CN101815165A - Real-time high-efficiency digital image fractional order integration filter - Google Patents
Real-time high-efficiency digital image fractional order integration filter Download PDFInfo
- Publication number
- CN101815165A CN101815165A CN 201010147493 CN201010147493A CN101815165A CN 101815165 A CN101815165 A CN 101815165A CN 201010147493 CN201010147493 CN 201010147493 CN 201010147493 A CN201010147493 A CN 201010147493A CN 101815165 A CN101815165 A CN 101815165A
- Authority
- CN
- China
- Prior art keywords
- value
- pixel
- integral
- fractional
- feed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010354 integration Effects 0.000 title claims abstract description 25
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 85
- 238000012545 processing Methods 0.000 claims abstract description 45
- 230000015654 memory Effects 0.000 claims abstract description 43
- 230000009471 action Effects 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 8
- 230000002708 enhancing effect Effects 0.000 abstract description 5
- 239000011159 matrix material Substances 0.000 description 21
- 238000010586 diagram Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000002146 bilateral effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
Abstract
Description
所属领域Field
本发明所提出的实时高效的数字图像分数阶积分滤波器是一种对受噪声污染的数字图像进行实时增强的信号处理电路装置。本发明涉及的积分滤波器的系数是根据分数阶积分的Riemann-Liouville定义推导而得,在工程应用中这一分数阶积分的阶次一般取负的分数或负的有理小数。见图1,该实时高效的数字图像分数阶积分滤波器是由数字视频流行存储器组9、锁相/移位电路组10、分数阶积分掩模卷积电路11与平均值计算器12以级联方式构成的。它的分数阶积分掩模卷积电路11中的8个特定的方向算法单元电路的运算规则是采用基于Riemann-Liouville定义的分数阶积分掩模卷积方案来实现的数字图像分数阶积分的空域滤波器。本发明所提出的实时高效的数字图像分数阶积分滤波器,其电路结构简单,运算规则简明,对被噪声污染的数字图像的增强效果好,实时性高,特别适用于对在采集或传输过程中不可避免的要受噪声污染的数码相机摄取图像、扫描仪图像、卫星遥感图像等进行实时增强处理的应用场合。本发明属于应用数学、数字图像处理和数字电路交叉学科的技术领域。The real-time and high-efficiency digital image fractional integral filter proposed by the present invention is a signal processing circuit device for real-time enhancement of noise-contaminated digital images. The coefficients of the integral filter involved in the present invention are derived according to the Riemann-Liouville definition of fractional integration. In engineering applications, the order of this fractional integration generally takes negative fractions or negative rational decimals. See Fig. 1, this real-time high-efficiency digital image fractional order integral filter is made up of digital video popular memory group 9, phase lock/
背景技术Background technique
图像是人们记录和传递信息的重要载体,在对图像进行采集、获取、编码、存储和传输的过程中,图像不可避免的会受到不同类型和不同程度噪声的污染,这不仅降低了图像的质量、影响了人们对信息的获取和应用、阻碍了信息化建设的进程,也制约了社会经济水平和科学技术的发展、延缓了人们生活水平和生活质量的提高。近年来,随着人们对数码相机等数码设备所拍摄图像效果要求的不断提高;随着超高清晰扫描设备对扫描图像在对比度、清晰度和实时性要求方面的不断提高;随着卫星遥感图像对其复杂地理纹理细节特征清晰程度要求的不断提高,这些都迫切要求构造一种实时、高效地增强受噪声污染的数字图像的滤波器新方案。Image is an important carrier for people to record and transmit information. In the process of collecting, acquiring, encoding, storing and transmitting images, images will inevitably be polluted by different types and degrees of noise, which not only reduces the quality of images , It affects people's acquisition and application of information, hinders the process of informatization construction, also restricts the social and economic level and the development of science and technology, and delays the improvement of people's living standards and quality of life. In recent years, with the continuous improvement of people's requirements for the image effect of digital equipment such as digital cameras; with the continuous improvement of ultra-high-definition scanning equipment for scanning images in terms of contrast, clarity and real-time performance; with satellite remote sensing images The increasing requirements for the clarity of the detailed features of complex geographic textures urgently require the construction of a new filter scheme for real-time and efficient enhancement of digital images contaminated by noise.
对噪声图像进行增强的过程也就是对图像进行平滑滤波的过程,即对参与运算的数字图像的像素点进行积分求和运算,如何做到保边去噪(即在去除噪声的同时保留住图像的边缘、纹理等细节信息)是这一处理过程的关键。现有的基于空域的噪声图像增强算法可分为五类:第1类,高斯平滑算法(Gaussiansmoothing filter,GSF)。这类算法将噪声的方差作为正态分布的方差、将噪声的均值作为正态分布的均值,根据这一正态分布(也就是高斯函数)来推导滤波器的系数值。这类算法的实时性好,适合于被高斯噪声污染、细节信息少的平稳图像的增强处理中。均值滤波算法、高斯模糊算法、各向同性扩散算法(isotropic linear filtering,ILF)均属于该类算法。第2类,各向异性扩散算法(anisotropic filter,AF)。这类算法假设数字图像是分段平滑的几何图形,将数字图像看成由跃变的边界部分和平滑区域组成。去噪的过程与热的传导和扩散过程类似,边界被看成是绝热的,热的传导和扩散只在平滑区域内进行。算法在具体实现时,首先设定梯度阈值T,当像素的梯度值大于梯度阈值T时,认为该像素是边界点,算法沿着梯度的切线方向进行扩散,避免对图像边缘、细节等造成模糊;当像素的梯度值小于等于梯度阈值T时,认为该像素点位于平滑区域,算法采用各向同性的扩散方式对受噪声污染的图像进行增强。这类算法根据设定的梯度阈值T有选择地对图像进行平滑处理,但在减少噪声的同时仍会破坏掉图像的细节与纹理信息。第3类,基于全变分(total variation,TV)的去噪算法。这类算法基于图像中最重要的信息是不连续的边界特征这一假设,采用本质上是导数的L1范数的TV范数。与基于最小二乘估计的L2范数不同,L1范数是非线性的,因此该类算法计算复杂耗时,且仅适用于分片光滑的卡通图。第4类,邻域滤波算法(neighborhood filter,NF)。这类算法首先根据图像像素位置的接近程度和像素灰度值的相似程度来定义像素的邻域,然后在所定义的邻域内,计算当前像素和其邻域像素间的相似度,最后把相似度作为权值与其邻域内的像素点进行加权求和,所得结果作为该点的像素值。双向线性插值滤波算法(Bilateral filter,BF)、Yaroslavsky邻域滤波算法(Yaroslavsky neighborhoodfilter,YNF)、非局部均值滤波算法(non-local mean filter,NLMF)均属于该类算法。这类算法在去噪的同时,对图像的纹理和细节信息的保留较好,但是计算复杂度高,极大地消耗了计算资源,降低了处理效率,不能满足计算的实时性要求。The process of enhancing the noise image is also the process of smoothing and filtering the image, that is, performing an integral summation operation on the pixels of the digital image participating in the operation, how to achieve edge preservation and denoising (that is, retaining the image while removing noise) Details such as edges and textures) are the key to this process. The existing noise image enhancement algorithms based on spatial domain can be divided into five categories: the first category, Gaussian smoothing algorithm (Gaussians smoothing filter, GSF). This type of algorithm takes the variance of the noise as the variance of the normal distribution and the mean of the noise as the mean of the normal distribution, and derives the coefficient value of the filter according to this normal distribution (that is, the Gaussian function). This type of algorithm has good real-time performance, and is suitable for the enhancement processing of smooth images polluted by Gaussian noise and little detail information. Mean filtering algorithm, Gaussian blur algorithm, and isotropic linear filtering algorithm (ILF) all belong to this type of algorithm. The second category, anisotropic diffusion algorithm (anisotropic filter, AF). This type of algorithm assumes that the digital image is a piecewise smooth geometric figure, and regards the digital image as composed of transitional boundary parts and smooth regions. The denoising process is similar to the heat conduction and diffusion process. The boundary is regarded as adiabatic, and the heat conduction and diffusion are only carried out in the smooth area. When implementing the algorithm, first set the gradient threshold T. When the gradient value of a pixel is greater than the gradient threshold T, the pixel is considered to be a boundary point, and the algorithm diffuses along the tangent direction of the gradient to avoid blurring the edges and details of the image. ; When the gradient value of the pixel is less than or equal to the gradient threshold T, the pixel is considered to be in a smooth area, and the algorithm uses isotropic diffusion to enhance the image contaminated by noise. This type of algorithm selectively smooths the image according to the set gradient threshold T, but it will still destroy the details and texture information of the image while reducing noise. The third category is a denoising algorithm based on total variation (TV). This type of algorithm is based on the assumption that the most important information in the image is the discontinuous boundary features, and adopts the TV norm, which is essentially the L1 norm of the derivative. Unlike the L 2 norm based on the least squares estimation, the L 1 norm is non-linear, so the calculation of this type of algorithm is complex and time-consuming, and it is only suitable for cartoon images with smooth slices. The fourth category, neighborhood filter algorithm (neighborhood filter, NF). This type of algorithm first defines the pixel neighborhood according to the proximity of the image pixel position and the similarity of the pixel gray value, and then calculates the similarity between the current pixel and its neighbor pixels in the defined neighborhood, and finally puts the similarity The degree is used as the weight and the pixel points in its neighborhood are weighted and summed, and the result is used as the pixel value of the point. Bilateral linear interpolation filter algorithm (Bilateral filter, BF), Yaroslavsky neighborhood filter algorithm (Yaroslavsky neighborhood filter, YNF), non-local mean filter algorithm (non-local mean filter, NLMF) all belong to this type of algorithm. This kind of algorithm preserves the texture and detail information of the image well while denoising, but the computational complexity is high, which greatly consumes computing resources, reduces processing efficiency, and cannot meet the real-time requirements of computing.
分数阶微积分(Fractional Calculus)诞生于300年前,几乎与整数阶微积分运算有着同样悠久的历史,是相对于传统意义上的整数阶微积分提出来的。现今如何将分数阶微积分应用于现代信号分析与处理之中(尤其是图像信号的处理之中),在国内外都是一个值得研究的新课题。本发明申请人对这一课题做了全面系统的研究,其中,本发明申请人之一于2006年8月30日申请的发明专利数字图像的分数阶微分滤波器(专利号:ZL200610021702.3)已于2009年9月2日获得授权,该分数阶微分滤波器具有实时、多尺度、非线性地对图像纹理细节信息进行增强的优点,但同时也存在着下述缺点需要进一步得到改进和提高:一是该专利只实现了分数阶的微分运算,而未涉及分数阶的积分运算;二是该专利的分数阶微分滤波器是根据分数阶微积分的Grümwald-Letnikov定义推导而得,却未使用分数阶微积分领域中被广泛研究的Riemann-Liouville定义进行推导;三是该专利在对彩色图像进行分数阶微分滤波时,对R、G、B分量分别进行非线性增强运算,因此会破坏R、G、B分量之间的相关性,从而引起彩色图像的色彩失真或畸变。针对上述三大缺点,本发明申请人在已有分数阶微积分在现代信号分析与处理成果的基础上,对基于Riemann-Liouville定义的分数阶积分运算在数字图像去噪处理方面做了细致深入的研究,研究的理论和实验结果均表明:该分数阶积分运算不仅可以去除受污染图像中的噪声,且在去噪的同时不会破坏图像的细节以及纹理信息,对受噪声污染的数字图像有良好的增强效果,具有实时高效的特性。另外,在处理彩色图像时,首先进行色彩空间的转换:从RGB色彩空间转换到HSI空间,然后只对其中的I分量进行分数阶积分运算,待运算完成后,再从HSI色彩空间转换到RGB空间,避免了对R、G、B各分量分别处理所引起的色彩失真或畸变。Fractional Calculus was born 300 years ago, and has almost the same long history as integer-order calculus operations. It was proposed relative to integer-order calculus in the traditional sense. How to apply fractional calculus to modern signal analysis and processing (especially image signal processing) is a new topic worth studying both at home and abroad. The applicant of the present invention has done comprehensive and systematic research on this subject, among which, one of the applicants of the present invention applied for the invention patent on August 30, 2006 Fractional order differential filter of digital image (patent number: ZL200610021702.3) Authorized on September 2, 2009, the fractional differential filter has the advantages of enhancing image texture details in real time, multi-scale, and non-linearly, but at the same time, it also has the following shortcomings that need to be further improved and improved : First, the patent only realizes the fractional-order differential operation, but does not involve the fractional-order integral operation; secondly, the fractional-order differential filter of the patent is derived according to the Grümwald-Letnikov definition of fractional-order calculus, but does not The Riemann-Liouville definition, which has been widely studied in the field of fractional calculus, is used for derivation; the third is that the patent performs nonlinear enhancement operations on the R, G, and B components respectively when performing fractional differential filtering on color images, so it will destroy The correlation between the R, G, and B components causes color distortion or distortion of the color image. In response to the above three shortcomings, the applicant of the present invention has done a detailed and in-depth study on the digital image denoising processing based on the fractional integral operation defined by Riemann-Liouville on the basis of the existing fractional calculus in modern signal analysis and processing results. The research, the theoretical and experimental results of the research show that: the fractional order integral operation can not only remove the noise in the polluted image, but also will not destroy the details and texture information of the image while denoising. It has a good enhancement effect and has the characteristics of real-time and high efficiency. In addition, when processing color images, the color space conversion is first performed: from the RGB color space to the HSI space, and then only the fractional integral operation is performed on the I component. After the operation is completed, the HSI color space is converted to RGB Space, avoiding the color distortion or distortion caused by processing the R, G, and B components separately.
发明内容Contents of the invention
本发明的目的是构造一种数字图像滤波器,它可以一次性完成,具有实时、高效、简便等特征,不仅能抑制数字图像中灰度值跃变幅度较大的噪声信息,也能非线性增强数字图像中灰度值跃变幅度和频率变化相对不大的纹理细节特征,并且也能保留数字图像平滑区域中的低频轮廓特征,本发明的申请人深入研究了用分数阶积分增强受噪声污染数字图像的基本原理和运算规则,在此基础上针对如何构造数字图像分数阶积分滤波器的信号处理电路装置这一核心内容,根据数字图像分数阶积分的性质以及数字图像处理、数字电路、串行数字视频码流的输入特点,提出了一种对受噪声污染数字图像进行增强的信号处理电路装置的新方案,即实时高效的数字图像分数阶积分滤波器。见图1,该实时高效的数字图像分数阶积分滤波器是由数字视频流行存储器组9、锁相/移位电路组10、分数阶积分掩模卷积电路11与平均值计算器12以级联方式构成的。该实时高效的数字图像分数阶积分滤波器的分数阶积分掩模卷积电路11中的8个方向算法单元电路的运算规则是采用基于Riemann-Liouville定义的分数阶积分掩模卷积方案来实现数字图像分数阶积分的空域滤波器。The purpose of the present invention is to construct a digital image filter, which can be completed at one time, and has the characteristics of real-time, high efficiency, and simplicity. To enhance the texture detail features with relatively small gray value jumps and frequency changes in digital images, and to preserve the low-frequency contour features in the smooth areas of digital images, the applicant of the present invention has thoroughly studied the use of fractional integrals to enhance noise-affected The basic principles and operation rules of polluting digital images, on this basis, aiming at the core content of how to construct the signal processing circuit device of digital image fractional integral filter, according to the nature of digital image fractional integral and digital image processing, digital circuit, According to the input characteristics of the serial digital video code stream, a new scheme of signal processing circuit device for enhancing the digital image polluted by noise is proposed, that is, a real-time and efficient digital image fractional-order integral filter. See Fig. 1, this real-time high-efficiency digital image fractional order integral filter is made up of digital video popular memory group 9, phase lock/
在具体说明本发明内容之前,有必要对本说明书所用符号涵义及其取值范围进行三点说明:第1点,沿用传统图像处理中习惯用x和y坐标分别表示图像像素的纵轴和横轴坐标(与欧几里德空间的一般数学表示不同,它习惯用x和y坐标分别表示横轴和纵轴坐标),用s(x,y)表示坐标(x,y)上的像素的灰度值或RGB值;当x和y取连续的模拟值时,S(x,y)表示模拟图像;当x和y取离散的数字值时,S(x,y)表示数字图像(x和y分别表示行坐标和列坐标),它是一个像素矩阵;第2点,为了使分数阶积分掩模(它是一个n×n的方阵)有明确的轴对称中心,分数阶积分掩模的尺寸数n是奇数;n的最小取值是3,n的最大取值小于待进行分数阶积分滤波的数字图像的尺寸数(若待进行分数阶积分滤波的数字图像S(x,y)是L×H的像素矩阵,当L=H时,其尺寸数为L;当L≠H时,其尺寸数为L和H中的最小值);第3点,在实际工程应用中,待进行处理的数字图像S(x,y)(它是一个L×H的像素矩阵,L表示S(x,y)的行数,H表示S(x,y)的列数,即每行有H个像素,x取0~(L-1)之间的整数,y取0~(H-1)之间的整数)的L行像素的灰度值或RGB值一般不是并行输入(L行像素的灰度值或RGB值各行同时输入),而是串行输入(L行像素的灰度值或RGB值一行像素接一行像素输入,每行输入H个像素的灰度值或RGB值,形成串行数字视频码流)图像处理装置;根据串行数字视频码流的输入特点,用Sx(k)表示串行数字视频码流中的像素(下标x表示每一帧数字图像S(x,y)是以一行像素接一行像素输入的方式形成串行数字视频码流的,S(x,y)从它最下面的一行(第L行)开始从下至上输入,k表示像素Sx(k)在串行数字视频码流中的像素序号,k从L×H-1开始计数,逐像素输入k值减一,直至为零);若Sx(k)对应串行输入前坐标(x,y)上的像素S(x,y),则Sx(k±mH±b)对应串行输入前坐标((x±m,y±b)上的像素S(x±m,y±b)。Before explaining the content of the present invention in detail, it is necessary to explain the meaning of the symbols used in this manual and their value ranges in three points: The first point is to follow the customary x and y coordinates used in traditional image processing to represent the vertical axis and horizontal axis of image pixels respectively Coordinates (different from the general mathematical representation of Euclidean space, it is customary to use x and y coordinates to represent the horizontal axis and vertical axis coordinates respectively), and use s(x, y) to represent the gray of the pixel on the coordinates (x, y) degree value or RGB value; when x and y take continuous analog values, S(x, y) represents an analog image; when x and y take discrete digital values, S(x, y) represents a digital image (x and y y represents the row coordinates and column coordinates), which is a pixel matrix; the second point, in order to make the fractional integral mask (it is an n×n square matrix) have a clear axisymmetric center, the fractional integral mask The size number n is an odd number; the minimum value of n is 3, and the maximum value of n is smaller than the size number of the digital image to be processed by the fractional-order integral filter (if the digital image S(x, y) to be processed by the fractional-order integral filter is a pixel matrix of L×H, when L=H, its size is L; when L≠H, its size is the minimum value of L and H); the third point, in actual engineering application, to be The processed digital image S(x, y) (it is a L×H pixel matrix, L represents the number of rows of S(x, y), H represents the number of columns of S(x, y), that is, each row has H pixels, x takes an integer between 0 and (L-1), and y takes an integer between 0 and (H-1)), the gray value or RGB value of the L row of pixels is generally not parallel input (L row The gray value or RGB value of the pixel is input at the same time), but serial input (the gray value or RGB value of the L row of pixels is input one row of pixels one by one, and the gray value or RGB value of H pixels is input for each row, form a serial digital video code stream) image processing device; according to the input characteristics of the serial digital video code stream, use S x (k) to represent the pixels in the serial digital video code stream (the subscript x represents each frame of digital image S (x, y) forms a serial digital video stream by inputting one row of pixels one by one, S(x, y) starts from the bottom row (L row) and inputs from bottom to top, and k represents the pixel The pixel sequence number of S x (k) in the serial digital video code stream, k starts counting from L×H-1, and the value of k is input pixel by pixel minus one until it is zero); if S x (k) corresponds to the serial input The pixel S(x, y) on the previous coordinates (x, y), then S x (k±mH±b) corresponds to the pixel S(x±mH±b) on the serial input front coordinates ((x±m, y±b) m, y ± b).
见图1,本发明的实时高效的数字图像分数阶积分滤波器是由数字视频流行存储器组9、锁相/移位电路组10、分数阶积分掩模卷积电路11与平均值计算器12级联而成;串行数字视频码流Sx(k)输入实时高效的数字图像分数阶积分滤波器后分成三路:第一路顺序经过行存储器组9、锁相/移位电路组10、分数阶积分掩模卷积电路11处理后,分别输出像素Sx(k+(n-1)(H+1))在其8-邻域方向上的8个v阶分数阶积分的近似值,再经过平均值计算器12处理后,输出上述8个近似值的平均值作为像素Sx(k+(n-1)(H+1))的v阶分数阶积分值Sx (v)(k+(n-1)(H+1));第二路触发时序控制电路产生相应的时序控制信号;第三路与行存储器组9的输出一起馈入锁相/移位电路组10生成(2n-1)×(2n-1)的像素阵列。其中,该实时高效的数字图像分数阶积分滤波器中的分数阶积分掩模卷积电路11的阶次v可取负的分数或负的有理小数。本发明提出的实时高效的数字图像分数阶积分滤波器包括下列电路部件,其具体构造如下:See Fig. 1, the real-time efficient digital image fractional order integral filter of the present invention is made of digital video popular memory group 9, phase lock/
见图1,行存储器组9由时序控制电路、读写地址发生器以及双端口RAM组构成;时序控制电路在输入数字视频流的行有效信号的触发下产生相应的控制读写地址发生器、双端口RAM组、锁相/移位电路组10、分数阶积分掩模卷积电路11与平均值计算器12操作所需的时序控制信号;读写地址发生器在时序控制信号的作用下产生双端口RAM的读写地址,并负责处理读写地址初始化和回转的问题;行存储器组9根据串行数字视频码流的输入特点,利用当前输入像素,根据处理的数字图像的性质不同,行存储器组9分为两种结构:第1种结构,当处理数字灰度图像时,行存储器组9采用2n-2个行存储器完成2n-1行视频图像数据的获取;第2种结构:当处理彩色图像时,行存储器组9由1个RGB到HSI的色彩空间转换器和3个完全相同且并行处理的行存储器组子电路构成。其中每个行存储器组子电路与上述用以处理数字灰度图像时的行存储器组9的电路结构和参数完全相同;这3个行存储器组子电路分别并行存储数字彩色图像经RGB到HSI的色彩空间转换器处理后的H、S、I分量值;行存储器组9共采用6n-6个行存储器,其中每一行存储器组子电路采用2n-2个行存储器完成2n-1行数字视频彩色图像的H、S、I分量值的存储。See Fig. 1, line memory group 9 is made up of sequence control circuit, read-write address generator and dual-port RAM group; Sequence control circuit produces corresponding control read-write address generator, Timing control signals required for the operation of dual-port RAM group, phase-lock/
见图1,锁相/移位电路组10共采用3n2-3n个D触发器,通过对数字灰度图像(或彩色图像的I分量)进行点延时产生计算数字灰度图像(或彩色图像的I分量)的分数阶积分所需的(2n-1)×(2n-1)像素阵列;(2n-1)×(2n-1)像素阵列的第1行采用2n-2个D触发器,第2行采用2n-3个D触发器,一直到第n-1行每行采用D触发器的个数都是逐行减一,第n-1行采用n个D触发器;(2n-1)×(2n-1)像素阵列的第n行采用2n-2个D触发器;(2n-1)×(2n-1)像素阵列的第n+1行采用n个D触发器,第n+2行采用n+1个D触发器,一直到第2n-1行每行采用D触发器的个数都是逐行加一,第2n-1行采用2n-2个D触发器。See Fig. 1, phase lock/
见图1,分数阶积分掩模卷积电路11是本发明实时高效的数字图像分数阶积分滤波器所有构成电路部件中最关键的电路部件,也是本发明所提出新方案的核心内容。为了清楚说明分数阶积分掩模卷积电路11的电路构成,有必要先对分数阶积分掩模卷积电路的运算规则进行如下简要说明:See Fig. 1, the fractional-order integral mask convolution circuit 11 is the most critical circuit component among all circuit components of the real-time and efficient digital image fractional-order integral filter of the present invention, and is also the core content of the new solution proposed by the present invention. In order to clearly illustrate the circuit configuration of the fractional-order integral mask convolution circuit 11, it is necessary to briefly describe the operation rules of the fractional-order integral mask convolution circuit as follows:
由于数字电路或数字滤波器处理的是数字量,其值有限;图像信号灰度的最大变化量是有限的;数字图像灰度变化发生的最短距离只能是在两相邻像素之间,因此二维数字图像s(x,y)在x或y坐标轴方向上的持续时间(图像矩阵的尺寸数)只可能以像素为单位进行度量,s(x,y)在x或y坐标轴方向上的最小等分间隔只可能是h=1。若一维信号s(x)的持续期为t∈[a,t],将信号持续期[a,t]按单位间隔h=1进行等分,其等分份数为将等分份数N代入分数阶积分的Riemann-Liouville定义式可推导出一维信号s(x)的分数阶积分的Riemann-Liouville定义的后向差分近似表达式:Since digital circuits or digital filters deal with digital quantities, their values are limited; the maximum change in grayscale of an image signal is limited; the shortest distance for a change in grayscale in a digital image can only be between two adjacent pixels, so The duration of a two-dimensional digital image s(x, y) in the direction of the x or y coordinate axis (the size of the image matrix) can only be measured in pixels, and s(x, y) in the direction of the x or y coordinate axis The smallest bisection interval on is only possible for h=1. If the duration of the one-dimensional signal s(x) is t∈[a, t], the signal duration [a, t] is equally divided by the unit interval h=1, and the number of equal parts is Substituting the number of equal parts N into the Riemann-Liouville definition of fractional integration can derive the Riemann-Liouville-defined backward difference approximate expression of the fractional integration of one-dimensional signal s(x):
其中,v是分数阶积分的阶次。本发明中阶次v可取负的分数或负的有理小数值(由于数字电路的计算长度有限,当v为无理小数时,可以约等于近似的有理小数);表示Gamma函数。本发明定义s(x,y)在x和y坐标轴负方向上分数阶积分的后向差分近似表达式分别为:where v is the order of fractional integration. In the present invention, the order v can take a negative fraction or a negative rational decimal value (due to the limited calculation length of the digital circuit, when v is an irrational decimal, it can be approximately equal to an approximate rational decimal); Represents the Gamma function. The present invention defines s (x, y) in the negative direction of x and y coordinate axis, and the backward difference approximate expression of fractional order integral is respectively:
本发明在上述两个差值近似表达式中选取的前n项和分别作为s(x,y)在x和y坐标轴负方向上分数阶积分的近似值:The present invention selects the preceding n items in above-mentioned two difference approximation expressions and respectively as s (x, y) the approximation value of fractional order integral on x and y coordinate axis negative direction:
可见,s(x,y)在x和y坐标轴负方向上分数阶积分的近似值(n项和)中的每一对应求和项的系数值都是相同的。这n个非零系数值按顺序分别是: 这n个非零系数值都是严格按照分数阶积分的Riemann-Liouville定义推导而来,都是阶次v的函数。在数字图像中,邻域内像素与像素之间的灰度值具有很大的相关性,为了加强分数阶积分掩模卷积电路11的抗图像旋转性,见图2,有必要分别计算出像素s(x,y)在其8-邻域方向上的v阶分数阶积分的近似值;本发明将s(x,y)在上述8个方向上的v阶分数阶积分的近似值的平均值作为s(x,y)的v阶分数阶积分值。见图3,在n×n全零方阵沿方阵左上对角线方向上,用 这n个非零系数值按顺序置换掉n×n全零方阵中左上对角线相应位置上的零值,从而构造出135°方向上的积分掩模(用W135°表示)。见图4,在n×n全零方阵沿x坐标轴负方向的中心对称轴上,用这n个非零系数值按顺序置换掉n×n全零方阵中相应位置上的零值,从而构造出90°方向上的积分掩模(用W90°表示)。另外,45°方向上的积分掩模(用W45°表示,见图5)、0°方向上的积分掩模(用W0°表示,见图6)、180°方向上的积分掩模(用W180°表示,见图7)、315°方向上的积分掩模(用W315°表示,见图8)、270°方向上的积分掩模(用W270°表示,见图9)、225°方向上的积分掩模(用W225°表示,见图10)与W135°和W90°的构造原理和方法类似,这里不再赘述。It can be seen that the coefficient value of each corresponding summation term in the approximation (n term sum) of the fractional integration of s(x, y) in the negative direction of the x and y coordinate axes is the same. The n non-zero coefficient values are, in order, respectively: These n non-zero coefficient values are derived strictly according to the Riemann-Liouville definition of fractional integration, and are functions of order v. In a digital image, the grayscale values between pixels in the neighborhood have a great correlation. In order to strengthen the anti-image rotation of the fractional-order integral mask convolution circuit 11, as shown in Fig. 2, it is necessary to calculate the pixel s (x, y) in its 8-neighborhood directions v order fractional integral approximation; The present invention uses the average value of the v order fractional integral s (x, y) in above-mentioned 8 directions as the approximate value The v-order fractional integral value of s(x, y). As shown in Figure 3, in the direction of the n×n all-zero square matrix along the upper left diagonal of the square matrix, use These n non-zero coefficient values replace the zero values at the corresponding positions on the upper left diagonal in the n×n all-zero square matrix in order, thereby constructing the integral mask in the 135° direction (denoted by W 135° ). As shown in Figure 4, on the central symmetry axis of the n×n all-zero square matrix along the negative direction of the x-coordinate axis, use These n non-zero coefficient values replace the zero values at the corresponding positions in the n×n all-zero square matrix in sequence, thereby constructing an integral mask in the 90° direction (denoted by W 90° ). In addition, the integral mask in the 45° direction (indicated by W 45° , see Figure 5), the integral mask in the 0° direction (indicated by W 0° , see Figure 6), the integral mask in the 180° direction (Denoted by W 180° , see Figure 7), integral mask on 315° direction (expressed by W 315° , see Figure 8), integral mask on 270° direction (expressed by W 270° , see Figure 9 ), the integral mask in the 225° direction (represented by W 225° , see Figure 10) is similar to the construction principles and methods of W 135° and W 90° , and will not be repeated here.
分数阶积分掩模卷积电路11的运算规则是采用基于Riemann-Liouville定义的分数阶积分掩模卷积的方案来实现数字图像分数阶积分的空域滤波器,适合用硬件电路实现对数字图像信号的处理。分数阶积分掩模卷积电路11针对数字图像的运算规则的步骤是:第1步,将串行输入的数字视频信号分别输入W135°、W90°、W45°、W0°、W180°、W315°、W270°和W225°这8个积分掩模中,这8个积分掩模中的系数值所在的坐标(x,y)和待进行分数阶积分的像素s(x,y)的坐标位置(x,y)必须保持重合;第2步,将上述8个积分掩模的系数值分别与输入的对应的像素的灰度值(或彩色图像的I分量值)相乘,然后将各自的乘积项相加(即加权求和)来分别得到上述8个积分掩模所对应的加权求和值;第3步,将这8个值分别作为分数阶积分掩模卷积电路11在这8个积分掩模对应方向上的处理结果(即像素s(x,y)在其8-邻域方向上的v阶分数阶积分的近似值);第4步,在待进行分数阶积分的数字图像中逐像素平移W135°、W90°、W45°、W0°、W180°、W315°、W270°和W225°这8个积分掩模,分别不断重复上述第1~3步的运算规则,遍历整幅待进行分数阶积分的数字图像,便可计算出整幅数字图像像素在其8-邻域方向上的v阶分数阶积分的近似值;另外,在逐像素平移时,为了不使积分掩模的行或列位于待进行分数阶积分的数字图像平面之外,须使积分掩模的中心点距待进行分数阶积分的数字图像边缘像素的距离不小于(n-1)/2个像素,即不对距待进行分数阶积分的数字图像边缘n-1行或列的像素进行分数阶积分运算。The operation rule of the fractional integral mask convolution circuit 11 is to adopt the scheme based on the fractional integral mask convolution defined by Riemann-Liouville to realize the spatial domain filter of the digital image fractional integral, which is suitable for realizing the digital image signal with a hardware circuit. processing. The operation rules of the fractional-order integral mask convolution circuit 11 for digital images are as follows: Step 1, input serially input digital video signals into W 135° , W 90° , W 45° , W 0° , W Coefficient values in the 8 integral masks of 180° , W 315° , W 270° and W 225° The coordinates (x, y) where it is located and the coordinate position (x, y) of the pixel s(x, y) to be integrated in fractional order must keep coincident; in the second step, the coefficient values of the above 8 integration masks are respectively compared with Multiply the gray value of the corresponding input pixel (or the I component value of the color image), and then add the respective product terms (ie weighted sum) to obtain the weighted sum corresponding to the above 8 integral masks value; in the 3rd step, these 8 values are respectively used as the processing results of the fractional order integral mask convolution circuit 11 in the directions corresponding to the 8 integral masks (that is, the pixel s (x, y) is in its 8-neighborhood Approximation of v-order fractional integration in the direction); step 4, pixel by pixel translation of W 135° , W 90° , W 45° , W 0° , W 180° , W The 8 integral masks of 315° , W 270° and W 225° repeat the operation rules of the above steps 1 to 3 respectively, and traverse the entire digital image to be fractionally integrated to calculate the entire digital image The approximation of the v-order fractional integral of the pixel in its 8-neighborhood direction; in addition, when translating pixel by pixel, in order not to make the row or column of the integral mask outside the digital image plane to be subjected to fractional integration, it is necessary Make the distance between the central point of the integral mask and the edge pixels of the digital image to be fractionally integrated not less than (n-1)/2 pixels, that is, not to n-1 rows or columns from the edge of the digital image to be fractionally integrated The pixels of the fractional order integration operation.
下面具体说明分数阶积分掩模卷积电路11的电路结构。见图1,分数阶积分掩模卷积电路11由8个并行计算的特定的8个方向算法单元电路构成:135°方向算法单元电路1、90°方向算法单元电路2和45°方向算法单元电路3,0°方向算法单元电路4和180°方向算法单元电路5,315°方向算法单元电路6、270°方向算法单元电路7和225°方向算法单元电路8,分别计算数字图像像素在其8-邻域方向上的分数阶积分近似值,见图2,像素的8-邻域方向包括135°方向、90°方向、45°方向、0°方向、180°方向、315°方向、270°方向和225°方向这8个方向;见图1和图11,每个算法单元电路由n(分数阶积分掩模尺寸数)个第一乘法器至第三乘法器13~15和一个加法器16构成;这n个乘法器的权值按顺序分别是: 见图1,分数阶积分掩模卷积电路11由如下8个特定的方向算法单元电路构成:The circuit structure of the fractional integral mask convolution circuit 11 will be specifically described below. As shown in Figure 1, the fractional order integral mask convolution circuit 11 is composed of 8 specific 8 direction algorithm unit circuits for parallel calculation: 135° direction
135°方向算法单元电路1计算像素Sx(k+(n-1)(H+1))在积分掩模W135°作用下的v阶分数阶积分的近似值;像素Sx(k+(n-1)(H+1))的灰度值或I分量值与权值分别馈入第一乘法器13,相乘后馈入加法器16;像素Sx(k+(n-1)(H+1)-1-H)的灰度值或I分量值与权值分别馈入第二乘法器14,相乘后馈入加法器16;依此类推,若1≤m≤n,像素Sx(k+(n-1)(H+1)-(m-1)-(m-1)H)的灰度值或I分量值与权值相乘后馈入加法器16,从而得到像素Sx(k+(n-1)(H+1))在其8-邻域方向中的135°方向上的v阶分数阶积分的近似值。135 ° direction
90°方向算法单元电路2计算像素Sx(k+(n-1)(H+1))在积分掩模W90°作用下的v阶分数阶积分的近似值;像素Sx(k+(n-1)(H+1))的灰度值或I分量值与权值分别馈入第一乘法器13,相乘后馈入加法器16;像素Sx(k+(n-1)(H+1)-H)的灰度值或I分量值与权值分别馈入第二乘法器14,相乘后馈入加法器16;依此类推,若1≤m≤n,像素Sx(k+(n-1)(H+1)-(m-1)H)的灰度值或I分量值与权值相乘后馈入加法器16,从而得到像素Sx(k+(n-1)(H+1))在其8-邻域方向中的90°方向上的v阶分数阶积分的近似值。The 90° direction
45°方向算法单元电路3计算像素Sx(k+(n-1)(H+1))在积分掩模W45°作用下的v阶分数阶积分的近似值;像素Sx(k+(n-1)(H+1))的灰度值或I分量值与权值分别馈入第一乘法器13,相乘后馈入加法器16;像素Sx(k+(n-1)(H+1)+1-H)的灰度值或I分量值与权值分别馈入第二乘法器14,相乘后馈入加法器16;依此类推,若1≤m≤n,像素Sx(k+(n-1)(H+1)+(m-1)-(m-1)H)的灰度值或I分量值与权值相乘后馈入加法器16,从而得到像素Sx(k+(n-1)(H+1))在其8-邻域方向中的45°方向上的v阶分数阶积分的近似值。The 45 ° direction
0°方向算法单元电路4计算像素Sx(k+(n-1)(H+1))在积分掩模W0°作用下的v阶分数阶积分的近似值;像素Sx(k+(n-1)(H+1))的灰度值或I分量值与权值分别馈入第一乘法器13,相乘后馈入加法器16;像素Sx(k+(n-1)(H+1)+1)的灰度值或I分量值与权值分别馈入第二乘法器14,相乘后馈入加法器16;依此类推,若1≤m≤n,像素Sx(k+(n-1)(H+1)+(m-1))的灰度值或I分量值与权值相乘后馈入加法器16,从而得到像素Sx(k+(n-1)(H+1))在其8-邻域方向中的0°方向上的v阶分数阶积分的近似值。0° direction algorithm unit circuit 4 calculates the approximate value of the v order fractional integral of pixel S x (k+(n-1)(H+1)) under the action of integral mask W 0° ; pixel S x (k+(n- 1) Gray value or I component value and weight of (H+1)) Feed into the
180°方向算法单元电路5计算像素Sx(k+(n-1)(H+1))在积分掩模W180°作用下的v阶分数阶积分的近似值;像素Sx(k+(n-1)(H+1))的灰度值或I分量值与权值分别馈入第一乘法器13,相乘后馈入加法器16;像素Sx(k+(n-1)(H+1)-1)的灰度值或I分量值与权值分别馈入第二乘法器14,相乘后馈入加法器16;依此类推,若1≤m≤n,像素Sx(k+(n-1)(H+1)-(m-1))的灰度值或I分量值与权值相乘后馈入加法器16,从而得到像素Sx(k+(n-1)(H+1))在其8-邻域方向中的180°方向上的v阶分数阶积分的近似值。The 180 ° direction algorithm unit circuit 5 calculates the approximate value of the v-order fractional integral of the pixel S x (k+(n-1)(H+1)) under the integral mask W 180 ° ; the pixel S x (k+(n- 1) Gray value or I component value and weight of (H+1)) Feed into the
315°方向算法单元电路6计算像素Sx(k+(n-1)(H+1))在积分掩模W315°作用下的v阶分数阶积分的近似值;像素Sx(k+(n-1)(H+1))的灰度值或I分量值与权值分别馈入第一乘法器13,相乘后馈入加法器16;像素Sx(k+(n-1)(H+1)+1+H)的灰度值或I分量值与权值分别馈入第二乘法器14,相乘后馈入加法器16;依此类推,若1≤m≤n,像素Sx(k+(n-1)(H+1)+(m-1)+(m-1)H)的灰度值或I分量值与权值相乘后馈入加法器16,从而得到像素Sx(k+(n-1)(H+1))在其8-邻域方向中的315°方向上的v阶分数阶积分的近似值。315 ° direction
270°方向算法单元电路7计算像素Sx(k+(n-1)(H+1))在积分掩模W270°作用下的v阶分数阶积分的近似值;像素Sx(k+(n-1)(H+1))的灰度值或I分量值与权值分别馈入第一乘法器13,相乘后馈入加法器16;像素Sx(k+(n-1)(H+1)+H)的灰度值或I分量值与权值分别馈入第二乘法器14,相乘后馈入加法器16;依此类推,若1≤m≤n,像素Sx(k+(n-1)(H+1)+(m-1)H)的灰度值或I分量值与权值相乘后馈入加法器16,从而得到像素Sx(k+(n-1)(H+1))在其8-邻域方向中的270°方向上的v阶分数阶积分的近似值。The 270 ° direction
225°方向算法单元电路8计算像素Sx(k+(n-1)(H+1))在积分掩模W225°作用下的v阶分数阶积分的近似值;像素Sx(k+(n-1)(H+1))的灰度值或I分量值与权值分别馈入第一乘法器13,相乘后馈入加法器16;像素Sx(k+(n-1)(H+1)-1+H)的灰度值或I分量值与权值分别馈入第二乘法器14,相乘后馈入加法器16;依此类推,若1≤m≤n,像素Sx(k+(n-1)(H+1)-(m-1)+(m-1)H)的灰度值或I分量值与权值相乘后馈入加法器16,从而得到像素Sx(k+(n-1)(H+1))在其8-邻域方向中的225°方向上的v阶分数阶积分的近似值。225 ° direction
见图1,平均值计算器12计算分数阶积分掩模卷积电路11的8个方向算法单元电路输出值的平均值,根据处理的数字图像的性质不同,平均值计算器12分为两种结构:第1种结构,当处理数字灰度图像时,平均值计算器12有8路输入,1路输出,分别馈入135°方向算法单元电路1到225°方向算法单元电路8的灰度值模值,输出上述8个馈入灰度值模值的平均值(即数字灰度图像像素灰度值的v阶分数阶积分值);第2种结构,当处理数字彩色图像时,平均值计算器12由1个平均值计算器子电路和1个HSI到RGB的色彩空间转换器构成,其中平均值计算器子电路与在第1种结构中用以处理数字灰度图像时的平均值计算器12的电路结构和参数完全相同,用以计算馈入的8个I分量值的v阶分数阶积分近似值模值的平均值;色彩空间转换器将馈入的I分量和H、S分量转换为RGB色彩空间中相应的R、G、B分量,输出彩色图像像素s(x,y)的v阶分数阶积分值。See Fig. 1, the average value calculator 12 calculates the average value of the output values of the 8 direction algorithm unit circuits of the fractional order integral mask convolution circuit 11, and the average value calculator 12 is divided into two types according to the different properties of the processed digital image Structure: in the first structure, when processing digital gray scale images, the average value calculator 12 has 8 inputs and 1 output, which are respectively fed into the gray levels of the 135° direction algorithm unit circuit 1 to the 225° direction algorithm unit circuit 8 Value modulus value, output the average value of the above 8 feed-in gray value modulus values (that is, the v-order fractional integral value of the pixel gray value of the digital gray image image); the second structure, when processing a digital color image, the average The value calculator 12 is composed of an average value calculator subcircuit and a color space converter from HSI to RGB, wherein the average value calculator subcircuit is the same as the average value used in the first structure for processing digital grayscale images The circuit structure and parameters of the value calculator 12 are exactly the same, and are used to calculate the average value of the v-order fractional integral approximation modulus of the 8 I component values fed in; the color space converter will feed in the I component and H, S The components are converted into the corresponding R, G, and B components in the RGB color space, and the v-order fractional integral value of the color image pixel s(x, y) is output.
本发明的发明者深入研究了用分数阶积分增强受噪声污染的数字图像的基本原理和及其运算规则,在此基础上针对如何构造数字图像分数阶积分滤波器的信号处理电路装置这个核心内容,根据数字图像分数阶积分的性质以及数字图像处理、数字电路、串行数字视频码流的输入特点,提出了一种增强受噪声污染的数字图像的信号处理电路装置的新方案,即实时高效的数字图像分数阶积分滤波器。它的推广将会对分数阶微积分在现代信号的分析与处理之中,特别是在数字图像信号的分析与处理之中的应用产生深远的影响。The inventor of the present invention has deeply studied the basic principles and operation rules of using fractional integrals to enhance noise-contaminated digital images, and based on this, aims at the core content of how to construct signal processing circuit devices for digital image fractional integral filters , according to the nature of digital image fractional integral and the input characteristics of digital image processing, digital circuit, and serial digital video stream, a new scheme of signal processing circuit device for enhancing noise-contaminated digital image is proposed, that is, real-time high-efficiency The digital image fractional order integral filter. Its promotion will have a profound impact on the application of fractional calculus in the analysis and processing of modern signals, especially in the analysis and processing of digital image signals.
下面结合附图和实时高效的数字图像分数阶积分滤波器的实例详细说明本发明增强受噪声污染的数字图像的信号处理电路装置的新方案:Below in conjunction with accompanying drawing and the example of the digital image fractional integral filter of real-time high efficiency describe in detail the new scheme of the present invention strengthens the signal processing circuit device of the digital image polluted by noise:
附图说明Description of drawings
图1是本发明实时高效的数字图像分数阶积分滤波器的电路结构示意图。FIG. 1 is a schematic diagram of the circuit structure of the real-time and high-efficiency digital image fractional-order integral filter of the present invention.
图2是数字图像像素s(x,y)的8-邻域方向示意图。Fig. 2 is a schematic diagram of 8-neighborhood directions of a digital image pixel s(x, y).
图3是135°方向算法单元电路1在135°方向上的分数阶积分掩模W135°的n×n方阵示意图。FIG. 3 is a schematic diagram of an n×n square matrix of the fractional integral mask W 135° of the 135° direction
图4是90°方向算法单元电路2在90°方向上的分数阶积分掩模W90°的n×n方阵示意图。FIG. 4 is a schematic diagram of an n×n square matrix of the fractional order integral mask W 90° in the 90° direction
图5是45°方向算法单元电路3在45°方向上的分数阶积分掩模W45°的n×n方阵示意图。FIG. 5 is a schematic diagram of an n×n square matrix of the fractional integral mask W 45° in the 45° direction
图6是0°方向算法单元电路4在0°方向上的分数阶积分掩模W0°的n×n方阵示意图。FIG. 6 is a schematic diagram of an n×n square matrix of the fractional order integral mask W 0° of the 0° direction arithmetic unit circuit 4 in the 0° direction.
图7是180°方向算法单元电路5在180°方向上的分数阶积分掩模W180°的n×n方阵示意图。FIG. 7 is a schematic diagram of an n×n square matrix of the fractional-order integral mask W 180° in the 180° direction of the 180 ° direction algorithm unit circuit 5 .
图8是315°方向算法单元电路6在315°方向上的分数阶积分掩模W135°的n×n方阵示意图。FIG. 8 is a schematic diagram of an n×n square matrix of the fractional integral mask W 135° of the 315° direction
图9是270°方向算法单元电路7在270°方向上的分数阶积分掩模W270°的n×n方阵示意图。FIG. 9 is a schematic diagram of an n×n square matrix of the fractional-order integral mask W 270° in the 270° direction of the 270 ° direction
图10是225°方向算法单元电路8在225°方向上的分数阶积分掩模W225°的n×n方阵示意图。FIG. 10 is a schematic diagram of an n×n square matrix of the fractional integral mask W 225 ° of the 225° direction
图11是135°方向算法单元电路1至225°方向算法单元电路8共同的电路结构示意图。FIG. 11 is a schematic diagram of the common circuit structure of the 135° direction
图12是实时高效的数字图像分数阶积分滤波器在均是3×3方阵的分数阶积分掩模W135°、W90°、W45°、W0°、W180°、W315°、W270°和W225°对数字图像进行分数阶积分滤波处理时的电路示意图。Figure 12 is a real-time and efficient digital image fractional-order integral filter in the fractional-order integral mask W 135° , W 90° , W 45° , W 0° , W 180° , W 315° in a 3×3 square matrix , W 270° and W 225° are circuit schematic diagrams for fractional-order integral filter processing of digital images.
其中,1是135°方向算法单元电路;2是90°方向算法单元电路;3是45°方向算法单元电路;4是0°方向算法单元电路;5是180°方向算法单元电路;6是315°方向算法单元电路;7是270°方向算法单元电路;8是225°方向算法单元电路;9是行存储器组;10是锁相/移位电路组;11是分数阶积分掩模卷积电路;12是平均值计算器;13是第一乘法器;14是第二乘法器;15是第三乘法器;16是加法器;17~20是功能和参数相同的行存储器;21是与12功能和参数相同的平均值计算器;A点是数字图像的分数阶积分滤波器的串行数字视频码流Sx(k)的输入点;B点是权值的输入点;C点是权值的输入点;E点是权值的输入点;F点是像素Sx(k+2H+2)的灰度值的输出点。上述的8个方向算法单元电路分别输出像素Sx(k+(n-1)(H-1))在W135°、W90°、W45°、W0°、W180°、W315°、W270°和W225°这8个积分掩模作用后的v阶分数阶积分的近似值。Among them, 1 is the 135° direction algorithm unit circuit; 2 is the 90° direction algorithm unit circuit; 3 is the 45° direction algorithm unit circuit; 4 is the 0° direction algorithm unit circuit; 5 is the 180° direction algorithm unit circuit; 6 is the 315 ° direction algorithm unit circuit; 7 is 270 ° direction algorithm unit circuit; 8 is 225 ° direction algorithm unit circuit; 9 is row memory group; 10 is phase-lock/shift circuit group; 11 is fractional order integral mask convolution circuit 12 is an average value calculator; 13 is a first multiplier; 14 is a second multiplier; 15 is a third multiplier; 16 is an adder; The average value calculator with the same function and parameters; A point is the input point of the serial digital video code stream S x (k) of the fractional-order integral filter of the digital image; B point is the weight The input point; C point is the weight The input point; E point is the weight The input point of F; the output point of the gray value of the pixel S x (k+2H+2). The above-mentioned 8 direction algorithm unit circuits respectively output the pixel S x (k+(n-1)(H-1)) at W1 35° , W 90° , W 45° , W 0° , W 180° , W 315° , W 270° and W 225° are the approximate values of the v-th order fractional integral after the 8 integral masks.
具体实施方式Detailed ways
见图1和图12,按照本说明书的发明内容中所详细说明的本发明的实时高效的数字图像分数阶积分滤波器的级联电路结构及其行存储器组9、锁相/移位电路组10、分数阶积分掩模卷积电路11和平均值计算器12的具体电路结构和电路参数,就可以构造出该实时高效的数字图像分数阶积分滤波器的具体电路。另外,在具体实施的过程中,还应注意:①本发明提出的分数阶积分掩模W135°、W90°、W45°、W0°、W180°、W315°、W270°和W225°中的n个非零系数值按顺序分别为: 这n个非零系数值都是严格按照分数阶积分的Riemann-Liouville定义推导而来,都是阶次v的函数。②为了使分数阶积分掩模(它是一个n×n的方阵)有明确的轴对称中心,分数阶积分掩模的尺寸数n是奇数;n的最小取值是3,n的最大取值小于待进行分数阶积分的数字图像的尺寸数(若待进行分数阶积分的数字图像S(x,y)是L×H的像素矩阵,当L=H时,其尺寸数为L;当L≠H时,其尺寸数为L和H中的最小值);③根据待处理的数字图像的性质不同,对于数字灰度图像和彩色图像的处理应该区别对待。本发明的行存储器9针对彩色图像的结构不同于其针对灰度图像的结构,不同之处在于它是由1个RGB到HSI的色彩空间转换器和3个完全相同且并行处理的行存储器组子电路构成;另外,本发明的平均值计算器12针对彩色图像的结构也不同于其针对灰色图像的结构,不同之处在于它是由1个最大值比较器子电路和1个HSI到RGB的色彩空间转换器构成。这避免了对彩色图像像素的R、G、B各分量分别进行分数阶积分运算而引起的色彩失真或畸变。④本发明的实时高效的数字图像分数阶积分滤波器中的分数阶积分掩模卷积电路11不限于图11所采用的方案,一般说来它可以采用图1中的分数阶积分掩模卷积电路11所示结构,任何一种用硬件电路实现本发明的分数阶积分掩模卷积电路11的运算规则的具体措施均可导出实时高效的数字图像分数阶积分滤波器的具体方案,这需要针对具体使用背景来加以选取。See Fig. 1 and Fig. 12, according to the cascaded circuit structure of the real-time efficient digital image fractional-order integral filter of the present invention described in detail in the content of the invention of this specification sheet and its line memory group 9, phase lock/
现举例介绍如下:An example is introduced as follows:
见图1和图12,如果要构造一个实时高效的数字灰度图像分数阶积分滤波器的具体电路,在工程实际应用中,该滤波器中的分数阶积分掩模卷积电路11的运算规则常采用3×3的分数阶积分掩模卷积的方案来实现对数字灰度图像的像素s(x,y)的v阶分数阶积分,由上述说明可知:8个方向上的v阶分数阶积分掩模W135°、W90°、W45°、W0°、W180°、W315°、W270°和W225°的尺寸数n=3,掩模中的3个非零系数值按顺序分别是: 所以,其中行存储器组9采用2n-2|n=3=4个行存储器完成2n-1|n=3=5行视频图像数据的获取;其中锁相/移位电路组10共采用3n2-3n|n=3=18个D触发器,通过对数字图像进行点延时产生计算数字图像分数阶积分所需的(2n-1)×(2n-1)|n=3=5×5像素阵列;其中8个方向算法单元电路共有8×n|n=3=24个乘法器,每个算法单元电路中n=3个乘法器的非零权值按顺序分别是: 于是,如图12所示,按照本说明书发明内容中所述的本发明的实时高效的数字图像分数阶积分滤波器的级联电路结构及其行存储器组9、锁相/移位电路组10、分数阶积分掩模卷积电路11和平均值计算器12的具体电路结构和电路参数,就可以方便地构造出该实时高效的数字图像分数阶积分滤波器的具体电路°在不影响准确表述该滤波器的具体电路的前提下,为了更加清晰明了地描述其中的8个方向算法单元电路的具体电路,图12未画出其中的时序控制电路及其被触发产生的时序控制信号。See Fig. 1 and Fig. 12, if want to construct the concrete circuit of a real-time high-efficiency fractional-order integral filter of digital gray-scale image, in engineering practical application, the operation rule of the fractional-order integral mask convolution circuit 11 in this filter The 3×3 fractional integral mask convolution scheme is often used to realize the v-order fractional integration of the pixel s(x, y) of the digital grayscale image. From the above description, it can be known that the v-order fraction in 8 directions Order integral masks W 135° , W 90° , W 45° , W 0° , W 180° , W 315° , W 270° and W 225° the number of dimensions n=3, 3 non-zero in the mask The coefficient values are, in order, respectively: Therefore, wherein row memory group 9 adopts 2n-2| n=3 =4 row memories to complete the acquisition of 2n-1| n=3 =5 rows of video image data; wherein phase lock/shift circuit group 10 adopts 3n 2 altogether -3n| n=3 =18 D flip-flops, which generate (2n-1)×(2n-1)| n=3 =5×5 needed to calculate the fractional integral of the digital image by performing point delay on the digital image Pixel array; wherein 8 direction arithmetic unit circuits have 8×n| n=3 =24 multipliers in total, and the non-zero weights of n=3 multipliers in each arithmetic unit circuit are respectively in order: Then, as shown in FIG. 12 , according to the cascaded circuit structure of the real-time and efficient digital image fractional-order integral filter of the present invention described in the summary of the invention of this specification and its line memory group 9 and phase-lock/shift circuit group 10 , the specific circuit structure and circuit parameters of the fractional-order integral mask convolution circuit 11 and the average value calculator 12, the concrete circuit of this real-time efficient digital image fractional-order integral filter can be constructed easily. Without affecting the accurate expression On the premise of the specific circuit of the filter, in order to more clearly describe the specific circuits of the 8 direction algorithm unit circuits, FIG. 12 does not show the timing control circuit and the timing control signals generated by triggering.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010101474933A CN101815165B (en) | 2010-04-14 | 2010-04-14 | Real-time high-efficiency digital image fractional order integration filter |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010101474933A CN101815165B (en) | 2010-04-14 | 2010-04-14 | Real-time high-efficiency digital image fractional order integration filter |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101815165A true CN101815165A (en) | 2010-08-25 |
| CN101815165B CN101815165B (en) | 2012-01-11 |
Family
ID=42622278
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2010101474933A Expired - Fee Related CN101815165B (en) | 2010-04-14 | 2010-04-14 | Real-time high-efficiency digital image fractional order integration filter |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101815165B (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102810202A (en) * | 2012-05-10 | 2012-12-05 | 南京理工大学 | Image Multi-step Residual Feedback Iterative Filtering Method Based on Fractional Difference Weighting |
| CN108519511A (en) * | 2018-03-28 | 2018-09-11 | 电子科技大学 | A Time-Domain Measurement Method of Frequency Characteristic Parameters of Chirp Signal |
| CN111476743A (en) * | 2020-02-18 | 2020-07-31 | 烟台大学 | Digital signal filtering and image processing method based on fractional order differentiation |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1917576A (en) * | 2006-08-30 | 2007-02-21 | 蒲亦非 | Fractional order differential filter for digital image |
-
2010
- 2010-04-14 CN CN2010101474933A patent/CN101815165B/en not_active Expired - Fee Related
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1917576A (en) * | 2006-08-30 | 2007-02-21 | 蒲亦非 | Fractional order differential filter for digital image |
Non-Patent Citations (3)
| Title |
|---|
| 《SPRINGER》 20080930 PU YiFei 等 Fractionaldifferential approach to detecting textural features of digital image and its fractional differential filter implementation 全文 1-4 第51卷, 第9期 2 * |
| 《中国科学》 20081231 蒲亦非等 数字图像纹理细节的分数阶微分检测及其分数阶微分滤波器实现 全文 1-4 第38卷, 第12期 2 * |
| 《四川大学学报(工程科学版)》 20070531 蒲亦非 将分数阶微分演算引入数字图像处理 全文 1-4 第39卷, 第3期 2 * |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102810202A (en) * | 2012-05-10 | 2012-12-05 | 南京理工大学 | Image Multi-step Residual Feedback Iterative Filtering Method Based on Fractional Difference Weighting |
| CN102810202B (en) * | 2012-05-10 | 2016-03-09 | 南京理工大学 | Based on the image multistep residual feedback iterative filtering method of fractional order difference weighting |
| CN108519511A (en) * | 2018-03-28 | 2018-09-11 | 电子科技大学 | A Time-Domain Measurement Method of Frequency Characteristic Parameters of Chirp Signal |
| CN111476743A (en) * | 2020-02-18 | 2020-07-31 | 烟台大学 | Digital signal filtering and image processing method based on fractional order differentiation |
| CN111476743B (en) * | 2020-02-18 | 2023-06-06 | 烟台大学 | A Digital Signal Filtering and Image Processing Method Based on Fractional Differentiation |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101815165B (en) | 2012-01-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Zhang et al. | A robust deformed convolutional neural network (CNN) for image denoising | |
| Liu et al. | Image restoration using total variation with overlapping group sparsity | |
| TWI539406B (en) | Image interpolation method and image interpolation device and image device using image interpolation method | |
| CN102968769B (en) | Image consistency enhancing device | |
| CN106127688B (en) | A super-resolution image reconstruction method and system thereof | |
| Tang et al. | Deep inception-residual Laplacian pyramid networks for accurate single-image super-resolution | |
| CN107358575A (en) | A kind of single image super resolution ratio reconstruction method based on depth residual error network | |
| Wei | Image super‐resolution reconstruction using the high‐order derivative interpolation associated with fractional filter functions | |
| Chen et al. | Removing Gaussian noise for colour images by quaternion representation and optimisation of weights in non‐local means filter | |
| CN103400359A (en) | Real-time color image filtering method based on nonlocal domain transformation | |
| CN101848319B (en) | Fractional calculus filter of digital images of high-precision computation | |
| CN100536527C (en) | Fractional order differential filter for digital image | |
| CN101815165B (en) | Real-time high-efficiency digital image fractional order integration filter | |
| Barzigar et al. | A video super-resolution framework using SCoBeP | |
| CN103745443B (en) | The method and apparatus for improving picture quality | |
| Gajamannage et al. | Geodesic Gramian denoising applied to the images contaminated with noise sampled from diverse probability distributions | |
| Liu et al. | Gradient prior dilated convolution network for remote sensing image super-resolution | |
| Meher et al. | Hardware-efficient systolic-like modular design for two-dimensional discrete wavelet transform | |
| CN101902560A (en) | 0-1 order Riemann-Liouville fractional order differential intensifier circuit of digital picture | |
| Liu et al. | Promptsr: Cascade prompting for lightweight image super-resolution | |
| CN101800847A (en) | Fractional order differential filter with 1-2 orders of digital image defined based on Riemann-Liouville | |
| Chervyakov et al. | Effect of RNS dynamic range on grayscale images filtering | |
| Ramyashree et al. | FPGA implementation of contrast stretching for image enhancement using system generator | |
| Hanumantharaju et al. | Design of novel algorithm and architecture for Gaussian based color image enhancement system for real time applications | |
| Das et al. | A concise review of fast bilateral filtering |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| ASS | Succession or assignment of patent right |
Owner name: SICHUAN UNIVERSITY Free format text: FORMER OWNER: PU YIFEI Effective date: 20131010 Free format text: FORMER OWNER: HU JINRONG ZHOU JILIU Effective date: 20131010 |
|
| C41 | Transfer of patent application or patent right or utility model | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20131010 Address after: 610065 Sichuan, Chengdu, South Ring Road, No. 1, No. 24 Patentee after: Sichuan University Address before: 610065 School of computer science, Sichuan University, No. 24, south section of first ring road, Chengdu, Sichuan Patentee before: Pu Yifei Patentee before: Hu Jinrong Patentee before: Zhou Jiliu |
|
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120111 Termination date: 20140414 |