CN108924067B - Time division method for training sequence and data symbol in interference alignment network - Google Patents
Time division method for training sequence and data symbol in interference alignment network Download PDFInfo
- Publication number
- CN108924067B CN108924067B CN201810710737.0A CN201810710737A CN108924067B CN 108924067 B CN108924067 B CN 108924067B CN 201810710737 A CN201810710737 A CN 201810710737A CN 108924067 B CN108924067 B CN 108924067B
- Authority
- CN
- China
- Prior art keywords
- user
- time division
- kth
- data symbol
- channel estimation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012549 training Methods 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 14
- 230000005540 biological transmission Effects 0.000 claims abstract description 20
- 239000011159 matrix material Substances 0.000 claims description 18
- 238000005516 engineering process Methods 0.000 claims description 11
- 239000000654 additive Substances 0.000 claims description 4
- 230000000996 additive effect Effects 0.000 claims description 4
- 230000003595 spectral effect Effects 0.000 claims description 4
- 238000013461 design Methods 0.000 abstract description 8
- 238000004088 simulation Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 238000005457 optimization Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 238000009795 derivation Methods 0.000 description 2
- 238000005562 fading Methods 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/024—Channel estimation channel estimation algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/391—Modelling the propagation channel
- H04B17/3911—Fading models or fading generators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明提供了一种干扰对齐网络中训练序列和数据符号的时间分割方法,在不完美CSI的前提下开展优化设计,给定相干时间,考虑实际信道估计时,优化设计传输训练序列和数据符号之间的时间分割因子α,寻求在信道估计精确度和数据符号传输时间之间的折中,最大化用户可达速率下界。
The present invention provides a time division method for training sequences and data symbols in an interference alignment network. The optimal design is carried out under the premise of imperfect CSI. Given the coherence time, when considering the actual channel estimation, the transmission training sequence and data symbols are optimally designed. The time division factor α between , seeks a trade-off between channel estimation accuracy and data symbol transmission time, and maximizes the lower bound of the user achievable rate.
Description
技术领域technical field
本发明涉及一种传输训练序列和数据符号之间的时间分割优化方法。The present invention relates to a time division optimization method between transmission training sequences and data symbols.
背景技术Background technique
多输入多输出(Multiple-Input Multiple-Output,MIMO)干扰网络中,多个用户进行无线通信时,相互之间会存在干扰,从而会影响信号接收质量,降低接收机的信道容量。干扰对齐(Interference Alignment,IA)是无线通信中一个很有前景的干扰管理技术。与传统正交化信道的干扰避免方案不同,IA技术可以把全部干扰限制到二分之一的信号子空间中,另外二分之一可以用来无干扰的传输期望信号。IA技术因其提高系统容量的优良性能引起了广泛关注。In a multiple-input multiple-output (Multiple-Input Multiple-Output, MIMO) interference network, when multiple users communicate wirelessly, there will be interference with each other, which will affect the signal reception quality and reduce the channel capacity of the receiver. Interference Alignment (IA) is a promising interference management technique in wireless communication. Different from the interference avoidance scheme of the traditional orthogonalized channel, the IA technology can limit the total interference to one half of the signal subspace, and the other half can be used to transmit the desired signal without interference. IA technology has attracted extensive attention due to its excellent performance in increasing system capacity.
IA技术的应用需要精确的信道状态信息(Channel Statement Information,CSI),而在实际应用中由于存在估计误差、量化误差或反馈误差,获得的CSI总是不完美的。尤其,当通过训练序列进行信道估计获取CSI时,对给定的相干时间,如果训练时间太短,信道估计中将会产生更多的误差,进而降低系统可达速率;相反,如果训练时间太长,数据符号传输时间将会变短,也会导致系统速率的降低。因此,研究不完美CSI下,传输训练序列和数据符号之间的时间分割优化方案对提高系统速率具有重要意义。The application of the IA technology requires accurate channel state information (Channel Statement Information, CSI), but in practical applications, the obtained CSI is always imperfect due to estimation errors, quantization errors or feedback errors. In particular, when CSI is obtained by channel estimation through the training sequence, for a given coherence time, if the training time is too short, more errors will be generated in the channel estimation, thereby reducing the achievable rate of the system; on the contrary, if the training time is too long If it is long, the data symbol transmission time will be shortened, and the system rate will also be reduced. Therefore, it is of great significance to study the time division optimization scheme between the transmission training sequence and the data symbol under imperfect CSI to improve the system rate.
