum likelihood or MAP receivers. In a preferred embodiment, the receiver uses an MMSE filter to remove ICI caused by IQ imbalance on image modulation. In another preferred embodiment, the receiver uses a non-linear detector similar to a maximum likelihood search to jointly detect the image-on-tone symbols. This method has good performance but has higher complexity.

在一种实施方式中,使用IQ已知信道估计器1204来确定接收机系数,以移除ICI。因此,我们要求了DIDO-OFDM系统(使用基于信道状况信息的预编码来消除来自镜像调的载波间干扰(ICI)(因I/Q不匹配所导致))、IQ已知DIDO接收机以及IQ已知信道估计器的权益。所述信道估计器可使用传统的训练信号,或可使用在同相正交信号上发送的专门构建的训练信号。可实施任意数量的估计算法,包括最小二乘法、MMSE或最大似然。所述IQ已知信道估计器为IQ已知接收机提供输入。In one embodiment, an IQ-aware channel estimator 1204 is used to determine receiver coefficients to remove ICI. Therefore, we require a DIDO-OFDM system (using precoding based on channel condition information to cancel inter-carrier interference (ICI) from image tones (caused by I/Q mismatch)), an IQ-aware DIDO receiver, and an IQ The benefit of the known channel estimator. The channel estimator may use conventional training signals, or may use specially constructed training signals sent on in-phase quadrature signals. Any number of estimation algorithms can be implemented, including least squares, MMSE or maximum likelihood. The IQ-aware channel estimator provides input to an IQ-aware receiver.

信道状况信息可通过信道互易性或通过反馈信道而被提供给站点。本发明的一实施方式包括DIDO-OFDM系统,该系统具有I/Q已知预编码器,以及用于将来自用户终端的信道状况信息传输至站点的I/Q已知反馈信道。该反馈信道可为物理或逻辑控制信道。其可在随机访问信道中被专用或共享。可通过使用用户终端(我们也要求了该用户终端的权益)处的DIDO反馈生成器来生成反馈信息。所述DIDO反馈生成器将所述I/Q已知信道估计器的输出作为输入。其可量化信道系数,或可使用任意数量本领域所公知的有限反馈算法。Channel condition information may be provided to the stations through channel reciprocity or through a feedback channel. An embodiment of the present invention includes a DIDO-OFDM system with an I/Q-aware precoder and an I/Q-aware feedback channel for transmitting channel condition information from a user terminal to a station. The feedback channel can be a physical or logical control channel. It can be dedicated or shared in the random access channel. Feedback information can be generated by using a DIDO Feedback Generator at the user terminal (which we also claim the rights to). The DIDO feedback generator takes as input the output of the I/Q known channel estimator. It can quantize the channel coefficients, or it can use any number of finite feedback algorithms known in the art.

用户的分配、调制及编码率、至空时频编码时隙的映射可根据所述DIDO反馈生成器的结果而变化。因此,一实施方式包括IQ已知DIDO配置器,该配置器使用来自一个或多个用户的IQ已知信道估计来配置DIDO IQ已知预编码器,选择调制率、编码率、允许发送的用户的子集、以及他们的至空时频编码时隙的映射。Allocation of users, modulation and coding rates, mapping to space-time-frequency coded slots can vary according to the results of the DIDO feedback generator. Therefore, an embodiment includes an IQ-aware DIDO configurator that uses IQ-aware channel estimates from one or more users to configure a DIDO IQ-aware precoder, selects modulation rate, coding rate, users allowed to transmit and their mappings to space-time-frequency coded slots.

为了评价所提出的补偿方法的性能,将比较三个DIDO 2×2系统:To evaluate the performance of the proposed compensation method, three DIDO 2×2 systems will be compared:

1、具有I/Q不匹配:通过所有的调(除了DC调和边缘调)进行发送,且不对I/Q不匹配进行补偿;1. With I/Q mismatch: send through all modulations (except DC modulation and edge modulation), and do not compensate for I/Q mismatch;

2、具有I/Q补偿:通过所有的调进行发送,且通过使用上述“方法1”来对I/Q不匹配进行补偿;2. With I/Q compensation: send through all tunes, and compensate for I/Q mismatch by using "method 1" above;

3、理想的:仅通过奇数个调进行发送,以避免用户间干扰以及因I/Q不匹配所导致的载波间(即,来自镜像调的)干扰。3. Ideal: transmit over odd tones only to avoid inter-user interference as well as inter-carrier (ie, from imaged tones) interference due to I/Q mismatch.

在此之后,展示了真实传播情形中利用DIDO-OFDM原型进行测量所获取的结果。图14绘示了从上述三个系统所获取的64-QAM星座图。这些星座图是在同一用户位置以及固定平均信噪比(~45dB)的情况下获取的。第一星座图1401是非常嘈杂的(由于I/Q不平衡所导致来自镜像调的干扰)。第二星座图1402示出了一些改进(由于I/Q补偿)。注意,第二星座图1402并没有星座图1403所示的理想情况那样纯净(由于存在可能产生载波间干扰(ICI)的相位噪声)。Following this, the results obtained from measurements with the DIDO-OFDM prototype in real propagation scenarios are shown. Fig. 14 shows the 64-QAM constellation diagrams obtained from the above three systems. These constellations were acquired at the same user location and with a fixed average SNR (~45dB). The first constellation 1401 is very noisy (interference from image tones due to I/Q imbalance). The second constellation diagram 1402 shows some improvement (due to I/Q compensation). Note that the second constellation diagram 1402 is not as clean as the ideal case shown in constellation diagram 1403 (due to the presence of phase noise that may generate inter-carrier interference (ICI)).

图15示出了在具有和不具有I/Q不匹配的情况下,64-QAM和3/4编码率的DIDO 2×2系统的平均SER(符号差错率)1501和每用户实际吞吐量(goodput)1502。OFDM带宽为250KHZ,具有64个调且循环前缀长度Lcp=4。由于在理想情况下,我们仅通过调的子集来发送数据,因此根据平均每调的发射功率(而非总的发射功率)来评价SER和实际吞吐量性能,以保证不同情况之间的公平比较。此外,在以下结果中,我们使用发射功率的归一化值(以分贝标示),因为我们此处的目标是比较不同方案的相对(而非绝对)性能。图15示出了在存在I/Q不平衡的情况下,SER饱和且未达到目标SER(~10-2),这与A.Tarighat andA.H.Sayed,"MIMO OFDM receiversfor systems with IQ imbalances,"IEEETrans.Sig.Proc,vol.53,pp.3583-3596,Sep.2005中报告的结果相一致。该饱和效应是由于以下事实导致的,即信号功率和干扰功率(来自镜像调的)随着TX功率的增大而增大。然而,通过所提出的I/Q补偿方法,可消除干扰,并获得较好地SER性能。注意,由于64-QAM调制需要较大的发射功率,因此,可因为DAC中的振幅饱和效应而导致SER在高SNR处会具有细微的增大。Figure 15 shows the average SER (Symbol Error Rate) 1501 and the actual throughput per user ( Goodput) 1502. OFDM bandwidth is 250KHZ, has 64 tones and cyclic prefix length L cp =4. Since in an ideal case, we only send data through a subset of tones, the SER and actual throughput performance are evaluated based on the average transmit power per tone (rather than the total transmit power) to ensure fairness between different cases Compare. Also, in the following results, we use the normalized value of transmit power (expressed in decibels), since our goal here is to compare the relative (not absolute) performance of different schemes. Figure 15 shows that in the presence of I/Q imbalance, the SER is saturated and the target SER (~10 -2 ) is not reached, which is consistent with A.Tarighat and A.H.Sayed, "MIMO OFDM receivers for systems with IQ imbalances, "The results reported in IEEE Trans.Sig.Proc, vol.53, pp.3583-3596, Sep.2005 are consistent. This saturation effect is due to the fact that the signal power and the interference power (from the image tone) increase with increasing TX power. However, with the proposed I/Q compensation method, interference can be eliminated and better SER performance can be obtained. Note that since 64-QAM modulation requires large transmit power, there may be a slight increase in SER at high SNR due to amplitude saturation effects in the DAC.

此外,可观察到,在存在I/Q补偿的情况下,SER性能非常接近理想情况。此两种情况之间,TX功率的2dB间隙是由于相位噪声(该相位噪声可能会在相邻OFDM调之间产生附加干扰)造成的。最后,实际吞吐量曲线1502示出了当应用I/Q方法时,其相比于理想情况可发送两倍的数据,因为我们使用了所有的数据调而非仅奇数调(针对理想情况)。Furthermore, it can be observed that in the presence of I/Q compensation, the SER performance is very close to ideal. The 2dB gap in TX power between these two cases is due to phase noise which may create additional interference between adjacent OFDM tones. Finally, the actual throughput curve 1502 shows that when the I/Q method is applied, it can send twice as much data compared to the ideal case because we use all data tones instead of only odd tones (for the ideal case).

图16图示了在具有I/Q补偿或不具有I/Q补偿的情况下,不同QAM星座图的SER性能。我们可观察到,在此实施方式中,所提出的方法对于64-QAM星座图而言是特别有利的。对于4-QAM和16-QAM而言,I/Q补偿方法会产生比具有I/Q不匹配的情况更差的性能,这可能是因为所提出的方法要求更大的功率来进行数据发送以及来自镜像调的干扰消除。此外,由于星座点之间的较大的最小距离,4-QAM和16-QAM并不如64-QAM那样受到I/Q不匹配的影响。参见A.Tarighat,R.Bagheri,和A.H.Sayed,"Compensation schemes and performanceanalysis of IQ imbalances in OFDMreceivers,"Signal Processing,IEEETransactions on[还可参见Acoustics,Speech,and Signal Processing,IEEETransactions on],vol.53,pp.3257-3268,Aug.2005。还可观察图16并通过将I/Q不匹配与针对4-QAM和16-QAM的理想情况进行比较而得出该结论。因此,对于4-QAM和16-QAM的情况而言,具有干扰消除(来自镜像调的)的DIDO预编码器所需要的附加功率并不能为I/Q补偿的小小利益作保。注意,可通过采用上述I/Q补偿方法2和3来解决该问题。Figure 16 illustrates the SER performance of different QAM constellations with or without I/Q compensation. We can observe that, in this embodiment, the proposed method is particularly advantageous for 64-QAM constellations. For 4-QAM and 16-QAM, the I/Q compensation method will produce worse performance than the case with I/Q mismatch, which may be because the proposed method requires more power for data transmission and Interference cancellation from mirrored tones. Furthermore, 4-QAM and 16-QAM are not as affected by I/Q mismatch as 64-QAM due to the larger minimum distance between constellation points. See A.Tarighat, R. Bagheri, and A.H. Sayed, "Compensation schemes and performance analysis of IQ imbalances in OFDM receivers," Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], vol.53, pp.3257-3268, Aug.2005. This conclusion can also be drawn by observing Figure 16 and comparing the I/Q mismatch to the ideal case for 4-QAM and 16-QAM. Therefore, the additional power required for a DIDO precoder with interference cancellation (from image modulation) does not warrant a small benefit of I/Q compensation for the 4-QAM and 16-QAM cases. Note that this problem can be solved by employing I/Q compensation methods 2 and 3 above.

最后,在不同的传播情况下,测量了上述三个方法的相对SER性能。还描述了在存在I/Q不匹配的情况的SER性能,以供参考。图17绘示了针对载波频率为450.5MHZ且带宽为250KHz的64-QAM DIDO 2×2系统,在两个不同的用户位置所测量的SER。在位置1,用户与处于不同房间且处于NLOS(无视距)状态的BS相距~6λ。在位置2,用户与具有LOS(视距)的BS相距~λ。Finally, the relative SER performance of the above three methods is measured under different propagation scenarios. The SER performance in the presence of I/Q mismatch is also described for reference. FIG. 17 shows the measured SER at two different user locations for a 64-QAM DIDO 2×2 system with a carrier frequency of 450.5 MHz and a bandwidth of 250 KHz. At location 1, the user is ~6λ away from the BS in a different room and in NLOS (no line-of-sight) state. At location 2, the user is at a distance of ~λ from the BS with LOS (Line of Sight).

图17示出了所有三种补偿方法均比不进行补偿的情况表现突出。然而,应该注意的是,在任何信道情形下,方法3均胜过其他两种补偿方法。方法1和2的相对性能取决于传播情况。通过实际测量活动,可得出方法1大体上胜过方法2,因为其预先消除了(在发射机处)I/O不平衡所导致的用户间干扰。当该用户间干扰很小时,如图17的曲线图1702所示,方法2可胜过方法1,因为其不会遭受因I/Q补偿预编码器所导致的功率损耗。Figure 17 shows that all three compensation methods outperform no compensation. However, it should be noted that Method 3 outperforms the other two compensation methods in any channel situation. The relative performance of methods 1 and 2 depends on the propagation situation. From actual measurement campaigns, it can be concluded that method 1 generally outperforms method 2 because it preempts (at the transmitter) inter-user interference caused by I/O imbalance. When the inter-user interference is small, as shown in the graph 1702 of FIG. 17 , method 2 can outperform method 1 because it does not suffer from the power loss caused by the I/Q compensation precoder.

到目前为止,已通过仅考虑有限组传播情形(如图17所示)而对不同方法进行了比较。在此之后,在理想i.i.d.(独立且具同分布的)信道中测量这些方法的相对性能。利用发射和接收侧的I/Q相位和增益不平衡来仿真DIDO-OFDM系统。图18示出了在仅发射机侧具有增益平衡的情况下(即,在第一发射链路的I轨上具有增益0.8,在其他轨上具有增益1),所提出的方法的性能。可看出,方法3胜过了所有其他方法。此外,与图17的曲线图1702中位置2处获得结果相比,在i.i.d.信道中,方法1可比方法2更好地执行。So far, the different methods have been compared by considering only the finite group propagation case (as shown in Figure 17). Afterwards, the relative performance of these methods is measured in ideal i.i.d. (independent and identically distributed) channels. Simulate DIDO-OFDM systems with I/Q phase and gain imbalances on the transmit and receive sides. Fig. 18 shows the performance of the proposed method with gain balancing on the transmitter side only (ie, with a gain of 0.8 on the I rail of the first transmit chain and a gain of 1 on the other rails). It can be seen that method 3 outperforms all other methods. Furthermore, method 1 may perform better than method 2 in the i.i.d. channel compared to the results obtained at position 2 in the graph 1702 of FIG. 17 .

因此,给出了三种新型方法来补偿上述DIDO-OFDM系统中的I/Q不平衡,方法3胜过所提出的其他补偿方法。在具有低速率反馈信道的系统中,可使用方法2来减小DIDO预编码所需的反馈量,但会导致较差的SER性能。Therefore, three novel methods are given to compensate the I/Q imbalance in the above DIDO-OFDM system, and method 3 outperforms other proposed compensation methods. In systems with low-rate feedback channels, method 2 can be used to reduce the amount of feedback required for DIDO precoding, but results in poorer SER performance.

Ⅱ、自适应DIDO发送方案 Ⅱ. Adaptive DIDO transmission scheme

将描述用于增强分布式输入分布式输出(DIDO)系统的性能的系统和方法的另一实施方式。该方法通过跟踪变化的信道状态,动态地将无线资源分配给不同的用户设备,以在满足某些目标误码率的同时增大吞吐量。所述用户设备对信道质量进行估计,并将其反馈至基站(BS);该基站对获取自用户设备的信道质量进行处理,以选择用于下一次发送的最佳用户设备集合、DIDO方案、调制/编码方案(MCS)以及阵列配置;所述基站经由预编码而将并行数据发送至多个用户设备,且信号在接收机处被解调。Another embodiment of a system and method for enhancing the performance of a Distributed-Input Distributed-Output (DIDO) system will be described. The method dynamically allocates radio resources to different user equipments by tracking the changing channel state to increase throughput while meeting certain target bit error rates. The user equipment estimates the channel quality and feeds it back to the base station (BS); the base station processes the channel quality obtained from the user equipment to select the best user equipment set, DIDO scheme, Modulation/coding scheme (MCS) and array configuration; the base station transmits parallel data to multiple user equipments via precoding, and the signal is demodulated at the receiver.

还描述一为DIDO无线链路有效分配资源的系统。该系统包括具有DIDO配置器的DIDO基站,该基站对接收自用户的反馈进行处理,以选择用于下一次发送的最佳用户集合、DIDO方案、调制/编码方案(MCS)以及阵列配置;DIDO系统中的接收机,该接收机对信道和其他相关参数进行测量,以生成DIDO反馈信号;以及DIDO反馈控制信道,用于将来自用户的反馈信息传输给基站。A system for efficiently allocating resources for DIDO wireless links is also described. The system includes a DIDO base station with a DIDO configurator that processes feedback received from users to select the best set of users, DIDO scheme, modulation/coding scheme (MCS), and array configuration for the next transmission; DIDO A receiver in the system that measures the channel and other related parameters to generate a DIDO feedback signal; and a DIDO feedback control channel for transmitting feedback information from users to the base station.

如以下所详述的,本发明该实施方式的一些显著特征可包括,但不限于:As detailed below, some salient features of this embodiment of the invention may include, but are not limited to:

用于基于信道质量信息,自适应地选择用户数量、DIDO发送方案(即,天线选择或复用)、调制/编码方案(MCS)以及阵列配置,以最小化SER,或最大化每用户的频谱效率或下行链路频谱效率的技术;Used to adaptively select the number of users, DIDO transmission scheme (i.e., antenna selection or multiplexing), modulation/coding scheme (MCS), and array configuration to minimize SER, or maximize spectrum per user, based on channel quality information efficiency or downlink spectral efficiency techniques;

用于定义多组DIDO发送模式以作为DIDO方案和MCS的组合的技术;Techniques for defining multiple sets of DIDO transmission patterns as a combination of DIDO schemes and MCS;

用于根据信道状态将不同DIDO模式指派给不同的时隙、OFDM调和DIDO子流的技术;Techniques for assigning different DIDO patterns to different slots, OFDM tones and DIDO sub-streams depending on channel state;

用于基于不同用户的信道质量将不同DIDO模式动态地指派给不同用户的技术;Techniques for dynamically assigning different DIDO patterns to different users based on their channel quality;

用于基于在时域、频域和空域中所计算的链路质量度量对自适应DIDO切换进行激活的标准;Criteria for activation of adaptive DIDO handover based on link quality metrics computed in time, frequency and space domains;

用于基于查找表对自适应DIDO切换进行激活的标准。Standard for lookup table based activation of adaptive DIDO switching.

如图19所示的在基站处具有DIDO配置器的DIDO系统,该系统可基于信道质量信息,自适应地选择用户数量、DIDO发送方案(即,天线选择或复用)、调制/编码方案(MCS)以及阵列配置,以最小化SER,或最大化每用户的频谱效率或下行链路频谱效率;19 shows a DIDO system with a DIDO configurator at the base station, which can adaptively select the number of users, DIDO transmission scheme (i.e., antenna selection or multiplexing), modulation/coding scheme ( MCS) and array configurations to minimize SER, or maximize spectral efficiency per user or downlink spectral efficiency;

如图20所示的在基站处具有DIDO配置器且在每个用户设备处具有DIDO反馈生成器的DIDO系统,该系统使用所估计的信道状况和/或接收机处的其他参数(类似于所估计的SNR),以生成输入至DIDO配置器的反馈消息。A DIDO system with a DIDO configurator at the base station and a DIDO feedback generator at each user equipment as shown in Figure 20 uses the estimated channel conditions and/or other parameters at the receiver (similar to the estimated SNR) to generate a feedback message that is input to the DIDO configurator.

DIDO系统,该系统具有DIDO配置器(在基站处)、DIDO反馈生成器以及DIDO反馈控制信道(该DIDO反馈信道用于将DIDO特定配置信息从用户传输至基站)。A DIDO system with a DIDO configurator (at the base station), a DIDO feedback generator, and a DIDO feedback control channel (the DIDO feedback channel is used to transmit DIDO specific configuration information from the user to the base station).

a、背景 a. Background

在多输入多输出(MIMO)系统中,可构想分集方案(例如,正交空时分组码(OSTBC)(参见V.Tarokh,H.Jafarkhani,and A.R.Calderbank,“Spacetime block codes fromorthogonal designs,”IEEE Trans.Info.Th.,vol.45,pp.1456-467,JuI.1999)或天线选择(参见R.W.Heath Jr.,S.Sandhu,andA.J.Paulraj,“Antenna selection for spatialmultiplexing systems with linearreceivers,”IEEE Trans.Comm.,vol.5,pp.142-144,Apr.2001),以防止信道衰减,提高链路可靠性(该可靠性可转换为更佳的覆盖率)。另一方面,空间复用(SM)可以以多个并行数据发送作为手段来增强系统吞吐量。参见G.J.Foschini,G.D.Golden,R.A.Valenzuela,和P.W.Wolniansky,“Simplifedprocessingfor high spectral effciency wireless communication employingmultielementarrays,”IEEE Jour.Select.Areas in Comm.,vol.17,no.11,pp.1841-1852,Nov.1999。根据来源于L.Zheng和D.N.C.Tse,“Diversity andmultiplexing:a fundamental tradeoffin multiple antenna channels,”IEEE Trans.Info.Th.,vol.49,no.5,pp.1073-1096,May 2003的理论分集/复用折中,这些益处可在MIMO系统中同时实现。一实际实施形式为通过跟踪变化的信道状态,在分集和复用发送方案之间进行自适应切换。In multiple-input multiple-output (MIMO) systems, diversity schemes (e.g., Orthogonal Space-Time Block Codes (OSTBC)) can be conceived (see V.Tarokh, H. Jafarkhani, and A.R. Calderbank, "Spacetime block codes from orthogonal designs," IEEE Trans.Info.Th., vol.45, pp.1456-467, JuI.1999) or antenna selection (see R.W.Heath Jr., S.Sandhu, and A.J.Paulraj, "Antenna selection for spatial multiplexing systems with linear receivers, "IEEE Trans.Comm., vol.5, pp.142-144, Apr.2001) to prevent channel fading and improve link reliability (which translates into better coverage). On the other hand, Spatial multiplexing (SM) can use multiple parallel data transmissions as a means to enhance system throughput. See G.J. Foschini, G.D. Golden, R.A. Valenzuela, and P.W. Wolniansky, "Simplifed processing for high spectral efficiency wireless communication employing multielement arrays," IEEE Jour.Select. Areas in Comm., vol.17, no.11, pp.1841-1852, Nov. 1999. According to L. Zheng and D.N.C.Tse, "Diversity and multiplexing: a fundamental tradeoffin multiple antenna channels," IEEE Trans.Info. Th., vol.49, no.5, pp.1073-1096, May 2003 Theoretical diversity/multiplexing trade-offs, these benefits can be realized simultaneously in MIMO systems.A practical implementation form is by tracking the changing channel state, Adaptive switching between diversity and multiplexing transmission schemes.

现已提出了大量自适应MIMO发送技术。R.W.Heath和A.J.Paulraj,“Switchingbetween diversity and multiplexing in MIMO systems,”IEEETrans.Comm.,vol.53,no.6,pp.962-968,Jun.2005中的分集/复用切换方法被设计成基于瞬时信道质量信息,改进针对固定速率发送的BER(比特误码率)。可选地,可如S.Catreux,V.Erceg,D.Gesbert,和R.W.Heath.Jr.,“Adaptive modulation and MIMO coding for broadband wirelessdatanetworks,”IEEE Comm.Mag.,vol.2,pp.108-115,June 2002(“Catreux”)中那样,采用统计信道信息来对自适应进行激活,从而减小反馈开销以及控制消息的数量。Catreux中的自适应发送算法被设计成基于信道时/频选择指示符,针对正交频分复用(OFDM)系统中的预定目标误码率,增强频谱效率。还针对窄带系统,提出了类似的低反馈自适应方法,该方法利用信道空间选择性来在分集方案与空间复用之间进行切换。参见例如A.Forenza,M.R.McKay,A.Pandharipande,R.W.Heath.Jr.,和I.B.Collings,“AdaptiveMIMOtransmission for exploiting the capacity of spatially correlatedchannels,”accepted to the IEEE Trans,on Veh.Tech.,M ar.2007;M.R.McKay,I.B.Collings,A.Forenza,and R.W.Heath.Jr.,“Multiplexing/beamformingswitchingfor coded MIMO in spatially correlated Rayleigh channels,”被接受至IEEE Trans,on Veh.Tech.,Dec.2007;A.Forenza,M.R.McKay,R.W.Heath.Jr.,和I.B.Collings,“Switching between OSTBC and spatial multiplexing withlinear receivers inspatially correlated MIMO channels,”Proc.IEEE Veh.Technol.Conf.,vol.3,pp.1387-1391,May 2006;M.R.McKay,I.B.Collings,A.Forenza,和R.W.Heath Jr.,“Athroughput-based adaptive MIMO BICMapproach for spatially correlatedchannels,”出现在Proc.IEEE ICC,June 2006。A large number of adaptive MIMO transmission techniques have been proposed. The diversity/multiplexing switching method in R.W.Heath and A.J.Paulraj, "Switching between diversity and multiplexing in MIMO systems," IEEETrans.Comm., vol.53, no.6, pp.962-968, Jun.2005 is designed based on Instantaneous channel quality information, improving BER (Bit Error Rate) for fixed rate transmissions. Alternatively, as in S.Catreux, V.Erceg, D.Gesbert, and R.W.Heath.Jr., "Adaptive modulation and MIMO coding for broadband wirelessdatanetworks," IEEE Comm.Mag., vol.2, pp.108- 115, as in June 2002 ("Catreux"), uses statistical channel information to activate the adaptation, thereby reducing the feedback overhead and the number of control messages. Adaptive transmission algorithms in Catreux are designed to enhance spectral efficiency for predetermined target bit error rates in Orthogonal Frequency Division Multiplexing (OFDM) systems based on channel time/frequency selection indicators. Also for narrowband systems, a similar low-feedback adaptive approach is proposed that exploits channel spatial selectivity to switch between diversity schemes and spatial multiplexing. See, eg, A. Forenza, M.R. McKay, A. Pandharipande, R.W. Heath. Jr., and I.B. Collings, "Adaptive MIMO transmission for exploiting the capacity of spatially correlated channels," accepted to the IEEE Trans, on Veh. Tech., M ar. 2007 ; M.R.McKay, I.B.Collings, A.Forenza, and R.W.Heath.Jr., “Multiplexing/beamforming switching for coded MIMO in spatially correlated Rayleigh channels,” Accepted to IEEE Trans, on Veh.Tech., Dec. 2007; A.Forenza , M.R.McKay, R.W.Heath.Jr., and I.B.Collings, "Switching between OSTBC and spatial multiplexing with linear receivers spatially correlated MIMO channels," Proc.IEEE Veh.Technol.Conf.,vol.3,pp.1387-1391,May 2006; M.R.McKay, I.B.Collings, A.Forenza, and R.W.Heath Jr., “Athroughput-based adaptive MIMO BICMproach for spatially correlated channels,” in Proc. IEEE ICC, June 2006.

在该资料中,我们将各种先前公开中所展现的工作范围扩展至DIDO-OFDM系统。参见例如R.W.Heath和A.J.Paulraj,“Switching betWeendiversity and multiplexing inMIMO systems,”IEEE Trans.Comm.,vol.53,no.6,pp.962-968,Jun.2005;S.Catreux,V.Erceg,D.Gesbert,和R.W.Heath Jr.,“Adaptive modulation and MIMO coding forbroadband wireless datanetworks,”IEEE Comm.Mag.,vol.2,pp.108-115,June 2002;A.Forenza,M.R.McKay,A.Pandharipande,R.W. Heath Jr.,和I.B.Collings,“AdaptiveMIMO transmission for exploiting the capacity of spatiallycorrelated channels,”IEEE Trans,on Veh.Tech.,vol.56,n.2,pp.619-630,Mar.2007;M.R.McKay,I.B.Collings,A.Forenza,和R.W.Heath Jr.,“Multiplexing/beamformingswitching for coded MIMO in spatially correlated Rayleighchannels,”被接受至IEEE Trans,on Veh.Tech.,Dec.2007;A.Forenza,M.R.McKay,R.W.HeathJr.,和I.B.Collings,“Switching between OSTBC and spatial multiplexingwithlinear receivers in spatially correlated MIMO channels,”Proc.IEEEVeh.Technol.Conf.,vol.3,pp.1387-1391,May 2006;M.R.McKay,I.B.Collings,A.Forenza,和R.W.Heath Jr.,“A throughput-based adaptive MIMO BICMapproach forspatially correlated channels,”出现在Proc.IEEE ICC,June 2006。In this work, we extend the scope of work presented in various previous publications to DIDO-OFDM systems. See eg R.W.Heath and A.J.Paulraj, "Switching betWeendiversity and multiplexing in MIMO systems," IEEE Trans.Comm., vol.53, no.6, pp.962-968, Jun. 2005; S.Catreux, V.Erceg, D .Gesbert, and R.W.Heath Jr., "Adaptive modulation and MIMO coding for broadband wireless datanetworks," IEEE Comm.Mag., vol.2, pp.108-115, June 2002; A.Forenza, M.R.McKay, A.Pandharipande, R.W. Heath Jr., and I.B. Collings, "Adaptive MIMO transmission for exploiting the capacity of spatially correlated channels," IEEE Trans, on Veh. Tech., vol.56, n.2, pp.619-630, Mar. 2007; M.R. McKay , I.B.Collings, A.Forenza, and R.W.Heath Jr., “Multiplexing/beamforming switching for coded MIMO in spatially correlated Rayleighchannels,” accepted to IEEE Trans, on Veh.Tech., Dec. 2007; A.Forenza, M.R.McKay, R.W. Heath, Jr., and I.B. Collings, “Switching between OSTBC and spatial multiplexing with linear receivers in spatially correlated MIMO channels,” Proc.IEEEVeh.Technol.Conf., vol.3, pp.1387-1391, May 2006; M.R.McKays, I.B.Coll , A. Forenza, and R.W. Heath Jr., “A throughput-based adaptive MIMO BICMproach forspatially co related channels," appeared in Proc. IEEE ICC, June 2006.

在此描述了新型自适应DIDO发送策略,该策略以基于信道质量信息在不同数量的用户、不同数量的发射天线以及发送方案之间进行切换作为一种手段来改进系统性能。注意,M.Sharif和B.Hassibi,“On the capacity ofMIMO broadcast channel with partialside information,”IEEE Trans.Info.Th.,vol.51,p.506522,Feb.2005以及W.Choi,A.Forenza,J.G.Andrews,和R.W.Heath Jr.,“Opportunistic space division multipleaccess with beam selection,”出现在IEEE Trans,on Communications中已提出了在多用户MIMO系统中自适应选择用户的方案。然而,这些公开中的机会性的(opportunistic)空分复用接入(OSDMA)方案被设计成通过利用多用户分集来最大化总的容量,且他们仅能够实现脏纸(dirty paper)码的部分理论容量,因为并未在发射机处完全预先消除干扰。在在此所述的DIDO发送算法中,采用块对角化来预先消除用户间干扰。然而,所提出自适应发送策略可以应用于任何DIDO系统,无需考虑预编码技术的类型。A novel adaptive DIDO transmission strategy is described here that switches between different numbers of users, different numbers of transmit antennas, and transmission schemes based on channel quality information as a means to improve system performance. Note, M. Sharif and B. Hassibi, "On the capacity of MIMO broadcast channel with partialside information," IEEE Trans.Info.Th., vol.51, p.506522, Feb.2005 and W.Choi, A.Forenza, J.G. Andrews, and R.W. Heath Jr., "Opportunistic space division multiple access with beam selection," appeared in IEEE Trans, on Communications. A scheme for adaptive selection of users in multi-user MIMO systems has been proposed. However, the opportunistic space division multiple access (OSDMA) schemes in these publications are designed to maximize the total capacity by exploiting multi-user diversity, and they are only able to realize the Partial theoretical capacity, since the interference is not fully pre-cancelled at the transmitter. In the DIDO transmission algorithm described herein, block diagonalization is employed to pre-cancel inter-user interference. However, the proposed adaptive transmission strategy can be applied to any DIDO system regardless of the type of precoding technique.

本专利申请描述了上述本发明以及在先申请的实施方式的扩展,包括但不限于以下附加特征:This patent application describes the invention described above and extensions of the embodiments of the earlier applications, including but not limited to the following additional features:

1、可由无线客户装置采用在先申请中用于信道估计的训练符号来对自适应DIDO方案中的链路质量度量进行评价。1. The link quality metrics in the adaptive DIDO scheme can be evaluated by wireless client devices using the training symbols used for channel estimation in the prior application.

2、如在先申请中所述那样,基站接收来自客户端设备的信号特征数据。在当前实施方式中,信号特征数据被定义为用于对自适应进行激活的链路质量度量。2. A base station receives signal characteristic data from a client device as described in the prior application. In the current implementation, signal characteristic data is defined as a link quality metric for activating adaptation.

3、在先申请描述了一用于选择天线和用户数量的机制,并定义了吞吐量分配。此外,可如在先申请那样,将不同级别的吞吐量动态地指派给不同客户端。本发明的当前实施方式定义了与该选择和吞吐量分配相关的新型标准。3. The prior application describes a mechanism for selecting antennas and number of users and defines throughput allocation. Furthermore, different levels of throughput can be dynamically assigned to different clients as in the prior application. The current implementation of the invention defines a new type of criteria related to this selection and throughput allocation.

b、本发明的实施方式 b. Embodiments of the present invention

所提出的自适应DIDO技术的目标为通过将时间、频率以及空间中的无线资源动态分配给系统中的不同用户来增强每用户的频谱效率或下行链路频谱效率。该整体自适应标准用于在满足目标误码率的同时,提高吞吐量。根据传播状态,还可使用该自适应算法经由分集方案来改进用户的链路质量(或覆盖率)。图21显示的流程图描述了自适应DIDO方案的步骤。The proposed adaptive DIDO technique aims to enhance per-user spectral efficiency or downlink spectral efficiency by dynamically allocating radio resources in time, frequency, and space to different users in the system. This overall adaptive criterion is used to increase throughput while meeting the target bit error rate. Depending on the propagation state, this adaptive algorithm can also be used to improve the link quality (or coverage) of the user via a diversity scheme. Figure 21 shows a flowchart describing the steps of the adaptive DIDO scheme.

在2102,基站(BS)收集来自所有用户的信道状况信息。在2104,根据所接收的CSI,基站在时域/频域/空域计算链路质量度量。在2106,使用这些链路质量度量来选择将在下一传输中被服务的用户,以及针对每一用户的发送模式。注意,发送模式包括调制/编码以及DIDO方案的不同组合。最后,在2108,BS经由DIDO预编码而将数据发送至用户。At 2102, a base station (BS) collects channel condition information from all users. At 2104, based on the received CSI, the base station calculates a link quality metric in time domain/frequency domain/space domain. At 2106, the link quality metrics are used to select the users to be served in the next transmission, and the transmission mode for each user. Note that the transmit modes include different combinations of modulation/coding and DIDO schemes. Finally, at 2108, the BS transmits the data to the user via DIDO precoding.

在2102,基站选择来自所有用户设备的信道状况信息(CSI)。在2104,基站使用该CSI来确定所有用户设备的瞬时或统计信道质量。在DIDO-OFDM系统中,可在时域、频域和空域对信道质量(或链路质量度量)进行估计。之后,在2106,基站使用链路质量度量来确定最佳用户子集以及用于当前传播状态的发送模式。DIDO发送模式集合被组合为DIDO方案(即,天线选择或复用)、调制/编码方案(MCS)以及阵列配置的组合。在2108,通过使用所选用户数量以及发送模式,将数据发送至用户设备。At 2102, the base station selects channel condition information (CSI) from all user equipments. At 2104, the base station uses the CSI to determine instantaneous or statistical channel quality for all user equipments. In DIDO-OFDM systems, channel quality (or link quality metrics) can be estimated in time, frequency and space domains. Thereafter, at 2106, the base station uses the link quality metric to determine the best subset of users and transmission mode for the current propagation state. A set of DIDO transmission patterns is combined as a combination of DIDO scheme (ie, antenna selection or multiplexing), modulation/coding scheme (MCS), and array configuration. At 2108, the data is transmitted to the user equipment using the selected number of users and the transmission mode.

可通过查找表(LUT)(该查找表是基于DIDO系统不同传播环境中的误码率性能而被预先计算的)来进行模式选择。这些LUT将信道质量信息映射至误码率性能。为了构建LUT,可根据SNR评价DIDO系统在不同传播情形中误码率性能。从误码率曲线可看出,可计算实现某一预定目标误码率所需的最小SNR。我们将该SNR需求定义为SNR阈值。之后,在不同的传播情形以及针对不同的DIDO发送模式来评价SNR阈值,并将其存储在LUT中。例如,可使用图24和图26中SER结果来构建LUT。之后,根据该LUT,基站可选择针对活动用户的发送模式,该模式可在满足预定目标误码率的同时提高吞吐量。最后,基站经由DIDO预编码而将数据发送至所选用户。注意,可将不同DIDO模式指派给不同的时隙、OFDM调以及DIDO子流,以使得可在时域、频域和空域进行自适应。Mode selection may be performed by a look-up table (LUT) that is pre-computed based on the bit error rate performance of the DIDO system in different propagation environments. These LUTs map channel quality information to bit error rate performance. In order to construct the LUT, the BER performance of the DIDO system in different propagation scenarios can be evaluated according to the SNR. From the bit error rate curve, it can be seen that the minimum SNR required to achieve a predetermined target bit error rate can be calculated. We define this SNR requirement as the SNR threshold. Afterwards, the SNR threshold is evaluated in different propagation scenarios and for different DIDO transmission modes and stored in the LUT. For example, the SER results in Figure 24 and Figure 26 can be used to construct the LUT. Then, based on this LUT, the base station can select a transmission mode for active users that improves throughput while meeting a predetermined target bit error rate. Finally, the base station transmits the data to the selected users via DIDO precoding. Note that different DIDO patterns can be assigned to different time slots, OFDM tones and DIDO sub-streams so that adaptation can be done in time, frequency and space domains.

图19-图20显示了采用DIDO自适应的系统的一种实施方式。引入了若干新的功能单元来实施所提出的DIDO自适应算法。具体而言,在一种实施方式中,DIDO配置器1910可基于用户设备所提供的信道质量信息1912,执行多种功能,包括选择用户数量、DIDO发送方案(即,天线选择和复用)、调制/编码方案(MCS)以及阵列配置。Figures 19-20 show an embodiment of a system using DIDO adaptation. Several new functional units are introduced to implement the proposed DIDO adaptive algorithm. Specifically, in one embodiment, the DIDO configurator 1910 can perform various functions based on the channel quality information 1912 provided by the user equipment, including selecting the number of users, DIDO transmission scheme (ie, antenna selection and multiplexing), Modulation/coding scheme (MCS) and array configuration.

用户选择器单元1902基于由DIDO配置器1910所获取的反馈信息,选择与多个用户U1-UM相关联的数据,并将该信息提供每多个编码调制单元1904中的每个编码调制单元。每个编码调制单元1904对每个用户的信息比特进行编码和调制,并将他们发送至映射单元1906。该映射单元1906将输入比特映射至复数符号,并将其发送至预编码单元1908。编码调制单元1904和映射单元1906均利用获取自DIDO配置器单元1910的信息,选择为每一用户所采用的调制/编码方案类型。所述信息可由配置器单元1910通过利用反馈单元1912所提供的每一用户的信道质量信息来计算。DIDO预编码单元1908利用由DIDO配置器单元1910所获取的信息来计算DIDO预编码权重,并对获取自映射单元1906的输入符号进行预编码。由DIDO预编码单元1906将每一预编码后的数据流发送至OFDM单元1915,该OFDM单元1915计算IFFT并加入循环前缀。将该信息发送至D/A单元1916,该D/A单元1916进行数模转换,并将最终的模拟信号发送至RF单元1914。该RF单元1914将基带信号升频至中频/射频,并将其发送至发射天线。User selector unit 1902 selects data associated with multiple users U 1 -UM based on the feedback information obtained by DIDO configurator 1910 and provides this information to each coded modulation unit 1904 in each plurality of coded modulation units 1904. unit. Each coding and modulation unit 1904 codes and modulates the information bits of each user, and sends them to the mapping unit 1906 . The mapping unit 1906 maps input bits to complex symbols and sends them to the precoding unit 1908 . Both the coded modulation unit 1904 and the mapping unit 1906 use the information obtained from the DIDO configurator unit 1910 to select the type of modulation/coding scheme to be used for each user. The information may be calculated by the configurator unit 1910 by utilizing the channel quality information of each user provided by the feedback unit 1912 . The DIDO precoding unit 1908 uses the information obtained by the DIDO configurator unit 1910 to calculate DIDO precoding weights and precodes the input symbols obtained from the mapping unit 1906 . Each precoded data stream is sent by DIDO precoding unit 1906 to OFDM unit 1915, which calculates IFFT and adds cyclic prefix. This information is sent to D/A unit 1916 which performs digital to analog conversion and sends the final analog signal to RF unit 1914 . The RF unit 1914 upconverts the baseband signal to IF/RF and sends it to the transmit antenna.

每一客户端设备的RF单元2008接收从DIDO发射机单元1914发送的信号,将该信号降频至基带,并将降频之后的信号提供给A/D单元2010。之后,该A/D单元2010将该信号从模拟转换为数字,并将其发送至OFDM单元2013。该OFDM单元2013移除循环前缀,并执行FFT,以将信号报告至频域。在训练周期,OFDM单元2013将输出发送至信道估计单元2004,该信道估计单元2004在频域中计算信道估计。可选地,可在时域计算信道估计。在数据周期期间,OFDM单元2013将输出发送至接收机单元2002,该接收机单元2002对信号进行解调/解码,以获取数据2014。所述信道估计单元2004将信道估计发送至DIDO反馈生成器单元2006,该DIDO反馈生成器单元2006可对信道估计进行量化,并经由反馈控制信道1912而将其发回发射机。The RF unit 2008 of each client device receives the signal transmitted from the DIDO transmitter unit 1914 , down-converts the signal to baseband, and supplies the down-converted signal to the A/D unit 2010 . Afterwards, the A/D unit 2010 converts the signal from analog to digital and sends it to the OFDM unit 2013 . The OFDM unit 2013 removes the cyclic prefix and performs FFT to report the signal to the frequency domain. During the training period, the OFDM unit 2013 sends output to the channel estimation unit 2004, which computes the channel estimate in the frequency domain. Alternatively, the channel estimate can be computed in the time domain. During data periods, OFDM unit 2013 sends output to receiver unit 2002 which demodulates/decodes the signal to obtain data 2014 . The channel estimation unit 2004 sends the channel estimate to the DIDO feedback generator unit 2006 which may quantize the channel estimate and send it back to the transmitter via the feedback control channel 1912 .

所述DIDO配置器1910可使用在基站处得到的信息,或在优选实施方式中,额外使用工作于每一用户设备处的DIDO反馈生成器2006(参见图20)的输出。该DIDO反馈生成器2006使用所估计的信道状况2004和/或接收机处的类似于所估计的SNR的其他参数来生成将被输入至DIDO配置器1910的反馈消息。所述DIDO反馈生成器2006可在接收机处对信息进行压缩、量化和/或使用本领域所公知的一些有限反馈策略。The DIDO configurator 1910 may use information obtained at the base station or, in a preferred embodiment, additionally use the output of the DIDO feedback generator 2006 (see Fig. 20 ) operating at each user equipment. The DIDO feedback generator 2006 uses the estimated channel conditions 2004 and/or other parameters at the receiver like the estimated SNR to generate feedback messages to be input to the DIDO configurator 1910 . The DIDO feedback generator 2006 can compress, quantize and/or use some limited feedback strategy known in the art at the receiver to compress the information.

所述DIDO配置器1910可使用从DIDO反馈控制信道1912恢复的信息。DIDO反馈控制信道为逻辑或物理控制信道,该信道可用于将DIDO反馈生成器2006的输出从用户发送至基站。控制信道1912可以以任意数量的本领域所公知的方式实施,且可为逻辑或物理控制信道。作为物理信道,其可包括指派给用户的专用时隙/频隙。其还可为由所有用户共享的随机访问信道。所述控制信道可被预先指派,或可由现有的控制信道中预定方式的侵占比特(stealing bits)来创建。The DIDO configurator 1910 may use information recovered from the DIDO feedback control channel 1912 . The DIDO Feedback Control Channel is a logical or physical control channel that can be used to transmit the output of the DIDO Feedback Generator 2006 from the user to the base station. Control channel 1912 may be implemented in any number of ways known in the art and may be a logical or physical control channel. As a physical channel, it may comprise dedicated time/frequency slots assigned to users. It can also be a random access channel shared by all users. The control channel may be pre-assigned, or may be created by stealing bits in an existing control channel in a predetermined manner.

在以下论述中,将在真实传播环境中描述通过利用DIDO-OFDM原型进行测量所获取的结果。这些结果表明了自适应DIDO系统中潜在增益的可实现性。首先展现不同级别DIDO系统的性能,表明可增大天线/用户数量,以实现更大的下行链路吞吐量。之后,描述与用户设备的位置有关的DIDO性能,表明需要跟踪变化的信道状态。最后,对采用分集技术的DIDO系统的性能进行描述。In the following discussion, the results obtained by making measurements with the DIDO-OFDM prototype will be described in a real propagation environment. These results demonstrate the achievability of potential gains in adaptive DIDO systems. The performance of different classes of DIDO systems is first presented, showing that the number of antennas/users can be increased to achieve greater downlink throughput. Afterwards, the DIDO performance in relation to the location of the user equipment is described, showing the need to track changing channel states. Finally, the performance of the DIDO system using diversity technology is described.

i、不同级别DIDO系统的性能i. Performance of different levels of DIDO systems

利用越来越多的发射天线(N=M,其中M为用户数量)来评价不同DIDO系统的性能。将以下系统的性能进行比对:SISO、DIDO 2×2、DIDO 4×4、DIDO 6×6以及DIDO 8×8。DIDON×M指在BS处具有N个发射天线以及M个用户的DIDO。The performance of different DIDO systems is evaluated with an increasing number of transmit antennas (N=M, where M is the number of users). Compare the performance of the following systems: SISO, DIDO 2×2, DIDO 4×4, DIDO 6×6, and DIDO 8×8. DIDON x M refers to DIDO with N transmit antennas and M users at the BS.

图22显示了发射/接收天线布局。以方形阵列配置来布置发射天线2201,且用户位于发射阵列周围。在图22,T指代“发射”天线,U指“用户设备”2202。Figure 22 shows the transmit/receive antenna layout. The transmit antennas 2201 are arranged in a square array configuration with users positioned around the transmit array. In FIG. 22 , T refers to a "transmit" antenna and U refers to a "user equipment" 2202 .

8元发射阵列中的不同天线子集处于活动状态,这取决于针对不同测量所选取的N值。对于每一DIDO级别(N),选择可对8元阵列的固定大小约束所针对的最大真实地区进行覆盖的天线子集。该标准被期望可增强给定N值的空间分集。Different subsets of antennas in the 8-element transmit array are active, depending on the value of N chosen for different measurements. For each DIDO level (N), the subset of antennas that can cover the largest real area targeted by the fixed size constraint of the 8-element array is selected. This criterion is expected to enhance spatial diversity for a given value of N.

图23示出了针对适合可用真实地区(即,虚线)的不同DIDO级别的阵列配置。方形虚框具有24”×24”的尺寸,对应于450MHz载波频率处的~λ×λ。Figure 23 shows array configurations for different DIDO levels fitting the available real area (ie, dashed lines). The square dotted box has dimensions of 24"x24", corresponding to ~λxλ at the 450MHz carrier frequency.

基于与图23相关的评述以及参考图22,现将定义并比较以下系统中每一系统的性能:Based on the comments related to Figure 23 and with reference to Figure 22, the performance of each of the following systems will now be defined and compared:

具有T1和U1的SISO(2301)SISO with T1 and U1 (2301)

具有T1,2和U1,2的DIDO 2×2(2302)DIDO 2×2 with T1,2 and U1,2 (2302)

具有T1,2,3,4和U1,2,3,4的DIDO 4×4(2303)DIDO 4×4 with T1,2,3,4 and U1,2,3,4 (2303)

具有T1,2,3,4,5,6和U1,2,3,4,5,6的DIDO 6×6(2304)DIDO 6×6 with T1,2,3,4,5,6 and U1,2,3,4,5,6 (2304)

具有T1,2,3,4,5,6,7,8和U1,2,3,4,5,6,7,8的DIDO 8×8(2305)DIDO 8×8 with T1,2,3,4,5,6,7,8 and U1,2,3,4,5,6,7,8 (2305)

图24示出了在4-QAM和1/2FEC(前向纠错)率情况下,上述DIDO系统中SER、BER、SE(频谱效率)和实际吞吐量性能与发射(TX)功率的函数关系。观察得出,SER和BER性能会因N值增大而下降。该影响是由以下两个现象造成的:对于固定的TX功率,DIDO阵列的输入功率会在越来越多的用户(或数据流)之间被分割;空间分集会随着实际DIDO信道中的用户数量的增大而减小。Figure 24 shows the SER, BER, SE (Spectral Efficiency) and actual throughput performance as a function of transmit (TX) power for the DIDO system described above for 4-QAM and 1/2 FEC (Forward Error Correction) rate . It has been observed that the SER and BER performance degrades as the value of N increases. This effect is caused by two phenomena: for a fixed TX power, the input power of the DIDO array is split among more and more users (or data streams); the spatial diversity increases with the actual DIDO channel decrease as the number of users increases.

如图24所示,为了比较不同级别DIDO系统的相对性能,将目标BER固定为10-4(该值可根据系统而变化),该值大致对应于SER=10-2。我们将对应于该目标的TX功率值称之为TX功率阈值(TPT)。对于任何N,如果TX功率低于TPT,我们假设不可能在DIDO级别N下进行发送,且我们需要切换至更低级别的DIDO。此外,在图24,可观察得出,当TX功率超过针对任意N值的TPT时,SE和实际吞吐量性能会达到饱和。根据这些结果,可将自适应发送策略设计成在不同级别DIDO之间进行切换,以增强针对固定预定目标误码率的SE或实际吞吐量。As shown in Fig. 24, in order to compare the relative performance of different levels of DIDO systems, the target BER is fixed at 10 -4 (this value can vary according to the system), which roughly corresponds to SER=10 -2 . We refer to the TX power value corresponding to this target as TX Power Threshold (TPT). For any N, if the TX power is lower than TPT, we assume that it is not possible to transmit at DIDO level N, and we need to switch to a lower level of DIDO. Furthermore, in Fig. 24, it can be observed that when the TX power exceeds the TPT for any value of N, the SE and actual throughput performance saturates. Based on these results, an adaptive transmission strategy can be designed to switch between different levels of DIDO to enhance SE or actual throughput for a fixed predetermined target error rate.

ⅱ、可变用户位置情况下的性能ii. Performance in case of variable user location

该试验的目标在于,经由在空间关联信道中进行仿真,评价不同用户位置的DIDO性能。DIDO 2×2系统被视为具有4QAM以及1/2FEC率。如图25所示,用户1位于发射阵列的侧射(broadside)方向,而用户2的位置从侧射方向变为端射(endfire)方向。发射天线间隔-λ/2,且与用户相隔-2.5λ。The goal of this experiment is to evaluate the DIDO performance at different user locations via simulations in spatially correlated channels. A DIDO 2x2 system is considered to have 4QAM and 1/2FEC rate. As shown in FIG. 25 , User 1 is located in the broadside direction of the transmit array, while User 2's position changes from the broadside direction to the endfire direction. The transmitting antennas are separated by -λ/2 and separated by -2.5λ from the user.

图26示出了针对用户设备2的不同位置,SER和每用户的SE结果。从发射阵列的边射方向测量,用户设备的到达角度(AOA)为0°至90°。观察得出,随着用户设备的角距增大,DIDO性能将会提升,因为DIDO信道内存在更大的分集。此外,在目标SER=10-2处,AOA2=0°与AOA2=90°这两种情况之间存在10dB的间隙。该结果与图35中针对角度扩展10°所获得仿真结果一致。此外,注意,对于AOA1=AOA2=0°的情况而言,两个用户之间可能存在耦合效应(因他们的天线相邻近所导致),这可能会使得他们的性能与图35中的仿真结果不同。Fig. 26 shows the SER and SE results per user for different locations of user equipment 2. The user equipment has an Angle of Arrival (AOA) of 0° to 90° as measured from the broadside of the transmitting array. It is observed that as the angular separation of the UEs increases, the DIDO performance will improve due to the greater diversity within the DIDO channel. Furthermore, at the target SER=10 −2 , there is a gap of 10 dB between the two cases of AOA2=0° and AOA2=90°. This result is consistent with the simulation results obtained for an angular extension of 10° in Figure 35. Also, note that for the case of AOA1=AOA2=0°, there may be coupling effects between the two users (caused by the proximity of their antennas), which may make their performance different from the simulation results in Figure 35 different.

ⅲ、针对DIDO 8×8的优选情形ⅲ. Optimal situation for DIDO 8×8

图24显示了DIDO 8×8产生比更低级DIDO更大的SE,但具有更高TX功率需求。该分析的目标在于示出存在该情况,即DIDO 8×8不仅在峰值频谱效率(SE)方面,而且还在TX功率需求(或TPT)方面,胜过DIDO2×2,以实现所述峰值SE。Figure 24 shows that DIDO 8×8 produces larger SEs than lower-level DIDOs, but has higher TX power requirements. The goal of this analysis is to show that there is a case where DIDO 8×8 outperforms DIDO 2×2 not only in terms of peak spectral efficiency (SE), but also in terms of TX power requirements (or TPT) to achieve said peak SE .

注意,在i.i.d.(理想)信道中,TX功率在DIDO 8×8与DIDO 2×2的SE之间存在~6dB的间隙。该间隙是因该事实导致的,即DIDO 8×8将TX功率在8个数据流之间进行了分割,而DIDO 2×2仅在两个流之间进行分割。该结果经由图32中的仿真而被示出。Note that in the i.i.d. (ideal) channel, there is a ~6dB gap in TX power between the SE of DIDO 8×8 and DIDO 2×2. The gap is due to the fact that DIDO 8x8 splits the TX power between 8 data streams, while DIDO 2x2 splits it between only two streams. The results are shown via simulation in FIG. 32 .

然而,在空间关联信道中,TPT为传播环境特性(例如,阵列朝向、用户位置、角度扩展)的函数。例如,图35示出了针对两个不同用户设备位置之间的低角度扩展的~15dB间隙。本申请图26中展示了相类似的结果。However, in spatially correlated channels, TPT is a function of propagation environment characteristics (eg, array orientation, user location, angular spread). For example, Figure 35 shows a ~15dB gap for low angular spread between two different user equipment locations. Similar results are shown in Figure 26 of the present application.

类似于MIMO系统,当用户位于TX阵列的端射方向时,DIDO系统的性能会下降(因缺少分集所导致)。该影响可通过利用当前DIDO原型进行测量而观察得出。因此,一种示出DIDO 8×8胜过DIDO 2×2的方式为将用户置于相对于DIDO 2×2阵列的端射方向。在此情形,DIDO 8×8胜过了DIDO 2×2,因为8-天线阵列提供了更高的分集。Similar to MIMO systems, the performance of DIDO systems degrades (due to lack of diversity) when the user is located in the end-fire direction of the TX array. This effect can be observed by taking measurements with the current DIDO prototype. So, one way to show that DIDO 8x8 is better than DIDO 2x2 is to put the user in an end-fire orientation relative to the DIDO 2x2 array. In this case, DIDO 8x8 outperforms DIDO 2x2 because the 8-antenna array provides higher diversity.

在该分析中,考虑了以下系统:In this analysis, the following systems were considered:

系统1:4-QAM的DIDO 8×8(每时隙发送8个并行数据流);System 1: 4-QAM DIDO 8×8 (send 8 parallel data streams per slot);

系统2:64-QAM的DIDO 2×2(每4个时隙,对发送用户X和Y进行一次发送)。对于此系统,我们考虑TX和RX天线位置的四种组合:a)T1,T2U1,2(端射方向);b)T3,T4U3,4(端射方向);c)T5,T6U5,6(与端射方向相隔~30°);d)T7,T8U7,8(NLOS(无视距));System 2: 64-QAM DIDO 2×2 (every 4 time slots, send users X and Y once). For this system, we consider four combinations of TX and RX antenna positions: a) T1,T2U1,2 (endfire direction); b) T3,T4U3,4 (endfire direction); c) T5,T6U5,6 ( ~30° from endfire direction); d) T7,T8U7,8 (NLOS (no line-of-sight));

系统3:64-QAM的DIDO 8×8;以及System 3: DIDO 8×8 with 64-QAM; and

系统4:64-QAM的MISO 8×1(每8个时隙,对发送用户X进行一次发送)。System 4: MISO 8×1 of 64-QAM (every 8 time slots, the sending user X is sent once).

对于所有这些情况,使用3/4的FEC率。For all these cases, an FEC rate of 3/4 is used.

图27绘示了用户的位置。Figure 27 depicts the user's location.

在图28中,SER结果示出了由于不同的阵列方向和用户位置的在系统2a和2c之间的a~15dB的间隙(与在图35中的仿真结果相似)。在第二行中的第一子图示出了SE曲线饱和的TX功率的值(即,对应于BER 1e-4)。我们观察到系统1比系统2对于较低的TX功率需求(小于~5dB)产生了更大的每个用户的SE。而且,由于DIDO 8×8在DIDO 2×2上的复用增益,DIDO8×8相比于DIDO 2×2的好处对于DL(下行链路)SE和DL实际吞吐量来说更加明显。由于波束成形的阵列增益(即,具有MISO 8×1的MRC),系统4比系统1具有更低的TX功率需求(小于8dB)。但是系统4相比于系统1仅产生了每个用户的SE的1/3。系统2比系统1的性能差(即,对于较大的TX功率需求产生了较低的SE)。最后,系统3比系统1对于较大的TX功率需求(~15dB)产生了大得多的SE(由于较大的阶数(larger order)调制)。In Fig. 28, the SER results show a ~ 15dB gap between systems 2a and 2c due to different array orientations and user positions (similar to the simulation results in Fig. 35). The first panel in the second row shows the value of the TX power at which the SE curve is saturated (ie, corresponding to BER 1e-4). We observe that System 1 yields a larger SE per user than System 2 for lower TX power requirements (less than ~5dB). Moreover, due to the multiplexing gain of DIDO 8×8 over DIDO 2×2, the benefits of DIDO 8×8 over DIDO 2×2 are more obvious for DL (downlink) SE and DL actual throughput. System 4 has lower TX power requirements (less than 8dB) than System 1 due to beamforming array gain (ie, MRC with MISO 8×1). But System 4 only generates 1/3 of the SE per user compared to System 1. System 2 performed worse than System 1 (ie, yielded lower SE for larger TX power demands). Finally, System 3 yields a much larger SE (due to the larger order modulation) than System 1 for larger TX power requirements (~15dB).

根据这些结果,可以推断出以下结论:From these results, the following conclusions can be inferred:

一种信道情形被确认为DIDO 8×8胜过DIDO 2×2(即对于较低的TX功率需求产生了较大的SE);One channel scenario was identified as DIDO 8×8 outperforms DIDO 2×2 (i.e. yields larger SE for lower TX power requirements);

在该信道情形中,DIDO 8×8比DIDO 2×2和MISO 8×1产生了更大的每个用户的SE和DLSE;以及In this channel scenario, DIDO 8×8 produces larger SE and DLSE per user than DIDO 2×2 and MISO 8×1; and

可以通过以较大的TX功率需求(大于~15dB)为代价使用高阶调制(即64-QAM,而不是4-QAM)来进一步增大DIDO 8×8的性能。The performance of DIDO 8×8 can be further increased by using higher order modulation (i.e. 64-QAM instead of 4-QAM) at the expense of larger TX power requirements (greater than ~15dB).

iv.具有天线选择的DIDOiv. DIDO with antenna selection

下面,我们评估在由IEEE学报接收的在Signal Processing上在2005年由R.Chen、R.W.Heath和J.G.Andrews发表的“Transmit selection diversityfor unitary precodedmultiuser spatial multiplexing systems with linear receivers”中描述的天线选择算法的好处。我们用两个用户、4-QAM和1/2的FEC率来呈现用于一个特定DIDO系统的结果。以下系统在图27中被比较:Below, we evaluate the benefits of the antenna selection algorithm described in "Transmit selection diversity for unitary precoded multiuser spatial multiplexing systems with linear receivers" published in Signal Processing by R. Chen, R.W. Heath and J.G. Andrews in 2005, accepted by IEEE Transactions on . We present results for a specific DIDO system with two users, 4-QAM, and a FEC rate of 1/2. The following systems are compared in Figure 27:

具有T1,2和U1,2的DIDO 2×2;以及DIDO 2×2 with T1,2 and U1,2; and

具有T1,2,3和U1,2的使用天线选择的DIDO 3×2。DIDO 3×2 using antenna selection with T1,2,3 and U1,2.

发射天线位置和用户装置位置与图27中相同。The transmit antenna locations and user equipment locations are the same as in FIG. 27 .

图29示出了具有天线选择的DIDO 3×2与DIDO 2×2系统(不具有选择)相比可以提供~5dB的增益。注意信道几乎是静态的(即没有多普勒效应),所以选择算法适用于路径损耗和信道空间相关,而不是快速衰减。我们应当在具有高的多普勒效应的情形中看到不同的增益。而且,在该特定实验中,观察到天线选择算法选择天线2和3用于发送。Figure 29 shows that DIDO 3x2 with antenna selection can provide ~5dB gain compared to a DIDO 2x2 system (without selection). Note that the channel is nearly static (i.e. no Doppler effect), so the selection algorithm works with path loss and channel spatial correlation, rather than fast fading. We should see different gains in cases with high Doppler effect. Also, in this particular experiment, it was observed that the antenna selection algorithm selected antennas 2 and 3 for transmission.

iv.用于LUT的SNR阈值iv. SNR threshold for LUT

在选择[0171],我们声明了模式选择通过LUT实现。LUT可以通过评估SNR阈值来被预计算以实现在不同传播环境中用于DIDO发送模式的特定预定义的目标误码率性能。下面,我们提供了具有和不具有天线选择和可变化的用户数量的DIDO系统的性能,所述性能可以用作构造LUT的指导。虽然图24、图26、图28、图29通过用DIDO原型实际测量得到,但下面的图通过仿真得到。以下BER结果假设没有FEC。In option [0171], we state that mode selection is achieved via LUTs. LUTs can be pre-computed by evaluating SNR thresholds to achieve certain predefined target bit error rate performances for DIDO transmission modes in different propagation environments. Below, we provide the performance of DIDO systems with and without antenna selection and variable number of users, which can be used as a guideline for constructing LUTs. Although Figure 24, Figure 26, Figure 28, and Figure 29 were obtained by actual measurement with the DIDO prototype, the following figures are obtained by simulation. The following BER results assume no FEC.

图30示出了在独立同分布信道中不同的DIDO预编码方案的平均BER性能。标有“没有选择”的曲线是指使用BD的情况。在同一个图中,天线选择(ASel)的性能对于不同数量的额外天线(对于不同数量的用户)而被示出。可以看出,随着额外天线的数量增长,ASel提供更好的分集增益(以高SNR区的BER曲线的斜率为特征),产生了更好的覆盖。例如,如果我们将目标BER固定到10-2(对于未编码的系统的实际值),则由ASel提供的SNR增益随着天线的数量增长。Fig. 30 shows the average BER performance of different DIDO precoding schemes in independent identically distributed channels. Curves marked "no choice" refer to the case where BD was used. In the same figure, the performance of antenna selection (ASel) is shown for different numbers of extra antennas (for different numbers of users). It can be seen that ASel provides better diversity gain (characterized by the slope of the BER curve in the high SNR region) as the number of additional antennas grows, resulting in better coverage. For example, if we fix the target BER to 10-2 (a practical value for an uncoded system), the SNR gain provided by ASel grows with the number of antennas.

图31示出了对于不同的目标BER的作为在独立同分布信道中的额外发射天线的数量的函数的ASel的SNR增益。可以看出,仅通过添加1或2个天线,ASel与BD相比产生了巨大的SNR增益。在以下部分中,我们将仅对于1或2个额外天线的情况通过将目标BER固定到10-2(对于未编码的系统)来评估ASel的性能。Figure 31 shows the SNR gain of ASel as a function of the number of additional transmit antennas in the IID channel for different target BERs. It can be seen that by adding only 1 or 2 antennas, ASel produces a huge SNR gain compared to BD. In the following sections we will evaluate the performance of ASel by fixing the target BER to 10 −2 (for an uncoded system) only for the case of 1 or 2 extra antennas.

图32示出了对于在独立同分布信道中具有1和2个额外天线的BD和ASel的作为用户数量(M)的函数的SNR阈值。我们观察到由于对于较大数量的用户的较大的接收SNR需求,SNR阈值随着M增大。注意,我们假设对于任意数量的用户为固定的总发射功率(用不同数量的发射天线)。此外,图32示出了由于天线选择的增益对于在独立同分布信道中的任意数量的用户来说是恒定的。Figure 32 shows the SNR threshold as a function of the number of users (M) for BD and ASel with 1 and 2 extra antennas in i.d. channel. We observe that the SNR threshold increases with M due to the larger receive SNR requirement for a larger number of users. Note that we assume a fixed total transmit power (with varying numbers of transmit antennas) for any number of users. Furthermore, Figure 32 shows that the gain due to antenna selection is constant for any number of users in an i.d. channel.

下面,我们示出了在空间相关信道中的DIDO系统的性能。我们通过在X.Zhuang、F.W.Vook、K.L.Baum、T.A.Thomas和M.Cudak于2004年9月在IEEE 802.16BroadbandWireless Access Working Group上发表的“Channel models for link and systemlevel simulations”中描述的COST-259空间信道模型仿真每个用户的信道。我们生成用于每个用户的单一群。作为一种情况研究,我们假设了NLOS信道,在发射机有均匀线性阵列(ULA),元件间隔为0.5λ。对于2个用户系统的情况,我们对于第一和第二用户分别用到达的AOA1和AOA2的平均角来仿真群。AOA相对于ULA的侧面方向而被测量。当在系统中有多于两个的用户,我们生成具有在范围[-φm,φm]中的均匀间隔的平均AOA的用户的群,其中我们定义Below, we show the performance of the DIDO system in spatially correlated channels. We simulated by the COST-259 spatial channel model described in "Channel models for link and system level simulations" published by X.Zhuang, FWVook, KLBaum, TAThomas and M.Cudak in September 2004 on IEEE 802.16Broadband Wireless Access Working Group channel for each user. We generate a single group for each user. As a case study, we assume an NLOS channel with a uniform linear array (ULA) at the transmitter with an element spacing of 0.5λ. For the case of a 2-user system, we simulate the swarm with the mean angles of arrival AOA1 and AOA2 for the first and second user, respectively. AOA is measured relative to the lateral orientation of the ULA. When there are more than two users in the system, we generate groups of users with uniformly spaced average AOA in the range [-φ m , φ m ], where we define

K是用户的数量,△φ是用户的平均AOA之间的角距。注意角度范围[-φm,φm]中心为0°,对应于ULA的侧射方向。下面,我们用BD和ASel发送方案和不同的用户数量来研究作为信道角度分布(AS)和用户间的角距的函数的DIDO系统的BER性能。K is the number of users, and △φ is the angular distance between users' average AOA. Note that the angular range [ -φm , φm ] is centered at 0°, corresponding to the ULA's side-fire direction. In the following, we investigate the BER performance of the DIDO system as a function of the channel angular distribution (AS) and the angular separation between users using BD and ASel transmission schemes and different numbers of users.

图33示出了用于位于同一角度方向(即相对于ULA的侧射方向,AOA1=AOA2=0°)的具有不同AS值的两个用户的相对于每个用户的平均SNR的BER。可以看出,随着AS增大,BER性能改善且接近独立同分布情况。实际上,较高的AS在统计上产生了在两个用户的特征模式之间的较少覆盖和BD预编码器的更好的性能。Figure 33 shows the BER relative to the average SNR per user for two users with different AS values located in the same angular direction (ie AOA1 = AOA2 = 0° with respect to the side-fire direction of the ULA). It can be seen that as the AS increases, the BER performance improves and approaches the IID situation. In fact, a higher AS statistically yields less coverage between the two users' eigenpatterns and better performance of the BD precoder.

图34示出了与图33相似的结果,但在用户之间具有较高的角距。我们考虑AOA1=0°,AOA2=90°(即90°角距)。在低的AS的情况下实现了最好的性能。实际上,对于高的角距的情况,当角距低时,在用户的特征模式之间有较少的交迭。有趣的是,我们观察到对于刚刚提到的相同的理由,在低AS中的BER性能要好于独立同分布信道。Figure 34 shows similar results to Figure 33, but with a higher angular distance between users. We consider AOA1=0°, AOA2=90° (that is, 90° angular distance). The best performance is achieved with low AS. In fact, for the case of high angular separation, there is less overlap between the user's characteristic patterns when the angular separation is low. Interestingly, we observe better BER performance in low AS than IID channels for the same reasons just mentioned.

接下来,对于不同的相关情形中的10-2的目标BER,我们计算SNR阈值。图35绘出了对于用户的平均AOA的不同值的作为AS的函数的SNR阈值。对于低的用户角距,具有合理的SNR需求(即18dB)的可靠的发送仅对于以高AS为特征的信道是可能的。另一方面,当用户在空间上分离时,需要较小的SNR来满足相同的目标BER。Next, we calculate the SNR threshold for a target BER of 10 −2 in different correlation scenarios. Figure 35 plots the SNR threshold as a function of AS for different values of the average AOA of a user. For low user angular separations, reliable transmission with reasonable SNR requirements (ie 18dB) is only possible for channels characterized by high AS. On the other hand, when users are spatially separated, a smaller SNR is required to meet the same target BER.

图36示出了用于5个用户的情况的SNR阈值。根据(13)中的定义生成具有不同的角距△φ的值的用户平均AOA。我们观察到对于△φ=0°和AS<15°,由于用户之间的小的角距,BD性能很差,没有满足目标BER。对于增大的AS,满足固定的目标BER的SNR需求减小。另一方面,对于△φ=30°,在低的AS获得最小的SNR需求,与图35中的结果一致。随着AS增大,SNR阈值饱和至独立同分布信道中的一个。注意,具有5个用户的△φ=30°对应于[-60°,60°]的AOA范围,这对于具有120°扇形单元的蜂窝系统中的基站是典型的。Fig. 36 shows the SNR thresholds for the case of 5 users. Generate user average AOA with different values of angular distance Δφ according to the definition in (13). We observe that for △φ = 0° and AS < 15°, due to the small angular separation between users, BD performance is poor and the target BER is not met. For increasing AS, the SNR requirement to meet a fixed target BER decreases. On the other hand, for Δφ = 30°, the minimum SNR requirement is obtained at low AS, consistent with the results in Fig. 35. As AS increases, the SNR threshold saturates to one of the i.d. channels. Note that Δφ = 30° with 5 users corresponds to an AOA range of [−60°,60°], which is typical for a base station in a cellular system with 120° sectored cells.

接下来,我们研究了在空间相关信道中的ASel发送方案的性能。图37比较了对于两个用户情况的具有1个和2个额外天线的BD和ASel的SNR阈值。我们考虑了用户间的角距的两种不同情况:{AOA1=0°,AOA2=0°}以及{AOA1=0°,AOA2=90°}。用于BD方案(即没有天线选择)的曲线与在图35中相同。我们观察到ASel分别对于高的AS产生了具有1个和2个额外天线的8dB和10dB的SNR增益。随着AS减小,在BD上的由于ASel的增益由于在MIMO广播信道中的自由度的数量减少而变得更小。有趣的是,对于AS=0°(即接近于LOS信道)以及情况{AOA1=0°,AOA2=90°},ASel没有提供由于在空间域中的差异的任何增益。图38示出了与图37相似的结果,但是对于5个用户的情况。Next, we investigate the performance of the ASel transmission scheme in spatially correlated channels. Figure 37 compares the SNR thresholds of BD and ASel with 1 and 2 extra antennas for two user cases. We consider two different cases of angular distance between users: {AOA1=0°, AOA2=0°} and {AOA1=0°, AOA2=90°}. The curves for the BD scheme (ie no antenna selection) are the same as in FIG. 35 . We observe that ASel yields SNR gains of 8dB and 10dB with 1 and 2 extra antennas for high AS, respectively. As AS decreases, the gain due to ASel on BD becomes smaller due to the reduced number of degrees of freedom in the MIMO broadcast channel. Interestingly, for AS=0° (ie close to the LOS channel) and the case {AOA1=0°, AOA2=90°}, ASel does not provide any gain due to differences in the spatial domain. Figure 38 shows similar results to Figure 37, but for the case of 5 users.

我们对于BD和ASel发送方案计算了作为在系统中的用户数量(M)的函数的SNR阈值(假设10-2的一般目标BER)。SNR阈值对应于平均SNR,以使得总的发射功率对于任意M是恒定的。我们假设在方位角范围[-φmm]=[-60°,60°]内每个用户群的平均AOA之间的最大间隔。然后,用户之间的角距是△φ=120°/(M-1)。We calculated the SNR threshold as a function of the number of users (M) in the system (assuming a general target BER of 10 −2 ) for the BD and ASel transmission schemes. The SNR threshold corresponds to the average SNR such that the total transmit power is constant for any M. We assume the maximum separation between the mean AOAs of each user group within the azimuth range [-φ mm ] = [-60°,60°]. Then, the angular distance between users is Δφ=120°/(M-1).

图39示出了对于具有不同AS值的BD方案的SNR阈值。我们观察到由于用户之间的大的角距,对于具有相对较小数量的用户(即K≤20)的AS=0.1°(即低的角度扩散),获得最低的SNR需求。然而,对于M>50,由于△φ非常小以及BD不能实行,SNR需求远远大于40dB。此外,对于AS>10°,SNR阈值对于任意M几乎保持恒定,在空间相关信道中的DIDO系统接近独立同分布信道的性能。Figure 39 shows the SNR thresholds for BD schemes with different AS values. We observe that the lowest SNR requirement is obtained for AS=0.1° (ie low angular spread) with a relatively small number of users (ie K≤20) due to the large angular separation between users. However, for M>50, the SNR requirement is much greater than 40dB because Δφ is very small and BD cannot be implemented. Furthermore, for AS > 10°, the SNR threshold remains almost constant for any M, and the DIDO system in spatially correlated channels approaches the performance of independent and identically distributed channels.

为了减小SNR阈值的值并改善DIDO系统的性能,我们应用ASel发送方案。图40示出了对于具有1个和2个额外天线的BD和ASel的在具有AS=0.1°的空间相关信道中的SNR阈值。为了参考,我们还报告了用于在图32中示出的独立同分布情况的曲线。可以看到,对于较少的用户(即M≤10),由于在DIDO广播信道中缺少分集,天线选择没有帮助降低SNR需求。随着用户数量增加,ASel从多用户分集中受益,产生了SNR增益(即对于M=20为4dB)。此外,对于M≤20,在高的空间相关信道中的具有1个或2个额外天线的ASel的性能是相同的。To reduce the value of the SNR threshold and improve the performance of the DIDO system, we apply the ASel transmission scheme. Fig. 40 shows the SNR thresholds in a spatially correlated channel with AS = 0.1° for BD and ASel with 1 and 2 additional antennas. For reference, we also report the curves for the IID case shown in Figure 32. It can be seen that for fewer users (i.e. M≤10), antenna selection does not help reduce SNR requirements due to the lack of diversity in the DIDO broadcast channel. As the number of users increases, ASel benefits from multi-user diversity, resulting in an SNR gain (ie 4dB for M=20). Furthermore, for M≤20, the performance of ASel with 1 or 2 extra antennas in highly spatially correlated channels is the same.

然后我们计算对于两种另外的信道情形的SNR阈值:图41中的AS=5°和图42中的AS=10°。图41与图40相比,示出了由于较大的角度扩散,ASel产生了也用于相对较少数量的用户(即M≤10)的SNR增益。如在图42中报告的,对于AS=10°,SNR阈值进一步减少,由于ASel的增益变得更高。We then calculate the SNR thresholds for two additional channel situations: AS = 5° in Fig. 41 and AS = 10° in Fig. 42 . Fig. 41, compared with Fig. 40, shows that due to the larger angular spread, ASel yields SNR gains also for a relatively small number of users (ie M≤10). As reported in Fig. 42, for AS = 10°, the SNR threshold decreases further, as the gain of ASel becomes higher.

最后,我们总结了目前对于相关信道提出的结果。图43和图44示出了分别具有1个和2个额外天线的作为对于BD和ASel方案的用户数量(M)和角度扩散(AS)的函数的SNR阈值。注意,AS=30°的情况实际上对应于独立同分布信道,我们在图中使用AS的这个值用于图形表示。我们观察到,虽然BD被信道空间相关所影响,ASel产生了对于任意AS的几乎相同的性能。此外,对于AS=0.1°,由于多用户分集,ASel对于低的M与BD性能相似,而对于大的M(即M≥20)超过BD。Finally, we summarize the results presented so far for correlated channels. Figures 43 and 44 show the SNR threshold as a function of the number of users (M) and angular spread (AS) for the BD and ASel schemes with 1 and 2 additional antennas, respectively. Note that the case of AS = 30° actually corresponds to i.i.d. channels, and we use this value of AS in the figure for graphical representation. We observe that while BD is affected by channel spatial correlation, ASel yields almost the same performance for any AS. Furthermore, for AS = 0.1°, ASel performs similarly to BD for low M and outperforms BD for large M (ie, M ≥ 20) due to multiuser diversity.

图49比较了在SNR阈值方面不同的DIDO方案的性能。所考虑的DIDO方案是:BD、ASel、具有特征模式选择(BD-ESel)的BD以及最大比合并(MRC)。注意MRC没有预先消除在发射机处的干扰(不像其它方法),但在用户被空间分离的情况下提供了较大的增益。在图49中,我们绘出了当两个用户分别位于与发射阵列的侧射方向成-30°和30°时,对于DIDO N×2系统的对于目标BER=10-2的SNR阈值。我们观察到,对于低的AS,MRC方案与其它方案相比提供了3dB的增益,因为用户的空间信道被很好地分离,用户间的干扰的影响很小。注意,在DIDO N×2上的MRC的增益是由于阵列增益。对于大于20°的AS,QR-ASel方案超过其它方案并与不具有选择的BD 2×2相比产生了大约10dB的增益。QR-ASel和BD-ESel对于AS的任意值提供了大约相同的性能。Figure 49 compares the performance of different DIDO schemes in terms of SNR threshold. The DIDO schemes considered are: BD, ASel, BD with Eigenmode Selection (BD-ESel), and Maximum Ratio Combining (MRC). Note that MRC does not pre-cancel interference at the transmitter (unlike other methods), but provides greater gain in cases where users are spatially separated. In Fig. 49 we plot the SNR threshold for a DIDO N×2 system for a target BER = 10 −2 when two users are located at -30° and 30° from the side-fire direction of the transmit array, respectively. We observe that for low AS, the MRC scheme provides a 3dB gain compared to other schemes because the spatial channels of users are well separated and the influence of inter-user interference is small. Note that the gain of MRC over DIDO N×2 is due to array gain. For AS larger than 20°, the QR-ASel scheme outperforms the others and yields about 10 dB gain compared to BD 2x2 without the option. QR-ASel and BD-ESel provide about the same performance for arbitrary values of AS.

上面描述的是用于DIDO系统的新的自适应发送技术。该方法在DIDO发送模式之间动态转换到不同的用户来增强用于固定的目标误码率的吞吐量。不同级别的DIDO系统的性能在不同的传播情况下被测量,观察到在吞吐量的巨大增益可以通过动态选择作为传播情况的函数的DIDO模式和用户数量来实现。Described above is a new adaptive transmission technique for DIDO systems. The method dynamically switches between DIDO transmission modes to different users to enhance throughput for a fixed target bit error rate. The performance of different levels of DIDO systems is measured under different propagation conditions, and it is observed that a huge gain in throughput can be achieved by dynamically selecting the DIDO mode and number of users as a function of the propagation conditions.

III.频率和相位差的预补偿III. Precompensation of frequency and phase difference

a.背景a. Background

如之前所述,无线通信系统使用载波来传送信息。这些载波通常是正弦波,其振幅和/或相位响应于被发送的信息而被调制。正弦波的标称频率已知为载波频率。为了创建该波形,发射机合成一个或两个正弦波,并使用升频转换来创建重叠在具有指定载波频率的正弦波上的调制后的信号。这可以通过直接转换来实现,其中,信号在载波上或通过多个升频转换阶段被直接调制。为了处理该波形,接收机必须解调所接收到的RF信号,并有效地移除调制载波。这需要接收机合成一个或多个正弦信号来反转在发射机处的调制过程,已知为降频转换。遗憾的是,在发射机和接收机生成的正弦波信号从不同的基准振荡器获得。没有基准振荡器创建了完美(perfect)的频率基准;实际上,通常与实际频率有一些偏差。As mentioned earlier, wireless communication systems use carrier waves to transfer information. These carriers are typically sinusoidal waves whose amplitude and/or phase are modulated in response to the information being transmitted. The nominal frequency of the sine wave is known as the carrier frequency. To create this waveform, the transmitter synthesizes one or two sine waves and uses up-conversion to create a modulated signal superimposed on the sine wave with the specified carrier frequency. This can be achieved by direct conversion, where the signal is modulated directly on a carrier or through multiple up-conversion stages. To process this waveform, the receiver must demodulate the received RF signal and effectively remove the modulating carrier. This requires the receiver to synthesize one or more sinusoidal signals to invert the modulation process at the transmitter, known as down conversion. Unfortunately, the sine wave signals generated at the transmitter and receiver are obtained from different reference oscillators. No reference oscillator creates a perfect frequency reference; in fact, there is usually some deviation from the actual frequency.

在无线通信系统中,在发射机和接收机处的基准振荡器的输出的差异在接收机处创建了已知为载波频率偏移或简单的频率偏移的现象。本质上,在降频转换之后,在所接收的信号中有一些剩余调制(对应于发送和接收载波中的差异)。这创建了在所接收的信号中的失真,导致了较高的比特误码率和较低的吞吐量。In wireless communication systems, differences in the output of reference oscillators at the transmitter and receiver create a phenomenon at the receiver known as carrier frequency offset, or simply frequency offset. Essentially, after down conversion, there is some residual modulation (corresponding to the difference in the transmit and receive carrier) in the received signal. This creates distortion in the received signal, resulting in a higher bit error rate and lower throughput.

存在用于处理载波频率偏移的不同技术。大多数方法估计在接收机处的载波频率偏移,然后应用载波频率偏移校正算法。载波频率偏移估计算法使用以下方法是盲目的(blind):偏移QAM(T.Fusco和M.Tanda,"BlindFrequency-offset Estimation for OFDM/OQAM Systems,"Signal Processing,IEEE Transactions on[也参见Acoustics,Speech,and Signal Processing,IEEETransactions on],vol.55,pp.1828-1838,2007);周期特性(E.Serpedin,A.Chevreuil,G.B.Giannakis和P.Loubaton,"Blind channel and carrierfrequencyoffset estimation using periodic modulation precoders,"SignalProcessing,IEEETransactions on[也参见Acoustics,Speech,and Signal Processing,IEEETransactions on],vol.48,no.8,pp.2389-2405,Aug.2000);或者正交频分复用(OFDM)结构方法中的循环前缀(J.J.van de Beek,M.Sandell和P.O.Borjesson,"MLestimation of time and frequency offset in OFDM systems,"Signal Processing,IEEE Transactions on[也参见Acoustics,Speech,and SignalProcessing,IEEETransactions on],vol.45,no.7,pp.1800-1805,July 1997;U.Tureli,H.Liu和M.D.Zoltowski,"OFDM blind carrier offset estimation:ESPRIT,"IEEETrans.Commun.,vol.48,no.9,pp.1459-1461,Sept.2000;M.Luise,M.Marselli和R.Reggiannini,"Low-complexity blind carrier frequencyrecovery for OFDMsignals over frequency-selective radio channels,"IEEE Trans.Commun.,vol.50,no.7,pp.1182-1188,July 2002)。Different techniques exist for dealing with carrier frequency offset. Most methods estimate the carrier frequency offset at the receiver and then apply a carrier frequency offset correction algorithm. The carrier frequency offset estimation algorithm is blind using the following method: Offset QAM (T. Fusco and M. Tanda, "Blind Frequency-offset Estimation for OFDM/OQAM Systems," Signal Processing, IEEE Transactions on [see also Acoustics , Speech, and Signal Processing, IEEETransactions on], vol.55, pp.1828-1838, 2007); periodic characteristics (E.Serpedin, A.Chevreuil, G.B.Giannakis and P.Loubaton, "Blind channel and carrier frequency offset estimation using periodic modulation precoders, "SignalProcessing, IEEETransactions on [see also Acoustics, Speech, and Signal Processing, IEEETransactions on], vol.48, no.8, pp.2389-2405, Aug.2000); or Orthogonal Frequency Division Multiplexing ( Cyclic prefixes in OFDM) structural approaches (J.J. van de Beek, M. Sandell and P.O. Borjesson, "MLestimation of time and frequency offset in OFDM systems," Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEETransactions on], vol.45, no.7, pp.1800-1805, July 1997; U.Tureli, H.Liu and M.D.Zoltowski, "OFDM blind carrier offset estimation: ESPRIT," IEEETrans.Commun., vol.48, no.9, pp.1459-1461, Sept.2000; M.Luise, M.Marselli and R.Reggiannini, "Low-complexity blind carrier frequency recovery for OFDM signals o ver frequency-selective radio channels," IEEE Trans. Commun., vol. 50, no. 7, pp. 1182-1188, July 2002).

可替换地,专用训练信号可以被利用,包括重复的数据符号(P.H.Moose,"Atechnique for orthogonal frequency division multiplexing frequencyoffsetcorrection,"IEEE Trans.Commun.,vol.42,no.10,pp.2908-2914,Oct.1994);两个不同的符号(T.M.Schmidl and D.C.Cox,"Robust frequency andtimingsynchronization for OFDM,"IEEE Trans.Commun.,vol.45,no.12,pp.1613-1621,Dec.1997);或者周期性插入的已知的符号序列(M.Luise和R.Reggiannini,"Carrierfrequency acquisition and tracking for OFDM systems,"IEEE Trans.Commun.,vol.44,no.11,pp.1590-1598,Nov.1996)。校正可以以模拟或数字方式发生。接收机还可以使用载波频率偏移估计来预校正所发送的信号以消除偏移。由于多载波和OFDM系统对频率偏移的灵敏性,载波频率偏移校正对于多载波和OFDM系统被广泛地研究(J.J.van deBeek,M.Sandell和P.O.Borjesson,"ML estimation of time and frequency offsetinOFDM systems,"Signal Processing,IEEE Transactions on[也参见Acoustics,Speech,and Signal Processing,IEEE Transactions on],vol.45,no.7,pp.1800-1805,July 1997;U.Tureli,H.Liu和M.D.Zoltowski,"OFDM blindcarrier offset estimation:ESPRIT,"IEEE Trans.Commun.,vol.48,no.9,pp.1459-1461,Sept.2000;T.M.Schmidl和D.C.Cox,"Robust frequency andtiming synchronization for OFDM,"IEEETrans.Commun.,vol.45,no.12,pp.1613-1621,Dec.1997;M.Luise,M.Marselli和R.Reggiannini,"Low-complexity blind carrier frequency recovery for OFDMsignals overfrequency-selective radio channels,"IEEE Trans.Commun.,vol.50,no.7,pp.1182-1188,July 2002)。Alternatively, dedicated training signals can be utilized, including repeated data symbols (P.H. Moose, "A technique for orthogonal frequency division multiplexing frequency offset correction," IEEE Trans. Commun., vol.42, no.10, pp.2908-2914, Oct.1994); two different symbols (T.M.Schmidl and D.C.Cox, "Robust frequency and timing synchronization for OFDM," IEEE Trans.Commun., vol.45, no.12, pp.1613-1621, Dec.1997); Or a known symbol sequence inserted periodically (M.Luise and R.Reggiannini, "Carrier frequency acquisition and tracking for OFDM systems," IEEE Trans. Commun., vol.44, no.11, pp.1590-1598, Nov. .1996). Correction can occur analog or digitally. The receiver can also use the carrier frequency offset estimate to pre-correct the transmitted signal to remove the offset. Due to the sensitivity of multi-carrier and OFDM systems to frequency offset, carrier frequency offset correction has been extensively studied for multi-carrier and OFDM systems (J.J.van deBeek, M.Sandell and P.O.Borjesson, "ML estimation of time and frequency offset in OFDM systems , "Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], vol.45, no.7, pp.1800-1805, July 1997; U.Tureli, H.Liu and M.D. Zoltowski, "OFDM blindcarrier offset estimation: ESPRIT," IEEE Trans.Commun., vol.48, no.9, pp.1459-1461, Sept.2000; T.M.Schmidl and D.C.Cox, "Robust frequency and timing synchronization for OFDM," IEEETrans.Commun.,vol.45,no.12,pp.1613-1621,Dec.1997;M.Luise,M.Marselli and R.Reggiannini,"Low-complexity blind carrier frequency recovery for OFDM signals overfrequency-selective radio channels ,"IEEE Trans.Commun.,vol.50,no.7,pp.1182-1188,July 2002).

频率偏移估计和校正对于多天线通信系统或更一般的MIMO(多输入多输出)系统是重要的问题。在MIMO系统中,发射天线被锁定到一个频率基准,接收机被锁定到另一个频率基准,在发射机和接收机之间有单个偏移。提出了几种算法来使用训练信号处理这个问题(K.Lee和J.Chun,"Frequency-offset estimation for MIMO and OFDM systems usingorthogonaltraining sequences,"IEEE Trans.Veh.Technol.,vol.56,no.1,pp.146-156,Jan.2007;M.Ghogho和A.Swami,"Training design for multipath channelandfrequency offset estimation in MIMO systems,"Signal Processing,IEEETransactions on[也参见Acoustics,Speech,and Signal Processing,IEEETransactions on],vol.54,no.10,pp.3957-3965,Oct.2006;以及adaptivetrackingC.Oberli和B.Daneshrad,"Maximum likelihood tracking algorithms forMIMOOFDM,"inCommunications,2004IEEE International Conference on,vol.4,June 20-24,2004,pp.2468-2472)。在MIMO系统中遇到了更重要的问题,其中,发射天线没有被锁定到同一频率基准,但接收天线被锁定到一起。这实际上发生在空分多址存取(SDMA)系统的上行链路中,SDMA系统被视为MIMO系统,其中不同用户对应于不同的发射天线。在这种情况下,频率偏移的补偿更加复杂。具体地,频率偏移创建了在不同的被发送的MIMO流中的干扰。可以使用复杂的联合估计和均衡算法来进行校正(A.Kannan,T.P.Krauss和M.D.Zoltowski,"Separation of cochannel signals under imperfecttiming and carriersynchronization,"IEEE Trans.Veh.Technol.,vol.50,no.1,pp.79-96,Jan.2001),以及在频率偏移估计之后的均衡(T.Tang和R.W.Heath,"Joint fequency offset estimationand interference cancellation forMIMO-OFDM systems[mobile radio],"2004.VTC2004-Fall.2004IEEE 60thVehicular Technology Conference,vol.3,pp.1553-1557,Sept.26-29,2004;X.Dai,"Carrier frequency offset estimation for OFDM/SDMAsystems usingconsecutive pilots,"IEEE Proceedings-Communications,vol.152,pp.624-632,Oct.7,2005)。一些工作处理了剩余相位偏移和跟踪误差的相关问题,其中剩余相位偏移在频率偏移估计之后被估计和补偿,但这个工作仅考虑了SDMAOFDMA系统的上行链路(L Haring,S.Bieder和A.Czylwik,"Residual carrierand sampling fequencysynchronization in multiuser OFDM systems,"2006.VTC 2006-Spring.IEEE 63rdVehicular Technology Conference,vol.4,pp.1937-1941,2006)。当所有发射和接收天线具有不同的频率基准时,在MIMO系统中发生最严重的情况。关于这个话题仅有的可用工作只处理了在平衰减信道中的估计误差的渐近分析(O.Besson和P.Stoica,"Onparameterestimation of MIMO flat-fading channels with frequency offsets,"SignalProcessing,IEEE Transactions on[也参见Acoustics,Speech,andSignalProcessing,IEEE Transactions on],vol.51,no.3,pp.602-613,Mar.2003)。Frequency offset estimation and correction is an important problem for multi-antenna communication systems or more generally MIMO (Multiple Input Multiple Output) systems. In a MIMO system, the transmit antenna is locked to one frequency reference and the receiver is locked to another frequency reference, with a single offset between the transmitter and receiver. Several algorithms were proposed to deal with this problem using training signals (K.Lee and J.Chun, "Frequency-offset estimation for MIMO and OFDM systems using orthogonal training sequences," IEEE Trans.Veh.Technol.,vol.56,no.1 , pp.146-156, Jan.2007; M.Ghogho and A.Swami, "Training design for multipath channel and frequency offset estimation in MIMO systems," Signal Processing, IEEETransactions on [see also Acoustics, Speech, and Signal Processing, IEEETransactions on ], vol.54, no.10, pp.3957-3965, Oct.2006; and adaptive tracking C. Oberli and B. Daneshrad, "Maximum likelihood tracking algorithms for MIMOOFDM," in Communications, 2004 IEEE International Conference on, vol.4, June 20 -24, 2004, pp. 2468-2472). A more significant problem is encountered in MIMO systems, where the transmit antennas are not locked to the same frequency reference, but the receive antennas are locked together. This actually happens in the uplink of Space Division Multiple Access (SDMA) systems, which are considered as MIMO systems, where different users correspond to different transmit antennas. In this case, the compensation of the frequency offset is more complicated. In particular, the frequency offset creates interference in the different transmitted MIMO streams. Correction can be performed using complex joint estimation and equalization algorithms (A.Kannan, T.P.Krauss and M.D.Zoltowski, "Separation of cochannel signals under imperfecttiming and carriersynchronization," IEEE Trans.Veh.Technol., vol.50, no.1, pp.79-96, Jan.2001), and equalization after frequency offset estimation (T.Tang and R.W.Heath,"Joint frequency offset estimation and interference cancellation for MIMO-OFDM systems[mobile radio],"2004.VTC2004-Fall .2004IEEE 60th Vehicular Technology Conference, vol.3, pp.1553-1557, Sept.26-29, 2004; X.Dai, "Carrier frequency offset estimation for OFDM/SDMA systems using consecutive pilots," IEEE Proceedings-Communications, vol.152, pp.624-632, Oct.7, 2005). Some works have dealt with the related problem of residual phase offset and tracking error, where the residual phase offset is estimated and compensated after frequency offset estimation, but this work only considers the uplink of SDMAOFDMA system (L Haring, S.Bieder and A. Czylwik, "Residual carrier and sampling frequency synchronization in multiuser OFDM systems," 2006. VTC 2006-Spring. IEEE 63rd Vehicular Technology Conference, vol. 4, pp. 1937-1941, 2006). The worst case occurs in MIMO systems when all transmit and receive antennas have different frequency references. The only available work on this topic deals only with the asymptotic analysis of estimation errors in flat-fading channels (O. Besson and P. Stoica, "Onparameter estimation of MIMO flat-fading channels with frequency offsets," Signal Processing, IEEE Transactions on [See also Acoustics, Speech, and Signal Processing, IEEE Transactions on], vol.51, no.3, pp.602-613, Mar.2003).

当MIMO系统的不同发射天线不具有相同的频率基准,且接收天线独立地处理信号时,已经被深入研究的情况发生。这发生在已知为分布式输入输出(DIDO)通信系统(在文献中也称为MIMO广播信道)中发生。DIDO系统包括具有分布式天线的一个接入点,所述天线发送平行数据流(经由预编码)到多个用户来增强下行链路的吞吐量,此时使用相同的无线资源(即相同的时隙持续时间和频带)作为常规的SISO系统。DIDO系统的详细描述在S.G.Perlman和T.Cotter,2004年7月提交的题为"System and method fordistributedinput-distributed output wireless communications"的美国专利申请20060023803中提出。有许多实施DIDO预编码器的方式。一个解决方案是块对角化(BD),在例如以下文献中描述:Q.H.Spencer,A.L.Swindlehurst和M.Haardt,"Zero-forcing methods fordownlink spatial multiplexing inmultiuser MIMO channels,"IEEE Trans.Sig.Proc,vol.52,pp.461-471,Feb.2004;K.K.Wong,R.D.Murch和K.B.Letaief,"A joint-channeldiagonalization for multiuser MIMO antenna systems,"IEEETrans.WirelessComm.,vol.2,pp.773-786,JuI 2003;L.U.Choi和R.D.Murch,"Atransmitpreprocessing technique for multiuser MIMO systems using adecompositionapproach,"IEEE Trans.Wireless Comm.,vol.3,pp.20-24,Jan 2004;Z.Shen,J.G.Andrews,R.W.Heath和B.L Evans,"Low complexity userselectionalgorithms for multiuser MIMO systems with block diagonalization,"被接受发表在IEEE Trans.Sig.Proc,Sep.2005;Z.Shen,R.Chen,J.G.Andrews,R.W.Heath和B.L Evans,″Sum capacity of multiuser MIMO broadcast channels withblockdiagonalization,"被提交至IEEE Trans.Wireless Comm.,Oct.2005;R.Chen,R.W.Heath和J.G.Andrews,"Transmit selection diversity for unitaryprecoded multiuserspatial multiplexing systems with linear receivers,"被接受至IEEE Trans,onSignal Processing,2005。An already well-studied situation occurs when the different transmit antennas of a MIMO system do not have the same frequency reference, and the receive antennas process signals independently. This occurs in what is known as a Distributed Input Output (DIDO) communication system (also known in the literature as a MIMO broadcast channel). The DIDO system consists of an access point with distributed antennas that transmit parallel data streams (via precoding) to multiple users to enhance downlink throughput, while using the same radio resources (i.e., the same time slot duration and frequency band) as a conventional SISO system. A detailed description of the DIDO system is presented in US Patent Application 20060023803, filed July 2004, by S.G. Perlman and T. Cotter, entitled "System and method for distributed input-distributed output wireless communications". There are many ways of implementing the DIDO precoder. One solution is block diagonalization (BD), described for example in: Q.H.Spencer, A.L.Swindlehurst and M.Haardt, "Zero-forcing methods for downlink spatial multiplexing inmultiuser MIMO channels," IEEE Trans.Sig.Proc, vol .52, pp.461-471, Feb.2004; K.K.Wong, R.D.Murch and K.B.Letaief, "A joint-channel diagonalization for multiuser MIMO antenna systems," IEEETrans.WirelessComm., vol.2, pp.773-786, JuI 2003; L.U.Choi and R.D.Murch, "Atransmitpreprocessing technique for multiuser MIMO systems using adecomposition approach," IEEE Trans.Wireless Comm., vol.3, pp.20-24, Jan 2004; Z.Shen, J.G.Andrews, R.W.Heath and B.L Evans, "Low complexity userselection algorithms for multiuser MIMO systems with block diagonalization," accepted for publication in IEEE Trans.Sig.Proc, Sep.2005; Z.Shen, R.Chen, J.G.Andrews, R.W.Heath and B.L Evans, "Sum capacity of multiuser MIMO broadcast channels with block diagonalization," submitted to IEEE Trans.Wireless Comm., Oct. 2005; R. Chen, R.W. Heath and J.G. Andrews," Transmit selection diversity for unitary precoded multiuserspatial multiplexing systems with linear receivers," accepted to IEEE Trans, on Signal Pr ocessing, 2005.

在DIDO系统中,发送预编码被用于分离用于不同用户的数据流。当发射天线射频链没有共享同一频率基准时,载波频率偏移导致了与系统实施相关的几个问题。当这发生时,每个天线以稍微不同的载波频率有效发送。这破坏了DIDO预编码器的完整性,导致每个用户遭受额外的干扰。下面提出的是对这个问题的几种解决方案。在解决方案的一个实施方式中,DIDO发射天线通过有线的、光学的或无线的网络来共享一个频率基准。在解决方案的另一个实施方式中,一个或多个用户估计频率偏移差异(天线对之间的偏移中的相对差异)并将该信息发送回发射机。然后发射机预校正频率偏移并继续进行用于DIDO的训练和预编码器估计相位。该实施方式在反馈信道存在延迟时有问题。原因是可能有由校正过程创建的剩余相位误差,该校正过程未考虑随后的信道估计。为了解决这个问题,一个另外的实施方式使用新的频率偏移和相位估计器,通过估计延迟解决了这个问题。基于仿真和通过DIDO-OFDM原型执行的实际测量来给出结果。In DIDO systems, transmit precoding is used to separate data streams for different users. Carrier frequency offset causes several problems related to system implementation when transmit antenna RF chains do not share the same frequency reference. When this happens, each antenna effectively transmits at a slightly different carrier frequency. This breaks the integrity of the DIDO precoder, causing each user to experience additional interference. Proposed below are several solutions to this problem. In one embodiment of the solution, DIDO transmit antennas share a frequency reference through a wired, optical or wireless network. In another implementation of the solution, one or more users estimate the frequency offset difference (relative difference in offset between antenna pairs) and send this information back to the transmitter. The transmitter then pre-corrects the frequency offset and proceeds with training for DIDO and precoder estimated phase. This implementation has problems when there is a delay in the feedback channel. The reason is that there may be residual phase errors created by the correction process, which does not take into account the subsequent channel estimation. To solve this problem, an additional embodiment solves this problem by estimating the delay using a new frequency offset and phase estimator. Results are presented based on simulations and actual measurements performed by a DIDO-OFDM prototype.

在该文件中提出的频率和相位偏移补偿方法可能对由于接收机处的噪声的估计误差比较灵敏。因此,另一实施方式提出了用于时间和频率偏移估计的方法,在低的SNR条件下也很强健。The frequency and phase offset compensation method proposed in this document may be sensitive to estimation errors due to noise at the receiver. Therefore, another embodiment proposes a method for time and frequency offset estimation that is also robust under low SNR conditions.

有不同的用于执行时间和频率偏移估计的方法。由于其对同步误差的灵敏性,这些方法中的许多方法专门为OFDM波形而提出。There are different methods for performing time and frequency offset estimation. Many of these methods have been proposed specifically for OFDM waveforms due to their sensitivity to synchronization errors.

这些算法没有典型地使用OFDM波形的结构,因此对于单一载波和多载波波形一般是足够的。下面描述的算法在使用已知的基准符号(例如,训练数据)以协助同步的技术的类之中。许多方法是Moose的频率偏移估计器的扩展(见P.H.Moose,"A technique fororthogonal frequency divisionmultiplexing frequency offset correction,"IEEETrans.Commun.,vol.42,no.10,pp.2908-2914,Oct.1994)。Moose提出了使用两个重复的训练信号并使用在所接收到的信号之间的相位差来获得频率偏移。Moose的方法仅能够校正分数(fractional)频率偏移。Moose的方法的扩展由Schmidl和Cox提出(T.M.Schmidl andD.C.Cox,"Robust frequency and timing synchronization forOFDM,"IEEETrans.Commun.,vol.45,no.12,pp.1613-1621,Dec.1997)。他们的主要创新在于使用一个周期性的OFDM符号和另外的差分编码的训练符号。在第二个符号中的差分编码实现的整数偏移校正。Coulson考虑了在T.M.Schmidl和D.C.Cox,″Robust frequency and timingsynchronization forOFDM,"IEEE Trans.Commun.,vol.45,no.12,pp.1613-1621,Dec.1997中描述的类似的设置,并在A.J.Coulson,"Maximum likelihoodsynchronization forOFDM using a pilot symbol:analysis,"IEEE J.Select.AreasCommun.,vol.19,no.12,pp.2495-2503,Dec.2001和A.J.Coulson,"Maximumlikelihoodsynchronization for OFDM using a pilot symbol:algorithms,"IEEEJ.Select.Areas Commun.,vol.19,no.12,pp.2486-2494,Dec.2001中提供了算法和分析的详细论述。一个主要的差别是Coulson使用了重复的最大长度序列来提供好的相关特性。他还建议使用线性调频(chirp)信号,因为其在时域和频域中的恒定的包络属性。Coulson考虑了实际的细节但没有包括整数估计。多个重复的训练信号被Minn et.al.in H.Minn,V.K.Bhargava和K.B.Letaief,"A robust timing and frequency synchronization forOFDM systems,"IEEETrans.Wireless Commun.,vol.2,no.4,pp.822-839,July 2003所考虑,但训练的结构没有被优化。Shi和Serpedin提出了训练结构具有形成帧同步的想法的一些最优性(K.Shi和E.Serpedin,"Coarse frame and carriersynchronization of OFDMsystems:a new metric and comparison,"IEEE Trans.Wireless Commun.,vol.3,no.4,pp.1271-1284,July 2004)。本发明的一个实施方式使用了Shi和Serpedin的方法来执行帧同步和分数频率偏移估计。These algorithms do not typically use the structure of OFDM waveforms and thus are generally adequate for single-carrier and multi-carrier waveforms. The algorithms described below are among a class of techniques that use known reference symbols (eg, training data) to assist in synchronization. Many methods are extensions of Moose's frequency offset estimator (see P.H.Moose, "A technique for orthogonal frequency division multiplexing frequency offset correction," IEEE Trans. Commun., vol.42, no.10, pp.2908-2914, Oct.1994 ). Moose proposes to use two repeated training signals and use the phase difference between the received signals to obtain the frequency offset. Moose's method is only able to correct for fractional frequency offsets. An extension of Moose's method was proposed by Schmidl and Cox (T.M.Schmidl and D.C.Cox, "Robust frequency and timing synchronization for OFDM," IEEE Trans. Commun., vol.45, no.12, pp.1613-1621, Dec.1997 ). Their main innovation lies in the use of a periodic OFDM symbol and additional differentially encoded training symbols. Integer offset correction implemented by differential encoding in the second symbol. Coulson considered a similar setup described in T.M.Schmidl and D.C.Cox, "Robust frequency and timing synchronization for OFDM," IEEE Trans.Commun., vol.45, no.12, pp.1613-1621, Dec.1997, and in A.J.Coulson,"Maximum likelihoodsynchronization for OFDM using a pilot symbol:analysis,"IEEE J.Select.AreasCommun.,vol.19,no.12,pp.2495-2503,Dec.2001 and A.J.Coulson,"Maximum likelihoodsynchronization for OFDM using a A detailed discussion of the algorithms and analysis is provided in pilot symbol: algorithms," IEEE J. Select. Areas Commun., vol. 19, no. 12, pp. 2486-2494, Dec. 2001. A major difference is that Coulson uses repeated maximal length sequences to provide good correlation properties. He also recommends using chirp signals because of their constant envelope properties in both the time and frequency domains. Coulson considered practical details but did not include integer estimates. Multiple repeated training signals were used by Minn et.al. in H.Minn, V.K.Bhargava and K.B.Letaief, "A robust timing and frequency synchronization for OFDM systems," IEEETrans.Wireless Commun.,vol.2,no.4,pp. 822-839, considered in July 2003, but the training structure was not optimized. Shi and Serpedin proposed some optimality of the training structure with the idea of forming frame synchronization (K. Shi and E. Serpedin, "Coarse frame and carrier synchronization of OFDM systems: a new metric and comparison," IEEE Trans.Wireless Commun., vol .3, no.4, pp.1271-1284, July 2004). One embodiment of the present invention uses the method of Shi and Serpedin to perform frame synchronization and fractional frequency offset estimation.

在文献中的许多方法集中在帧同步和分数频率偏移校正上。整数偏移校正使用在T.M.Schmidl和D.C.Cox,"Robust frequency and timingsynchronization for OFDM,"IEEE Trans.Commun.,vol.45,no.12,pp.1613-1621,Dec.1997中的另外的训练符号来被解决。例如,Morrelli等在M.Morelli,A.N.D'Andrea和U.Mengali,"Frequency ambiguityresolution inOFDM systems,"IEEE Commun.Lett.,vol.4,no.4,pp.134-136,Apr.2000中得到了T.M.Schmidl和D.C.Cox,"Robust frequency and timingsynchronization forOFDM,"IEEE Trans.Commun.,vol.45,no.12,pp.1613-1621,Dec.1997的改进版本。使用不同的前导码结构的可替换的方法由Morelli和Mengali提出(M.Morelli和U.Mengali,"Animprovedfrequency offset estimator for OFDM applications,"IEEE Commun.Lett.,vol.3,no.3,pp.75-77,Mar.1999)。这个方法使用了在M个重复的相同训练符号之间的相关性来通过M因子增大分数频率偏移估计器的范围。这是最好的线性无偏估计器且接受了最大的偏移(具有合适的设计),但不提供好的时序同步。Many methods in the literature focus on frame synchronization and fractional frequency offset correction. Integer offset correction using additional training symbols in T.M.Schmidl and D.C.Cox, "Robust frequency and timing synchronization for OFDM," IEEE Trans.Commun., vol.45, no.12, pp.1613-1621, Dec.1997 to be resolved. For example, Morrelli et al. obtained in M.Morelli, A.N.D'Andrea and U.Mengali, "Frequency ambiguityresolution in OFDM systems," IEEE Commun. Lett., vol.4, no.4, pp.134-136, Apr.2000 An improved version of T.M.Schmidl and D.C.Cox, "Robust frequency and timing synchronization for OFDM," IEEE Trans.Commun., vol.45, no.12, pp.1613-1621, Dec.1997. An alternative method using a different preamble structure was proposed by Morelli and Mengali (M. Morelli and U. Mengali, "An improved frequency offset estimator for OFDM applications," IEEE Commun. Lett., vol. 3, no. 3, pp. 75-77, Mar. 1999). This method uses the correlation between M repetitions of the same training symbols to increase the range of the fractional frequency offset estimator by a factor of M. This is the best linear unbiased estimator and accepts the largest skew (with a suitable design), but does not provide good timing synchronization.

系统描述System specification

本发明的一个实施方式使用基于信道状况信息的预编码来消除DIDO系统中的频率和相位偏移。见图11以及对于该实施方式的描述的上面的相关描述。One embodiment of the present invention uses precoding based on channel condition information to eliminate frequency and phase offsets in DIDO systems. See Figure 11 and the related description above for the description of this embodiment.

在本发明的一个实施方式中,每个用户使用装备有频率偏移估计器/补偿器的接收机。如图45中所示出的,在本发明的一个实施方式中,包括接收机的系统包括多个RF单元4508、相应的多个A/D单元4510、装备有频率偏移估计器/补偿器4512的接收机以及DIDO反馈生成器单元4506。In one embodiment of the invention, each user uses a receiver equipped with a frequency offset estimator/compensator. As shown in FIG. 45, in one embodiment of the invention, a system including a receiver includes a plurality of RF units 4508, a corresponding plurality of A/D units 4510, equipped with a frequency offset estimator/compensator 4512 receiver and DIDO feedback generator unit 4506.

RF单元4508接收从DIDO发射机单元发送的信号,将信号降频转换到基带,并将降频转换后的信号提供到A/D单元4510。然后A/D单元4510将信号从模拟转换为数字,并将它发送到频率偏移估计器/补偿器单元4512。频率偏移估计器/补偿器单元4512估计频率偏移并补偿频率偏移,如在这里所描述的,然后将补偿后的信号发送到OFDM单元4513。OFDM单元4513移除循环前缀并运行快速傅立叶变换(FFT)来将信号报告给频域。在训练期间,OFDM单元4513将输出发送到信道估计单元4504来计算在频域中的信道估计。可替换地,信道估计可以在时域中被计算。在数据周期期间,OFDM单元4513将输出发送到DIDO接收机单元4502,该DIDO接收机单元4502对信号进行解调/解码以获得数据。信道估计单元4504将信道估计发送到DIDO反馈生成器单元4506,该DIDO反馈生成器单元4506可以量化信道估计并经由反馈控制信道将它们发送回发射机,如所示出的。The RF unit 4508 receives a signal transmitted from the DIDO transmitter unit, down-converts the signal to baseband, and supplies the down-converted signal to the A/D unit 4510 . The A/D unit 4510 then converts the signal from analog to digital and sends it to the frequency offset estimator/compensator unit 4512 . The frequency offset estimator/compensator unit 4512 estimates the frequency offset and compensates for the frequency offset as described herein, and then sends the compensated signal to the OFDM unit 4513. OFDM unit 4513 removes the cyclic prefix and runs a Fast Fourier Transform (FFT) to report the signal to the frequency domain. During training, OFDM unit 4513 sends output to channel estimation unit 4504 to compute channel estimates in the frequency domain. Alternatively, the channel estimate can be computed in the time domain. During the data period, the OFDM unit 4513 sends the output to the DIDO receiver unit 4502 which demodulates/decodes the signal to obtain the data. Channel estimation unit 4504 sends the channel estimates to DIDO feedback generator unit 4506, which may quantize the channel estimates and send them back to the transmitter via a feedback control channel, as shown.

对用于DIDO 2×2情形的算法的一个实施方式的描述Description of one embodiment of the algorithm for the DIDO 2x2 scenario

下面描述的是用于DIDO系统中的频率/相位偏移补偿的算法的实施方式。DIDO系统模型开始在具有和不具有频率/相位偏移的情况下被描述。为了简便,提供了DIDO 2×2系统的特定实施。然而,本发明的基本原理还可以在高阶DIDO系统中被实施。Described below is an embodiment of an algorithm for frequency/phase offset compensation in a DIDO system. DIDO system models are initially described with and without frequency/phase offsets. For simplicity, a specific implementation of the DIDO 2×2 system is provided. However, the basic principles of the invention can also be implemented in higher order DIDO systems.

具有/不具有频率和相位偏移的DIDO系统模型DIDO system model with/without frequency and phase offset

DIDO 2×2的所接收到的信号可以对于第一用户写成:The received signal of DIDO 2x2 can be written for the first user as:

r1[t]=h11(w11x1[t]+w21x2[t])+h12(w12x1[t]+w22x2[t]) (1)r 1 [t]=h 11 (w 11 x 1 [t]+w 21 x 2 [t])+h 12 (w 12 x 1 [t]+w 22 x 2 [t]) (1)

以及对于第二个用户写成:and for the second user writes:

r2[t]h21(w11x1[t]+w21x2[t])+h22(w12x1[t]+w22x2[t]) (2)r 2 [t]h 21 (w 11 x 1 [t]+w 21 x 2 [t])+h 22 (w 12 x 1 [t]+w 22 x 2 [t]) (2)

其中t是离散时间指数,hmn和wmn分别是在第m个用户和第n个发射天线之间的信道和DIDO预编码权重,xm是对于用户m的发送信号。注意,hmn和wmn不是t的函数,因为我们假定信道在训练和数据发送之间的周期上是恒定的。where t is the discrete time index, h mn and w mn are the channel and DIDO precoding weights between the mth user and the nth transmit antenna, respectively, and x m is the transmitted signal for user m. Note that h mn and w mn are not functions of t because we assume the channel is constant over the period between training and data sending.

在频率和相位偏移存在时,接收到的信号被表示为In the presence of frequency and phase offsets, the received signal is expressed as

以及as well as

其中,Ts是符号周期;对于第n个发射天线,ωTn=2∏fTn;对于第m个用户,WUm=2∏FUm;以及fTn和fUm分别是对于第n个发射天线和第m个用户的实际载波频率(由偏移影响)。值tmn表示在信道hmn上导致相位偏移的随机延迟。图46绘出了DIDO 2×2系统模型。where T s is the symbol period; for the n-th transmit antenna, ωT n =2∏f Tn ; for the m-th user, W Um =2∏F Um ; and f Tn and f Um are the Antenna and actual carrier frequency of the mth user (affected by offset). The value t mn represents a random delay causing a phase shift on channel h mn . Figure 46 depicts the DIDO 2x2 system model.

对于时间,我们使用以下定义:For time, we use the following definitions:

Δωmn=ωUmTn (5)Δω mnUmTn (5)

以用来表示在第m个用户和第n个发射天线之间的频率偏移。is used to denote the frequency offset between the mth user and the nth transmit antenna.

本发明的一个实施方式的描述Description of an embodiment of the invention

根据本发明的一个实施方式的方法在图47中被示出。该方法包括以下一般步骤(包括子步骤,如示出的):用于频率偏移估计的训练周期4701;用于信道估计的训练周期4702;经由具有补偿的DIDO预编码的数据发送4703。这些步骤在下面被详细描述。A method according to one embodiment of the invention is illustrated in FIG. 47 . The method comprises the following general steps (including sub-steps, as shown): training period 4701 for frequency offset estimation; training period 4702 for channel estimation; data transmission 4703 via DIDO precoding with compensation. These steps are described in detail below.

(a)用于频率偏移估计的训练周期(4701)(a) Training period for frequency offset estimation (4701)

在第一训练周期期间,基站将来自每个发射天线的一个或多个训练信号发送到用户中的一个(4701a)。如在这里所描述的,“用户”是无线客户装置。对于DIDO 2×2的情况,由第m个用户接收到的信号由以下给出:During a first training period, the base station sends one or more training signals from each transmit antenna to one of the users (4701a). As described herein, a "user" is a wireless client device. For the DIDO 2×2 case, the signal received by the mth user is given by:

其中,p1和p2分别是从第一和第二天线发送的训练序列。where p1 and p2 are the training sequences sent from the first and second antennas, respectively.

第m个用户可以使用任意类型的频率偏移估计器(即通过训练序列的卷积)并估计偏移Δωml和Δωm2。然后,根据这些值,用户计算两个发射天线之间的频率偏移:The mth user can use any type of frequency offset estimator (ie by convolution of the training sequence) and estimate the offsets Δω ml and Δω m2 . Then, based on these values, the user calculates the frequency offset between the two transmit antennas:

ΔωT=Δωm2-Δωm1=ωT1T2 (7)Δω T = Δω m2 - Δω m1 = ω T1 - ω T2 (7)

最后,在(7)中的值被反馈回基站(4701b)。Finally, the value in (7) is fed back to the base station (4701b).

注意,在(6)中的p1和p2被设计为是正交的,从而用户可以估计Δωml和Δωm2。可替换地,在一个实施方式中,相同的训练序列被用在两个连续的时隙,用户从中估计偏移。此外,为了改善(7)中的偏移的估计,上面描述的相同的计算对于DIDO系统的所有用户(不仅对于第m个用户)来说可以被完成,最后的估计可以是从所有用户获得的值的(加权后的)平均值。然而,这个解决方案需要更多的计算时间和反馈量。最后,频率偏移估计的更新只有在频率偏移随时间变化时才需要。因此,根据发射机处的时钟的稳定性,算法的步骤4701可以在长期基础上被执行(即对于每个数据发送),使得上述反馈减少。Note that p 1 and p 2 in (6) are designed to be orthogonal so that the user can estimate Δω ml and Δω m2 . Alternatively, in one embodiment, the same training sequence is used in two consecutive time slots from which the user estimates the offset. Furthermore, to improve the estimation of the offset in (7), the same calculation described above can be done for all users of the DIDO system (not only for the m-th user), and the final estimate can be obtained from all users The (weighted) average of the values. However, this solution requires more computation time and amount of feedback. Finally, an update of the frequency offset estimate is only required if the frequency offset changes over time. Thus, depending on the stability of the clock at the transmitter, step 4701 of the algorithm may be performed on a long-term basis (ie for each data transmission) such that the above-mentioned feedback is reduced.

(b)用于信道估计的训练周期(4702)(b) Training period for channel estimation (4702)

在第二训练周期期间,基站首先从第m个用户或从多个用户或得具有在(7)中的值的频率偏移反馈。在(7)中的值被用于预补偿在发射端的频率偏移。然后,基站将训练数据发送到所有用户来用于信道估计(4702a)。During the second training period, the base station first obtains a frequency offset feedback with the value in (7) from the mth user or from multiple users. The value in (7) is used to precompensate the frequency offset at the transmitter. The base station then sends training data to all users for channel estimation (4702a).

对于DIDO 2×2系统,在第一个用户处接收到的信号由以下给出:For a DIDO 2×2 system, the signal received at the first user is given by:

以及第二个用户处:and at the second user:

其中,和Δt是在基站的第一发送和第二发送之间的随机或已知的延迟。此外,p1和p2分别是用户频率偏移和信道估计的从第一和第二天线发送的训练序列。in, and Δt is the random or known delay between the base station's first transmission and the second transmission. Furthermore, p1 and p2 are the training sequences transmitted from the first and second antennas for the user frequency offset and channel estimation, respectively.

注意,预补偿在该实施方式中仅仅被应用到第二天线。Note that precompensation is only applied to the second antenna in this embodiment.

展开(8),我们获得Expanding (8), we get

类似的对于第二用户:Similar for the second user:

其中, in,

在接收端,用户通过使用训练序列p1和p2来补偿剩余频率偏移。然后,用户通过训练矢量信道来进行估计(4702b):At the receiving end, the user compensates the remaining frequency offset by using the training sequences p1 and p2 . Then, the user estimates by training the vector channel (4702b):

在(12)中的这些信道或信道状况信息(CSI)被反馈回基站(4702b),基站如下面部分中描述的那样来计算DIDO预编码器。These channels or Channel Situation Information (CSI) in (12) are fed back to the base station (4702b), which calculates the DIDO precoder as described in the following sections.

(c)具有预补偿的DIDO预编码(4703)(c) DIDO precoding with precompensation (4703)

基站从用户接收(12)中的信道状况信息(CSI)并通过块对角化(BD)来计算预编码的权重(4703a),以使得The base station receives the channel state information (CSI) in (12) from the user and calculates the precoding weight (4703a) through block diagonalization (BD), so that

其中,矢量h1在(12)中被定义,以及wm=[wm1,wm2]。注意,在本公开中提出的本发明可以被用于除BD之外的任何其他DIDO预编码方法中。基站还通过使用(7)中的估计来预补偿频率偏移,并通过估计第二训练发送和当前发送之间的延迟(Δt0)来预补偿相位偏移(4703a)。最后,基站经由DIDO预编码器将数据发送到用户(4703b)。where the vector h 1 is defined in (12), and w m =[w m1 ,w m2 ]. Note that the invention proposed in this disclosure can be used in any other DIDO precoding method than BD. The base station also precompensates for frequency offset by using the estimate in (7), and precompensates for phase offset by estimating the delay (Δt 0 ) between the second training transmission and the current transmission (4703a). Finally, the base station sends the data to the user via the DIDO precoder (4703b).

在发送过程之后,在用户1处接收到的信号由以下给出:After the sending process, the signal received at user 1 is given by:

其中,使用属性(13),我们获得in, Using property (13), we obtain

类似地,对于用户2,我们得到:Similarly for user 2 we get:

展开(16):expand(16):

其中, in,

最后,用户计算剩余频率偏移和信道估计来解调数据流x1[t]和x2[t](4703c)。Finally, the user calculates the residual frequency offset and channel estimate to demodulate the data streams x 1 [t] and x 2 [t] (4703c).

一般化到DIDO N×MGeneralization to DIDO N×M

在该部分中,之前描述的技术被一般化到具有N个发射天线和M个用户的DIDO系统。In this section, the previously described techniques are generalized to a DIDO system with N transmit antennas and M users.

i.用户频率偏移估计的训练周期i. Training Period for User Frequency Offset Estimation

在第一训练周期期间,由于从N个天线发送的训练序列的由第m个用户接收到的信号由以下给出:During the first training period, the signal received by the mth user due to the training sequence sent from the N antennas is given by:

其中,pn是从第n个天线发送的训练序列。where p n is the training sequence sent from the nth antenna.

在估计偏移Δωmn之后,第m个用户计算第一个和第n个发射天线之间的频率偏移:After estimating the offset Δω mn , The mth user calculates the frequency offset between the first and nth transmit antennas:

ΔωT,1n=Δωmn-Δωm1=ωT1Tn (19)Δω T,1n = Δω mn - Δω m1 = ω T1 - ω Tn (19)

最后,(19)中的值被反馈到基站。Finally, the value in (19) is fed back to the base station.

ii.用于信道估计的训练周期ii. Training period for channel estimation

在第二训练周期期间,基站首先从第m个用户或从多个用户获得具有在(19)中的值的频率偏移反馈。在(19)中的值被用于预补偿在发射端的频率偏移。然后,基站将训练数据发送到所有用户来用于信道估计。During the second training period, the base station first obtains frequency offset feedback with the value in (19) from the mth user or from multiple users. The value in (19) is used to precompensate the frequency offset at the transmitter. Then, the base station sends training data to all users for channel estimation.

对于DIDO N×M系统,在第m个用户处接收到的信号由以下给出:For a DIDO N×M system, the received signal at the mth user is given by:

其中,以及Δt是基站的第一和第二发送之间的随机或已知的延迟。此外,Pn是用于频率偏移和信道估计的从第n个天线发送的训练序列。in, And Δt is the random or known delay between the base station's first and second transmissions. Also, P n is a training sequence transmitted from the nth antenna for frequency offset and channel estimation.

在接收侧,用户通过使用训练序列Pn来补偿剩余频率偏移。然后,每个用户m通过训练矢量信道来进行估计:On the receiving side, the user compensates for the remaining frequency offset by using the training sequence Pn . Then, each user m is estimated by training the vector channel:

并反馈回基站,基站如在以下部分中描述的那样计算DIDO预编码器。and fed back to the base station, which computes the DIDO precoder as described in the following sections.

iii.具有预补偿的DIDO预编码iii. DIDO precoding with precompensation

基站从用户接收(12)中的信道状况信息(CSI)并通过块对角化(BD)来计算预编码的权重,以使得The base station receives the channel condition information (CSI) in (12) from the user and calculates the precoding weights by block diagonalization (BD), so that

其中,矢量hm在(21)中被定义,以及wm=[wm1,wm2,...,wmN]。基站还通过使用(19)中的估计来预补偿频率偏移,并通过估计第二训练发送和当前发送之间的延迟(Δt0)来预补偿相位偏移。最后,基站经由DIDO预编码器将数据发送到用户。where the vector h m is defined in (21), and w m =[w m1 ,w m2 ,...,w mN ]. The base station also precompensates for the frequency offset by using the estimate in (19), and for the phase offset by estimating the delay (Δt 0 ) between the second training transmission and the current transmission. Finally, the base station sends the data to the users via the DIDO precoder.

在发送过程之后,在用户i处接收到的信号由以下给出:After the sending process, the signal received at user i is given by:

其中,使用属性(22),我们得到:in, Using property (22), we get:

最后,用户计算剩余频率偏移和信道估计来解调数据流xi[t]。Finally, the user computes the residual frequency offset and channel estimate to demodulate the data stream xi [t].

结果result

图48示出了具有和不具有频率偏移的DIDO 2×2系统的SER结果。可以看到,所提出的方法完全消除了频率/相位偏移,产生了与不具有偏移的系统相同的SER。Figure 48 shows the SER results for the DIDO 2x2 system with and without frequency offset. It can be seen that the proposed method completely removes the frequency/phase offset, yielding the same SER as the system without offset.

接下来,我们评估所提出的补偿方法对于频率偏移误差和/或实时偏移的波动的灵敏性。因此,我们将(14)重写为:Next, we evaluate the sensitivity of the proposed compensation method to fluctuations in frequency offset errors and/or real-time offsets. Therefore, we rewrite (14) as:

其中,ε表示训练和数据发送之间的频率偏移的估计误差和/或变化。注意,ε的效果是破坏(13)中的正交特性,以使得(14)和(16)中的干扰项在发射机处没有完全被预先消除。因为这样,SER性能随着增大的ε值而降低。where ε represents the estimation error and/or change in frequency offset between training and data transmission. Note that the effect of ε is to destroy the orthogonality property in (13), such that the interference terms in (14) and (16) are not completely pre-cancelled at the transmitter. Because of this, the SER performance degrades with increasing ε value.

图48示出了对于不同的∈值的频率偏移补偿方法的SER性能。这些结果假设Ts=0.3ms(即具有3KHz带宽的信号)。我们观察到,对于ε=0.001Hz(或更少),SER性能与没有偏移的情况相似。Fig. 48 shows the SER performance of the frequency offset compensation method for different values of ε. These results assume T s =0.3ms (ie a signal with 3KHz bandwidth). We observe that for ε = 0.001 Hz (or less), the SER performance is similar to the case without offset.

f.用于时间和频率偏移估计的算法的一个实施方式的描述f. Description of one embodiment of an algorithm for time and frequency offset estimation

下面,我们描述执行时间和频率偏移估计的另外的实施方式(图47中的4701b)。考虑的发射信号结构在H.Minn,V.K.Bhargava和K.B.Letaief,"A robust timing andfrequency synchronization for OFDM systems,"IEEETrans.Wireless Commun.,vol.2,no.4,pp.822-839,July 2003中提出,在K.Shi和E.Serpedin,″Coarse frame and carriersynchronization of OFDM systems:a new metric and comparison,"IEEETrans.Wireless Commun.,vol.3,no.4,pp.1271-1284,July 2004中被详细研究。通常具有好的相关属性的序列被用于训练。例如,对于我们的系统,Chu序列被使用,Chu序列如在D.Chu,"Polyphasecodes with good periodic correlation properties(corresp.),"IEEE Trans.Inform.Theory,vol.18,no.4,pp.531-532,July 1972中被描述。这些序列具有有趣的属性,即它们具有完美的循环相关。让Lcp表示循环前缀的长度,Nt表示分量训练序列的长度。使得Nt=Mt,其中Mt是训练序列的长度。在这些假设下,所发送的用于开端的符号序列可以被写成:Below, we describe an additional embodiment (4701b in Figure 47) that performs time and frequency offset estimation. The transmit signal structure considered is proposed in H.Minn, VKBhargava and KBLetaief, "A robust timing and frequency synchronization for OFDM systems," IEEETrans.Wireless Commun., vol.2, no.4, pp.822-839, July 2003, It is detailed in K.Shi and E.Serpedin, "Coarse frame and carriersynchronization of OFDM systems: a new metric and comparison," IEEE Trans. Wireless Commun., vol.3, no.4, pp.1271-1284, July 2004 Research. Usually sequences with good correlation properties are used for training. For example, for our system, the Chu sequence is used, as described in D. Chu, "Polyphasecodes with good periodic correlation properties (corresp.)," IEEE Trans. Inform. Theory, vol.18, no.4, pp. 531-532, described in July 1972. These sequences have the interesting property that they are perfectly circularly correlated. Let Lcp denote the length of the cyclic prefix and Nt denote the length of the component training sequence. Such that N t =M t , where M t is the length of the training sequence. Under these assumptions, the sequence of symbols sent for head start can be written as:

s[n]=t[n-Nt] 对于n=-1,…,-Lcp s[n]=t[nN t ] for n=-1,...,-L cp

s[n]=t[n] 对于n=0,…,Nt-1s[n]=t[n] for n=0,...,N t -1

s[n]=t[n-Nt] 对于n=Nt,…,2Nt-1s[n]=t[nN t ] for n=N t ,…,2N t -1

s[n]=-t[n-2Nt] 对于n=2Nt,…,3Nt-1s[n]=-t[n-2N t ] for n=2N t ,…,3N t -1

s[n]=t[n-3Nt] 对于n=3Nt,…,4Nt-1s[n]=t[n-3N t ] for n=3N t ,…,4N t -1

注意该训练信号的结构可以被扩展至其它长度,但重复了块结构。例如,为了使用16个训练信号,我们考虑一种结构,例如:Note that the structure of the training signal can be extended to other lengths, but the block structure is repeated. For example, to use 16 training signals, we consider a structure such as:

[CP,B,B,-B,B,B,B,-B,B,-B,-B,B,-B,B,B,-B,B,]。[CP,B,B,-B,B,B,B,-B,B,-B,-B,B,-B,B,B,-B,B,].

通过使用该结构,并使Nt=4Mt,所有将要描述的算法可以在没有修改的情况下被使用。有效地,我们重复训练序列。这在合适的训练信号可能不可用的情况下特别有用。By using this structure, and making N t =4M t , all algorithms to be described can be used without modification. Effectively, we repeat the training sequence. This is especially useful in situations where suitable training signals may not be available.

在对符号率进行匹配的滤波和向下采样之后,考虑下面的所接收到的信号:After filtering and downsampling to match the symbol rate, consider the following received signal:

其中ε是未知的离散时间频率偏移,Δ是未知的帧偏移,h[l]是未知的离散时间信道系数,以及v[n]是附加噪声。为了解释以下部分中的关键思想,忽略附加噪声的存在。where ε is the unknown discrete-time frequency offset, Δ is the unknown frame offset, h[l] is the unknown discrete-time channel coefficient, and v[n] is the additive noise. To explain the key ideas in the following sections, the presence of additional noise is ignored.

i.粗略的帧同步i. Coarse frame synchronization

粗略的帧同步的目的是解决未知的帧偏移Δ。让我们做出以下定义:The purpose of coarse frame synchronization is to account for the unknown frame offset Δ. Let's make the following definitions:

所提出的粗略的帧同步算法从K.Shi和E.Serpedin,"Coarse frame andcarriersynchronization of OFDM systems:a new metric and comparison,"IEEETrans.Wireless Commun.,vol.3,no.4,pp.1271-1284,July 2004中的算法得到启示,根据最大似然准则获得。The proposed coarse frame synchronization algorithm is from K.Shi and E.Serpedin, "Coarse frame and carrier synchronization of OFDM systems: a new metric and comparison," IEEETrans.Wireless Commun.,vol.3,no.4,pp.1271- 1284, inspired by the algorithm in July 2004, obtained according to the maximum likelihood criterion.

方法1-改进的粗略的帧同步:粗略的帧同步估计器解决了以下优化:Approach 1 - Improved Coarse Frame Synchronization: The coarse frame synchronization estimator addresses the following optimizations:

其中,in,

使得被校正的信号被定义为:Such that the corrected signal is defined as:

另外的校正项被用于补偿信道中的小的初始脉冲并可以基于应用被调节。这个额外的延迟将之后被包括在信道中。Additional correction terms are used to compensate for small initial pulses in the channel and can be adjusted based on the application. This extra delay will then be included in the channel.

ii.分数频率偏移校正ii. Fractional Frequency Offset Correction

分数频率偏移校正在粗略的帧同步块之后。Fractional frequency offset correction follows the coarse frame sync block.

方法2-改进的分数频率偏移校正:分数频率偏移是下面的解:Method 2 - Improved Fractional Frequency Offset Correction: Fractional Frequency Offset is the solution below:

这被已知为分数频率偏移,因为算法仅可以校正偏移This is known as a fractional frequency offset because the algorithm can only correct for the offset

这个问题将在下一部分中被解决。让精细频率偏移校正信号被定义为:This issue will be addressed in the next section. Let the fine frequency offset correction signal be defined as:

注意,方法1和2是对于在频率选择信道中工作较好的K.Shi,E.Serpedin,"Coarseframe and carrier synchronization of OFDM systems:a newmetric andcomparison,"IEEE Trans.Wireless Commun.,vol.3,no.4,pp.1271-1284,July 2004的改进。这里的一个特别创新是使用了上面所述的r和的使用改进了以前的估计器,因为它忽略了由于内部符号干扰而被影响的取样。Note that methods 1 and 2 are for K.Shi, E.Serpedin, who work better in frequency selective channels, "Coarseframe and carrier synchronization of OFDM systems: a newmetric and comparison," IEEE Trans.Wireless Commun., vol.3, no.4, pp.1271-1284, improvement of July 2004. A particular innovation here is the use of the r and The use of σ improves previous estimators because it ignores samples that are affected due to inter-symbol interference.

iii.整数频率偏移校正iii. Integer Frequency Offset Correction

为了校正整数频率偏移,有必要写一个用于在精细频率偏移校正之后所接收到的信号的等价系统模型。将保留的定时误差吸收到信道中,没有噪声的所接收到的信号具有以下结构:In order to correct integer frequency offsets, it is necessary to write an equivalent system model for the received signal after fine frequency offset correction. Absorbing the retained timing error into the channel, the received signal without noise has the following structure:

其中n=0,1,...,4Nt–1。整数频率偏移是k,而未知的等价信道是g[l]。where n=0,1,...,4N t –1. The integer frequency offset is k and the unknown equivalent channel is g[l].

方法3-改进的整数频率偏移校正:整数频率偏移是以下的解:Method 3 - Improved Integer Frequency Offset Correction: The integer frequency offset is the solution of:

其中:in:

r=D[k]Sgr=D[k]Sg

这给出了总的频率偏移的估计:This gives an estimate of the total frequency offset:

实际上,方法3具有很高的复杂性。为了降低复杂性,可以做出以下观察。首先,乘积S(S*S )-1S可以被预计算。遗憾的是,这仍然留下了相当大的矩阵乘法。可替换的是采用具有所提出的训练序列的观察,S*S≈I。这产生了以下的降低的负载型的方法。In fact, method 3 has high complexity. To reduce complexity, the following observations can be made. First, the product S(S*S ) -1 S can be precomputed. Unfortunately, this still leaves a rather large matrix multiplication. An alternative is to use observations with the proposed training sequence, S*S≈I. This results in the following reduced loading method.

方法4-低复杂性的改进的整数频率偏移校正:Method 4 - Improved Integer Frequency Offset Correction with Low Complexity:

低复杂性的整数频率偏移估计器解出了A low-complexity integer frequency offset estimator solves the

iv.结果iv. Results

在该部分中,我们比较了不同的所提出的估计器的性能。In this section, we compare the performance of different proposed estimators.

首先,在图50中,我们比较了每种方法所需要的开销的量。注意两种新的方法将开销降低了10倍到20倍。为了比较不同的估计器的性能,MonteCarlo实验被执行。所考虑的设置是从具有3K符号每秒的符号率的线性调制构造的我们的通常的NVIS发送波形,对应于3KHz的通带带宽,以及上升的余弦脉冲成形。对于每个Monte Carlo实现,频率偏移从在[-fmax,fmax]上的均匀分布而生成。First, in Figure 50, we compare the amount of overhead required by each approach. Note that two new methods reduce the overhead by a factor of 10 to 20. To compare the performance of different estimators, MonteCarlo experiments were performed. The considered setup is our usual NVIS transmit waveform constructed from linear modulation with a symbol rate of 3K symbols per second, corresponding to a passband bandwidth of 3KHz, and raised cosine pulse shaping. For each Monte Carlo implementation, frequency offsets are generated from a uniform distribution on [-f max , f max ].

具有fmax=2Hz的小的频率偏移且没有整数偏移校正的仿真在图51中被示出。可以从该性能比较中看出,具有Nt/Mt=1的性能从原始估计器轻微降级,虽然实质上降低了开销。具有Nt/Mt=4的性能更好,几乎是10dB。由于在整数偏移估计中的误差,所有曲线在低的SNR点经历了曲折。在整数偏移中的小的误差可以创建大的频率误差和大的拼接平方误差。整数偏移校正可以在小的偏移中被关闭以改进性能。A simulation with a small frequency offset of f max =2 Hz and no integer offset correction is shown in FIG. 51 . It can be seen from this performance comparison that the performance with N t /M t =1 is slightly degraded from the original estimator, although the overhead is substantially reduced. The performance with N t /M t =4 is better, almost 10 dB. All curves experience meandering at low SNR points due to errors in integer offset estimation. Small errors in integer offsets can create large frequency errors and large splice squared errors. Integer offset correction can be turned off in small offsets to improve performance.

在多路径信道存在的情况下,频率偏移估计器的性能一般降低。然而,在图52中,关闭整数偏移估计器展现了非常好的性能。因此,在多路径信道中,在执行鲁棒的粗略校正之后的改进的精细校正算法是更重要的。注意,具有Nt/Mt=4的偏移性能在多路径情况下好得多。In the presence of multipath channels, the performance of the frequency offset estimator generally degrades. However, in Figure 52, turning off the integer offset estimator exhibits very good performance. Therefore, in multipath channels, an improved fine correction algorithm after performing a robust coarse correction is more important. Note that the offset performance with N t /M t =4 is much better in the multipath case.

本发明的实施方式可以包括上面所提出的各种步骤。所述步骤可以以机器可执行指令的方式实现,所述指令使得通用或专用处理器执行特定步骤。例如,在上面所述的基站/AP和客户装置内的各种组件可以被实施为在通用或专用处理器上执行的软件。为了避免模糊本发明的有关方面,诸如计算机存储器、硬盘、输入装置等的各种公知的个人计算机组件已经从图中省去。Embodiments of the present invention may include the various steps set forth above. The steps may be implemented in the form of machine-executable instructions that cause a general or special purpose processor to perform certain steps. For example, the various components within the base station/AP and client devices described above may be implemented as software executing on a general-purpose or special-purpose processor. In order to avoid obscuring relevant aspects of the present invention, various well-known personal computer components, such as computer memory, hard disk, input devices, etc. have been omitted from the figures.

可替换地,在一个实施方式中,这里所示出的各种功能模块和相关步骤可以通过包含执行步骤的硬接线逻辑的专用硬件组件(例如专用集成电路(ASIC))或通过编程计算机组件和定制硬件组件的任意组合而被执行。Alternatively, in one embodiment, the various functional blocks and associated steps shown here may be implemented by dedicated hardware components (such as application-specific integrated circuits (ASICs)) that contain hard-wired logic to perform the steps, or by programmed computer components and Any combination of custom hardware components can be implemented.

在一个实施方式中,诸如上面描述的编码、调制和信号处理逻辑903的特定模块可以在可编程数字信号处理器(DSP)(或DSP组)上被实施,所述DSP例如使用德州仪器(TexasInstruments)的TMS320x架构的DSP(例如,TMS320C6000、TMS320C5000等)。在该实施方式中的DSP可以被嵌入在个人计算机的插件卡中,例如,PCI卡。当然,在符合本发明的基本原理的情况下,各种不同的DSP架构可以被使用。In one embodiment, specific blocks such as the encoding, modulation, and signal processing logic 903 described above may be implemented on a programmable digital signal processor (DSP) (or set of DSPs) using, for example, a Texas Instruments ) DSP of the TMS320x architecture (for example, TMS320C6000, TMS320C5000, etc.). The DSP in this embodiment may be embedded in a personal computer add-in card, eg, a PCI card. Of course, a variety of different DSP architectures could be used while consistent with the underlying principles of the invention.

本发明的各种部件也可以被提供为用于存储机器可执行指令的机器可读介质。机器可读介质可以包括但不限于闪存、光盘、CD-ROM、DVD ROM、RAM、EPROM、EEPROM、磁卡或光学卡、传播媒介或适于存储电子指令的其它类型的机器可读介质。例如,本发明可以被下载为计算机程序,该计算机程序可以通过包含在载波或其它传播媒介的数据信号的方式经由通信链路(例如,调制解调器或网络连接)从远程计算机(例如服务器)传送到请求计算机(例如客户端)。Various components of the present invention may also be provided as machine-readable media for storing machine-executable instructions. A machine-readable medium may include, but is not limited to, flash memory, optical disks, CD-ROMs, DVD ROMs, RAM, EPROMs, EEPROMs, magnetic or optical cards, transmission media, or other types of machine-readable media suitable for storing electronic instructions. For example, the present invention can be downloaded as a computer program that can be transmitted from a remote computer (such as a server) to the requesting computer via a communication link (such as a modem or network connection) by means of a data signal embodied in a carrier wave or other propagation medium. Computers (such as clients).

遍及前述描述,为了解释的目的,许多特定细节被提出以提供本系统和方法的全面理解。然而,对于本领域技术人员来说显而易见的是,系统和方法可以在没有这些特定细节中的一些的情况下被实现。因此,本发明的范围和实质应当根据所附权利要求被判断。Throughout the foregoing description, for purposes of explanation, numerous specific details were set forth in order to provide a thorough understanding of the present systems and methods. It will be apparent, however, to one skilled in the art that the systems and methods may be practiced without some of these specific details. Accordingly, the scope and spirit of the present invention should be judged from the appended claims.

此外,在前述描述中,许多文献被引用以提供本发明的更全面的理解。所有这些引用的参考文献通过参考被合并到本申请中。In addition, in the foregoing description, numerous documents were cited to provide a more comprehensive understanding of the invention. All such cited references are incorporated into this application by reference.

Claims (33)

1. A system for compensating for frequency and phase offsets for multiuser multiple antenna system (MU-MAS) communications, the system comprising:
one or more code modulation units for coding and modulating information bits for each of a plurality of wireless client devices to generate coded and modulated information bits;
one or more mapping units for mapping the coded and modulated information bits into complex symbols; and
an MU-MAS frequency/phase offset aware precoding unit to compute MU-MAS frequency/phase offset aware precoding weights using channel condition information, the MU-MAS frequency/phase offset aware precoding unit to precode complex symbols obtained from the mapping unit with the weights to pre-cancel frequency/phase offset and/or inter-user interference.
2. The system as in claim 1 wherein the channel condition information is obtained through feedback from the wireless client device to the MU-MAS frequency/phase offset aware precoding unit.
3. The system as in claim 1 wherein the channel condition information in the downlink is obtained from the uplink at the MU-MAS frequency/phase offset aware precoding unit by exploiting channel reciprocity.
4. The system of claim 1, further comprising: one or more Orthogonal Frequency Division Multiplexing (OFDM) units to receive the precoded signals from the MU-MAS frequency/phase offset aware precoding units and to modulate the precoded signals according to an OFDM standard.
5. The system of claim 4, wherein the OFDM standard includes computing an Inverse Fast Fourier Transform (IFFT) and adding a cyclic prefix.
6. The system of claim 4, further comprising: one or more D/A units to perform digital-to-analog (D/A) conversion on outputs of the OFDM units to generate analog baseband signals; and one or more Radio Frequency (RF) units to up-convert the analog baseband signals to radio frequencies and transmit the signals using corresponding one or more transmit antennas.
7. The system as in claim 1 wherein the MU-MAS frequency/phase offset aware precoding unit is implemented as a Minimum Mean Square Error (MMSE), a weighted MMSE, a Zero Forcing (ZF), or a Block Diagonalization (BD) precoder.
8. The system of claim 1, wherein the channel condition information is estimated by transmitting training sequences between a plurality of transmit antennas or the wireless client device, and the channel condition information is used to estimate a frequency or phase offset between the transmit antennas.
9. A system for compensating in-phase-quadrature (I/Q) imbalance of multiuser multiple antenna system (MU-MAS) communications, the system comprising:
one or more code modulation units for coding and modulating information bits for each of a plurality of wireless client devices to generate coded and modulated information bits;
one or more mapping units for mapping the coded and modulated information bits into complex symbols; and
an MU-MAS IQ aware precoding unit to compute MU-MASIQ aware precoding weights using channel condition information, the MU-MAS IQ aware precoding unit to precode complex symbols obtained from the mapping unit using the weights to pre-cancel interference due to I/Q gain and phase imbalance and/or inter-user interference.
10. The system as in claim 9 wherein the channel condition information is obtained through feedback from the wireless client devices to the MU-MAS IQ-aware precoding unit.
11. The system according to claim 9, wherein the channel condition information in downlink is obtained from uplink at the MU-MASIQ-aware precoding unit by exploiting channel reciprocity.
12. The system of claim 9, further comprising:
one or more Orthogonal Frequency Division Multiplexing (OFDM) units to receive the precoded signals from the MU-MASIQ aware precoding unit and to modulate the precoded signals according to an OFDM standard.
13. The system of claim 12, wherein the OFDM standard comprises computing an Inverse Fast Fourier Transform (IFFT) and adding a cyclic prefix.
14. The system of claim 12, further comprising:
one or more D/A units to perform digital-to-analog (D/A) conversion on outputs of the OFDM units to generate analog baseband signals; and
one or more Radio Frequency (RF) units to up-convert the analog baseband signals to radio frequencies and transmit the signals using corresponding one or more transmit antennas.
15. The system as in claim 9 wherein the MU-MAS IQ-aware precoding unit is implemented as beamforming or Maximum Ratio Combining (MRC).
16. The system as in claim 9 wherein the MU-MAS IQ-aware precoding unit is implemented as a Minimum Mean Square Error (MMSE), a weighted MMSE, a zero-forcing (ZF), or a block-diagonalization (BD) precoder.
17. The system of claim 9, wherein the channel condition information is estimated by transmitting training sequences between a plurality of transmit antennas or the wireless client device, and the channel condition information is used to estimate I/Q gain and phase imbalance for the transmit antennas.
18. The system of claim 9, comprising one or more RF units to convert signals between baseband and RF.
19. A system for dynamically adapting communication characteristics of a multi-user multi-antenna system (MU-MAS) communication system, comprising:
one or more code modulation units for coding and modulating information bits for each of a plurality of wireless client devices to generate coded and modulated information bits;
one or more mapping units for mapping the coded and modulated information bits into complex symbols; and
an MU-MAS configurator unit for determining subsets of users and MU-MAS transmission modes based on channel characteristic data and responsively controlling the code modulation units and the mapping unit.
20. The system in claim 19 wherein the channel characteristic data is obtained through feedback from the wireless client device to the MU-MAS configurator unit.
21. The system as in claim 19 wherein the channel characterization data in the downlink is obtained from the uplink at the MU-MAS configurator unit by exploiting channel reciprocity.
22. The system of claim 19, further comprising:
an MU-MAS precoding unit operating under control of the MU-MAS configurator unit to calculate precoding weights for precoding data signals before being transmitted to the wireless client devices.
23. The system of claim 22, further comprising:
one or more Orthogonal Frequency Division Multiplexing (OFDM) units to receive the precoded signals from the MU-MAS precoding unit and to modulate the precoded signals according to an OFDM standard.
24. The system of claim 23, wherein the OFDM standard comprises computing an Inverse Fast Fourier Transform (IFFT) and adding a cyclic prefix.
25. The system of claim 23, further comprising:
one or more D/A units to perform digital-to-analog (D/A) conversion on outputs of the OFDM units to generate analog baseband signals; and
one or more Radio Frequency (RF) units to up-convert the analog baseband signals to radio frequencies and transmit the signals using corresponding one or more transmit antennas.
26. The system as in claim 22 wherein the MU-MAS precoding unit is implemented as a Minimum Mean Square Error (MMSE), a weighted MMSE, a zero-forcing (ZF), or a block-diagonalization (BD) precoder.
27. The system as in claim 19 wherein the channel characterization data is estimated by sending training sequences between multiple transmit antennas and the wireless client devices and is used to estimate a subset of wireless client devices, transmit antennas, or transmission modes for the MU-MAS communication system.
28. The system as in claim 19 wherein the MU-MAS configurator unit uses polarization and/or pattern diversity techniques as a method to reduce array size while achieving diversity over the wireless link.
29. The system of claim 19, wherein communication occurs via near-normal incidence sky-wave (NVIS) and/or ground-wave as a method to increase diversity and downlink throughput.
30. The system of claim 19, wherein pattern diversity is used to communicate with a particular user via ground waves and communicate with other users via NVIS.
31. A system as in claim 29, where each client employs spatial separation of ground waves and NVIS links as a method of increasing spatial diversity of the links.
32. The system of claim 19, further comprising a base station for adaptively switching between different array geometries and different antenna diversity techniques based on channel quality feedback from a client as a way to increase diversity and downlink throughput of a link.
33. The system of claim 19, further comprising a base station that defines groups of users and schedules different groups of users to transmit based on their priorities and/or channel conditions.
CN201210466082.XA 2007-08-20 2008-08-20 System of compensating MU-MAS communications and dynamically adapting communication characteristics of MU-MAS communication system Expired - Fee Related CN103117975B (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US11/894,394 2007-08-20
US11/894,362 US7633994B2 (en) 2004-07-30 2007-08-20 System and method for distributed input-distributed output wireless communications
US11/894,362 2007-08-20
US11/894,540 US7636381B2 (en) 2004-07-30 2007-08-20 System and method for distributed input-distributed output wireless communications
US11/894,540 2007-08-20
US11/894,394 US7599420B2 (en) 2004-07-30 2007-08-20 System and method for distributed input distributed output wireless communications
CN2008801029334A CN101861718B (en) 2007-08-20 2008-08-20 System and method for distributed input distributed output wireless communication

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2008801029334A Division CN101861718B (en) 2007-08-20 2008-08-20 System and method for distributed input distributed output wireless communication

Publications (2)

Publication Number Publication Date
CN103117975A CN103117975A (en) 2013-05-22
CN103117975B true CN103117975B (en) 2017-05-24

Family

ID=48023331

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201210466082.XA Expired - Fee Related CN103117975B (en) 2007-08-20 2008-08-20 System of compensating MU-MAS communications and dynamically adapting communication characteristics of MU-MAS communication system
CN201210464974.6A Active CN103036839B (en) 2007-08-20 2008-08-20 MU-MAS, wireless client device and the method implemented in MU-MAS
CN201310407419.4A Expired - Fee Related CN103501193B (en) 2007-08-20 2008-08-20 Method for compensating for MU-MAS and dynamically adapting to MU-MAS

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201210464974.6A Active CN103036839B (en) 2007-08-20 2008-08-20 MU-MAS, wireless client device and the method implemented in MU-MAS
CN201310407419.4A Expired - Fee Related CN103501193B (en) 2007-08-20 2008-08-20 Method for compensating for MU-MAS and dynamically adapting to MU-MAS

Country Status (5)

Country Link
JP (5) JP2013251915A (en)
KR (3) KR101805345B1 (en)
CN (3) CN103117975B (en)
CA (2) CA2937021C (en)
RU (4) RU2578206C2 (en)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US9191148B2 (en) 2007-06-05 2015-11-17 Constellation Designs, Inc. Methods and apparatuses for signaling with geometric constellations in a Raleigh fading channel
US8265175B2 (en) 2007-06-05 2012-09-11 Constellation Designs, Inc. Methods and apparatuses for signaling with geometric constellations
ES2712914T3 (en) 2007-06-05 2019-05-16 Constellation Designs Inc Method and apparatus for signaling with optimized capacity constellations
US12289192B2 (en) 2008-12-30 2025-04-29 Constellation Designs, LLC Systems and methods for receiving data transmitted using non-uniform QAM 256 constellations
US12425885B2 (en) 2010-07-08 2025-09-23 Constellation Designs, LLC Systems and methods for receiving data transmitted using non-uniform QAM 256 constellations via fading channels
TWI633767B (en) * 2012-05-18 2018-08-21 美商李爾登公司 Systems and methods to enhance spatial diversity in distributed input distributed output wireless systems
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US20150229372A1 (en) * 2014-02-07 2015-08-13 Rearden, Llc Systems and methods for mapping virtual radio instances into physical volumes of coherence in distributed antenna wireless systems
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
RU2767777C2 (en) 2013-03-15 2022-03-21 Риарден, Ллк Systems and methods of radio frequency calibration using the principle of reciprocity of channels in wireless communication with distributed input - distributed output
CN104283819B (en) * 2013-07-01 2018-07-03 华为技术有限公司 Channel estimation process method, apparatus and communication equipment
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
WO2016072206A1 (en) 2014-11-05 2016-05-12 日本電気株式会社 Communication system, transmission apparatus, and communication method
EP3231236B1 (en) * 2014-12-09 2020-08-05 Myriota Pty Ltd Multicarrier communications system
US10731052B2 (en) 2015-02-16 2020-08-04 Basf Se System for forming elastomeric compositions for application to metal
TWI555360B (en) * 2015-03-27 2016-10-21 In the uplink transmission system to solve the radio frequency is not perfect joint estimation compensation method
AU2016255500B2 (en) * 2015-04-29 2020-04-30 Interdigital Patent Holdings, Inc. Methods and devices for sub-channelized transmission schemes in WLANS
KR102305628B1 (en) * 2015-05-11 2021-09-28 엘지전자 주식회사 Apparatus and method for cancelling interference signal between UEs and enhancing downlink diversity gain in wireless communication system supportable full duplex radio scheme
CN106302299B (en) * 2015-05-20 2020-06-05 中兴通讯股份有限公司 Multi-user access method and device
CN107683614B (en) 2015-05-25 2020-08-18 Lg电子株式会社 Method and apparatus for transmitting and receiving channel information in inter-vehicle communication system
JP6557874B2 (en) * 2015-05-25 2019-08-14 パナソニックIpマネジメント株式会社 Wireless communication apparatus and wireless communication method
WO2016209848A1 (en) * 2015-06-22 2016-12-29 Cohere Technologies, Inc. Symplectic orthogonal time frequency space modulation system
EP4164152B1 (en) * 2015-06-27 2024-06-19 Cohere Technologies, Inc. Orthogonal time frequency space communication system compatible with ofdm
US9912389B2 (en) * 2015-10-05 2018-03-06 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus to account for effective downlink-channels arising from beamforming uplink reference signals
CN106612135B (en) * 2015-10-19 2021-07-27 北京三星通信技术研究有限公司 Signal transmission method, reception method and device based on multi-carrier spatial modulation
US10063302B2 (en) 2016-04-15 2018-08-28 Huawei Technologies Co., Ltd. Short SSW frame format for SLS beamforming process between enabled, associated stations and method of preparing wireless communication
US10003390B2 (en) * 2016-04-21 2018-06-19 Huawei Technologies Canada Co., Ltd. System and method for precoded Faster than Nyquist signaling
CN107332600B (en) * 2016-04-29 2020-03-24 电信科学技术研究院 Channel state information feedback and receiving method and device
GB2554631B (en) * 2016-05-13 2019-11-20 Cambium Networks Ltd Method and apparatus for beam pattern stabilisation
EP3602988A1 (en) * 2017-03-22 2020-02-05 IDAC Holdings, Inc. Methods, apparatus, systems, architectures and interfaces for channel state information reference signal for next generation wireless communication systems
CN110546973B (en) * 2017-04-20 2022-03-29 惠普发展公司,有限责任合伙企业 Mobile computing device, medium, and data connection switching method
WO2018202055A1 (en) * 2017-05-02 2018-11-08 Mediatek Inc. Overhead reduction for linear combination codebook and feedback mechanism in mobile communications
CN107196880B (en) * 2017-05-22 2019-08-02 电子科技大学 A kind of phase noise compensation method in differential space-time coding
CN107395267A (en) * 2017-08-28 2017-11-24 王洋 A kind of AIS multiple antennas multi channel signals simulator
CN109600201B (en) * 2017-10-01 2024-04-26 大唐移动通信设备有限公司 Polarization coding method, device, electronic equipment and storage medium
TWI639314B (en) * 2017-12-12 2018-10-21 財團法人工業技術研究院 Multi-antenna system and percoding method thereof
RU2685286C1 (en) * 2018-02-21 2019-04-17 Общество с ограниченной ответственностью "Формик" Method for implementing frequency and multiparameter adaptation in multi-antenna hf communication system
CN111903065B (en) * 2018-03-23 2023-12-05 株式会社Ntt都科摩 Base station and transmission method
CN108983155B (en) * 2018-07-09 2022-04-05 重庆大学 A Radar Communication Integrated Waveform Design Method
TWI717736B (en) 2019-05-15 2021-02-01 財團法人工業技術研究院 Multi-antenna system and channel calibration method thereof
CN113691297B (en) * 2020-05-18 2022-08-02 中国电信股份有限公司 Signal receiving method and device and signal transmission system
KR20230074167A (en) * 2020-09-23 2023-05-26 엘지전자 주식회사 A receiver including an analog-to-digital converter in a wireless communication network and a method of operating the receiver
CN112511201B (en) * 2020-11-19 2021-10-26 东南大学 Sky wave large-scale MIMO communication method, model and system
WO2022242997A1 (en) * 2021-05-18 2022-11-24 Commsolid Gmbh Differential phase shift keying (dpsk-) receiver for adapting to transmitter imperfection and method performed by said dpsk-receiver
CN113659567B (en) * 2021-07-21 2024-03-26 上海外高桥造船有限公司 Design method and device of FPSO power system
CN113381956B (en) * 2021-08-13 2021-12-03 电子科技大学 Safe communication method based on motion state space position point
CN113746534B (en) * 2021-09-22 2022-04-19 东南大学 A transmission method for satellite massive MIMO communication sensing integration
US12425093B2 (en) 2022-09-19 2025-09-23 Electronics And Telecommunications Research Institute Method and apparatus for signal transmission and reception in communication system
CN115665847B (en) * 2022-12-26 2023-02-28 为准(北京)电子科技有限公司 Uplink synchronization method and device for single carrier signal of narrow-band Internet of things
CN117335929B (en) * 2023-12-01 2024-02-20 十方星链(苏州)航天科技有限公司 Satellite ground station multipath concurrency code modulation communication terminal and communication method
CN118939911B (en) * 2024-10-12 2024-12-24 江苏威拉里新材料科技有限公司 Calibration method and system for batching precision of batching equipment

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838671A (en) * 1995-06-23 1998-11-17 Ntt Mobile Communications Network Inc. Method and apparatus for call admission control in CDMA mobile communication system
US6259687B1 (en) * 1997-10-31 2001-07-10 Interdigital Technology Corporation Communication station with multiple antennas
US7072413B2 (en) * 2001-05-17 2006-07-04 Qualcomm, Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US20030048753A1 (en) * 2001-08-30 2003-03-13 Ahmad Jalali Method and apparatus for multi-path elimination in a wireless communication system
JP4116562B2 (en) * 2001-11-29 2008-07-09 クゥアルコム・インコーポレイテッド Method and apparatus for determining log-likelihood ratio in precoding
ATE338388T1 (en) * 2002-04-30 2006-09-15 Motorola Inc WIRELESS COMMUNICATION USING MULTIPLE TRANSMIT AND RECEIVE ANTENNA ARRANGEMENT
FR2841068B1 (en) * 2002-06-14 2004-09-24 Comsis METHOD FOR DECODING LINEAR SPACE-TIME CODES IN A MULTI-ANTENNA WIRELESS TRANSMISSION SYSTEM, AND DECODER IMPLEMENTING SUCH A METHOD
US7072693B2 (en) * 2002-08-05 2006-07-04 Calamp Corp. Wireless communications structures and methods utilizing frequency domain spatial processing
DE60325921D1 (en) * 2002-08-22 2009-03-12 Imec Inter Uni Micro Electr Method for MIMO transmission for multiple users and corresponding devices
US8320301B2 (en) * 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US8705659B2 (en) * 2003-11-06 2014-04-22 Apple Inc. Communication channel optimization systems and methods in multi-user communication systems
US7711030B2 (en) * 2004-07-30 2010-05-04 Rearden, Llc System and method for spatial-multiplexed tropospheric scatter communications
US7418053B2 (en) * 2004-07-30 2008-08-26 Rearden, Llc System and method for distributed input-distributed output wireless communications
CN1930789A (en) * 2004-08-09 2007-03-14 松下电器产业株式会社 wireless communication equipment
KR100909539B1 (en) * 2004-11-09 2009-07-27 삼성전자주식회사 Apparatus and method for supporting various multi-antenna technologies in a broadband wireless access system using multiple antennas
JP4599192B2 (en) * 2005-03-02 2010-12-15 株式会社日立製作所 Wireless data communication system and wireless data communication method
US8483200B2 (en) * 2005-04-07 2013-07-09 Interdigital Technology Corporation Method and apparatus for antenna mapping selection in MIMO-OFDM wireless networks
US9408220B2 (en) * 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US7480497B2 (en) * 2005-06-29 2009-01-20 Intel Corporation Multicarrier receiver and method for carrier frequency offset correction and channel estimation for receipt of simultaneous transmissions over a multi-user uplink
JP4702883B2 (en) * 2005-08-23 2011-06-15 国立大学法人東京工業大学 Transmitting apparatus, receiving apparatus, MIMO-OFDM communication system, and IQ imbalance compensation method in MIMO-OFDM communication system
US7917100B2 (en) * 2005-09-21 2011-03-29 Broadcom Corporation Method and system for a double search user group selection scheme with range in TDD multiuser MIMO downlink transmission
CN101288244B (en) * 2005-10-17 2014-03-12 三星电子株式会社 Method for transmitting/receiving data in multi-user multi-antenna communication system
JP2008118380A (en) * 2006-11-02 2008-05-22 Samsung Electronics Co Ltd Communication apparatus and communication method
JP5208453B2 (en) * 2007-06-19 2013-06-12 三星電子株式会社 Communication device and transmission rate setting method

Also Published As

Publication number Publication date
CN103117975A (en) 2013-05-22
CN103036839B (en) 2015-09-30
JP6055524B2 (en) 2016-12-27
RU2016107617A3 (en) 2019-06-25
CA2937021C (en) 2019-01-08
KR20150136548A (en) 2015-12-07
KR20150018900A (en) 2015-02-24
RU2578206C2 (en) 2016-03-27
JP2013251915A (en) 2013-12-12
CN103501193B (en) 2017-04-12
RU2016107617A (en) 2017-09-07
CA3025857C (en) 2022-10-18
KR101598324B1 (en) 2016-02-26
KR20160136476A (en) 2016-11-29
JP2017085589A (en) 2017-05-18
CN103036839A (en) 2013-04-10
JP2020127215A (en) 2020-08-20
JP6922027B2 (en) 2021-08-18
RU2700568C2 (en) 2019-09-18
RU2580324C2 (en) 2016-04-10
KR101805345B1 (en) 2018-01-10
JP2015111849A (en) 2015-06-18
JP2015216699A (en) 2015-12-03
RU2019126350A (en) 2021-02-24
CA2937021A1 (en) 2009-02-26
CA3025857A1 (en) 2009-02-26
RU2011131822A (en) 2013-02-10
RU2011131821A (en) 2013-02-10
CN103501193A (en) 2014-01-08

Similar Documents

Publication Publication Date Title
CN103117975B (en) System of compensating MU-MAS communications and dynamically adapting communication characteristics of MU-MAS communication system
CN101861718B (en) System and method for distributed input distributed output wireless communication
US7633994B2 (en) System and method for distributed input-distributed output wireless communications
AU2023202310B2 (en) System and method for distributed input distributed output wireless communications
AU2020201409C1 (en) System and method for distributed input distributed output wireless communications
HK1191462A (en) A method of compensating for mu-mas communication and dynamically adapting mu-mas
HK1191462B (en) A method of compensating for mu-mas communication and dynamically adapting mu-mas
HK1148621B (en) Compensation of quadrature imbalance in a system with multiple antennas
HK1141173B (en) System and method for distributed input distributed output wireless communications
HK1141173A (en) System and method for distributed input distributed output wireless communications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170524

CF01 Termination of patent right due to non-payment of annual fee