CN109800059B - A cloud computing virtual machine migration method based on load curve similarity - Google Patents
A cloud computing virtual machine migration method based on load curve similarity Download PDFInfo
- Publication number
- CN109800059B CN109800059B CN201910094908.6A CN201910094908A CN109800059B CN 109800059 B CN109800059 B CN 109800059B CN 201910094908 A CN201910094908 A CN 201910094908A CN 109800059 B CN109800059 B CN 109800059B
- Authority
- CN
- China
- Prior art keywords
- virtual machine
- resource
- machine
- physical machine
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提出了一种基于负载曲线相似度的云计算虚拟机迁移方法,获取所有物理机的剩余资源利用率曲线和所有要迁移的虚拟机的资源利用率曲线,根据皮尔森相关系数公式,得到由每一类资源的相似度组成的相似度向量,最后根据相似度向量和平均资源利用率求欧氏距离,来确定需要迁移的虚拟机和目标物理机。本发明将过载物理机一段时间内的负载作为迁移的标准,而不是仅关注过载一瞬间的负载情况,有效的保证了迁移之后一段时间内目标物理机不会发生过载,从而降低了迁移次数,减少了能耗。同时,将曲线的相似度作为迁移的标准之一,使得要迁移的虚拟机和目标物理机尽可能的互补,从而使得目标物理机的负载更为均衡。
The invention proposes a cloud computing virtual machine migration method based on the similarity of the load curve, obtains the remaining resource utilization curves of all physical machines and the resource utilization curves of all virtual machines to be migrated, and obtains according to the Pearson correlation coefficient formula. The similarity vector is composed of the similarity of each type of resources, and finally the Euclidean distance is calculated according to the similarity vector and the average resource utilization to determine the virtual machine and the target physical machine to be migrated. The present invention takes the load of the overloaded physical machine for a period of time as the migration standard, instead of only paying attention to the load situation at the moment of overloading, effectively ensuring that the target physical machine will not be overloaded for a period of time after the migration, thereby reducing the number of migrations. Reduced energy consumption. At the same time, the similarity of the curves is used as one of the migration criteria, so that the virtual machine to be migrated and the target physical machine complement each other as much as possible, so that the load of the target physical machine is more balanced.
Description
技术领域technical field
本发明属于云计算和虚拟化相关领域,具体涉及一种基于负载曲线相似度的云计算虚拟机迁移方法。The invention belongs to the field of cloud computing and virtualization, and in particular relates to a cloud computing virtual machine migration method based on the similarity of load curves.
背景技术Background technique
云计算被提出的初始目标是为了加强对资源的管理,主要是管理计算资源、网络资源和存储资源三个方面。加强管理的主要方法是提高时间和空间的灵活性。时间的灵活性,即在用户需要的时候可以随时的提供服务。空间的灵活性,即按照每位用户所需的资源量来提供服务。时间和空间的灵活性相结合,即为云计算的弹性。The initial goal of cloud computing is to strengthen the management of resources, mainly in three aspects: computing resources, network resources and storage resources. The main way to strengthen management is to increase the flexibility of time and space. Time flexibility, that is, the service can be provided at any time when the user needs it. Flexibility of space, that is, providing services according to the amount of resources required by each user. The combination of flexibility of time and space is the elasticity of cloud computing.
为了提高云计算的弹性,曾经提出过许多解决方案。最初的解决方案是提供物理设备的能力,即提高硬盘数据存储量、服务器内存、增加设备网络带宽等。但这一方法有着自身的局限性,它无法彻底解决灵活性这一要求。由于服务器、网络设备等需要花费大量的时间进行采购,不可能随时获取。To improve the elasticity of cloud computing, many solutions have been proposed. The initial solution was to provide the capabilities of physical devices, that is, increase the amount of hard disk data storage, server memory, increase device network bandwidth, and so on. But this approach has its own limitations, and it does not fully address the requirement of flexibility. Because servers, network equipment, etc. take a lot of time to purchase, it is impossible to obtain them at any time.