文献1“Iterative algorithm for interference alignment in multiuserMIMO interfe-rence channels[Signal Processing Advances in WirelessCommunications IEEE Eleven-th International Work(2010):1-5].”针对多用户MIMO的干扰网络,在完美CSI场景下,提出了一种基于线性规划的干扰对齐方法,并证明了收敛性。而且在实际系统配置下,所提方法比其它传统算法速度更快,更简单。
文献2“Maximum sum-rate interference alignment algorithms for MIMOchann-els[IEEE Global Telecommunications Conference(GLOBECOM),2010,pp.1–6].”针对多用户MIMO的干扰网络,在完美CSI场景下,提出了一种新的迭代算法,交替优化预编码和接收滤波器,目的是找到能使平均总速率最大化的IA解决方案,仿真结果表明,所提出的算法比传统的IA算法具有更高的吞吐量。
文献3“A limited feedback-based bit allocation method for interferencealignm-ent[International Conference on Wireless Communications,Networking andMobile Computing(WiCOM),2016,pp.1-6].”针对有限反馈导致CSI不完美,进而引起系统速率损失问题,基于固定训练时间,提出了一种干扰对齐中的新型比特分配算法。仿真结果表明,当满足干扰对齐条件时,所提算法与传统平均比特分配算法相比,可大大提高系统总速率。
文献4“On the overhead of interference alignment:Training,feedback,andcoop-eration[IEEE Transactions on Wireless Communications,vol.11,no.11,pp.4192-4203,2012].”分析了MIMO系统中通过固定训练时间和反馈获得CSI的IA技术的性能,针对不完美CSI情况,在给定误差功率的前提下,推导出IA平均可达速率。
文献5“Capacity analysis of interference alignment with bounded CSIuncertain-ty[IEEE Wireless Communications Letters,vol.3,no.5,pp.505-508,2014].”针对不完美CSI的误差有界的情况,利用IA推导出系统容量下界,引入了一个名为修改自由度的新度量,在有限的信噪比(Signal-to-Noise Ratio,SNR)中描述不完美的CSI下IA的多路复用性能。
现有关于IA的研究,大都是基于完美CSI展开的(如文献1,2),针对不完美CSI下的IA研究较少。此外,目前关于IA的研究主要是针对理想CSI条件下进行系统设计,或者通过固定训练时间进行信道估计(如文献3,4,5)获得不完美CSI,进而展开优化设计的。Most of the existing research on IA is based on perfect CSI (such as
发明内容SUMMARY OF THE INVENTION
为了克服现有技术的不足,本发明提供一种干扰对齐网络中训练序列和数据符号的时间分割方法,在不完美CSI的前提下开展优化设计,给定相干时间,考虑实际信道估计算法和过程,引入训练序列和数据符号之间的时间分割因子,进而通过优化时间分割因子最大化用户可达速率下界。In order to overcome the deficiencies of the prior art, the present invention provides a time division method for training sequences and data symbols in an interference alignment network. The optimal design is carried out under the premise of imperfect CSI. Given the coherence time, the actual channel estimation algorithm and process are considered. , the time division factor between the training sequence and the data symbol is introduced, and the lower bound of the user achievable rate is maximized by optimizing the time division factor.
本发明解决其技术问题所采用的技术方案包括以下步骤:The technical scheme adopted by the present invention to solve its technical problem comprises the following steps:
步骤一,对于有K个用户对共用相同频带的一个干扰对齐网络,每个用户对由一个发送用户和一个接收用户组成,发送用户配置m根天线,接收用户配置n根天线;信道估计在整个相干时间的T个符号周期均有效;Hkl∈Cn×m是第l个发送用户到第k个接收用户的信道矩阵,是信道估计矩阵,ΔHkl表示信道估计误差;为第k个接收用户处的加性高斯白噪声,N0表示噪声功率谱密度;令α∈(0,1)为时间分割因子,训练时间是αT个符号周期,数据符号传输时间是(1-α)T个符号周期;基于LS估计算法,得到ΔHkl的最大误差界其中,(ΔHkl)i表示ΔHkl的第i行,εt表示训练序列的发射功率,表示传输训练序列SNR;
步骤二,每个发送用户在相干时间内只传输一个数据流d=1给所有接收用户,则第k个接收用户接收到的信号为其中,是第l个发送用户基于IA技术设计的预编码矩阵,是第k个接收用户基于IA技术设计的接收滤波矩阵,为发送数据符号向量,假设所有的发送用户具有相同的功率约束:其中,ε表示数据符号的最大发射功率,表示传输数据符号SNR;
步骤三,第k个用户对的可达速率下界其中,表示第k个用户的期望信号功率,B=m2n2ρ[(K-1)2-1],C=TρtD=m2n2ρ(K-1)2;
通过求解最优的时间分割因子实现可达速率下界最大化;By solving for the optimal time division factor Maximize the lower bound of the achievable rate;
对求关于α一阶导,并令其为0,定义G=n2m2ρ,得到关于α的近似表达式a1α3+a2α2+a3α+a4=0,其中,right Find the first derivative with respect to α and let it be 0, define G=n 2 m 2 ρ, the approximate expression a 1 α 3 +a 2 α 2 +a 3 α+a 4 =0 for α is obtained, where,
a1=-2ACF,a 1 =-2ACF,
a2=2ACG-2(AD+BC)F+(BC-AD)(2A-F),a 2 =2ACG-2(AD+BC)F+(BC-AD)(2A-F),
a3=2(AD+BC)G-2BDF-(BC-AD)(2A-2B-F-G),a 3 =2(AD+BC)G-2BDF-(BC-AD)(2A-2B-FG),
a4=2BDG-(BC-AD)(2B+G).a 4 =2BDG-(BC-AD)(2B+G).
