CN109678603B - Nutrient solution capable of improving low-temperature resistance of tomatoes and preparation method and application thereof - Google Patents
Nutrient solution capable of improving low-temperature resistance of tomatoes and preparation method and application thereof Download PDFInfo
- Publication number
- CN109678603B CN109678603B CN201910067832.8A CN201910067832A CN109678603B CN 109678603 B CN109678603 B CN 109678603B CN 201910067832 A CN201910067832 A CN 201910067832A CN 109678603 B CN109678603 B CN 109678603B
- Authority
- CN
- China
- Prior art keywords
- nutrient solution
- tomatoes
- solution
- parts
- stirring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 235000015097 nutrients Nutrition 0.000 title claims abstract description 117
- 235000007688 Lycopersicon esculentum Nutrition 0.000 title claims abstract description 90
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 240000003768 Solanum lycopersicum Species 0.000 title description 77
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 claims abstract description 52
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 42
- 241000196324 Embryophyta Species 0.000 claims abstract description 33
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000004202 carbamide Substances 0.000 claims abstract description 26
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 claims abstract description 26
- 229940061634 magnesium sulfate heptahydrate Drugs 0.000 claims abstract description 26
- 229910000402 monopotassium phosphate Inorganic materials 0.000 claims abstract description 26
- 235000019796 monopotassium phosphate Nutrition 0.000 claims abstract description 26
- 239000004323 potassium nitrate Substances 0.000 claims abstract description 26
- 235000010333 potassium nitrate Nutrition 0.000 claims abstract description 26
- ISPYRSDWRDQNSW-UHFFFAOYSA-L manganese(II) sulfate monohydrate Chemical compound O.[Mn+2].[O-]S([O-])(=O)=O ISPYRSDWRDQNSW-UHFFFAOYSA-L 0.000 claims abstract description 23
- RZLVQBNCHSJZPX-UHFFFAOYSA-L zinc sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Zn+2].[O-]S([O-])(=O)=O RZLVQBNCHSJZPX-UHFFFAOYSA-L 0.000 claims abstract description 23
- 239000012378 ammonium molybdate tetrahydrate Substances 0.000 claims abstract description 22
- FIXLYHHVMHXSCP-UHFFFAOYSA-H azane;dihydroxy(dioxo)molybdenum;trioxomolybdenum;tetrahydrate Chemical compound N.N.N.N.N.N.O.O.O.O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O FIXLYHHVMHXSCP-UHFFFAOYSA-H 0.000 claims abstract description 22
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000004327 boric acid Substances 0.000 claims abstract description 21
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 claims abstract description 21
- 229910052742 iron Inorganic materials 0.000 claims abstract description 21
- ZGXJTSGNIOSYLO-UHFFFAOYSA-N 88755TAZ87 Chemical compound NCC(=O)CCC(O)=O ZGXJTSGNIOSYLO-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229960002749 aminolevulinic acid Drugs 0.000 claims abstract description 20
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 claims abstract description 17
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 claims abstract description 14
- 241000227653 Lycopersicon Species 0.000 claims abstract 14
- 239000000243 solution Substances 0.000 claims description 147
- 238000002156 mixing Methods 0.000 claims description 40
- 238000003756 stirring Methods 0.000 claims description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 239000007864 aqueous solution Substances 0.000 claims description 20
- 230000003203 everyday effect Effects 0.000 claims description 20
- 238000005303 weighing Methods 0.000 claims description 20
- ZHJGWYRLJUCMRT-UHFFFAOYSA-N 5-[6-[(4-methylpiperazin-1-yl)methyl]benzimidazol-1-yl]-3-[1-[2-(trifluoromethyl)phenyl]ethoxy]thiophene-2-carboxamide Chemical compound C=1C=CC=C(C(F)(F)F)C=1C(C)OC(=C(S1)C(N)=O)C=C1N(C1=C2)C=NC1=CC=C2CN1CCN(C)CC1 ZHJGWYRLJUCMRT-UHFFFAOYSA-N 0.000 claims description 12
- 239000011573 trace mineral Substances 0.000 claims description 11
- 235000013619 trace mineral Nutrition 0.000 claims description 11
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 claims description 9
- LWIHDJKSTIGBAC-UHFFFAOYSA-K potassium phosphate Substances [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 claims description 9
- 239000011575 calcium Substances 0.000 claims description 6
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 235000013399 edible fruits Nutrition 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 229910052700 potassium Inorganic materials 0.000 claims description 6
- 230000002354 daily effect Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 13
- DOEGOCZXAAGGFN-UHFFFAOYSA-N nitric acid;tetrahydrate Chemical compound O.O.O.O.O[N+]([O-])=O DOEGOCZXAAGGFN-UHFFFAOYSA-N 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 3
- 238000002474 experimental method Methods 0.000 description 13
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 12
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical compound O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 description 10
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 6
- 229930003268 Vitamin C Natural products 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 235000019154 vitamin C Nutrition 0.000 description 6
- 239000011718 vitamin C Substances 0.000 description 6
- 239000010949 copper Substances 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- UPYKUZBSLRQECL-UKMVMLAPSA-N Lycopene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1C(=C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=C)CCCC2(C)C UPYKUZBSLRQECL-UKMVMLAPSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000005502 peroxidation Methods 0.000 description 2
- 239000005696 Diammonium phosphate Substances 0.000 description 1
- JEVVKJMRZMXFBT-XWDZUXABSA-N Lycophyll Natural products OC/C(=C/CC/C(=C\C=C\C(=C/C=C/C(=C\C=C\C=C(/C=C/C=C(\C=C\C=C(/CC/C=C(/CO)\C)\C)/C)\C)/C)\C)/C)/C JEVVKJMRZMXFBT-XWDZUXABSA-N 0.000 description 1
- 241000208292 Solanaceae Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 235000005473 carotenes Nutrition 0.000 description 1
- 150000001746 carotenes Chemical class 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 235000012661 lycopene Nutrition 0.000 description 1
- OAIJSZIZWZSQBC-GYZMGTAESA-N lycopene Chemical compound CC(C)=CCC\C(C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C=C(/C)CCC=C(C)C OAIJSZIZWZSQBC-GYZMGTAESA-N 0.000 description 1
- 239000001751 lycopene Substances 0.000 description 1
- 229960004999 lycopene Drugs 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000009335 monocropping Methods 0.000 description 1
- 235000021049 nutrient content Nutrition 0.000 description 1