于是硬件“虚拟化”技术应运而生。虚拟化技术的一个关键特性是在线迁移:一个正在运行的虚拟机从所在的物理主机迁移到另外一台物理主机。So hardware "virtualization" technology came into being. A key feature of virtualization technology is live migration: a running virtual machine is migrated from one physical host to another.
在实际生活中经常需要对过载的物理主机进行迁移,但是许多实时迁移算法只考虑了过载这一瞬间物理机上的虚拟机的资源使用情况,来选择目标物理机。但是不同虚拟机的资源利用情况通常会随时间不停变化,这就有可能导致该虚拟机迁移到目标主机一段时间后再次引起目标主机的过载,需要再次迁移,既增加了迁移的次数,也增加了能耗、降低了虚拟机性能。In real life, it is often necessary to migrate an overloaded physical host, but many live migration algorithms only consider the resource usage of the virtual machine on the physical machine at the moment of overload to select the target physical machine. However, the resource utilization of different virtual machines usually keeps changing over time, which may cause the virtual machine to migrate to the target host for a period of time and cause the target host to be overloaded again. It needs to be migrated again, which not only increases the number of migrations, but also Increased power consumption and reduced virtual machine performance.
发明内容SUMMARY OF THE INVENTION
本发明针对上述问题,提出了一种基于负载曲线相似度的云计算虚拟机迁移方法,主体思路是:获取所有物理机的剩余资源利用率曲线和所有要迁移的虚拟机的资源利用率曲线,根据皮尔森相关系数公式,得到由每一类资源的相似度组成的相似度向量。最后根据相似度向量和平均资源利用率求欧氏距离,来确定需要迁移的虚拟机和目标物理机。In view of the above problems, the present invention proposes a cloud computing virtual machine migration method based on the similarity of load curves. The main idea is to obtain the remaining resource utilization curves of all physical machines and the resource utilization curves of all virtual machines to be migrated. According to the Pearson correlation coefficient formula, a similarity vector composed of the similarity of each type of resource is obtained. Finally, the Euclidean distance is calculated according to the similarity vector and the average resource utilization to determine the virtual machine and the target physical machine to be migrated.
一种基于负载曲线相似度的云计算虚拟机迁移方法,其特征在于:包括如下步骤:A cloud computing virtual machine migration method based on the similarity of load curves, characterized in that it comprises the following steps:
步骤1,定义物理机集合和过载物理机上的虚拟机集合,同时定义物理机所拥有的资源;Step 1, define the physical machine set and the virtual machine set on the overloaded physical machine, and define the resources owned by the physical machine;
步骤2,获取过载物理机上每个虚拟机的资源利用率矩阵,建立资源利用率矩阵集合,表示所有位于过载物理机上的虚拟机的资源利用率矩阵的集合;Step 2, obtaining the resource utilization matrix of each virtual machine on the overloaded physical machine, and establishing a resource utilization matrix set, representing the set of resource utilization matrices of all virtual machines located on the overloaded physical machine;
步骤3,计算出每一个虚拟机在一个时间段内对资源的利用率的均值和标准差,然后对资源利用率矩阵集合中的所有虚拟机资源利用率矩阵标准化,得到标准化矩阵;Step 3: Calculate the mean and standard deviation of the resource utilization rate of each virtual machine in a period of time, and then normalize all virtual machine resource utilization matrices in the resource utilization matrix set to obtain a standardized matrix;
步骤4,获取每个物理机同一段时间内的资源利用率矩阵;Step 4, obtain the resource utilization matrix of each physical machine in the same period of time;
步骤5,获取物理机上资源的剩余利用率矩阵;Step 5, obtaining the remaining utilization matrix of resources on the physical machine;
步骤6,计算每一个物理机在一个时间段内对资源的剩余资源利用率均值和标准差,将物理机的剩余资源利用率矩阵进行标准化,得到标准化矩阵;Step 6: Calculate the mean and standard deviation of the remaining resource utilization ratio of each physical machine to the resource within a time period, and standardize the remaining resource utilization matrix of the physical machine to obtain a standardized matrix;
步骤7,对资源利用率矩阵的每行与剩余资源利用率矩阵的每行分别求皮尔森相关系数,得到关于每一类资源的相似度向量;Step 7: Calculate the Pearson correlation coefficient for each row of the resource utilization matrix and each row of the remaining resource utilization matrix, respectively, to obtain a similarity vector about each type of resource;
步骤8,根据相似度向量,得到所有虚拟机与物理机对之间资源的相似度的最大值;Step 8, according to the similarity vector, obtain the maximum value of the similarity of resources between all pairs of virtual machines and physical machines;
步骤9,计算每一对虚拟机和物理机的欧式距离,得到欧氏距离集合;Step 9: Calculate the Euclidean distance of each pair of virtual machines and physical machines to obtain a set of Euclidean distances;
步骤10,在欧氏距离集合中,获取当欧式距离取最小值时对应过载虚拟机和物理机,假设将过载该虚拟机迁移到该物理机上,判断迁移后是否满足,物理机在一定时间时对资源的利用率是否小于物理机上资源利用率的阈值,如果满足,则将虚拟机迁移到物理机之上,并从资源利用率矩阵集合中去除相应矩阵;否则将该欧式距离从欧氏距离集合中去除,重新进行步骤10;Step 10: In the Euclidean distance set, obtain the overloaded virtual machine and the physical machine when the Euclidean distance takes the minimum value, assuming that the overloaded virtual machine is migrated to the physical machine, and judge whether it is satisfied after the migration. Whether the resource utilization is less than the resource utilization threshold on the physical machine, if so, migrate the virtual machine to the physical machine, and remove the corresponding matrix from the resource utilization matrix set; otherwise, the Euclidean distance is changed from the Euclidean distance Remove from the collection, and repeat step 10;
步骤11,如果过载虚拟机不再过载或虚拟机资源利用率矩阵集合为空,则结束迁移;如果不是,则返回步骤2,重新选择要迁移的虚拟机和目标物理机。Step 11, if the overloaded virtual machine is no longer overloaded or the virtual machine resource utilization matrix set is empty, the migration is ended; if not, return to step 2, and reselect the virtual machine to be migrated and the target physical machine.
进一步地,所述步骤1,定义物理机集合P={p1,p2,…,pj,…,pn},集合中共有n台物理机,其中j表示第j台物理机,过载物理机上的虚拟机集合V={v1,v2,…vi…,vm},集合V中共有m台虚拟机,其中i表示集合V中第i台虚拟机,物理机共拥有k类资源,包括CPU、内存、硬盘等。Further, in step 1, define a physical machine set P={p 1 ,p 2 ,...,p j ,...,p n }, there are n physical machines in the set, where j represents the jth physical machine, overloaded The virtual machine set V on the physical machine = {v 1 , v 2 ,...v i ..., v m }, there are m virtual machines in the set V, where i represents the ith virtual machine in the set V, and the physical machines have k Class resources, including CPU, memory, hard disk, etc.
进一步地,所述步骤2,获取过载物理机上每个虚拟机的资源利用率矩阵Ai;Further, in the step 2, the resource utilization matrix A i of each virtual machine on the overloaded physical machine is obtained;
其中uitk定义为虚拟机vi在时间t时对资源k的利用率,其中每一行代表同一虚拟机vi从时间1到时间t时对资源k的利用率,每一列代表一种不同的资源;where u itk is defined as the utilization rate of resource k by virtual machine vi at time t, where each row represents the utilization rate of resource k by the same virtual machine vi from time 1 to time t, and each column represents a different resource;
资源利用率矩阵集合S={A1,…,Ai,…,Am},表示所有位于过载物理机上的虚拟机的资源利用率矩阵的集合。The resource utilization matrix set S={A 1 , . . . , A i , . . . , Am } represents the set of resource utilization matrices of all virtual machines located on the overloaded physical machine.
进一步地,所述步骤3,根据公式(1)计算每一个虚拟机vi在时间t内对资源k的利用率均值 Further, in the step 3, according to formula (1), calculate the average value of the utilization rate of each virtual machine v i to the resource k within the time t
根据公式(2)计算每一个虚拟机vi在时间t内对资源k的利用率的标准差σik;Calculate the standard deviation σ ik of the utilization rate of resource k by each virtual machine vi within time t according to formula (2);
根据公式(3)对资源利用率矩阵集合S中的所有虚拟机资源利用率矩阵Ai标准化,得到标准化矩阵Xi;Standardize all virtual machine resource utilization matrices A i in the resource utilization matrix set S according to formula (3) to obtain standardized matrix X i ;
由此得到过载物理机上每个虚拟机vi的资源利用率的标准化矩阵Xi。Thereby , a normalized matrix X i of resource utilization of each virtual machine vi on the overloaded physical machine is obtained.
进一步地,所述步骤4,获取每个物理机pj同一段时间t内的资源利用率矩阵Bj;Further, in the step 4, obtain the resource utilization matrix B j of each physical machine p j in the same period of time t;
其中Ujtk定义为物理机pj在时间t时,对资源k的利用率,其中每一行代表同一物理机pj从时间1到时间t时对资源k的利用率,每一列代表一种不同的资源。where U jtk is defined as the utilization rate of resource k by physical machine p j at time t, where each row represents the utilization rate of resource k by the same physical machine p j from time 1 to time t, and each column represents a different Resources.
进一步地,所述步骤5,根据公式(4)获取物理机pj上资源k的剩余利用率矩阵B'j,其中Tjk表示物理机pj上资源k利用率的阈值:Further, in the step 5, the remaining utilization matrix B' j of the resource k on the physical machine p j is obtained according to formula (4), where T jk represents the threshold value of the utilization rate of the resource k on the physical machine p j :
进一步地,所述步骤6,根据公式(5)计算每一个物理机pj在时间t内对资源k的剩余资源利用率均值 Further, in the step 6, according to formula (5), calculate the average value of the remaining resource utilization rate of each physical machine p j to the resource k within the time t
根据公式(6)计算每一个物理机pj在时间t内对资源k的剩余资源利用率的标准差σ'jk;Calculate the standard deviation σ' jk of the remaining resource utilization ratio of each physical machine p j to resource k within time t according to formula (6);
根据公式(7)将物理机pj的剩余资源利用率矩阵B'j进行标准化,得到标准化矩阵X'j:Standardize the remaining resource utilization matrix B' j of the physical machine p j according to formula (7) to obtain the normalized matrix X' j :
由此分别得到了每个物理机pj的剩余资源利用率的标准化矩阵X'j。Thus, the normalized matrix X' j of the remaining resource utilization ratio of each physical machine p j is obtained respectively.
进一步地,所述步骤7,根据公式(8),由矩阵Xi的每行与矩阵X'j的每行求得皮尔森相关系数hijk;Further, in the step 7, according to formula (8), the Pearson correlation coefficient h ijk is obtained from each row of the matrix X i and each row of the matrix X'j;
得到虚拟机vi与物理机pj关于所有资源的相似度向量Hij={hij1,hij2,…,hijk},其中hijk表示虚拟机vi的资源k的利用率曲线和物理机pj的资源k的剩余利用率曲线的相似度。Obtain the similarity vector H ij ={h ij1 ,h ij2 , ...,h ijk } of the virtual machine v i and the physical machine p j with respect to all resources, where h ijk represents the utilization curve of the resource k of the virtual machine v i and the physical similarity of the residual utilization curve of resource k of machine p j .
进一步地,所述步骤8,根据公式(9)获取理想的相似度向量H*,H*中每一个rk代表所有虚拟机与物理机对之间资源k的相似度的最大值;Further, in the step 8, an ideal similarity vector H * is obtained according to formula (9), and each r k in H * represents the maximum value of the similarity of resource k between all pairs of virtual machines and physical machines;
H*={max(h111,h121,…,hij1),…,max(h11k,h12k,…,hijk)}={r1,r2,…,rk} (9)。H * ={max(h 111 ,h 121 ,…,h ij1 ),…,max(h 11k ,h 12k ,…,h ijk )}={r 1 ,r 2 ,…,r k } (9) .
进一步地,所述步骤9,根据公式(10)计算每一对虚拟机vi和物理机pj的欧式距离lij;Further, in the step 9, calculate the Euclidean distance l ij of each pair of virtual machine v i and physical machine p j according to formula (10);
欧氏距离集合L表示所有虚拟机物理机对的欧式距离lij的集合,L={l11,…,l1j,…,lij}。The Euclidean distance set L represents the set of Euclidean distances l ij of all virtual machine physical machine pairs, L={l 11 ,...,l 1j ,...,l ij }.
本发明提出了一种云计算基于负载曲线相似度的虚拟机迁移策略,较目前主流的虚拟机迁移策略而言,该策略的主要优势在于:将过载物理机一段时间内的负载作为迁移的标准,而不是仅关注过载一瞬间的负载情况,有效的保证了迁移之后一段时间内目标物理机不会发生过载,从而降低了迁移次数,减少了能耗。同时,将曲线的相似度作为迁移的标准之一,使得要迁移的虚拟机和目标物理机尽可能的互补,从而使得目标物理机的负载更为均衡。The invention proposes a cloud computing virtual machine migration strategy based on the similarity of the load curve. Compared with the current mainstream virtual machine migration strategy, the main advantage of this strategy is that the load of the overloaded physical machine for a period of time is used as the migration standard. , instead of only focusing on the load situation at the moment of overload, which effectively ensures that the target physical machine will not be overloaded for a period of time after the migration, thereby reducing the number of migrations and energy consumption. At the same time, the similarity of the curves is used as one of the migration criteria, so that the virtual machine to be migrated and the target physical machine complement each other as much as possible, so that the load of the target physical machine is more balanced.
附图说明Description of drawings
图1为本发明所述一种基于负载曲线相似度的云计算虚拟机迁移方法流程图。FIG. 1 is a flowchart of a cloud computing virtual machine migration method based on load curve similarity according to the present invention.
具体实施方式Detailed ways
下面结合说明书附图对本发明的技术方案做进一步的详细说明。The technical solutions of the present invention will be further described in detail below with reference to the accompanying drawings.
一种基于负载曲线相似度的云计算虚拟机迁移方法,包括如下步骤:A cloud computing virtual machine migration method based on load curve similarity, comprising the following steps:
步骤1,定义物理机集合P={p1,p2,…,pj,…,pn},集合中共有n台物理机,其中j表示第j台物理机,过载物理机上的虚拟机集合V={v1,v2,…vi…,vm},集合V中共有m台虚拟机,其中i表示集合V中第i台虚拟机,物理机共拥有k类资源,包括CPU、内存、硬盘等。Step 1, define a physical machine set P={p 1 ,p 2 ,...,p j ,...,p n }, there are n physical machines in the set, where j represents the jth physical machine, the virtual machine on the overloaded physical machine Set V={v 1 ,v 2 ,...v i ...,vm }, there are m virtual machines in set V, where i represents the ith virtual machine in set V, and physical machines have k types of resources, including CPU , memory, hard disk, etc.
步骤2,获取过载物理机上每个虚拟机的资源利用率矩阵Ai。Step 2: Obtain the resource utilization matrix A i of each virtual machine on the overloaded physical machine.
其中uitk定义为虚拟机vi在时间t时对资源k的利用率,其中每一行代表同一虚拟机vi从时间1到时间t时对资源k的利用率,每一列代表一种不同的资源。where u itk is defined as the utilization rate of resource k by virtual machine vi at time t, where each row represents the utilization rate of resource k by the same virtual machine vi from time 1 to time t, and each column represents a different resource.
资源利用率矩阵集合S={A1,…,Ai,…,Am},表示所有位于过载物理机上的虚拟机的资源利用率矩阵的集合。The resource utilization matrix set S={A 1 , . . . , A i , . . . , Am } represents the set of resource utilization matrices of all virtual machines located on the overloaded physical machine.
步骤3,根据公式(1)计算每一个虚拟机vi在时间t内对资源k的利用率均值 Step 3: Calculate the average utilization rate of resource k by each virtual machine v i in time t according to formula (1).
根据公式(2)计算每一个虚拟机vi在时间t内对资源k的利用率的标准差σik。According to formula (2), the standard deviation σ ik of the utilization rate of resource k by each virtual machine v i in time t is calculated.
根据公式(3)对资源利用率矩阵集合S中的所有虚拟机资源利用率矩阵Ai标准化,得到标准化矩阵Xi。Standardize all virtual machine resource utilization matrices A i in the resource utilization matrix set S according to formula (3) to obtain a standardized matrix X i .
由此得到过载物理机上每个虚拟机vi的资源利用率的标准化矩阵Xi。Thereby , a normalized matrix X i of resource utilization of each virtual machine vi on the overloaded physical machine is obtained.
步骤4,获取每个物理机pj同一段时间t内的资源利用率矩阵Bj。Step 4: Obtain the resource utilization matrix B j of each physical machine p j within the same time period t.
其中Ujtk定义为物理机pj在时间t时,对资源k的利用率,其中每一行代表同一物理机pj从时间1到时间t时对资源k的利用率,每一列代表一种不同的资源。where U jtk is defined as the utilization rate of resource k by physical machine p j at time t, where each row represents the utilization rate of resource k by the same physical machine p j from time 1 to time t, and each column represents a different Resources.
步骤5,根据公式(4)获取物理机pj上资源k的剩余利用率矩阵B'j,其中Tjk表示物理机pj上资源k利用率的阈值:Step 5: Obtain the remaining utilization matrix B' j of the resource k on the physical machine p j according to formula (4), where T jk represents the threshold of the utilization rate of the resource k on the physical machine p j :
步骤6,根据公式(5)计算每一个物理机pj在时间t内对资源k的剩余资源利用率均值 Step 6: Calculate the average value of the remaining resource utilization of each physical machine p j for resource k within time t according to formula (5).
根据公式(6)计算每一个物理机pj在时间t内对资源k的剩余资源利用率的标准差σ'jk。Calculate the standard deviation σ' jk of the remaining resource utilization ratio of each physical machine p j to resource k within time t according to formula (6).
根据公式(7)将物理机pj的剩余资源利用率矩阵B'j进行标准化,得到标准化矩阵X'j。The remaining resource utilization matrix B' j of the physical machine p j is normalized according to formula (7) to obtain a normalized matrix X' j .
由此分别得到了每个物理机pj的剩余资源利用率的标准化矩阵X'j。Thus, the normalized matrix X' j of the remaining resource utilization ratio of each physical machine p j is obtained respectively.
步骤7,根据公式(8),由矩阵Xi的每行与矩阵X'j的每行求得皮尔森相关系数hijk。Step 7, according to formula (8), obtain the Pearson correlation coefficient h ijk from each row of the matrix X i and each row of the matrix X' j .
得到虚拟机vi与物理机pj关于所有资源的相似度向量Hij={hij1,hij2,…,hijk},其中hijk表示虚拟机vi的资源k的利用率曲线和物理机pj的资源k的剩余利用率曲线的相似度。Obtain the similarity vector H ij ={h ij1 ,h ij2 , ...,h ijk } of the virtual machine v i and the physical machine p j with respect to all resources, where h ijk represents the utilization curve of the resource k of the virtual machine v i and the physical similarity of the residual utilization curve of resource k of machine p j .
步骤8,根据公式(9)获取理想的相似度向量H*,H*中每一个rk代表所有虚拟机与物理机对之间资源k的相似度的最大值。Step 8: Obtain an ideal similarity vector H * according to formula (9). Each r k in H * represents the maximum value of the similarity of resource k between all pairs of virtual machines and physical machines.
H*={max(h111,h121,…,hij1),…,max(h11k,h12k,…,hijk)}={r1,r2,…,rk} (9)。H * ={max(h 111 ,h 121 ,…,h ij1 ),…,max(h 11k ,h 12k ,…,h ijk )}={r 1 ,r 2 ,…,r k } (9) .
步骤9,根据公式(10)计算每一对虚拟机vi和物理机pj的欧式距离lij。Step 9: Calculate the Euclidean distance l ij of each pair of virtual machine vi and physical machine p j according to formula (10).
欧氏距离集合L表示所有虚拟机物理机对的欧式距离lij的集合,L={l11,…,l1j,…,lij}。The Euclidean distance set L represents the set of Euclidean distances l ij of all virtual machine physical machine pairs, L={l 11 ,...,l 1j ,...,l ij }.
步骤10,在欧氏距离集合L中,获取当lij取最小值时的下标i和j;假设将虚拟机vi迁移到物理机pj上,判断迁移后是否满足Ujtk<Tjk,如果满足,则将虚拟机vi迁移到物理机pj之上,并从资源利用率矩阵集合S中去除Ai;否则将lij从欧氏距离集合L中去除,重新进行步骤10。Step 10: In the Euclidean distance set L, obtain the subscripts i and j when l ij takes the minimum value; assuming that the virtual machine v i is migrated to the physical machine p j , it is judged whether U jtk <T jk is satisfied after the migration , If satisfied, migrate the virtual machine v i to the physical machine p j , and remove A i from the resource utilization matrix set S; otherwise, remove l ij from the Euclidean distance set L, and perform step 10 again.
步骤11,如果过载虚拟机Pj不再过载或虚拟机资源利用率矩阵集合S为空,则结束迁移;如果不是,则返回步骤2,重新选择要迁移的虚拟机和目标物理机。Step 11, if the overloaded virtual machine Pj is no longer overloaded or the virtual machine resource utilization matrix set S is empty, end the migration; if not, return to step 2 to reselect the virtual machine to be migrated and the target physical machine.
以上所述仅为本发明的较佳实施方式,本发明的保护范围并不以上述实施方式为限,但凡本领域普通技术人员根据本发明所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围内。The above descriptions are only the preferred embodiments of the present invention, and the protection scope of the present invention is not limited to the above-mentioned embodiments, but any equivalent modifications or changes made by those of ordinary skill in the art based on the contents disclosed in the present invention should be included in the within the scope of protection described in the claims.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910094908.6A CN109800059B (en) | 2019-01-31 | 2019-01-31 | A cloud computing virtual machine migration method based on load curve similarity |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910094908.6A CN109800059B (en) | 2019-01-31 | 2019-01-31 | A cloud computing virtual machine migration method based on load curve similarity |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN109800059A CN109800059A (en) | 2019-05-24 |
| CN109800059B true CN109800059B (en) | 2022-10-21 |
Family
ID=66559194
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910094908.6A Active CN109800059B (en) | 2019-01-31 | 2019-01-31 | A cloud computing virtual machine migration method based on load curve similarity |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN109800059B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110399203A (en) * | 2019-07-25 | 2019-11-01 | 南京邮电大学 | A cloud computing virtual machine migration method based on Frecher distance |
| CN113377488B (en) * | 2020-03-09 | 2025-10-14 | 华为云计算技术有限公司 | Method, system and device for resource migration |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130145364A1 (en) * | 2011-12-01 | 2013-06-06 | Tunghai University | Method of dynamic resource allocation for a virtual machine cluster |
| CN105279027A (en) * | 2015-11-19 | 2016-01-27 | 浪潮(北京)电子信息产业有限公司 | Virtual machine disposition method and apparatus |
| CN106293871A (en) * | 2016-07-22 | 2017-01-04 | 浪潮(北京)电子信息产业有限公司 | A resource scheduling method for cluster virtual machines |
-
2019
- 2019-01-31 CN CN201910094908.6A patent/CN109800059B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130145364A1 (en) * | 2011-12-01 | 2013-06-06 | Tunghai University | Method of dynamic resource allocation for a virtual machine cluster |
| CN105279027A (en) * | 2015-11-19 | 2016-01-27 | 浪潮(北京)电子信息产业有限公司 | Virtual machine disposition method and apparatus |
| CN106293871A (en) * | 2016-07-22 | 2017-01-04 | 浪潮(北京)电子信息产业有限公司 | A resource scheduling method for cluster virtual machines |
Also Published As
| Publication number | Publication date |
|---|---|
| CN109800059A (en) | 2019-05-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Liu et al. | A game approach to multi-servers load balancing with load-dependent server availability consideration | |
| CN115718644B (en) | A method and system for cross-region migration of computing tasks for cloud data centers | |
| JP5218390B2 (en) | Autonomous control server, virtual server control method and program | |
| CN105279027B (en) | A kind of virtual machine deployment method and device | |
| US20120221730A1 (en) | Resource control system and resource control method | |
| CN107196865A (en) | A kind of adaptive threshold overload moving method of Load-aware | |
| CN103957237A (en) | Architecture of elastic cloud | |
| CN114916012B (en) | Load flow distribution method and device | |
| CN104008018B (en) | The online moving method of virtual machine under cloud computing environment | |
| CN114090220B (en) | Hierarchical CPU and memory resource scheduling method | |
| CN109800059B (en) | A cloud computing virtual machine migration method based on load curve similarity | |
| CN109144666A (en) | A kind of method for processing resource and system across cloud platform | |
| CN104331253A (en) | Calculation method for object migration in object storage system | |
| CN113806017A (en) | Method, system, device and storage medium for initial deployment of virtual machine in cloud computing | |
| CN114285901B (en) | Network request processing method and device and electronic equipment | |
| CN114564313A (en) | Load adjustment method and device, electronic equipment and storage medium | |
| CN114741160B (en) | A dynamic virtual machine integration method and system based on balancing energy consumption and service quality | |
| CN110650047B (en) | Main and distribution network integrated dynamic resource distribution method and device | |
| CN109976879B (en) | A cloud computing virtual machine placement method based on complementary resource usage curve | |
| CN111857976A (en) | A computational migration method for multi-objective optimization based on decomposition | |
| CN115373862A (en) | Dynamic resource scheduling method, system and storage medium based on data center | |
| Wang et al. | A thermal‐aware VM consolidation mechanism with outage avoidance | |
| CN110399203A (en) | A cloud computing virtual machine migration method based on Frecher distance | |
| CN110308965A (en) | Rule-based heuristic virtual machine allocation method and system for cloud data center | |
| Gilesh et al. | Towards a complete virtual data center embedding algorithm using hybrid strategy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20250528 Address after: 230031 Anhui Province, Hefei City, China (Anhui) Free Trade Pilot Zone, Hefei Area, Gaoxin Block, Chengxiqiao Community Service Center, Caihong West Road No. 2260, Hefei Innovation Industrial Park Phase III, Building A1, Room 8001 Patentee after: Anhui Skyworth Cloud Technology Co.,Ltd. Country or region after: China Address before: 210023 Jiangsu city of Nanjing province Ya Dong new Yuen Road No. 9 Patentee before: NANJING University OF POSTS AND TELECOMMUNICATIONS Country or region before: China |
|
| TR01 | Transfer of patent right |