由近似表达式获得近似最优时间分割因子αopt。The approximate optimal time division factor α opt is obtained from the approximate expression.
本发明的有益效果是:在干扰对齐网络中,引入了时间分割技术,在信道估计精确度和数据符号传输时间之间的寻求折中,研究了一种简便的优化算法计算最优时间分割因子,并给出了传输过程中的最优化时间分割公式,最大化用户可达速率下界。The beneficial effects of the present invention are: in the interference alignment network, time division technology is introduced, and a convenient optimization algorithm is studied to calculate the optimal time division factor in the compromise between the channel estimation accuracy and the data symbol transmission time. , and the optimal time division formula in the transmission process is given to maximize the lower bound of the user's reachable rate.
附图说明Description of drawings
图1是干扰对齐网络通信模型图;Figure 1 is a diagram of an interference-aligned network communication model;
图2是不同ρ下的可达速率下界随α的变化图;Figure 2 shows the lower bound of the achievable rate under different ρ The graph of the change with α;
图3是不同ρ下的仿真最优时间分割因子αopt;Fig. 3 is the simulation optimal time division factor α opt under different ρ;
图4是最大可达速率下界随ρ的变化图;Figure 4 is the lower bound of the maximum achievable rate Variation graph with ρ;
图5是不同时间分割方案下的可达速率下界对比。Figure 5 shows the lower bound of the achievable rate under different time division schemes Compared.
具体实施方式Detailed ways
下面结合附图和实施例对本发明进一步说明,本发明包括但不仅限于下述实施例。The present invention will be further described below with reference to the accompanying drawings and embodiments, and the present invention includes but is not limited to the following embodiments.
本发明提供一种干扰对齐网络中训练序列和数据符号的时间分割方案,给定相干时间,考虑实际信道估计时,优化设计传输训练序列和数据符号之间的时间分割因子α,寻求在信道估计精确度和数据符号传输时间之间的折中,最大化用户可达速率下界。The invention provides a time division scheme for training sequences and data symbols in an interference alignment network. Given the coherence time, when considering the actual channel estimation, the time division factor α between the transmission training sequence and the data symbols is optimally designed, and the time division factor α between the transmission training sequence and the data symbols is optimally designed, and the channel estimation The trade-off between accuracy and data symbol transmission time maximizes the lower bound on the achievable rate of the user.
本发明考虑一个干扰对齐网络,假设有K(K>1)个用户对共用相同频带,每个用户对由一个发送用户和一个接收用户组成,发送用户配置m根天线,接收用户配置n根天线。信道模型为块慢衰落信道模型,即信道估计在整个相干时间(假设为T个符号周期)是有效的。l,k=1,…,K是第l个发送用户到第k个接收用户的信道矩阵。其中,是信道估计矩阵,ΔHkl表示信道估计误差。为第k个接收用户处的加性高斯白噪声,N0表示噪声功率谱密度。令α∈(0,1)为时间分割因子,那么训练时间是αT个符号周期,数据符号传输时间是(1-α)T个符号周期。The present invention considers an interference alignment network, assuming that there are K (K>1) user pairs sharing the same frequency band, each user pair is composed of a transmitting user and a receiving user, the transmitting user is configured with m antennas, and the receiving user is configured with n antennas . The channel model is a block slow fading channel model, that is, the channel estimation is valid during the entire coherence time (assumed to be T symbol periods). l,k=1,...,K is the channel matrix from the lth transmitting user to the kth receiving user. in, is the channel estimation matrix, and ΔH kl represents the channel estimation error. is the additive white Gaussian noise at the kth receiving user, and N 0 represents the noise power spectral density. Let α∈(0,1) be the time division factor, then the training time is αT symbol periods, and the data symbol transmission time is (1-α)T symbol periods.