- 235000021048 nutrient requirements Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- ZCIHMQAPACOQHT-ZGMPDRQDSA-N trans-isorenieratene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/c1c(C)ccc(C)c1C)C=CC=C(/C)C=Cc2c(C)ccc(C)c2C ZCIHMQAPACOQHT-ZGMPDRQDSA-N 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- NCYCYZXNIZJOKI-UHFFFAOYSA-N vitamin A aldehyde Natural products O=CC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05B—PHOSPHATIC FERTILISERS
- C05B7/00—Fertilisers based essentially on alkali or ammonium orthophosphates
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01C—PLANTING; SOWING; FERTILISING
- A01C21/00—Methods of fertilising, sowing or planting
- A01C21/005—Following a specific plan, e.g. pattern
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05G—MIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
- C05G3/00—Mixtures of one or more fertilisers with additives not having a specially fertilising activity
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05G—MIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
- C05G3/00—Mixtures of one or more fertilisers with additives not having a specially fertilising activity
- C05G3/60—Biocides or preservatives, e.g. disinfectants, pesticides or herbicides; Pest repellants or attractants
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05G—MIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
- C05G5/00—Fertilisers characterised by their form
- C05G5/20—Liquid fertilisers
- C05G5/23—Solutions
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Soil Sciences (AREA)
- Plant Pathology (AREA)
- Environmental Sciences (AREA)
- Fertilizers (AREA)
Abstract
The invention belongs to the technical field of plant nutrient solutions, and particularly discloses a nutrient solution capable of improving the low-temperature resistance of tomatoes and a preparation method and application thereof, wherein the nutrient solution comprises urea, potassium nitrate, nitric acid tetrahydrate, potassium dihydrogen phosphate, magnesium sulfate heptahydrate, ammonium molybdate tetrahydrate, chelated iron, boric acid, manganese sulfate monohydrate, zinc sulfate heptahydrate, copper sulfate pentahydrate, 5-aminolevulinic acid and the like; the nutrient solution is used in the flowering and fruiting periods of tomatoes, can fully meet nutrients required in the growth process of the tomatoes, and can obviously improve the low-temperature resistance of the tomatoes, improve the content of effective nutrient substances of the tomatoes and improve the quality of the tomatoes by adjusting the formula and the dosage of the nutrient solution according to different nutrient demand and demand types of the tomatoes in different growth periods.
Description
Technical Field
The invention belongs to the technical field of plant nutrient solutions, and particularly relates to a nutrient solution capable of improving low-temperature resistance of tomatoes, and a preparation method and application thereof.
Background
The tomato belongs to the genus of tomato of the family Solanaceae, is a temperature-loving vegetable crop, has rich nutrition of tomato fruits, contains rich vitamins and carotene, has excellent health care effect, and is popular with consumers. In recent years, the method is widely applied to off-season facility cultivation due to consumer and market demands. In facility cultivation, due to the fact that soil is often in a state of no rainwater leaching, high temperature, high humidity and high evaporation and crops in facilities are often continuously cultivated, the facility soil has a plurality of problems of secondary salinization, nutrient imbalance, hardening acidification, microorganism system imbalance, continuous cropping obstacle and the like. The soilless culture technology gets rid of the restriction of soil and becomes the most effective means for solving the soil problem in facility production. The substrate cultivation is a main mode of soilless cultivation, and has good physicochemical properties and can provide a proper growing environment for crop roots. The nutrient solution formula is a key factor for success of soilless culture, at present, China still uses international nutrient solution formulas such as Hoagland, garden type and Kawasaki developed decades ago in a large area, but with diversification of soilless culture plant types and culture forms, the formulas can not completely meet the requirements of the existing soilless culture production, and improvement and optimization of the nutrient solution formula are urgently needed aiming at different varieties, growth stages and culture modes. Therefore, the determination of the nutrient content in the substrate and the optimal application amount of the nutrient solution is of great significance to agricultural production.
The low-temperature adverse environment is an inevitable restriction factor faced by autumn and winter tomato in the growth process, and the improvement of the cold resistance of tomato plants has important significance on the high yield and high quality of autumn and winter tomato.
Disclosure of Invention
The nutrient solution is used in the flowering and fruiting periods of tomatoes, can fully meet nutrients required in the growth process of the tomatoes, can obviously improve the low-temperature resistance of the tomatoes by adjusting the formula and the dosage of the nutrient solution according to different nutrient demands and different types of demands of the tomatoes in different growth periods, and simultaneously improves the content of effective nutrient substances of the tomatoes and the quality of the tomatoes.
The specific technical scheme of the invention is as follows:
a nutrient solution capable of improving the low-temperature resistance of tomatoes is characterized in that: comprises the following components: urea, potassium nitrate, nitric acid tetrahydrate, monopotassium phosphate, magnesium sulfate heptahydrate, ammonium molybdate tetrahydrate, chelated iron, boric acid, manganese sulfate monohydrate, zinc sulfate heptahydrate, copper sulfate pentahydrate, and 5-aminolevulinic acid;
the components are weighed according to the following parts by mass:
1000-2500 parts of urea, 4000-7300 parts of potassium nitrate, 10000-18000 parts of nitric acid tetrahydrate, 500-900 parts of monopotassium phosphate, 3500-6000 parts of magnesium sulfate heptahydrate, 0.1-0.3 part of ammonium molybdate tetrahydrate, 180-330 parts of chelated iron, 18-35 parts of boric acid, 11-20 parts of manganese sulfate monohydrate, 1.4-2.6 parts of zinc sulfate heptahydrate, 0.5-1.1 parts of copper sulfate pentahydrate and 70-130 parts of 5-aminolevulinic acid.
Preferably, the components are weighed according to the following parts by mass: 1700 parts of urea, 5600 part of potassium nitrate, 13600 part of nitric acid tetrahydrate, 700 parts of monopotassium phosphate, 4800 parts of magnesium sulfate heptahydrate, 0.2 part of ammonium molybdate tetrahydrate, 250 parts of chelated iron, 27 parts of boric acid, 16 parts of manganese sulfate monohydrate, 2.0 parts of zinc sulfate heptahydrate, 0.8 part of copper sulfate pentahydrate and 100 parts of 5-aminolevulinic acid.
Preferably, the nutrient solution further comprises trace elements.
Preferably, the nutrient solution contains macroelement N, P, K, Ca.
The preparation method of the nutrient solution comprises the following steps:
(1) weighing urea, potassium nitrate and calcium nitrate tetrahydrate according to the mass parts, respectively mixing and stirring the urea, the potassium nitrate and the calcium nitrate tetrahydrate with water according to the proportion of 0.17g/L, 0.56g/L and 1.36g/L until the urea, the potassium nitrate and the calcium nitrate are completely dissolved, mixing the obtained aqueous solution, and uniformly stirring the aqueous solution to obtain a solution A;
(2) weighing potassium dihydrogen phosphate and magnesium sulfate heptahydrate according to the mass parts, respectively mixing and stirring the potassium dihydrogen phosphate and the magnesium sulfate heptahydrate with water according to the proportion of 0.07g/L and 0.48g/L until the potassium dihydrogen phosphate and the magnesium sulfate heptahydrate are completely dissolved, and uniformly mixing and stirring the obtained aqueous solution to obtain a solution B;
(3) weighing ammonium molybdate tetrahydrate, chelated iron, boric acid, manganese sulfate monohydrate, zinc sulfate heptahydrate and copper sulfate pentahydrate according to the mass parts, mixing the ammonium molybdate tetrahydrate, the chelated iron, the boric acid, the manganese sulfate monohydrate, the zinc sulfate heptahydrate and the copper sulfate pentahydrate with water according to the proportion of 0.2mg/L, 250mg/L, 27mg/L, 16mg/L, 2.0mg/L and 0.8mg/L respectively, completely stirring the mixture until the mixture is dissolved, and uniformly mixing and stirring the obtained water solution to obtain a solution C;
(4) mixing the solution A, the solution B and the solution C according to the ratio of 2.5:2.5:1, and adding trace elements to prepare a nutrient solution I;
(5) weighing 5-aminolevulinic acid according to the mass parts, mixing and stirring uniformly with water according to the proportion of 0.01g/L, adding the obtained aqueous solution into the nutrient solution I, and stirring uniformly to obtain a nutrient solution II.
The nutrient solution is applied to the flowering and fruiting periods of tomatoes.
The application of the invention comprises the following steps:
(1) irrigating 0.5L of each plant with the nutrient solution I every day in the flowering period and fruiting initial period of the tomatoes; watering once every 3 days by using the nutrient solution II according to the dosage of 0.5L per plant every day;
(2) irrigating by using the nutrient solution I according to the daily volume of 1L per plant in the stage of the tomato bearing fruit prosperity; irrigating once by using the nutrient solution II every 3 days according to the dosage of 1L per plant every day;
(3) irrigating 0.7L of each plant per day by using the nutrient solution I at the later fruiting stage of the tomatoes; and irrigating once every 3 days by using the nutrient solution II according to the dosage of 0.7L per plant every day.
The mass concentration of the macroelement N, P, K, Ca in the nutrient solution is 287mg.L in sequence-1、15.5mg.L-1、312mg.L-1、230mg.L-1。
The trace elements of the invention are: fe. B, Mn, Zn, Cu, Mo;
the mass concentrations of the trace elements in the nutrient solution are respectively as follows: fe 3.5 mg/L, B0.5.5 mg/L, Mn 0.52.52 mg/L, Zn 0.05.05 mg/L, Cu 0.02.02 mg/L, Mo 0.01.01 mg/L.
In the practical operation, in order to facilitate transportation, storage and the like to improve the working efficiency, the solution A and the solution B can be concentrated into 200 times of concentrated solution to obtain the solution A and the solution B, the solution C can be concentrated into 500 times of concentrated solution to obtain the solution C, and the solution C is diluted by adding water when in use to reach the concentration of the original solution and then is applied.
The invention has the beneficial effects that:
the invention discloses a nutrient solution capable of improving the low-temperature resistance of tomatoes and a preparation method and application thereof, wherein the nutrient solution is used for the flowering and fruiting periods of the tomatoes, the dosage and the components of the nutrient solution are adjusted in real time according to different nutrient requirements and different types of nutrient element requirements of the tomatoes in different growth stages, the nutrients required in the whole growth process of the tomatoes can be fully met, the low-temperature resistance of the tomatoes is obviously improved, and the survival rate and the growth rate of the tomatoes in low-temperature and extreme environments are improved; in addition, the nutrient solution is used for culturing tomatoes, can also obviously improve the yield of the tomatoes, increase the content of soluble protein, vitamin C, lycopene, soluble polysaccharide and other nutrient substances contained in the tomatoes and improve the quality of the tomatoes.
Detailed Description
The technical solution of the present invention is further illustrated below with reference to specific examples.
Example 1
A nutrient solution capable of improving the low-temperature resistance of tomatoes comprises the following components: urea, potassium nitrate, nitric acid tetrahydrate, monopotassium phosphate, magnesium sulfate heptahydrate, ammonium molybdate tetrahydrate, chelated iron, boric acid, manganese sulfate monohydrate, zinc sulfate heptahydrate, copper sulfate pentahydrate, and 5-aminolevulinic acid;
the components are weighed according to the following parts by mass:
1000 parts of urea, 4000 parts of potassium nitrate, 10000 parts of nitric acid tetrahydrate, 500 parts of monopotassium phosphate, 3500 parts of magnesium sulfate heptahydrate, 0.1 part of ammonium molybdate tetrahydrate, 180 parts of chelated iron, 18 parts of boric acid, 11 parts of manganese sulfate monohydrate, 1.4 parts of zinc sulfate heptahydrate, 0.5 part of copper sulfate pentahydrate and 70 parts of 5-aminolevulinic acid;
the nutrient solution contains macroelement N, P, K, Ca with the mass concentration of 287mg.L in sequence-1、15.5mg.L-1、312mg.L-1、230mg.L-1;
The preparation method of the nutrient solution comprises the following steps:
(1) weighing urea, potassium nitrate and calcium nitrate tetrahydrate according to the mass parts, respectively mixing and stirring the urea, the potassium nitrate and the calcium nitrate tetrahydrate with water according to the proportion of 0.17g/L, 0.56g/L and 1.36g/L until the urea, the potassium nitrate and the calcium nitrate are completely dissolved, mixing the obtained aqueous solution, and uniformly stirring the aqueous solution to obtain a solution A;
(2) weighing potassium dihydrogen phosphate and magnesium sulfate heptahydrate according to the mass parts, respectively mixing and stirring the potassium dihydrogen phosphate and the magnesium sulfate heptahydrate with water according to the proportion of 0.07g/L and 0.48g/L until the potassium dihydrogen phosphate and the magnesium sulfate heptahydrate are completely dissolved, and uniformly mixing and stirring the obtained aqueous solution to obtain a solution B;
(3) weighing ammonium molybdate tetrahydrate, chelated iron, boric acid, manganese sulfate monohydrate, zinc sulfate heptahydrate and copper sulfate pentahydrate according to the mass parts, mixing the ammonium molybdate tetrahydrate, the chelated iron, the boric acid, the manganese sulfate monohydrate, the zinc sulfate heptahydrate and the copper sulfate pentahydrate with water according to the proportion of 0.2mg/L, 250mg/L, 27mg/L, 16mg/L, 2.0mg/L and 0.8mg/L respectively, completely stirring the mixture until the mixture is dissolved, and uniformly mixing and stirring the obtained water solution to obtain a solution C;
(4) mixing the solution A, the solution B and the solution C according to the proportion of 2.5:2.5:1, and adding trace elements to ensure that the mass concentration of the trace elements respectively reaches: fe 3.5 mg/L, B0.5.5 mg/L, Mn 0.52.52 mg/L, Zn 0.05.05 mg/L, Cu 0.02.02 mg/L, Mo 0.01.01 mg/L to prepare a nutrient solution I;
(5) weighing 5-aminolevulinic acid according to the mass parts, mixing and stirring uniformly with water according to the proportion of 0.01g/L, adding the obtained aqueous solution into the nutrient solution I, and stirring uniformly to obtain a nutrient solution II;
the application of the nutrient solution comprises the following steps:
(1) irrigating 0.5L of each plant with the nutrient solution I every day in the flowering period and fruiting initial period of the tomatoes; watering once every 3 days by using the nutrient solution II according to the dosage of 0.5L per plant every day;
(2) irrigating by using the nutrient solution I according to the daily volume of 1L per plant in the stage of the tomato bearing fruit prosperity; irrigating once by using the nutrient solution II every 3 days according to the dosage of 1L per plant every day;
(3) irrigating 0.7L of each plant per day by using the nutrient solution I at the later fruiting stage of the tomatoes; and irrigating once every 3 days by using the nutrient solution II according to the dosage of 0.7L per plant every day.
Example 2
A nutrient solution capable of improving the low-temperature resistance of tomatoes comprises the following components: urea, potassium nitrate, nitric acid tetrahydrate, monopotassium phosphate, magnesium sulfate heptahydrate, ammonium molybdate tetrahydrate, chelated iron, boric acid, manganese sulfate monohydrate, zinc sulfate heptahydrate, copper sulfate pentahydrate, and 5-aminolevulinic acid;
the components are weighed according to the following parts by mass:
2500 parts of urea, 7300 parts of potassium nitrate, 18000 parts of nitric acid tetrahydrate, 900 parts of potassium dihydrogen phosphate, 6000 parts of magnesium sulfate heptahydrate, 0.3 part of ammonium molybdate tetrahydrate, 330 parts of chelated iron, 35 parts of boric acid, 20 parts of manganese sulfate monohydrate, 2.6 parts of zinc sulfate heptahydrate, 1.1 parts of copper sulfate pentahydrate and 130 parts of 5-aminolevulinic acid;
the nutrient solution contains macroelement N, P, K, Ca with the mass concentration of 287mg.L in sequence-1、15.5mg.L-1、312mg.L-1、230mg.L-1;
The preparation method of the nutrient solution comprises the following steps:
(1) weighing urea, potassium nitrate and calcium nitrate tetrahydrate according to the mass parts, respectively mixing and stirring the urea, the potassium nitrate and the calcium nitrate tetrahydrate with water according to the proportion of 0.17g/L, 0.56g/L and 1.36g/L until the urea, the potassium nitrate and the calcium nitrate are completely dissolved, mixing the obtained aqueous solution, and uniformly stirring the aqueous solution to obtain a solution A;
(2) weighing potassium dihydrogen phosphate and magnesium sulfate heptahydrate according to the mass parts, respectively mixing and stirring the potassium dihydrogen phosphate and the magnesium sulfate heptahydrate with water according to the proportion of 0.07g/L and 0.48g/L until the potassium dihydrogen phosphate and the magnesium sulfate heptahydrate are completely dissolved, and uniformly mixing and stirring the obtained aqueous solution to obtain a solution B;
(3) weighing ammonium molybdate tetrahydrate, chelated iron, boric acid, manganese sulfate monohydrate, zinc sulfate heptahydrate and copper sulfate pentahydrate according to the mass parts, mixing the ammonium molybdate tetrahydrate, the chelated iron, the boric acid, the manganese sulfate monohydrate, the zinc sulfate heptahydrate and the copper sulfate pentahydrate with water according to the proportion of 0.2mg/L, 250mg/L, 27mg/L, 16mg/L, 2.0mg/L and 0.8mg/L respectively, completely stirring the mixture until the mixture is dissolved, and uniformly mixing and stirring the obtained water solution to obtain a solution C;
(4) mixing the solution A, the solution B and the solution C according to the proportion of 2.5:2.5:1, and adding the trace elements to ensure that the mass concentration of the trace elements in the nutrient solution reaches: fe 3.5 mg/L, B0.5.5 mg/L, Mn 0.52.52 mg/L, Zn 0.05.05 mg/L, Cu 0.02.02 mg/L, Mo 0.01.01 mg/L to prepare a nutrient solution I;
(5) weighing 5-aminolevulinic acid according to the mass parts, mixing and stirring uniformly with water according to the proportion of 0.01g/L, adding the obtained aqueous solution into the nutrient solution I, and stirring uniformly to obtain a nutrient solution II;
the application of the nutrient solution comprises the following steps:
(1) irrigating 0.5L of each plant with the nutrient solution I every day in the flowering period and fruiting initial period of the tomatoes; watering once every 3 days by using the nutrient solution II according to the dosage of 0.5L per plant every day;
(2) irrigating by using the nutrient solution I according to the daily volume of 1L per plant in the stage of the tomato bearing fruit prosperity; irrigating once by using the nutrient solution II every 3 days according to the dosage of 1L per plant every day;
(3) irrigating 0.7L of each plant per day by using the nutrient solution I at the later fruiting stage of the tomatoes; and irrigating once every 3 days by using the nutrient solution II according to the dosage of 0.7L per plant every day.
Example 3
A nutrient solution capable of improving the low-temperature resistance of tomatoes comprises the following components: urea, potassium nitrate, nitric acid tetrahydrate, monopotassium phosphate, magnesium sulfate heptahydrate, ammonium molybdate tetrahydrate, chelated iron, boric acid, manganese sulfate monohydrate, zinc sulfate heptahydrate, copper sulfate pentahydrate, and 5-aminolevulinic acid;
the components are weighed according to the following parts by mass: 1700 parts of urea, 5600 part of potassium nitrate, 13600 part of nitric acid tetrahydrate, 700 parts of monopotassium phosphate, 4800 parts of magnesium sulfate heptahydrate, 0.2 part of ammonium molybdate tetrahydrate, 250 parts of chelated iron, 27 parts of boric acid, 16 parts of manganese sulfate monohydrate, 2.0 parts of zinc sulfate heptahydrate, 0.8 part of copper sulfate pentahydrate and 100 parts of 5-aminolevulinic acid;
the nutrient solution contains macroelement N, P, K, Ca with the mass concentration of 287mg.L in sequence-1、15.5mg.L-1、312mg.L-1、230mg.L-1;
The preparation method of the nutrient solution comprises the following steps:
(1) weighing urea, potassium nitrate and calcium nitrate tetrahydrate according to the mass parts, respectively mixing and stirring the urea, the potassium nitrate and the calcium nitrate tetrahydrate with water according to the proportion of 0.17g/L, 0.56g/L and 1.36g/L until the urea, the potassium nitrate and the calcium nitrate are completely dissolved, mixing the obtained aqueous solution, and uniformly stirring the aqueous solution to obtain a solution A;
(2) weighing potassium dihydrogen phosphate and magnesium sulfate heptahydrate according to the mass parts, respectively mixing and stirring the potassium dihydrogen phosphate and the magnesium sulfate heptahydrate with water according to the proportion of 0.07g/L and 0.48g/L until the potassium dihydrogen phosphate and the magnesium sulfate heptahydrate are completely dissolved, and uniformly mixing and stirring the obtained aqueous solution to obtain a solution B;
(3) weighing ammonium molybdate tetrahydrate, chelated iron, boric acid, manganese sulfate monohydrate, zinc sulfate heptahydrate and copper sulfate pentahydrate according to the mass parts, mixing the ammonium molybdate tetrahydrate, the chelated iron, the boric acid, the manganese sulfate monohydrate, the zinc sulfate heptahydrate and the copper sulfate pentahydrate with water according to the proportion of 0.2mg/L, 250mg/L, 27mg/L, 16mg/L, 2.0mg/L and 0.8mg/L respectively, completely stirring the mixture until the mixture is dissolved, and uniformly mixing and stirring the obtained water solution to obtain a solution C;
(4) mixing the solution A, the solution B and the solution C according to the proportion of 2.5:2.5:1, and adding the trace elements to ensure that the mass concentration of the trace elements in the nutrient solution reaches: fe 3.5 mg/L, B0.5.5 mg/L, Mn 0.52.52 mg/L, Zn 0.05.05 mg/L, Cu 0.02.02 mg/L, Mo 0.01.01 mg/L to prepare a nutrient solution I;
(5) weighing 5-aminolevulinic acid according to the mass parts, mixing and stirring uniformly with water according to the proportion of 0.01g/L, adding the obtained aqueous solution into the nutrient solution I, and stirring uniformly to obtain a nutrient solution II;
the application of the invention comprises the following steps:
(1) irrigating 0.5L of each plant with the nutrient solution I every day in the flowering period and fruiting initial period of the tomatoes; watering once every 3 days by using the nutrient solution II according to the dosage of 0.5L per plant every day;
(2) irrigating by using the nutrient solution I according to the daily volume of 1L per plant in the stage of the tomato bearing fruit prosperity; irrigating once by using the nutrient solution II every 3 days according to the dosage of 1L per plant every day;
(3) irrigating 0.7L of each plant per day by using the nutrient solution I at the later fruiting stage of the tomatoes; and irrigating once every 3 days by using the nutrient solution II according to the dosage of 0.7L per plant every day.
Comparative experiment
Comparative experiment 1
The tomato experimental variety is 'Babaoli' tomatoes, the experimental time is 8 months in 2018, the experiment lasts for 4 months, and all experimental groups are carried out in the same greenhouse during the experimental period so as to ensure that all experimental groups are in the same environment;
the experimental method comprises the following steps:
experimental group 1: tomatoes were irrigated according to the application procedure described in example 1 using the nutrient solution prepared in example 1;
experimental group 2: the nutrient solution does not contain a 5-aminolevulinic acid component, the other components and the preparation method thereof are the same as in example 1, and the tomatoes are irrigated according to the application steps described in the example;
control group 1: watering tomatoes according to the application procedure described in example 1 using a kazaki tomato nutrient solution;
control group 2: 5-aminolevulinic acid solution with the same concentration as the example is added into nutrient solution of the Kawasaki tomato, and the tomato is irrigated according to the application steps described in the example 1;
the experimental steps are as follows:
(1) adopting a substrate plug seedling, selecting seedlings with consistent growth vigor when the seedlings are four-leaf and one-heart, and planting the seedlings in cultivation bags, wherein the specification of the cultivation bags is 100 multiplied by 20 multiplied by 16cm, and planting three seedlings in each cultivation bag;
(2) dividing tomato seedlings into A, B, C, D groups when the seedlings are about to enter into a flowering period, continuing cultivation, and after entering into the flowering period and a fruiting period, beginning to irrigate nutrient solution, wherein:
group A was irrigated according to the method of experimental group 1;
group B irrigates according to the method of the experimental group 2;
group C was irrigated as described for control group 1;
group D irrigates according to the method of the control group 2;
during the experiment, the tomato yield per mu of different experimental groups is recorded, the content of soluble protein, vitamin C and soluble total sugar in the tomatoes of different experimental groups is measured, and the experiment results are shown in the table 1:
table 1 results of different experimental groups
Note: data are expressed as "mean ± sem". After the data in the same column, different lower case letters show that the difference is obvious (P < 0.05), and tables 2 and 3 are the same;
as can be seen from Table 1, the experimentsCompared with the control group 1, the tomato yield per mu of the group 1 is improved by 16.40 percent, and compared with the experiment group 1 and the control group 2, the tomato yield per mu is improved by 12.79 percent; compared with the control group 1, the tomato yield per mu of the experimental group 2 is improved by 10.44 percent, so that the nutrient solution disclosed by the invention can obviously improve the tomato yield per mu, is not only related to 5-aminolevulinic acid contained in the nutrient solution, but also related to other components, and all the contained components can be mutually cooperated to achieve a better effect, so that the tomato yield per mu is improved by 16.40 percent to achieve 16314kg 667m-2The yield of (a);
in addition, according to the data in the table, the content of soluble protein, vitamin C and soluble total sugar in the tomatoes cultivated in the experimental group 1 is respectively increased by 120%, 4.45% and 32.17% compared with the control group 1; therefore, the nutrient solution is used in the flowering period and the fruiting period of the tomatoes, can improve the content of effective nutrient components of the tomatoes and improve the quality of the tomatoes;
during the experiment period, the content of the malonaldehyde value (MDA) of the tomato is measured in the result full period, and the tomato leaves are taken as a measuring object; the results are shown in table 2:
TABLE 2 determination of the malonaldehyde value (MDA) content (nmol. g) for different experimental groups-1 FW)
As can be seen from Table 2, the MDA content of the experimental group 1 is reduced by 34.02% compared with that of the control group 1, and the MDA content of the experimental group 2 is reduced by 34.02% and 29.54% compared with that of the control group 1; the content of MDA can be used for measuring the peroxidation degree of membrane lipid, when the content of MDA is increased, cell membrane collapse can be caused, the content of MDA in tomato leaves can be obviously reduced, namely, the peroxidation damage of low-temperature stress on the membrane can be effectively relieved, the cold resistance of the tomato is improved, the cold resistance is related to 5-aminolevulinic acid components contained in the nutrient solution and other components, and all the components are compounded with each other, so that the nutrient solution has a better technical effect of reducing the content of MDA;
comparative experiment 2
Selecting the 'Babaoli' tomatoes as experimental varieties, wherein the experimental time begins in 8 months in 2018, the experiment lasts for 4 months, and all experimental groups are carried out in the same greenhouse during the experimental period so as to ensure that all experimental groups are in the same environment;
the test method comprises the following steps:
experimental group 1: tomatoes were irrigated according to the application procedure described in example 1 using the nutrient solution prepared in example 1;
control group 1: calcium carbonate, diammonium phosphate, manganese sulfate and zinc sulfate respectively replace calcium nitrate tetrahydrate, ammonium molybdate tetrahydrate, manganese sulfate monohydrate and zinc sulfate heptahydrate in equal amount in the embodiment 1, the other components and the preparation method thereof are the same as the embodiment 1, and tomatoes are irrigated according to the application steps in the embodiment 1;
the experimental steps are as follows:
(1) adopting a substrate plug seedling, selecting the seedlings with consistent growth vigor when the four leaves and the center of the seedling are planted in the cultivation bag. The specification of the cultivation bag is 100 multiplied by 20 multiplied by 16cm, and three seedlings are fixedly planted in each cultivation bag;
(2) dividing the seedlings in the step (1) into A, B two groups, irrigating the tomatoes in the group A by using the method in the experimental group 1 and irrigating the tomatoes in the group B by using the method in the control group 1 during the flowering and fruiting periods of the tomatoes;
during the experiment, the tomato yield per mu of the experiment group is recorded, and the content of soluble protein, vitamin C and soluble total sugar contained in the tomato is determined by self, and the experiment result is shown in the table 3:
TABLE 3 results of different experimental groups
| Group of | Yield (kg 667 m)-2) | Soluble protein (mg. g)-1) | Vitamin C (mg 100 g)-1) | Soluble total sugar% |
| Experimental group 1 | 16314±361.19a | 0.14±0.004a | 38.87±0.12a | 11.11±0.29a |
| Control group 1 | 13529± 211.43b | 0.07±0.001b | 38.29±0.36b | 8.52±0.12b |
As can be seen from Table 3, compared with the control group 1, the acre yield of the experimental group is improved by 20.59%, and the soluble protein, vitamin C and soluble total sugar content of the tomatoes are obviously improved, which shows that the nutrient solution has obvious effects on improving the yield and quality of the tomatoes and improving the resistance of the tomatoes.
Claims (3)
1. A nutrient solution capable of improving the low-temperature resistance of tomatoes is characterized in that: comprises the following components: 1000 parts of urea, 4000 parts of potassium nitrate, 10000 parts of calcium nitrate tetrahydrate, 500 parts of monopotassium phosphate, 3500 parts of magnesium sulfate heptahydrate, 0.1 part of ammonium molybdate tetrahydrate, 180 parts of chelated iron, 18 parts of boric acid, 11 parts of manganese sulfate monohydrate, 1.4 parts of zinc sulfate heptahydrate, 0.5 part of copper sulfate pentahydrate and 70 parts of 5-aminolevulinic acid;
the preparation method of the nutrient solution comprises the following steps:
(1) weighing urea, potassium nitrate and calcium nitrate tetrahydrate according to the mass parts, respectively mixing and stirring the urea, the potassium nitrate and the calcium nitrate tetrahydrate with water according to the proportion of 0.17g/L, 0.56g/L and 1.36g/L until the urea, the potassium nitrate and the calcium nitrate are completely dissolved, mixing the obtained aqueous solution, and uniformly stirring the aqueous solution to obtain a solution A;
(2) weighing potassium dihydrogen phosphate and magnesium sulfate heptahydrate according to the mass parts, respectively mixing and stirring the potassium dihydrogen phosphate and the magnesium sulfate heptahydrate with water according to the proportion of 0.07g/L and 0.48g/L until the potassium dihydrogen phosphate and the magnesium sulfate heptahydrate are completely dissolved, and uniformly mixing and stirring the obtained aqueous solution to obtain a solution B;
(3) weighing ammonium molybdate tetrahydrate, chelated iron, boric acid, manganese sulfate monohydrate, zinc sulfate heptahydrate and copper sulfate pentahydrate according to the mass parts, mixing the ammonium molybdate tetrahydrate, the chelated iron, the boric acid, the manganese sulfate monohydrate, the zinc sulfate heptahydrate and the copper sulfate pentahydrate with water according to the proportion of 0.2mg/L, 250mg/L, 27mg/L, 16mg/L, 2.0mg/L and 0.8mg/L respectively, completely stirring the mixture until the mixture is dissolved, and uniformly mixing and stirring the obtained water solution to obtain a solution C;
(4) mixing the solution A, the solution B and the solution C according to the ratio of 2.5:2.5:1 to prepare a nutrient solution I;
(5) weighing 5-aminolevulinic acid according to the mass parts, mixing and stirring uniformly with water according to the proportion of 0.01g/L, adding the obtained aqueous solution into the nutrient solution I, and stirring uniformly to obtain a nutrient solution II;
the nutrient solution is applied to the flowering and fruiting periods of the tomatoes;
the application of the nutrient solution comprises the following steps:
(1) irrigating 0.5L of each plant with the nutrient solution I every day in the flowering period and fruiting initial period of the tomatoes; watering once every 3 days by using the nutrient solution II according to the dosage of 0.5L per plant every day;
(2) irrigating by using the nutrient solution I according to the daily volume of 1L per plant in the stage of the tomato bearing fruit prosperity; irrigating once by using the nutrient solution II every 3 days according to the dosage of 1L per plant every day;
(3) irrigating 0.7L of each plant per day by using the nutrient solution I at the later fruiting stage of the tomatoes; and irrigating once every 3 days by using the nutrient solution II according to the dosage of 0.7L per plant every day.
2. The nutrient solution for improving the low temperature resistance of tomatoes according to claim 1, wherein the nutrient solution comprises: the nutrient solution also comprises trace elements.
3. The nutrient solution for improving the low temperature resistance of tomatoes according to claim 1, wherein the nutrient solution comprises: the nutrient solution contains a macroelement N, P, K, Ca.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910067832.8A CN109678603B (en) | 2019-01-24 | 2019-01-24 | Nutrient solution capable of improving low-temperature resistance of tomatoes and preparation method and application thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910067832.8A CN109678603B (en) | 2019-01-24 | 2019-01-24 | Nutrient solution capable of improving low-temperature resistance of tomatoes and preparation method and application thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN109678603A CN109678603A (en) | 2019-04-26 |
| CN109678603B true CN109678603B (en) | 2022-01-04 |
Family
ID=66194571
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910067832.8A Active CN109678603B (en) | 2019-01-24 | 2019-01-24 | Nutrient solution capable of improving low-temperature resistance of tomatoes and preparation method and application thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN109678603B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110452037B (en) * | 2019-09-10 | 2021-11-23 | 河北省农林科学院经济作物研究所 | Application of water culture nutrient solution in tomato cultivation |
| CN111018592A (en) * | 2019-12-19 | 2020-04-17 | 北京市农业技术推广站 | Nutrient solution for long-season tomato cultivation |
| CN111018591A (en) * | 2019-12-19 | 2020-04-17 | 北京市农业技术推广站 | Nutrient solution for long-season cultivation of cherry tomatoes |
| CN114276188A (en) * | 2021-12-29 | 2022-04-05 | 北京极星农业有限公司 | Tomato nutrient solution and preparation method and application thereof |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102531778A (en) * | 2011-12-30 | 2012-07-04 | 杭州安邦农业生物科技有限公司 | Water-soluble fertilizer including 5-aminolevulinic acid chemical modifier |
| CN108285375A (en) * | 2018-01-03 | 2018-07-17 | 青岛海聚仿真软件技术有限公司 | A kind of Tomato water culture nutrient solution and its preparation method based on nutrient film techinique |
| CN108558481A (en) * | 2018-08-02 | 2018-09-21 | 江苏兰时生物科技有限公司 | A kind of selenium-rich potted tomato mill water culture nutrient solution under artificial light source |
| CN108719027A (en) * | 2018-04-20 | 2018-11-02 | 无锡佳培科技有限公司 | A kind of water culture method of tomato |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103787767B (en) * | 2014-01-24 | 2015-05-20 | 苗锦山 | Vegetable low-temperature adversity regulation and control mixture and application method thereof |
| CN105110988B (en) * | 2015-09-22 | 2019-01-04 | 江苏农林职业技术学院 | A kind of the special nutritional formula of liquid and configuration method of salt stress romaine lettuce |
-
2019
- 2019-01-24 CN CN201910067832.8A patent/CN109678603B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102531778A (en) * | 2011-12-30 | 2012-07-04 | 杭州安邦农业生物科技有限公司 | Water-soluble fertilizer including 5-aminolevulinic acid chemical modifier |
| CN108285375A (en) * | 2018-01-03 | 2018-07-17 | 青岛海聚仿真软件技术有限公司 | A kind of Tomato water culture nutrient solution and its preparation method based on nutrient film techinique |
| CN108719027A (en) * | 2018-04-20 | 2018-11-02 | 无锡佳培科技有限公司 | A kind of water culture method of tomato |
| CN108558481A (en) * | 2018-08-02 | 2018-09-21 | 江苏兰时生物科技有限公司 | A kind of selenium-rich potted tomato mill water culture nutrient solution under artificial light source |
Non-Patent Citations (2)
| Title |
|---|
| CaCl2、GB、ALA对番茄幼苗耐低温与弱光性的影响;苏常红;《2015年海峡两岸水土保持学术研讨会论文集(下)》;20150901;第716-721页 * |
| 几种化学物质对番茄幼苗耐低温;苏常红等;《自然灾害学报》;20061230;第15卷(第6期);第313-317页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN109678603A (en) | 2019-04-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN1043832C (en) | Methods and compositions for enhancing carbon fixation in plants | |
| CN109678603B (en) | Nutrient solution capable of improving low-temperature resistance of tomatoes and preparation method and application thereof | |
| CN105110984A (en) | Grape fertilizing method | |
| CN110692455A (en) | High-sugar tomato substrate cultivation method | |
| Salman et al. | Response of yield and quality of broccoli to type of nutrient solution under hydroponic system with modified NFT technology | |
| CN111034598B (en) | Fertilizing method suitable for navel orange fruiter water culture | |
| CN106831261A (en) | Matrimony vine set meal fertilizer and its fertilizing method | |
| CN106866287A (en) | A kind of rich magnesium nutrition for promoting root crop growth is plain | |
| CN109694272A (en) | A kind of water soluble fertilizer of purple leaf romaine lettuce | |
| CN114315451B (en) | A kind of fertilizer and fertilization method adopted in the whole growth period of jackfruit | |
| WO2025076904A1 (en) | Method for increasing biomass, yield and nitrogen utilization rate of crops, and iron-rich compound fertilizer | |
| Al-Humaid | Effects of compound fertilization on growth and alkaloids of datura (Datura innoxia Mill.) plants | |
| CN110204374A (en) | A kind of tomato fertilizer and its application method and application | |
| CN102249781A (en) | Green element chemical fertilizer | |
| Kumar et al. | Turnip (Brassica rapa) cultivation under modern farming system | |
| CN106396956A (en) | Foliar fertilizer special for summer maize | |
| CN110452066A (en) | Ginger set meal fertilizer and fertilizing method | |
| CN105237277B (en) | A kind of multi-functional boron magnesium zinc humic acid chelating Eco-fertilizer | |
| CN111011099A (en) | Planting method for improving continuous cropping pepper yield | |
| CN112616637B (en) | Nutrient regulation and control method suitable for soilless culture of sunlight rose grapes in greenhouse | |
| Milles et al. | Maintaining nutrient balances in systems utilizing soluble organic fertilizers | |
| Ramazonovich et al. | Leaf Lettuce Cultivation TECHNOLOGY, Zoned and Widespread Varieties | |
| Athokpam et al. | Effect of application of micronutrients on broccoli: A | |
| CN115772048A (en) | Titanium-containing micro-fertilizer and preparation method thereof | |
| Dagade et al. | NanoFertilizers for Field Applications |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |