[go: up one dir, main page]

CN102900603B - Design method of wind turbine pitch controller based on finite-time non-fragile/cost-stable - Google Patents

Design method of wind turbine pitch controller based on finite-time non-fragile/cost-stable Download PDF

Info

Publication number
CN102900603B
CN102900603B CN201210347909.5A CN201210347909A CN102900603B CN 102900603 B CN102900603 B CN 102900603B CN 201210347909 A CN201210347909 A CN 201210347909A CN 102900603 B CN102900603 B CN 102900603B
Authority
CN
China
Prior art keywords
wind turbine
model
theta
wind
fuzzy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210347909.5A
Other languages
Chinese (zh)
Other versions
CN102900603A (en
Inventor
张磊
张琨
刘卫朋
赵微微
高惠娟
穆显显
王伟朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201210347909.5A priority Critical patent/CN102900603B/en
Publication of CN102900603A publication Critical patent/CN102900603A/en
Application granted granted Critical
Publication of CN102900603B publication Critical patent/CN102900603B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

The invention provides a variable pitch controller design method based on a finite time non-crisp/guaranteed-cost stable wind turbine generator set. The method includes that a continuous time non-linear model of a wind turbine generator set variable pitch system is approximately indicated through a fuzzy T-S model; a dynamic fuzzy model is obtained through single-point fuzzification, product reasoning, defuzzification of the center of gravity according to the obtained fuzzy T-S model; and according to the obtained dynamic fuzzy model and finite time stable meaning, a state feedback controller of wind turbine generator set variable pitch is designed, and pitch angles of the wind turbine generator set, rotating speed of the wind turbine generator and output current of the wind turbine generator set are controlled through the obtained controller.

Description

Based on finite time non-crisp/protect the stable wind-powered electricity generation unit Variable-pitch Controller design method of cost
Technical field
The present invention relates to the control of wind-powered electricity generation unit feather, especially a kind of based on the stable controlling method of the non-crisp guarantor's cost of finite time.
background technique
Because wind energy is the randomness energy, when wind speed changes, the power of exporting on wind turbine shaft also changes thereupon.Therefore, how regulating the output power of wind energy conversion system is one of very important key technology for the wind-driven generator being incorporated into the power networks.At present, horizontal-shaft wind turbine power adjustments mode is mainly divided into two kinds, and fixed pitch stall-adjusted and feather power adjustments are two kinds.
The basic principle of fixed pitch stall power adjustments is: utilize the aerodynamic characteristic of blade itself,, in rated wind speed, the lift coefficient of blade is higher, the utilization factor C of wind energy palso higher, and during wind speed overrate, blade enters stall conditions, just lift no longer increases, and wind speed round will no longer increase along with the increase of wind speed, thereby reaches the object of restriction wind energy conversion system output power.Put it briefly, stall power adjustments is to utilize the aerodynamic stalling power adjustments of blade, is again to utilize the aerodynamic stalling characteristic limitations pneumatic equipment blades made of blade to absorb wind energy, reaches and prevents that the output power of wind energy conversion system is excessive, thereby reach, maintains wind energy conversion system invariablenes turning speed.The shortcomings such as the advantage of this regulative mode is that variable propeller pitch adjusting mechanism is simple, and operational reliability is higher, but exists wind energy loss large, and the starting performance of wind energy conversion system is poor, and the pneumatic thrust that bears on blade is larger.
The basic principle of feather power adjustments mode is: when wind-force variation makes the wind speed round of wind energy conversion system depart from rated speed, in scheduled time, control by means of blade pitch adjusting color controls, change the propeller pitch angle of wind mill wind wheel blade, maintain the invariablenes turning speed of wind energy conversion system, thereby adjust the output power of wind energy conversion system.Common control algorithm has following several at present:
(1) the feather control technique based on Robust Control Algorithm, can realize at the maximal wind-energy capture having under modeling condition of uncertainty, the in the situation that of basic guarantee maximal wind-energy capture, can make the amplitude that on rotor shaft, torque changes reduce an order of magnitude.Robust control can also solve driftage problem, and the design that realizes fatigue loads controller in wind-energy changing system by the torque in control chain.
(2) the intelligent variable-pitch controller technology based on fuzzy algorithmic approach, can effectively adapt to nonlinear system, feather fuzzy control adopts change propeller pitch angle to change the method for aerodynamic torque, to regulate the power factor of wind mill wind wheel, and then controls the output power of wind energy conversion system.
(3) the wind-powered electricity generation unit feather based on Fuzzy RBF Neural Network is controlled, and adopts neuron network to realize FUZZY MAPPING process, according to input-output training data, automatically extracts control law, determines former piece and consequent parameter.This controller calculates based on real time data, can continue to optimize its Inter parameter and make system can overcome non-linear and time variation, has met dynamic characteristic and the steady-state behaviour of system.
summary of the invention
The present invention improves prior art, is intended to guarantee that wind-powered electricity generation unit variable-pitch control system " in short-term " is stable, and finite time is stable, and controller switches at different " in short-term ".
Technological scheme of the present invention is:
Based on the stable wind-powered electricity generation unit variable pitch control method of finite time, comprise the following steps:
The first step: for variable-pitch system of wind turbine generator, set up nonlinear model continuous time and by following T-S fuzzy model approximate representation:
Plant model rule i (i=1,2 ..., r)
If θ 1(t) be N i1, θ 2(t) be N i2θ 3(t) be N i3
So x · ( t ) = A i x ( t ) + B i u ( t )
Wherein, θ 1(t), θ 2and θ (t) 3(t) represent respectively wind speed, wind-driven generator rotating speed and output power; N i1, N i2and N i3be respectively θ in i rule 1(t), θ 2and θ (t) 3(t) corresponding linguistic variable; The vector of x (t) for being formed by propeller pitch angle, wind-driven generator rotating speed and wind-driven generator output current; U (t) represents the propeller pitch angle instruction input of expectation; (A i, B i) State Equation Coefficients corresponding to expression i bar plant model rule; R is control law number (value of the present invention is 9 or 16);
Second step: above-mentioned T-S fuzzy model is carried out to product reasoning, the processing of center of gravity defuzzification, obtain following dynamic fuzzy system:
x · ( t ) = Σ i = 1 r h i ( θ ( t ) ) [ A i x ( t ) + B i u ( t ) ]
Wherein, h i ( θ ( t ) ) = h il ( θ 1 ( t ) ) h i 2 ( θ 2 ( t ) ) h i 3 ( θ 3 ( t ) ) Σ m = 1 r h m 1 ( θ 1 ( t ) ) h m 2 ( θ 2 ( t ) ) h m 3 ( θ 3 ( t ) ) Represent that plant model meets the degree of i rule; h i11(t)), h i22) and h (t) i33(t)) be respectively θ 1(t), θ 2and θ (t) 3(t) membership function, works as θ 1(t), θ 2and θ (t) 3(t), while being taken as concrete numerical value, its corresponding membership function value is respectively h i11(t)), h i22) and h (t) i33(t));
The 3rd step: according to the stable connotation of finite time and above-mentioned plant model, the controller model that design is represented by following T-S fuzzy model, wherein, the corresponding controller model rule of each plant model rule:
Controller model rule j (j=1,2 ..., r)
If θ 1(t) be N j1, θ 2(t) be N j2θ 3(t) be N j3
U (t)=K so jx (t)
Wherein, K jfor gain matrix;
Above-mentioned controller model is carried out to product reasoning, center of gravity defuzzification, arranges and obtain following controller:
u ( t ) = Σ i = 1 r h j ( θ ( t ) ) K j x ( t )
Wherein, N jk(j=1,2 ..., r, k=1,2,3) with the first step in N ik(i=1,2 ..., r, k=1,2,3) consistent, h j(θ (t)) (j=1,2 ..., h r) and in second step i(θ (t)) (i=1,2 ..., r) consistent;
The 4th step: the propeller pitch angle instruction input u (t) that utilizes the 3rd step to obtain, controls propeller pitch angle, wind-driven generator rotating speed and wind-driven generator output current.
Embodiment
[the feather Principles of Regulation of wind-powered electricity generation unit]
By power coefficient C p=2P/ ρ v 3a knows, it is P=C that wind energy conversion system absorbs the output power that wind energy produces pρ v 3a/2; Wind energy conversion system changes the energy of generation into mechanical energy and passes to load, mechanical energy representation:
P m=Tw (1)
In formula: P m-mechanical energy; T-wind energy conversion system moment of torsion; ω-wind energy conversion system angular velocity, the torque T is here determined by load, can be obtained like this by formula (1):
ω=ρπC pR 2v 3/2T
When wind energy conversion system is under certain wind speed, for certain load, ρ, π, R are also constant, and rotating speed just depends on the size of power coefficient so, has ω ∝ C p.The stressing conditions of blade while rotating with certain velocity-stabilization after starting according to foline characteristic theory analysis wind wheel, thus draw the relation at ideal situation downstream and each angle of blade:
I=i+β
tgI=v/ωr=1/λ
In formula: I-inclination angle; The i-angle of attack; β-propeller pitch angle; λ-tip-speed ratio.
According to equilibrium of forces relation, the moment of torsion of blade is:
T=C mρv 2AR/2
W r = v sin I
C m = C L ( sin I - 1 C L / C D cos I ) sin 2 I
In formula: C m-torque coefficient; The wind-exposuring area of A-wind wheel; R-wind wheel radius; W rthe relative speed of wind of-blade.
For the wind energy conversion system turning round under certain rotating speed, as wind speed and direction one timing, W rwith I be definite value.If increase the angle of attack (reducing propeller pitch angle), lift coefficient will increase, and ratio of lift coefficient to drag coefficient also will increase, and torque coefficient also can increase, and vice versa.So by changing wind energy conversion system propeller pitch angle β, just can change the rotating speed of wind energy conversion system, wind mill pitch-variable Principles of Regulation that Here it is.Normally using the rotating speed of wind speed and wind energy conversion system as the signal of blade pitch angle controller action.
[finite time is stable]
Progressive stable theory by Liapunov starts, and Theory of Stability is studied widely by people.In research process, General Definition a unlimited time interval,, when the time is tending towards infinite, parallel algorithm is stabilized in a field.And in actual applications, often the not consideration time is tending towards infinite stable case, and only consider the stable case within the scope of set time, introduce thus the stable concept of finite time, by the reduction of stability requirement, bring the dynamic performance of control system to promote.
Definition 1: for controlled device closed loop control system is called as that [0, T] interior finite time is stable to be referred to: have parameter (c 1, c 2, T, R c) meet have x T ( 0 ) R C x ( 0 ) &le; c 1 &DoubleRightArrow; x T ( t ) R C x ( t ) &le; c 2 , 0 < c wherein 1< c 2, T ∈ R +and R c> 0.
[variable pitch control method]
Utilize nonlinear model continuous time of T-S fuzzy model approximate representation variable-pitch system of wind turbine generator; According to the T-S fuzzy model obtaining, utilize single-point obfuscation, product reasoning, center of gravity defuzzification to obtain dynamic fuzzy system; According to the dynamic fuzzy system and the finite time that obtain, stablize connotation, design wind-powered electricity generation unit feather state feedback controller, and utilize the controller obtaining to control the propeller pitch angle of wind-powered electricity generation unit, wind-driven generator rotating speed and wind-powered electricity generation unit output current, concrete steps are as follows:
The first step: for variable-pitch system of wind turbine generator, set up nonlinear model continuous time and by following T-S fuzzy model approximate representation:
Plant model rule i (i=1,2 ..., r)
If θ 1(t) be N i1, θ 2(t) be N i2θ 3(t) be N i3
So x &CenterDot; ( t ) = A i x ( t ) + B i u ( t )
Wherein, θ 1(t), θ 2and θ (t) 3(t) represent respectively wind speed, wind-driven generator rotating speed and output power; N i1, N i2and N i3be respectively θ in i rule 1(t), θ 2and θ (t) 3(t) corresponding linguistic variable; The vector of x (t) for being formed by propeller pitch angle, wind-driven generator rotating speed and wind-driven generator output current; U (t) represents the propeller pitch angle instruction input of expectation; (A i, B i) State Equation Coefficients corresponding to expression i bar plant model rule; R is control law number (value of the present invention is 9 or 16);
Second step: above-mentioned T-S fuzzy model is carried out to product reasoning, the processing of center of gravity defuzzification, obtain following dynamic fuzzy system:
x &CenterDot; ( t ) = &Sigma; i = 1 r h i ( &theta; ( t ) ) [ A i x ( t ) + B i u ( t ) ]
Wherein, h i ( &theta; ( t ) ) = h il ( &theta; 1 ( t ) ) h i 2 ( &theta; 2 ( t ) ) h i 3 ( &theta; 3 ( t ) ) &Sigma; m = 1 r h m 1 ( &theta; 1 ( t ) ) h m 2 ( &theta; 2 ( t ) ) h m 3 ( &theta; 3 ( t ) ) Represent that plant model meets the degree of i rule; h i11(t)), h i22) and h (t) i33(t)) be respectively θ 1(t), θ 2and θ (t) 3(t) membership function, works as θ 1(t), θ 2and θ (t) 3(t), while being taken as concrete numerical value, its corresponding membership function value is respectively h i11(t)), h i22) and h (t) i33(t));
The 3rd step: according to the stable connotation of finite time and above-mentioned plant model, the controller model that design is represented by following T-S fuzzy model, wherein, the corresponding controller model rule of each plant model rule:
Controller model rule j (j=1,2 ..., r)
If θ 1(t) be N j1, θ 2(t) be N j2θ 3(t) be N j3
U (t)=K so jx (t)
Wherein, K jfor gain matrix;
Above-mentioned controller model is carried out to product reasoning, center of gravity defuzzification, arranges and obtain following controller:
u ( t ) = &Sigma; i = 1 r h j ( &theta; ( t ) ) K j x ( t )
Wherein, N jk(j=1,2 ..., r, k=1,2,3) with the first step in N ik(i=1,2 ..., r, k=1,2,3) consistent, h j(θ (t)) (j=1,2 ..., h r) and in second step i(θ (t)) (i=1,2 ..., r) consistent;
The 4th step: the propeller pitch angle instruction input u (t) that utilizes the 3rd step to obtain, controls propeller pitch angle, wind-driven generator rotating speed and wind-driven generator output current.
[control parameter designing]
According to above definition 1, if there is scalar ce>=0, symmetric positive definite matrix Q ∈ R n * nand matrix W j(j=1,2 ..., r) meet certain relation, controller parameter is taken as stable at [0, T] interior finite time to meet control system, described relation is:
A i Q ~ + Q ~ A i T + B i W j + W j T B i T - &alpha; Q ~ < 0 ( 1 &le; i , j &le; r ) c 1 &lambda; min ( Q ) < c 2 e - &alpha;T &lambda; max ( Q )
Wherein parameter (c 1, c 2, T, R c) meet have and, 0 < c 1< c 2, T ∈ R +and R c> 0, R cexpression state gain matrix, c 1represent the x that original state x (0) is corresponding t(0) R cx (0) the value upper limit, c 2be illustrated in the time (0, T] x that internal state x (t) is corresponding t(t) R cx (t) the value upper limit, λ min(Q) minimal eigenvalue of representing matrix Q, λ max(Q) eigenvalue of maximum of representing matrix Q.
Above relation can utilize the LMI toolbox of Matlab to solve.
Be noted that the mode that the controlling method of the embodiment of the present invention can add essential general hardware platform by software realizes.Understanding based on such, the part that the technological scheme of the embodiment of the present invention contributes to prior art in essence in other words can embody with the form of software product, this computer software product is stored in a storage medium, comprises that some instructions are in order to carry out the method described in each embodiment of the present invention.Here alleged storage medium, as: ROM/RAM, disk, CD etc.In sum, these are only preferred embodiment of the present invention, be not intended to limit protection scope of the present invention.Within the spirit and principles in the present invention all, any modification of doing, be equal to replacement, improvement etc., within all should being included in protection scope of the present invention.

Claims (1)

1.一种基于有限时间稳定的风电机组变桨距控制方法,包括以下步骤:1. A wind turbine pitch control method based on finite time stability, comprising the following steps: 第一步:对于风电机组变桨距系统,建立连续时间非线性模型并由如下模糊T-S模型近似表示:Step 1: For the wind turbine pitch system, establish a continuous-time nonlinear model And it is approximated by the following fuzzy TS model: 被控对象模型规则i,i=1,2,...,rControlled object model rule i, i=1, 2, ..., r 如果θ1(t)为Ni1,θ2(t)为Ni2,θ3(t)为Ni3 If θ 1 (t) is N i1 , θ 2 (t) is N i2 , θ 3 (t) is N i3 那么 x &CenterDot; ( t ) = A i x ( t ) + B i u ( t ) So x &Center Dot; ( t ) = A i x ( t ) + B i u ( t ) 其中,θ1(t)、θ2(t)和θ3(t)分别表示风速、风力发电机转速和输出功率;Ni1、Ni2和Ni3分别为第i条规则中θ1(t)、θ2(t)和θ3(t)对应的语言变量;x(t)为由桨距角、风力发电机转速和风力发电机输出电流构成的向量;u(t)表示期望的桨距角指令输入;(Ai,Bi)表示第i条被控对象模型规则对应的状态方程系数;r为控制规则数,其取值为9或16;Among them, θ 1 (t), θ 2 (t) and θ 3 (t) represent wind speed, wind turbine speed and output power respectively; N i1 , N i2 and N i3 are θ 1 (t ), the linguistic variables corresponding to θ 2 (t) and θ 3 (t); x(t) is a vector composed of pitch angle, wind turbine speed and wind turbine output current; u(t) represents the desired propeller The distance angle command input; (A i , B i ) represents the coefficient of the state equation corresponding to the i-th controlled object model rule; r is the number of control rules, and its value is 9 or 16; 第二步:对上述模糊T-S模型进行乘积推理、重心解模糊化处理,得到由如下动态模糊模型表示的被控对象模型:Step 2: Perform product reasoning and defuzzification of the center of gravity on the above fuzzy T-S model, and obtain the controlled object model represented by the following dynamic fuzzy model: xx &CenterDot;&CenterDot; (( tt )) == &Sigma;&Sigma; ii == 11 rr hh ii (( &theta;&theta; (( tt )) )) [[ AA ii xx (( tt )) ++ BB ii uu (( tt )) ]] 其中, h i ( &theta; ( t ) ) = h i 1 ( &theta; 1 ( t ) ) h i 2 ( &theta; 2 ( t ) ) h i 3 ( &theta; 3 ( t ) ) &Sigma; m = 1 r h m 1 ( &theta; 1 ( t ) ) h m 2 ( &theta; 2 ( t ) ) h m 3 ( &theta; 3 ( t ) ) 表示被控对象模型符合第i条规则的程度;hi11(t))、hi22(t))和hi33(t))分别为θi(t)、θ2(t)和θ3(t)的隶属度函数;in, h i ( &theta; ( t ) ) = h i 1 ( &theta; 1 ( t ) ) h i 2 ( &theta; 2 ( t ) ) h i 3 ( &theta; 3 ( t ) ) &Sigma; m = 1 r h m 1 ( &theta; 1 ( t ) ) h m 2 ( &theta; 2 ( t ) ) h m 3 ( &theta; 3 ( t ) ) Indicates the extent to which the controlled object model conforms to the i-th rule; h i11 (t)), h i22 (t)) and h i33 (t)) are θ i (t), The membership function of θ 2 (t) and θ 3 (t); 第三步:根据有限时间稳定的涵义以及所述被控对象模型,设计由如下模糊T-S模型表示的控制器模型,其中,每个被控对象模型规则对应一个控制器模型规则:The third step: according to the implication of finite time stability and the controlled object model, design a controller model represented by the following fuzzy T-S model, wherein each controlled object model rule corresponds to a controller model rule: 控制器模型规则j,j=1,2,...,rController model rule j, j = 1, 2, ..., r 如果θ1(t)为Nj1,θ2(t)为Nj2,θ3(t)为Nj3 If θ 1 (t) is N j1 , θ 2 (t) is N j2 , θ 3 (t) is N j3 那么u(t)=Kjx(t)Then u(t)=K j x(t) 其中,Kj为增益矩阵,也即控制系数;Among them, K j is the gain matrix, that is, the control coefficient; 对上述控制器模型进行乘积推理、重心解模糊化,整理得到如下控制器:The product reasoning and defuzzification of the center of gravity are carried out on the above controller model, and the following controller is obtained after sorting out: uu (( tt )) == &Sigma;&Sigma; ii == 11 rr hh jj (( &theta;&theta; (( tt )) )) KK jj xx (( tt )) 其中,Njk,j=1,2,...,r;k=1,2,3与第一步中的Nik,i=1,2,...,r;k=1,2,3一致,hj(θ(t)),j=1,2,...,r与第二步中的hi(θ(t)),i=1,2,...,r一致;Among them, N jk , j=1, 2,..., r; k=1, 2, 3 and N ik in the first step, i=1, 2,..., r; k=1, 2 , 3 are consistent, h j (θ(t)), j=1, 2, ..., r is the same as h i (θ(t)), i = 1, 2, ..., r in the second step consistent; 第四步:利用第三步得到的桨距角指令输入u(t),对桨距角、风力发电机转速和风力发电机输出电流进行控制,其中,Step 4: Use the pitch angle command input u(t) obtained in the third step to control the pitch angle, the speed of the wind turbine and the output current of the wind turbine, where, 当标量α≥0、对称正定阵Q∈Rnxn以及矩阵Wj,j=1,2,…,r满足一定的关系式时,所述控制系数Kj取为即满足控制系统在[0,T]内有限时间稳定,所述关系式为:When the scalar α≥0, the symmetric positive definite matrix Q∈R nxn , and the matrix W j , j=1, 2,..., r satisfy a certain relationship, the control coefficient K j is taken as That is to say, the control system is stable within [0, T] in a finite time, and the relational expression is: AA ii QQ ~~ ++ QQ ~~ AA ii TT ++ BB ii WW jj ++ WW jj TT BB ii TT -- &alpha;&alpha; QQ ~~ << 00 ,, 11 &le;&le; ii ,, jj &le;&le; rr cc 11 &lambda;&lambda; minmin (( QQ )) << cc 22 ee -- &alpha;T&alpha;T &lambda;&lambda; maxmax (( QQ )) 其中,参数c1,c2,T,RC满足都有并且,0<c1<c2,T∈R+以及RC>0,RC表示状态增益矩阵,c1表示初始状态x(0)对应的xT(0)RCx(0)取值上限,c2表示在时间(0,T]内状态x(t)对应的xT(t)RCx(t)取值上限,λmin(Q)表示矩阵Q的最小特征值,λmax(Q)表示矩阵Q的最大特征值。in, Parameters c 1 , c 2 , T, R C satisfy have And, 0<c 1 <c 2 , T∈R + and R C >0, R C represents the state gain matrix, c 1 represents the x T (0)R C x(0) corresponding to the initial state x(0) The upper limit of the value, c 2 means the upper limit of the value of x T (t) R C x (t) corresponding to the state x (t) in time (0, T], λ min (Q) means the minimum eigenvalue of the matrix Q, λ max ( Q) represents the largest eigenvalue of matrix Q.
CN201210347909.5A 2012-09-19 2012-09-19 Design method of wind turbine pitch controller based on finite-time non-fragile/cost-stable Expired - Fee Related CN102900603B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210347909.5A CN102900603B (en) 2012-09-19 2012-09-19 Design method of wind turbine pitch controller based on finite-time non-fragile/cost-stable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210347909.5A CN102900603B (en) 2012-09-19 2012-09-19 Design method of wind turbine pitch controller based on finite-time non-fragile/cost-stable

Publications (2)

Publication Number Publication Date
CN102900603A CN102900603A (en) 2013-01-30
CN102900603B true CN102900603B (en) 2014-11-19

Family

ID=47573033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210347909.5A Expired - Fee Related CN102900603B (en) 2012-09-19 2012-09-19 Design method of wind turbine pitch controller based on finite-time non-fragile/cost-stable

Country Status (1)

Country Link
CN (1) CN102900603B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI567524B (en) * 2014-12-19 2017-01-21 guo-rui Yu Maximum power tracking of wind power generation systems

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890449B (en) * 2012-09-20 2016-03-02 河北工业大学 Based on the Wind turbines Variable-pitch Controller method for designing of finite time robust stability
CN103362741B (en) * 2013-07-12 2015-07-08 浙江运达风电股份有限公司 Wind turbine generator set system identification method based on ADALINE technology
CN105320793A (en) * 2014-07-30 2016-02-10 南车株洲电力机车研究所有限公司 Method for evaluating pitch control model of wind generation set in terms of kinetics
CN111711341B (en) * 2020-06-29 2021-07-27 江南大学 A Power Converter Control Method Based on P-D Feedback
CN113653596B (en) * 2021-09-23 2023-07-14 华北电力大学 Pitch control method for dual-turbine wind turbine based on fuzzy prediction and sector management

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7755210B2 (en) * 2009-12-04 2010-07-13 General Electric Company System and method for controlling wind turbine actuation
CN201705553U (en) * 2010-06-17 2011-01-12 沈阳瑞祥风能设备有限公司 Intelligent variable propeller pitch control system for megawatt wind generating set
CN102168650A (en) * 2011-05-26 2011-08-31 连云港杰瑞电子有限公司 Uniform and independent variable pitch hybrid control method for megawatt wind turbine based on master control

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600240B2 (en) * 1997-08-08 2003-07-29 General Electric Company Variable speed wind turbine generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7755210B2 (en) * 2009-12-04 2010-07-13 General Electric Company System and method for controlling wind turbine actuation
CN201705553U (en) * 2010-06-17 2011-01-12 沈阳瑞祥风能设备有限公司 Intelligent variable propeller pitch control system for megawatt wind generating set
CN102168650A (en) * 2011-05-26 2011-08-31 连云港杰瑞电子有限公司 Uniform and independent variable pitch hybrid control method for megawatt wind turbine based on master control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI567524B (en) * 2014-12-19 2017-01-21 guo-rui Yu Maximum power tracking of wind power generation systems

Also Published As

Publication number Publication date
CN102900603A (en) 2013-01-30

Similar Documents

Publication Publication Date Title
CN102900603B (en) Design method of wind turbine pitch controller based on finite-time non-fragile/cost-stable
CN106224162B (en) The load model method for building up and load controlled method of Wind turbines
CN105673325A (en) Individual pitch control method of wind driven generator set based on RBF neural network PID
CN104612898B (en) A kind of wind electricity change paddle is away from Multivariable Fuzzy NN-PID Control Method
CN105545595A (en) Wind turbine feedback linearization power control method based on radial basis function neural network
Golnary et al. Design and comparison of quasi continuous sliding mode control with feedback linearization for a large scale wind turbine with wind speed estimation
CN107559143A (en) A large-scale wind turbine trailing edge flap structure parameter optimization and multi-objective flap optimization control method
CN103595046B (en) Load frequency control method for wind-diesel hybrid power system based on diesel engine side
Zhang et al. Control optimisation for pumped storage unit in micro‐grid with wind power penetration using improved grey wolf optimiser
CN104329224A (en) Variable-rate pitching system and variable-rate pitching method for direct-drive permanent magnet wind generating set
CN105673322A (en) Variable parameter nonlinear feedback control method achieving wind turbine MPPT control
CN108468622A (en) Wind turbines blade root load method of estimation based on extreme learning machine
CN111502914B (en) Fan variable pitch controller design method based on linear variable parameter system
CN102900613B (en) A Pitch Controller Design Method for Wind Turbine Based on Finite Time Robustness/Cost Stability
CN102900605B (en) Design method of wind turbine pitch controller based on finite time stability
Jiao et al. EWSE and uncertainty and disturbance estimator based pitch angle control for wind turbine systems operating in above-rated wind speed region
Habibi et al. Power improvement of non-linear wind turbines during partial load operation using fuzzy inference control
Venkateswaran et al. Stability augmentation of pitch angle control for maximum power extraction of PMSG-based WTS with pitch actuator uncertainty via L1 adaptive scheme
CN102900606B (en) Design method of wind turbine pitch controller based on finite time and stable cost
Mirzaei et al. Neural network-based supertwisting control for floating wind turbine in region III
CN102890449B (en) Based on the Wind turbines Variable-pitch Controller method for designing of finite time robust stability
Ghefiri et al. Firefly algorithm based-pitch angle control of a tidal stream generator for power limitation mode
CN102900604B (en) Design method of pitch controller for wind turbine based on finite-time non-brittle stability
CN112696311B (en) Variable-boundary-layer-based quasi-sliding mode variable-pitch optimization control method
Gaertner et al. Aero-elastic design optimization of floating offshore wind turbine blades

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141119

CF01 Termination of patent right due to non-payment of annual fee