本发明解决其技术问题所采用的技术方案包括以下步骤:The technical scheme adopted by the present invention to solve its technical problem comprises the following steps:
步骤一,实际应用中,最小二乘(Least Square,LS)信道估计算法广泛应用于无线通信中。本发明基于LS估计算法,得到ΔHkl的最大误差界其中,(ΔHkl)i表示ΔHkl的第i行,εt表示训练序列的发射功率,表示传输训练序列SNR。
步骤二,每个发送用户在相干时间内只传输一个数据流(d=1)给所有接收用户,则第k个接收用户接收到的信号为l,k=1,…,K。其中,是第l个发送用户基于IA技术设计的预编码矩阵,是第k个接收用户基于IA技术设计的接收滤波矩阵,为发送数据符号向量,假设所有的发送用户具有相同的功率约束:其中,ε表示数据符号的最大发射功率。表示传输数据符号SNR。
步骤三,第k个用户对的可达速率下界可定义为:
其中,表示第k个用户的期望信号功率,B=m2n2ρ[(K-1)2-1],C=Tρt,D=m2n2ρ(K-1)2。in, represents the expected signal power of the kth user, B=m 2 n 2 ρ[(K-1) 2 -1], C=Tρ t , D=m 2 n 2 ρ(K-1) 2 .
构建最优化模型为Build the optimal model as
s.t.α∈(0,1)s.t.α∈(0,1)
通过求解最优的时间分割因子αopt,实现可达速率下界最大化。The achievable rate lower bound is maximized by solving the optimal time division factor α opt .
对求关于α一阶导,并令其为0,得到关于α的公式如下right Find the first derivative with respect to α and set it to 0, and get the formula about α as follows
理论最优时间分割因子αopt由上式的根确定,可以用Matlab轻松求解,但在实际应用中却很困难。我们提出另一种简化算法来求解上式,引入泰勒展开来对上式中对数函数取近似。定义G=n2m2ρ,可以得到上式的近似表达式为The theoretical optimal time division factor α opt is determined by the root of the above formula, which can be easily solved by Matlab, but it is very difficult in practical application. We propose another simplified algorithm to solve the above equation, and introduce Taylor expansion to approximate the logarithmic function in the above equation. definition G=n 2 m 2 ρ, the approximate expression of the above formula can be obtained as
a1α3+a2α2+a3α+a4=0a 1 α 3 +a 2 α 2 +a 3 α+a 4 =0
其中,in,
a1=-2ACF,a 1 =-2ACF,
a2=2ACG-2(AD+BC)F+(BC-AD)(2A-F),a 2 =2ACG-2(AD+BC)F+(BC-AD)(2A-F),
a3=2(AD+BC)G-2BDF-(BC-AD)(2A-2B-F-G),a 3 =2(AD+BC)G-2BDF-(BC-AD)(2A-2B-FG),
a4=2BDG-(BC-AD)(2B+G).a 4 =2BDG-(BC-AD)(2B+G).
近似最优时间分割因子αopt可由近似表达式获得。The approximate optimal time division factor α opt can be obtained by an approximate expression.
本发明的实施例考虑一个干扰对齐网络,如图1所示。系统包括K(K>1)个共用相同频带的用户对。每个用户对由一个发送用户和一个接收用户组成,发送用户配置m根天线,接收用户配置n根天线。本发明中采用慢块衰落信道模型,其中信道估计在整个相干时间(假设为T个符号周期)是有效的。令α∈(0,1)为时间分割因子,则训练时间是αT个符号周期,数据传输时间是(1-α)T个符号周期。Embodiments of the present invention consider an interference alignment network, as shown in FIG. 1 . The system includes K (K>1) pairs of users sharing the same frequency band. Each user pair consists of a transmitting user and a receiving user, the transmitting user is configured with m antennas, and the receiving user is configured with n antennas. A slow block fading channel model is used in the present invention, in which the channel estimation is valid for the entire coherence time (assumed to be T symbol periods). Let α∈(0,1) be the time division factor, then the training time is αT symbol periods, and the data transmission time is (1-α)T symbol periods.
本发明首先描述了干扰对齐网络通信模型,然后基于LS信道估计算法推导出用户可达速率下界,最后进行时间分割因子的优化设计及求解,最大化用户可达速率下界。The invention first describes the interference alignment network communication model, then deduces the lower bound of the user's reachable rate based on the LS channel estimation algorithm, and finally performs the optimal design and solution of the time division factor to maximize the lower bound of the user's reachable rate.
I.干扰对齐网络通信模型I. Interference Alignment Network Communication Model
由图1可知,每个发送用户在相干时间内只传输一个数据流(d=1)给所有接收用户,则第k个接收用户的接收信号为It can be seen from Figure 1 that each sending user only transmits one data stream (d=1) to all receiving users within the coherence time, then the received signal of the kth receiving user is for
其中,l,k=1,…,K是第l个发送用户到第k个接收用户的信道矩阵,代表第k个接收用户处的加性高斯白噪声(Additive White GaussianNoise,AWGN),N0表示噪声功率谱密度,表示发送信号向量。令为发送数据符号向量,则in, l,k=1,...,K is the channel matrix from the lth transmitting user to the kth receiving user, represents the additive white Gaussian noise (AWGN) at the kth receiving user, N 0 represents the noise power spectral density, Represents the transmit signal vector. make is the transmitted data symbol vector, then
xl=Vlsl (2)x l =V l s l (2)
其中,是第l个发送用户基于IA技术设计的预编码矩阵。假设所有的发送用户具有相同的功率约束,其中,ε表示数据符号的最大发射功率。表示传输数据符号SNR。in, is the precoding matrix designed by the lth sending user based on the IA technology. Assuming that all transmitting users have the same power constraint, Among them, ε represents the maximum transmit power of the data symbol. Indicates the transmitted data symbol SNR.
考虑到实际应用中,CSI是由信道估计,量化和反馈获得的。因此系统设计中会存在一些误差,即CSI是不完美的。本发明中,不完美CSI模型为Considering practical applications, CSI is obtained by channel estimation, quantization and feedback. Therefore, there will be some errors in the system design, that is, the CSI is not perfect. In the present invention, the imperfect CSI model is
其中是信道估计矩阵,ΔHkl表示信道估计误差。in is the channel estimation matrix, and ΔH kl represents the channel estimation error.
将式(2),(3)带入式(1)中,且考虑IA中的接收滤波矩阵式(1)中的接收信号模型可以改写为Bring equations (2) and (3) into equation (1), and consider the receive filter matrix in IA The received signal model in equation (1) can be rewritten as
式(4)中第二个等式中,来自其他用户对的所有信号可以基于由IA设计消除。In the second equation in (4), all signals from other user pairs can be based on Eliminated by IA design.
为了更好地分析信道估计误差的影响,本发明引入了关于ΔHkl的误差界即In order to better analyze the influence of channel estimation error, the present invention introduces an error bound about ΔH kl which is
其中,(ΔHkl)i表示ΔHkl的第i行。where (ΔH kl ) i represents the i-th row of ΔH kl .
II.用户可达速率下界II. Lower bound of user reachable rate
由于信道估计误差的随机性,很难评估瞬时系统可达速率,本发明采用最优训练序列的LS信道估计算法推导可达速率下界关于时间分割因子的详细表达式。进而通过优化时间分割因子,最大化可达速率下界。具体方法如下:Due to the randomness of the channel estimation error, it is difficult to estimate the instantaneous system reachable rate. The present invention uses the LS channel estimation algorithm of the optimal training sequence to deduce the detailed expression of the time division factor for the lower bound of the reachable rate. Then, by optimizing the time division factor, the lower bound of the achievable rate is maximized. The specific method is as follows:
本发明采用最优训练序列的LS信道估计算法,此时信道估计误差可以表示为The present invention adopts the LS channel estimation algorithm of the optimal training sequence, and the channel estimation error can be expressed as
其中,和分别表示LS估计算法下的信道估计误差和信道估计矩阵。εt表示训练序列的发射功率。in, and Represent the channel estimation error and channel estimation matrix under the LS estimation algorithm, respectively. εt represents the transmit power of the training sequence.
结合式(3)和(6),可以得到Combining equations (3) and (6), we can get
则ΔHkl的最大误差界为Then the maximum error bound of ΔH kl is
基于式(4)和式(8),定义第k个用户对的可达速率下界 Based on equations (4) and (8), define the lower bound of the reachable rate of the kth user pair
其中,表示第k个用户的期望信号功率,B=m2n2ρ[(K-1)2-1],C=Tρt,D=m2n2ρ(K-1)2。in, represents the expected signal power of the kth user, B=m 2 n 2 ρ[(K-1) 2 -1], C=Tρ t , D=m 2 n 2 ρ(K-1) 2 .
III.时间分割因子优化设计及求解III. Time division factor optimization design and solution
本发明的目的是在给定相干时间,考虑实际信道估计时,通过优化传输训练序列和数据符号之间的时间分割因子,最大化用户可达速率下界。基于式(9),构建最优化模型为The purpose of the present invention is to maximize the lower bound of the user achievable rate by optimizing the time division factor between the transmission training sequence and the data symbol when considering the actual channel estimation given the coherence time. Based on equation (9), the optimal model is constructed as
s.t.α∈(0,1) (10)s.t.α∈(0, 1) (10)
在解决优化问题前,我们必须先证明最优解的存在。因此,我们计算了关于α的二阶导数,即Before solving an optimization problem, we must first prove the existence of an optimal solution. Therefore, we calculated The second derivative with respect to α, i.e.
通过简单的数学推导可以证明α∈(0,1),这表明存在最大值。为了找到这个最大值以及对应的最优时间分割因子,本发明对求关于α一阶导,并令其为0,得到关于α的等式如下It can be proved by simple mathematical derivation α∈(0,1), which shows that There is a maximum value. In order to find this maximum value and the corresponding optimal time division factor, the present invention Find the first derivative with respect to α and set it to 0, and get the equation about α as follows
通过求解式(12),可以得到最优的时间分割因子αopt。然而,式(12)中包含了一个复杂的对数运算,使得方程更难解。此外,由于式(12)中含有α2,W-Lambert函数不能用于求解该问题。理论最优时间分割因子αopt由式(12)的根决定,可以用Matlab轻松解决,但在实际应用中却很困难。实际上,我们在仿真中,在给定SNR下,可对α采用遍历搜索方法以一个小的步长(一般情况下,设置步长为0.001即可保证精度)在(0,1)区间中找到使得式(12)最大α,即为最优时间分割因子αopt。此外,本发明采用另一种简化算法来求解式(12)。在这里,我们引入泰勒展开式对(12)中的对数函数取近似,即By solving equation (12), the optimal time division factor α opt can be obtained. However, a complex logarithmic operation is included in equation (12), making the equation more difficult to solve. Furthermore, the W-Lambert function cannot be used to solve this problem due to the inclusion of α 2 in equation (12). The theoretical optimal time division factor α opt is determined by the root of equation (12), which can be easily solved with Matlab, but it is very difficult in practical application. In fact, in the simulation, under a given SNR, we can use the traversal search method for α with a small step size (generally, setting the step size to 0.001 to ensure the accuracy) in the (0, 1) interval Find the maximum α of formula (12), which is the optimal time division factor α opt . In addition, the present invention adopts another simplified algorithm to solve equation (12). Here, we introduce Taylor expansion to approximate the logarithmic function in (12), namely
其中,且对所有的α和ρ有 in, and for all α and ρ we have
显然,式(13)中这一项随n的增加而迅速减小。因此,在接下来的分析中ln(k)可以只由式(13)中的第一项来近似,仅存在一些可接受的误差。Obviously, in formula (13) This term decreases rapidly as n increases. Therefore, ln(k) can be approximated by only the first term in Eq. (13) in the following analysis, with only some acceptable error.
则式(12)中的对数项可以近似表示为Then the logarithmic term in equation (12) can be approximately expressed as
将式(14)带入式(12),定义G=n2m2ρ,可以得到式(12)的详细近似表达式为Substituting equation (14) into equation (12), the definition G=n 2 m 2 ρ, the detailed approximate expression of formula (12) can be obtained as
a1α3+a2α2+a3α+a4=0 (15)a 1 α 3 +a 2 α 2 +a 3 α+a 4 =0 (15)
其中,in,
a1=-2ACF,a 1 =-2ACF,
a2=2ACG-2(AD+BC)F+(BC-AD)(2A-F),a 2 =2ACG-2(AD+BC)F+(BC-AD)(2A-F),
a3=2(AD+BC)G-2BDF-(BC-AD)(2A-2B-F-G),a 3 =2(AD+BC)G-2BDF-(BC-AD)(2A-2B-FG),
a4=2BDG-(BC-AD)(2B+G).a 4 =2BDG-(BC-AD)(2B+G).
近似最优时间分割因子αopt可由近似表达式获得。The approximate optimal time division factor α opt can be obtained by an approximate expression.
本发明对提出的时间分割优化方案进行了数值仿真和比较。仿真中,假设Hkl中所有元素都是服从复高斯分布随机变量,设置m=2,n=2,K=3,T=100,定义传输数据符号和训练序列的SNR的比值为μ=ρ/ρt,简单起见,假设μ=1。所有的推导和仿真都可以直接扩展到其它m,n和K的配置中。The present invention carries out numerical simulation and comparison on the proposed time division optimization scheme. In the simulation, it is assumed that all elements in H kl obey the Complex Gaussian distributed random variable, set m=2, n=2, K=3, T=100, The ratio of the SNR of the transmitted data symbol to the training sequence is defined as μ=ρ/ρ t , and it is assumed that μ=1 for simplicity. All derivations and simulations can be directly extended to other m, n and K configurations.
图2展示了不同发送数据符号SNR ρ下,可达速率下界随时间分割因子α的变化。由图2可知,相同α下,随着ρ的增大而增大。这与我们期望的结果一致。对一个确定的ρ,随α的增大先增大后减小。当α很较低时,随着α的增大,信道估计矩阵将变得越好,由信道估计产生的干扰泄露也会减小。因此,可达速率下界先增大。然而,当α增大到一定程度时,α的增大将不会带来更多的速率提升。这种情况下,可达速率下界将主要由有效信号传输时间(1-α)T。因此随α的增大先增大后减小。由图2,我们还可以发现,对一个给定的ρ,可达速率下界的最大值及其对应的α是存在的。而且,随着ρ的增大,信道将会变好,产生精确信道估计所需的训练时间越短。这表明ρ越大,αopt越小。Figure 2 shows the lower bound of the achievable rate for different transmitted data symbols SNR ρ Variation of the division factor α over time. It can be seen from Figure 2 that under the same α, increases with the increase of ρ. This is consistent with our expected result. For a certain ρ, It first increases and then decreases with the increase of α. When α is very low, as α increases, the channel estimation matrix The better it gets, the less interference leakage due to channel estimation. Therefore, the lower bound on the achievable rate Increase first. However, when α increases to a certain extent, the increase of α will not bring more rate improvement. In this case, the lower bound on the achievable rate Will be dominated by the effective signal transit time (1-α)T. therefore It first increases and then decreases with the increase of α. From Figure 2, we can also find that for a given ρ, the lower bound of the achievable rate The maximum value of and its corresponding α exist. Also, as ρ increases, the channel will get better and the training time required to generate an accurate channel estimate will be shorter. This shows that the larger the ρ, the smaller the α opt .
图3展示了仿真最优时间分割因子αopt随发送数据符号SNRρ的变化。由图3可知,αopt随ρ的增大而减小。正如预期,ρ越小,为了提供足够精确的信道估计将需要更长的训练时间。随着ρ的增大,所需的训练时间越短。Figure 3 shows the simulated optimal time division factor α opt as a function of the transmitted data symbol SNRρ. It can be seen from Figure 3 that α opt decreases with the increase of ρ. As expected, the smaller ρ, the longer the training time will be required to provide a sufficiently accurate channel estimate. As ρ increases, the required training time is shorter.
图4展示了最优可达速率下界随发送数据符号SNR ρ的变化。为了对比,我们分别将图2中得到的仿真αopt和由式(15)求得的近似αopt带入式(9),给出了仿真和近似最优可达速率下界。由图4可以看出,仿真和近似速率几乎一致,只有一些小的可接受的差距。因此,考虑到从式(12)中计算理论αopt的复杂性,在实际中,我们可以用从式(15)计算得到的近似αopt来最大化可达速率下界。Figure 4 shows the optimal achievable rate lower bound Variation of SNR ρ with transmitted data symbols. For comparison, we put the simulation α opt obtained in Fig. 2 and the approximate α opt obtained by Eq. (15) into Eq. (9), respectively, and give the simulation and approximate optimal achievable rate lower bounds. As can be seen from Figure 4, the simulated and approximate rates are almost identical, with only some small acceptable gaps. Therefore, considering the complexity of computing the theoretical α opt from equation (12), in practice we can maximize the achievable rate lower bound with the approximate α opt computed from equation (15).
图5比较了最优时间分割因子αopt下和一些固定时间分割因子下的可达速率下界。我们可以发现,因为αopt对信道特征的适应能力,在αopt下的可达速率下界要高于其他固定时间分割因子下的可达速率下界。Figure 5 compares the reachable rate lower bounds under the optimal time division factor α opt and some fixed time division factors. We can find that the lower bound of the achievable rate under α opt is higher than the lower bound of the achievable rate under other fixed time division factors because of the adaptability of α opt to the channel characteristics.
结论:本发明研究干扰对齐网络中训练序列和数据符号的时间分割方案,在给定相干时间,考虑实际信道估计时,基于LS信道估计算法,分析了信道估计误差的统计特性,详细推导出了关于时间分割因子的用户可达速率下界表达式,通过优化时间分割因子最大化用户可达速率下界。数值结果表明了所提时间分割方案的正确性和有效性。Conclusion: The present invention studies the time division scheme of training sequences and data symbols in the interference alignment network. When considering the actual channel estimation at a given coherence time, based on the LS channel estimation algorithm, the statistical characteristics of the channel estimation error are analyzed, and a detailed deduction is obtained. Regarding the lower bound expression of the user's reachable rate for the time division factor, the lower bound of the user's reachable rate is maximized by optimizing the time division factor. Numerical results demonstrate the correctness and effectiveness of the proposed time division scheme.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810710737.0A CN108924067B (en) | 2018-07-03 | 2018-07-03 | Time division method for training sequence and data symbol in interference alignment network |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810710737.0A CN108924067B (en) | 2018-07-03 | 2018-07-03 | Time division method for training sequence and data symbol in interference alignment network |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108924067A CN108924067A (en) | 2018-11-30 |
| CN108924067B true CN108924067B (en) | 2020-09-22 |
Family
ID=64424912
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810710737.0A Active CN108924067B (en) | 2018-07-03 | 2018-07-03 | Time division method for training sequence and data symbol in interference alignment network |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108924067B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103814537A (en) * | 2011-06-24 | 2014-05-21 | 松下电器产业株式会社 | Transmission device, transmission method, receiving device and receiving method |
| CN106464406A (en) * | 2014-05-09 | 2017-02-22 | 三星电子株式会社 | Interference measurement method and apparatus for use in mobile communication system |
| CN107071886A (en) * | 2016-10-13 | 2017-08-18 | 西北工业大学 | A kind of optimal power allocation method of insincere junction network under bounded CSI |
| CN107579763A (en) * | 2017-09-07 | 2018-01-12 | 西安电子科技大学 | Intercluster Interference Elimination Method Based on Spatial Fineness and High Resolution Beams |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8750089B2 (en) * | 2010-01-05 | 2014-06-10 | Broadcom Corporation | Method and system for iterative discrete fourier transform (DFT) based channel estimation using minimum mean square error (MMSE) techniques |
-
2018
- 2018-07-03 CN CN201810710737.0A patent/CN108924067B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103814537A (en) * | 2011-06-24 | 2014-05-21 | 松下电器产业株式会社 | Transmission device, transmission method, receiving device and receiving method |
| CN106464406A (en) * | 2014-05-09 | 2017-02-22 | 三星电子株式会社 | Interference measurement method and apparatus for use in mobile communication system |
| CN107071886A (en) * | 2016-10-13 | 2017-08-18 | 西北工业大学 | A kind of optimal power allocation method of insincere junction network under bounded CSI |
| CN107579763A (en) * | 2017-09-07 | 2018-01-12 | 西安电子科技大学 | Intercluster Interference Elimination Method Based on Spatial Fineness and High Resolution Beams |
Non-Patent Citations (1)
| Title |
|---|
| "Cooperative Precoding for Cognitive Transmission in Two-Tier Networks";Rugui Yao;《IEEE》;20160430;全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108924067A (en) | 2018-11-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Nayebi et al. | Cell-free massive MIMO systems | |
| CN105814855B (en) | Precoding in Super Nyquist Transmission System | |
| WO2021092746A1 (en) | Channel information obtaining method | |
| CN113746512B (en) | Downlink precoding method, device and base station | |
| CN110492915A (en) | A kind of power distribution method based on the short packet transmission of MIMO-NOMA | |
| CN107483088A (en) | Massive MIMO Robust Precoding Transmission Method | |
| WO2014000449A1 (en) | Transmission mode selection method, method, device, and system for determining antenna transceiver combination | |
| Liu et al. | Gaussian message passing iterative detection for MIMO-NOMA systems with massive access | |
| CN103312390B (en) | Based on the method for precoding of interference alignment, emitter and equipment | |
| CN111049552B (en) | Multi-hop data secure transmission method, device and equipment based on power line communication | |
| CN103166685A (en) | An Interference Alignment Method Based on Joint Power Allocation in LTE | |
| CN106130697B (en) | Joint Interference Phase Alignment Method Based on Bayes Estimation and Power Allocation Between Data Streams | |
| Xu et al. | Optimal power allocation scheme for NOMA with adaptive rates and alpha-fairness | |
| CN105450274B (en) | Based on the extensive multiple antennas relay system number of users optimization method that efficiency is optimal | |
| CN113709813B (en) | A method and system for NR small base station baseband merging | |
| CN104144039B (en) | Pilot distribution method based on coherence time in a kind of extensive mimo system | |
| CN109905917B (en) | Wireless resource allocation method in NOMA communication system based on wireless energy carrying | |
| CN112566159A (en) | Enhanced small cell downlink communication method based on MIMO-NOMA | |
| CN111683352A (en) | A cross-layer design method of non-orthogonal multiple access system based on fountain code in short packet communication | |
| CN108900228B (en) | An optimal pseudo-noise power allocation method for large-scale multi-antenna secure communication | |
| CN117134787A (en) | Interference suppression combination with reduced complexity | |
| CN113541752A (en) | Signal virtual decomposition-based airspace and power domain combined multiple access method and system | |
| CN115087085A (en) | Power distribution method for short packet communication superposition pilot frequency | |
| CN108924067B (en) | Time division method for training sequence and data symbol in interference alignment network | |
| WO2020210845A2 (en) | Methods and apparatus for power allocation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |