CN108462181B - Sparse-considered robust estimation method for jacobian matrix of power flow of intelligent power distribution network - Google Patents
Sparse-considered robust estimation method for jacobian matrix of power flow of intelligent power distribution network Download PDFInfo
- Publication number
- CN108462181B CN108462181B CN201810100944.4A CN201810100944A CN108462181B CN 108462181 B CN108462181 B CN 108462181B CN 201810100944 A CN201810100944 A CN 201810100944A CN 108462181 B CN108462181 B CN 108462181B
- Authority
- CN
- China
- Prior art keywords
- vector
- matrix
- residual
- iteration
- distribution network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/04—Circuit arrangements for AC mains or AC distribution networks for connecting networks of the same frequency but supplied from different sources
- H02J3/06—Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Complex Calculations (AREA)
Abstract
一种考虑稀疏性的智能配电网潮流雅可比矩阵鲁棒估计方法,包括:1)获取配电网的节点数并编号;2)获取同步相量量测装置的量测数据;3)构造传感矩阵,令潮流雅可比矩阵的行号m=1;4)求最小二乘解作为估计解;5)判断若迭代终止条件成立,则进入步骤8);否则进入步骤6);6)求解最小化相关熵模型作为估计解;7)迭代终止条件成立,则进入步骤8);否则,更新传感矩阵列号索引集合,返回步骤6);8)判断是否完成雅可比矩阵所有行的估计,是则输出估计结果,否则m=m+1,返回步骤4)。本发明在利用潮流雅可比矩阵稀疏性的同时,有效避免量测中坏数据对估计结果的不良影响,在量测中含有坏数据的情况下,仍然能够保证估计的精确性。
A method for robust estimation of a power flow Jacobian matrix of an intelligent distribution network considering sparsity, comprising: 1) obtaining and numbering the number of nodes in a distribution network; 2) obtaining measurement data of a synchrophasor measuring device; 3) constructing Sensing matrix, let the row number m=1 of the power flow Jacobian matrix; 4) find the least squares solution as the estimated solution; 5) judge if the iteration termination condition is satisfied, then go to step 8); otherwise, go to step 6); 6) Solve the minimization related entropy model as the estimated solution; 7) If the iteration termination condition is satisfied, go to step 8); otherwise, update the index set of the column number of the sensing matrix, and return to step 6); 8) Judge whether to complete all rows of the Jacobian matrix If it is estimated, output the estimated result; otherwise, m=m+1, and return to step 4). While utilizing the sparsity of the power flow Jacobian matrix, the present invention effectively avoids the bad influence of the bad data in the measurement on the estimation result, and can still ensure the accuracy of the estimation under the condition that the measurement contains bad data.
Description
技术领域technical field
本发明涉及一种配电网潮流雅可比矩阵估计方法。特别是涉及一种考虑稀疏性的智能配 电网潮流雅可比矩阵鲁棒估计方法。The invention relates to a power flow Jacobian matrix estimation method for a distribution network. In particular, it relates to a robust estimation method of power flow Jacobian matrix in smart distribution network considering sparsity.
背景技术Background technique
大规模可再生能源接入配电网,其出力的随机性、波动性给配电网的运行监视与控制提 出了更高的要求。为提高配电网消纳新能源的水平,传统的配电网逐步发展为智能配电网。 潮流雅可比矩阵是分析配电网运行状态、对配电网进行优化控制的重要参数,精确的获取潮 流雅可比矩阵是对配电网进行运行态势分析和决策控制的重要前提和基础。而目前通过离线 潮流计算获取潮流雅可比矩阵的方式,受到配电网线路参数难以精确获得、拓扑连接关系更 新不及时和电网运行点难以追踪等问题的影响,其精确性和可信度受到极大制约。Large-scale renewable energy is connected to the distribution network, and the randomness and volatility of its output put forward higher requirements for the operation monitoring and control of the distribution network. In order to improve the level of new energy consumption in the distribution network, the traditional distribution network is gradually developed into an intelligent distribution network. The power flow Jacobian matrix is an important parameter for analyzing the operation state of the distribution network and optimizing the control of the distribution network. Accurately obtaining the power flow Jacobian matrix is an important premise and basis for the analysis of the operation situation and the decision-making control of the distribution network. However, the current method of obtaining the power flow Jacobian matrix through offline power flow calculation is affected by the problems such as the difficulty of accurately obtaining the line parameters of the distribution network, the untimely update of the topology connection relationship, and the difficulty in tracking the operation points of the power grid. Its accuracy and reliability are extremely affected. big constraints.
同步相量量测技术的发展与应用,不仅提高了电力系统的可观测性,也为配电网的运行 控制提供了新的依托和手段。尤其是随着微型同步相量量测装置的开发和技术革新,面向配 电网对量测数据的需求,在保证量测精度的同时,逐步实现了同步相量量测装置的小型化和 低成本,使得其大范围的应用于配电系统成为可能。The development and application of synchrophasor measurement technology not only improves the observability of the power system, but also provides a new support and means for the operation control of the distribution network. Especially with the development and technological innovation of miniature synchrophasor measuring devices, facing the demand for measurement data of distribution network, while ensuring the measurement accuracy, the miniaturization and low cost of synchrophasor measuring devices have been gradually realized. The cost makes it possible to apply it in a wide range of power distribution systems.
利用同步相量量测装置的实时量测数据和多时间断面的历史量测数据,通过最小二乘估 计方法可以实现潮流雅可比矩阵的在线估计,实时追踪配电网的运行状态,大大降低了潮流 雅可比矩阵计算对线路参数、拓扑连接关系等信息的依赖性,有效的保证了参数估计计算的 准确性。尤其是,利用潮流雅可比矩阵的稀疏性可以有效减少估计问题对量测的依赖性,同 时提高雅可比矩阵估计的精度。Using the real-time measurement data of the synchrophasor measurement device and the historical measurement data of multiple time sections, the online estimation of the power flow Jacobian matrix can be realized by the least squares estimation method, and the operation status of the distribution network can be tracked in real time, which greatly reduces the The dependence of power flow Jacobian matrix calculation on line parameters, topological connection relationship and other information effectively ensures the accuracy of parameter estimation calculation. In particular, using the sparsity of the power flow Jacobian matrix can effectively reduce the dependence of the estimation problem on the measurement, and at the same time improve the accuracy of the Jacobian matrix estimation.
利用压缩感知技术,将原始的雅可比矩阵估计问题转换为稀疏恢复问题,可以利用雅可 比矩阵的稀疏性,以较少量测实现雅可比矩阵的高精度估计。针对稀疏恢复问题,采用贪婪 算法是求解的有效手段。现有的稀疏恢复算法和核心思想为不断的迭代求解最小二乘解,直 至找到满足设定估计精度的解,作为估计的最优解。然而,最小二乘估计对于坏数据具有高 度的敏感性,如果量测数据中含有坏数据,将会造成估计结果严重偏离真实值。虽然通过同 步相量量测装置能够获取高精度的量测数据,但是由于数据采集、转换与通信等环节的影响, 量测数据中仍然可能含有坏数据,从而造成估计结果不可用,因此需要提出更加鲁棒的稀疏 恢复算法对潮流雅可比矩阵进行估计。Using compressed sensing technology, the original Jacobian matrix estimation problem is transformed into a sparse restoration problem, and the sparseness of the Jacobian matrix can be used to achieve high-precision estimation of the Jacobian matrix with fewer measurements. For the sparse recovery problem, the greedy algorithm is an effective means to solve it. The existing sparse recovery algorithm and core idea are to solve the least squares solution iteratively until a solution that satisfies the set estimation accuracy is found, which is regarded as the optimal solution of the estimation. However, the least squares estimation is highly sensitive to bad data. If the measured data contains bad data, the estimation result will be seriously deviated from the true value. Although high-precision measurement data can be obtained through the synchrophasor measurement device, due to the influence of data acquisition, conversion and communication, the measurement data may still contain bad data, resulting in unusable estimation results. A more robust sparse recovery algorithm estimates the power flow Jacobian.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是,提供一种以较少的量测实现智能配电网潮流雅可比矩阵 的考虑稀疏性的智能配电网潮流雅可比矩阵鲁棒估计方法。The technical problem to be solved by the present invention is to provide a method for robust estimation of the Jacobian matrix of the power flow of the smart distribution network considering the sparsity of the Jacobian matrix of the power flow of the smart distribution network with less measurement.
本发明所采用的技术方案是:一种考虑稀疏性的智能配电网潮流雅可比矩阵鲁棒估计方 法,包括如下步骤:The technical scheme adopted in the present invention is: a method for robust estimation of power flow Jacobian matrix of smart distribution network considering sparsity, comprising the following steps:
1)获取配电网的节点数,将源节点编号设为0,其他节点依次编号设为1,…,i,…,N,输 入网络最大度的保守估计值dmax,设定残差阈值ε及最大迭代次数M、历史量测数据需求组数 C;1) Obtain the number of nodes in the distribution network, set the number of the source node to 0, and set the number of other nodes to 1,...,i,...,N in turn, input the conservative estimate d max of the maximum degree of the network, and set the residual threshold ε and the maximum number of iterations M, the number of historical measurement data demand groups C;
2)获取系统各节点安装的同步相量量测装置所采集的当前时刻有功功率、无功功率、电 压幅值和电压相角的量测数据,以及各节点C个历史时刻的量测数据;2) Obtain the measurement data of active power, reactive power, voltage amplitude and voltage phase angle at the current moment collected by the synchrophasor measurement device installed at each node of the system, as well as the measurement data at C historical moments of each node;
3)将每个节点C个历史时刻的量测数据分别与当前量测值做差,每个节点得到C个有功 功率、无功功率、电压幅值和电压相角的变化量,利用节点1~节点N电压和幅值的变化量构 造传感矩阵,初始化潮流雅可比矩阵的行号m=1;3) Differentiate the measurement data of each node at C historical moments with the current measurement value, and each node obtains C changes of active power, reactive power, voltage amplitude and voltage phase angle, using
4)初始化残差向量,计算电压相角的相关系数向量uθ和电压幅值的相关系数向量uU, 初始化迭代次数n=1,初始化传感矩阵列号索引集合Λn为空集;4) Initialize the residual vector, calculate the correlation coefficient vector u θ of the voltage phase angle and the correlation coefficient vector u U of the voltage amplitude, initialize the number of iterations n=1, and initialize the sensing matrix column number index set Λ n to be an empty set;
5)分别选取电压相角的相关系数向量uθ和电压幅值的相关系数向量uU中最大的z个数值, 其中z=dmax+1,将z个数值对应的传感矩阵中的列号索引构成第n次迭代的中间集合Ωn;5) Respectively select the largest z values in the correlation coefficient vector u θ of the voltage phase angle and the correlation coefficient vector u U of the voltage amplitude, where z = d max +1, and set the columns in the sensing matrix corresponding to the z values. The number index constitutes the intermediate set Ω n of the nth iteration;
6)采用第n次迭代的中间集合Ωn更新传感矩阵列号索引集合Λn,求最小二乘作为估计 解,更新残差向量;6) Using the intermediate set Ω n of the nth iteration to update the sensor matrix column number index set Λ n , obtain the least squares as the estimated solution, and update the residual vector;
7)若更新后的残差向量的2范数R小于残差阈值ε,则进入步骤11);否则:如果迭代次数n=1,将迭代次数为n=n+1,分别选取电压相角的相关系数向量uθ和电压幅值的相关系 数向量uU中最大的2z个值,将2z个值对应的传感矩阵中的索引构成第n次迭代的中间集合Ωn, 返回步骤6);如果迭代次数n=2,则迭代次数n=n+1,进入步骤8);7) If the 2-norm R of the updated residual vector is less than the residual threshold ε, go to step 11); otherwise: if the number of iterations is n=1, the number of iterations is set to n=n+1, and the voltage phase angles are selected respectively. The largest 2z values in the correlation coefficient vector u θ of the voltage amplitude and the correlation coefficient vector u U of the voltage amplitude, the indices in the sensing matrix corresponding to the 2z values constitute the intermediate set Ω n of the nth iteration, and return to step 6) ; If the number of iterations n=2, then the number of iterations n=n+1, enter step 8);
8)采用传感矩阵和残差向量计算残差相关系数向量u,选取残差相关系数向量u中最大 的2z列,将2z列对应的传感矩阵中的索引构成第n次迭代的中间集合Ωn,更新传感矩阵列号 索引集合Λn;8) Use the sensing matrix and the residual vector to calculate the residual correlation coefficient vector u, select the largest 2z column in the residual correlation coefficient vector u, and form the index in the sensing matrix corresponding to the 2z column to form the intermediate set of the nth iteration Ω n , update the sensor matrix column number index set Λ n ;
9)利用更新传感矩阵列号索引集合Λn,建立最小化相关熵优化模型,求解最小化相关 熵模型作为估计解,选取估计解中绝对值最大的4z项,将4z项对应的传感矩阵中的索引更新 第n次迭代的中间集合Ωn,重新构造传感矩阵列号索引集合Λn,再次更新残差向量;9) Using the updated sensing matrix column number index set Λ n , establish an optimization model of minimizing the correlation entropy, solve the minimum correlation entropy model as the estimated solution, select the 4z item with the largest absolute value in the estimated solution, and set the sensor corresponding to the 4z item. The index in the matrix updates the intermediate set Ω n of the nth iteration, reconstructs the sensor matrix column number index set Λ n , and updates the residual vector again;
10)若再次更新的残差向量的2范数R小于残差阈值ε或者迭代次数超过设定的最大迭代 次数M,则进入步骤11);否则n=n+1,返回步骤8);10) if the 2-norm R of the residual vector updated again is less than the residual threshold ε or the number of iterations exceeds the maximum number of iterations M set, then enter step 11); otherwise n=n+1, return to step 8);
11)输出估计解,根据传感矩阵列号索引集合恢复出2N维向量作为雅可比矩阵第m行 的估计结果,m=m+1;若m大于2N,停止迭代,输出雅可比矩阵估计结果,否则,返回步 骤4)。11) Output the estimated solution, and recover the 2N-dimensional vector according to the index set of the column number of the sensing matrix as the estimation result of the mth row of the Jacobian matrix, m=m+1; if m is greater than 2N, stop the iteration and output the Jacobian matrix estimation result , otherwise, go back to step 4).
步骤9)中所述的建立最小化相关熵优化模型,包括建立目标函数为:The establishment of the minimization related entropy optimization model described in step 9) includes establishing the objective function as:
式中,ek表示向量e的第k个元素,r0为初始的残差向量,表示传感 矩阵列号索引集合Λn中元素对应的传感矩阵各列构成的矩阵,x表示代求的决策变量,ε为设 定的残差阈值,σ为辅助常量,exp表示指数函数,C为历史量测数据需求组数。In the formula, e k represents the kth element of the vector e, r 0 is the initial residual vector, Represents the matrix formed by the columns of the sensor matrix corresponding to the elements in the sensor matrix column index set Λ n , x represents the decision variable to be obtained, ε is the set residual threshold, σ is the auxiliary constant, exp represents the exponential function, C is the number of historical measurement data demand groups.
步骤9)中所述的求解最小化相关熵模型,包括:The solution described in step 9) minimizes the relevant entropy model, including:
(1)初始化优化允许误差δ,初始化初始解x0为零向量,初始化权重向量w=1,1表示 值均为1的常数向量;(1) Initialize the optimization allowable error δ, initialize the initial solution x 0 as a zero vector, and initialize the weight vector w=1, where 1 represents a constant vector with a value of 1;
(2)对代求的决策变量x求加权最小二乘解: (2) Find the weighted least squares solution for the decision variable x to be obtained:
式中,表示传感矩阵列号索引集合Λn中元素对应的传感矩阵各列构成的矩阵,r0为 初始的残差向量,diag(*)表示由向量“*”中的元素构成对角矩阵;In the formula, Represents the matrix formed by each column of the sensor matrix corresponding to the elements in the sensor matrix column number index set Λ n , r 0 is the initial residual vector, and diag(*) represents the diagonal matrix formed by the elements in the vector "*";
(3)计算残差向量: (3) Calculate the residual vector:
(4)根据残差向量r计算辅助常量σ的值,C为历史量测数据需求组数;(4) Calculate the value of the auxiliary constant σ according to the residual vector r, C is the number of historical measurement data demand groups;
(5)利用辅助常量σ计算权重向量w的第k个元素:wk和rk分别表示 向量w和r的第k个元素;(5) Use the auxiliary constant σ to calculate the kth element of the weight vector w: w k and r k represent the kth element of the vectors w and r, respectively;
(6)判断如果条件成立,则估计解输出估计结果,如果条件不成立,令x0=x,返回第(2)步。(6) Judgment If the condition holds, estimate the solution Output the estimation result, if the condition is not satisfied, set x 0 =x, and return to step (2).
步骤9)中所述的重新构造传感矩阵列号索引集合为:The reconstructed sensing matrix column number index set described in step 9) is:
Λn=Ωn Λ n = Ω n
式中,Λn为第n次迭代的传感矩阵列号索引集合,Ωn表示更新后的第n次迭代的中间集 合。In the formula, Λ n is the index set of the sensor matrix column number of the n-th iteration, and Ω n is the updated intermediate set of the n-th iteration.
步骤9)中所述的再次更新残差向量表示为:The re-updating residual vector described in step 9) is expressed as:
式中,表示集合Λn中元素对应的传感矩阵各列构成的矩阵,rn为第n次迭代的残差 向量,r0为初始的残差向量,diag(*)表示由向量“*”中的元素构成对角矩阵,w表示权重向量。In the formula, Represents the matrix formed by the columns of the sensing matrix corresponding to the elements in the set Λ n , rn is the residual vector of the nth iteration, r 0 is the initial residual vector, diag(*) represents the The elements form a diagonal matrix, and w represents the weight vector.
本发明的考虑稀疏性的智能配电网潮流雅可比矩阵鲁棒估计方法,利用了同步相量量测 的多时间尺度的量测数据,在利用潮流雅可比矩阵的稀疏性的同时,考虑了量测数据中可能 含有坏数据,提出了通过最小化相关熵优化算法的方式,提高稀疏恢复算法对坏数据的鲁棒 性,实现了智能配电网背景下潮流雅可比矩阵的鲁棒估计。本发明的算法在考虑雅可比矩阵 稀疏性的同时,能够有效避免量测中坏数据对估计结果的不良影响,在量测中含有坏数据的 情况下,仍然能够保证估计的精确性。The robust estimation method of the power flow Jacobian matrix of the smart distribution network considering the sparsity of the present invention utilizes the multi-time scale measurement data measured by the synchrophasor, and considers the sparseness of the power flow Jacobian matrix at the same time. The measurement data may contain bad data. An optimization algorithm by minimizing the correlation entropy is proposed to improve the robustness of the sparse recovery algorithm to bad data, and realize the robust estimation of the power flow Jacobian matrix in the context of smart distribution network. While considering the sparsity of the Jacobian matrix, the algorithm of the present invention can effectively avoid the bad influence of the bad data in the measurement on the estimation result, and can still ensure the accuracy of the estimation even when the measurement contains bad data.
附图说明Description of drawings
图1是本发明考虑稀疏性的智能配电网潮流雅可比矩阵鲁棒估计方法的流程图;Fig. 1 is the flow chart of the present invention considering the sparseness of the intelligent distribution network power flow Jacobian matrix robust estimation method;
图2是IEEE33节点算例图。Figure 2 is an example diagram of an IEEE33 node.
具体实施方式Detailed ways
下面结合实施例和附图对本发明的考虑稀疏性的智能配电网潮流雅可比矩阵鲁棒估计方 法做出详细说明。The following describes in detail the method for robust estimation of power flow Jacobian matrix of smart distribution network considering sparsity of the present invention with reference to the embodiments and accompanying drawings.
如图1所示,本发明的考虑稀疏性的智能配电网潮流雅可比矩阵鲁棒估计方法,包括如 下步骤:As shown in Figure 1, the method for robust estimation of the power flow Jacobian matrix of a smart distribution network considering sparsity of the present invention includes the following steps:
1)获取配电网的节点数,将源节点编号设为0,其他节点依次编号设为1,…,i,…,N,输 入网络最大度的保守估计值dmax,设定残差阈值ε及最大迭代次数M、历史量测数据需求组数 C;1) Obtain the number of nodes in the distribution network, set the number of the source node to 0, and set the number of other nodes to 1,...,i,...,N in turn, input the conservative estimate d max of the maximum degree of the network, and set the residual threshold ε and the maximum number of iterations M, the number of historical measurement data demand groups C;
2)获取系统各节点安装的同步相量量测装置所采集的当前时刻有功功率、无功功率、电 压幅值和电压相角的量测数据,以及各节点C个历史时刻的量测数据;其中,2) Obtain the measurement data of active power, reactive power, voltage amplitude and voltage phase angle at the current moment collected by the synchrophasor measurement device installed at each node of the system, as well as measurement data at C historical moments of each node; in,
所述的C个历史量测数据生成方法如下:The C historical measurement data generation methods are as follows:
(1)采用如下的方式生成节点i的第k个有功功率量测。(1) Generate the kth active power measurement of node i in the following manner.
式中,Pi(k)表示节点i的第k个有功功率历史量测,Pi(0)表示当前节点i的有功功率量 测,是服从均值为0正态分布的随机数,分别用来模拟不同量测时刻相对于当前时刻 的功率变化和量测误差;In the formula, P i (k) represents the k-th active power historical measurement of node i, P i (0) represents the current active power measurement of node i, is a random number that obeys a normal distribution with a mean of 0, and is used to simulate the power change and measurement error at different measurement moments relative to the current moment;
(2)采用下式生成节点i的第k个无功功率量测(2) Use the following formula to generate the kth reactive power measurement of node i
式中,Qi(k)表示节点i的第k个无功功率量测,Qi(0)表示当前节点i的无功功率量测, 是服从均值为0正态分布的随机数;In the formula, Q i (k) represents the kth reactive power measurement of node i, and Q i (0) represents the current reactive power measurement of node i, is a random number that obeys a normal distribution with
(3)在得到节点i的第k个有功功率和无功功率量测后,通过潮流计算求得对应的电压 相角θi(k)和幅值Vi(k)作为节点i的第k个电压相角和幅值量测值。(3) After obtaining the k-th active power and reactive power measurement of node i, the corresponding voltage phase angle θ i (k) and amplitude V i (k) are obtained through power flow calculation as the k-th measurement of node i A voltage phase angle and amplitude measurement value.
3)将每个节点C个历史时刻的量测数据分别与当前量测值做差,每个节点得到C个有功 功率、无功功率、电压幅值和电压相角的变化量,利用节点1~节点N电压相角和电压幅值量 测的变化量构造传感矩阵,初始化潮流雅可比矩阵的行号m=1;其中,3) Differentiate the measurement data of each node at C historical moments with the current measurement value, and each node obtains C changes of active power, reactive power, voltage amplitude and voltage phase angle, using
(1)所述的C个有功功率、无功功率、电压幅值和电压相角的变化量表示为:(1) The variation of the C active power, reactive power, voltage amplitude and voltage phase angle is expressed as:
ΔPi[k]=Pi(k)-Pi(0)、ΔQi[k]=Qi(k)-Qi(0)、ΔVi[k]=Vi(k)-Vi(0)和Δθi[k]= θi(k)-θi(0),k=1,2,…,C,Pi(0)、Qi(0)、θi(0)、Vi(0)分别表示节点i当前时刻的有功功率、无功功率、电压相角和电压幅值的量测值;Pi(k)、Qi(k)、θi(k)、Vi(k)分别表示节点i 第k个的历史量测值;ΔP i [k]=P i (k)-P i (0), ΔQ i [k]=Q i (k)-Q i (0), ΔV i [k]=V i (k)-V i (0) and Δθ i [k] = θ i (k)-θ i (0), k=1,2,...,C, P i (0), Q i (0), θ i (0), V i (0) represent the measured values of active power, reactive power, voltage phase angle and voltage amplitude of node i at the current moment; P i (k), Q i (k), θ i (k), V i (k) respectively represent the historical measurement value of the kth node i;
(2)所述构造传感矩阵A如下:(2) The construction of the sensing matrix A is as follows:
式中,表示由电压相角和电压幅值量测变化向量构成的矩阵,Δθi=[Δθi[1],…,Δθi[C]]T表示节点i的C个电压相角量测变化量组成的列向量,ΔVi=[ΔVi[1],…,ΔVi[C]]T表示节点i 的C个电压幅值量测变化量组成的列向量;表示中的元素,Ap,q表示传感矩阵A中第p 行第q列的元素。In the formula, Represents a matrix composed of voltage phase angle and voltage amplitude measurement variation vector, Δθ i = [Δθ i [1],...,Δθ i [C]] T represents the C voltage phase angle measurement variation of node i composed of , ΔV i =[ΔV i [1],...,ΔV i [C]] T represents a column vector composed of C voltage amplitude measurement changes at node i; express The elements in A p,q represent the elements in the p-th row and the q-th column of the sensing matrix A.
4)初始化残差向量,计算电压相角的相关系数向量uθ和电压幅值的相关系数向量uU; 初始化传感矩阵列号索引集合Λn为空集,初始化迭代次数n=1;其中,4) Initialize the residual vector, calculate the correlation coefficient vector u θ of the voltage phase angle and the correlation coefficient vector u U of the voltage amplitude; Initialize the sensing matrix column number index set Λ n to be an empty set, and the initialization iteration number n=1; wherein ,
4)初始化残差向量,计算电压相角的相关系数向量uθ和电压幅值的相关系数向量uU; 初始化迭代次数n=1,初始化传感矩阵列号索引集合Λn为空集;其中4) Initialize the residual vector, calculate the correlation coefficient vector u θ of the voltage phase angle and the correlation coefficient vector u U of the voltage amplitude; Initialize the iteration number n=1, and initialize the sensing matrix column number index set Λ n is an empty set; wherein
(1)所述的初始化残差向量计算方式为:(1) The initialization residual vector calculation method is:
若1≤m≤N:If 1≤m≤N:
r0=ΔPi r 0 =ΔP i
若N<m≤2N:If N<m≤2N:
r0=ΔQi r 0 =ΔQ i
式中,r0表示初始的残差向量,ΔPi=[ΔPi[1],…,ΔPi[C]]T表示节点i的C组有功功率变 化量组成的列向量;式中,ΔQi=[ΔQi[1],…,ΔQi[C]]T表示节点i的C组无功功率变化量组成 的列向量。In the formula, r 0 represents the initial residual vector, ΔP i = [ΔP i [1],...,ΔP i [C]] T represents the column vector composed of the active power changes of the C group of node i; in the formula, ΔQ i =[ΔQ i [1],...,ΔQ i [C]] T represents a column vector composed of reactive power changes of group C of node i.
(2)电压相角的相关系数向量uθ的计算方法为:(2) The calculation method of the correlation coefficient vector u θ of the voltage phase angle is:
若1≤m≤N:If 1≤m≤N:
uθ=abs(ATAq)u θ = abs(A T A q )
若N<m≤2N:If N<m≤2N:
uθ=abs(ATAq-N)u θ = abs(A T A qN )
式中,abs(·)表示取绝对值运算,A为传感矩阵,Aq和Aq-N分别表示传感矩阵A的第q列 和第q-N列;In the formula, abs( ) represents the operation of taking the absolute value, A is the sensing matrix, A q and A qN represent the qth column and the qNth column of the sensing matrix A, respectively;
(3)电压幅值的相关系数向量uU的计算方法为:(3) The calculation method of the correlation coefficient vector u U of the voltage amplitude is:
若1≤m≤N:If 1≤m≤N:
uU=abs(ATAq+N)u U =abs(A T A q+N )
若N<m≤2N:If N<m≤2N:
uU=abs(ATAq)。u U =abs(A T A q ).
5)分别选取电压相角的相关系数向量uθ和电压幅值的相关系数向量uU中最大的z个数值, 其中z=dmax+1,将z个数值对应的传感矩阵中的列号索引构成第n次迭代的中间集合Ωn;5) Respectively select the largest z values in the correlation coefficient vector u θ of the voltage phase angle and the correlation coefficient vector u U of the voltage amplitude, where z = d max +1, and set the columns in the sensing matrix corresponding to the z values. The number index constitutes the intermediate set Ω n of the nth iteration;
6)采用第n次迭代的中间集合Ωn更新传感矩阵列号索引集合Λn,求最小二乘解,更新 残差向量;其中,6) Use the intermediate set Ω n of the nth iteration to update the sensor matrix column number index set Λ n , find the least squares solution, and update the residual vector; where,
(1)所述的更新传感矩阵列号索引集合表示为:(1) The described update sensing matrix column number index set is expressed as:
Λn=Λn-1∪Ωn Λ n =Λ n-1 ∪Ω n
式中,Λn为第n次迭代的传感矩阵列号索引集合,当n=1时,Λn-1表示初始的传感矩阵 列号索引集合,Ωn表示第n次迭代的中间集合;In the formula, Λ n is the index set of the sensor matrix column number of the nth iteration, when n=1, Λ n-1 represents the initial set of column number index of the sensor matrix, Ω n represents the intermediate set of the nth iteration ;
(2)最小二乘解表示为:(2) The least squares solution is expressed as:
式中,表示第n次迭代时的最小二乘解,r0为初始的残差向量,表示第n次迭代 的传感矩阵列号索引集合Λn中元素对应的传感矩阵各列构成的矩阵;In the formula, represents the least squares solution at the nth iteration, r 0 is the initial residual vector, represents the matrix formed by each column of the sensing matrix corresponding to the elements in the n-th iteration of the sensing matrix column number index set Λ n ;
(3)更新后的残差向量表示为:(3) The updated residual vector is expressed as:
式中,rn为第n次迭代的残差向量。In the formula, rn is the residual vector of the nth iteration.
7)若更新后的残差向量的2范数R小于残差阈值ε,则进入步骤11);否则:如果迭代次数n=1,将迭代次数为n=n+1,分别选取电压相角的相关系数向量uθ和电压幅值的相关系 数向量uU中最大的2z个值,将2z个值对应的传感矩阵中的索引构成第n次迭代的中间集合Ωn, 返回步骤6);如果迭代次数n=2,则迭代次数n=n+1,进入步骤8);7) If the 2-norm R of the updated residual vector is less than the residual threshold ε, go to step 11); otherwise: if the number of iterations is n=1, the number of iterations is set to n=n+1, and the voltage phase angles are selected respectively. The largest 2z values in the correlation coefficient vector u θ of the voltage amplitude and the correlation coefficient vector u U of the voltage amplitude, the indices in the sensing matrix corresponding to the 2z values constitute the intermediate set Ω n of the nth iteration, and return to step 6) ; If the number of iterations n=2, then the number of iterations n=n+1, enter step 8);
8)采用传感矩阵和残差向量计算残差相关系数向量u,选取残差相关系数向量u中最大 的2z列,将2z列对应的传感矩阵中的索引构成第n次迭代的中间集合Ωn,更新传感矩阵列号 索引集合Λn;其中所述的残差相关系数向量u计算方式为:8) Use the sensing matrix and the residual vector to calculate the residual correlation coefficient vector u, select the largest 2z column in the residual correlation coefficient vector u, and form the index in the sensing matrix corresponding to the 2z column to form the intermediate set of the nth iteration Ω n , update the sensing matrix column number index set Λ n ; the calculation method of the residual correlation coefficient vector u is:
u=abs(ATrn-1)u=abs(A T r n-1 )
式中,u为相关系数向量,abs(·)表示取绝对值运算,rn-1表示第n-1次迭代时的残差向 量,当n=1时,rn-1表示初始残差向量,A为传感矩阵。In the formula, u is the correlation coefficient vector, abs( ) represents the absolute value operation, r n-1 represents the residual vector at the n-1th iteration, when n=1, r n-1 represents the initial residual error vector, A is the sensing matrix.
9)利用更新传感矩阵列号索引集合Λn,建立最小化相关熵优化模型,求解最小化相关 熵模型作为估计解,选取估计解中绝对值最大的4z项,将4z项对应的传感矩阵中的索引更新 第n次迭代的中间集合Ωn,重新构造传感矩阵列号索引集合Λn,再次更新残差向量;其中9) Using the updated sensing matrix column number index set Λ n , establish an optimization model of minimizing the correlation entropy, solve the minimum correlation entropy model as the estimated solution, select the 4z item with the largest absolute value in the estimated solution, and set the sensor corresponding to the 4z item. The index in the matrix updates the intermediate set Ω n of the nth iteration, reconstructs the sensor matrix column number index set Λ n , and updates the residual vector again; where
(1)所述的建立最小化相关熵优化模型,包括建立目标函数为:(1) The described establishment minimizes the relevant entropy optimization model, including establishing the objective function as:
式中,ek表示向量e的第k个元素,e=r0-AΛnx,r0为初始的残差向量,表示传感矩阵列号索引集合Λn中元素对应的传感矩阵各列构成的矩阵,x表示代求的决策变量,ε为设 定的残差阈值,σ为辅助常量,exp表示指数函数,C为历史量测数据需求组数。In the formula, ek represents the kth element of vector e, e=r 0 -A Λn x, r 0 is the initial residual vector, Represents the matrix formed by the columns of the sensor matrix corresponding to the elements in the sensor matrix column index set Λ n , x represents the decision variable to be obtained, ε is the set residual threshold, σ is the auxiliary constant, exp represents the exponential function, C is the number of historical measurement data demand groups.
(2)所述的求解最小化相关熵模型,包括:(2) the described solution minimizes the relevant entropy model, including:
(2.1)初始化优化允许误差δ,初始化初始解x0为零向量,初始化权重向量w=1,1表 示值均为1的常数向量;(2.1) Initialize the optimization allowable error δ, initialize the initial solution x 0 as a zero vector, and initialize the weight vector w=1, where 1 represents a constant vector whose value is 1;
(2.2)对代求的决策变量x求加权最小二乘解: (2.2) Find the weighted least squares solution for the decision variable x to be obtained:
式中,表示传感矩阵列号索引集合Λn中元素对应的传感矩阵各列构成的矩阵,r0为 初始的残差向量,diag(*)表示由向量“*”中的元素构成对角矩阵;In the formula, Represents the matrix formed by each column of the sensor matrix corresponding to the elements in the sensor matrix column number index set Λ n , r 0 is the initial residual vector, and diag(*) represents the diagonal matrix formed by the elements in the vector "*";
(2.3)计算残差向量: (2.3) Calculate residual vector:
(2.4)根据残差向量r计算辅助常量σ的值,C为历史量测数据需求组数;(2.4) Calculate the value of the auxiliary constant σ according to the residual vector r, C is the number of historical measurement data demand groups;
(2.5)利用辅助常量σ计算权重向量w的第k个元素:wk和rk分别表 示向量w和r的第k个元素;(2.5) Use the auxiliary constant σ to calculate the kth element of the weight vector w: w k and r k represent the kth element of the vectors w and r, respectively;
(2.6)判断如果条件成立,则估计解输出估计结果,如果条件 不成立,令x0=x,返回第(2.2)步。(2.6) Judgment If the condition holds, estimate the solution Output the estimation result, if the condition does not hold, set x 0 =x, and return to step (2.2).
(3)所述的重新构造传感矩阵列号索引集合为:(3) The described reconstructed sensing matrix column number index set is:
Λn=Ωn Λ n = Ω n
式中,Λn为第n次迭代的传感矩阵列号索引集合,Ωn表示第n次迭代的中间集合。In the formula, Λ n is the index set of the sensor matrix column numbers of the nth iteration, and Ω n represents the intermediate set of the nth iteration.
(4)所述的再次更新残差向量表示为:(4) The re-updated residual vector is expressed as:
式中,表示集合Λn中元素对应的传感矩阵各列构成的矩阵,rn为第n次迭代的残差 向量,r0为初始的残差向量,diag(*)表示由向量“*”中的元素构成对角矩阵,w表示权重向量。In the formula, Represents the matrix formed by the columns of the sensing matrix corresponding to the elements in the set Λ n , rn is the residual vector of the nth iteration, r 0 is the initial residual vector, diag(*) represents the The elements form a diagonal matrix, and w represents the weight vector.
10)若再次更新的残差向量的2范数R小于残差阈值ε或者迭代次数超过设定的最大迭代 次数M,则进入步骤11);否则n=n+1,返回步骤8);10) if the 2-norm R of the residual vector updated again is less than the residual threshold ε or the number of iterations exceeds the maximum number of iterations M set, then enter step 11); otherwise n=n+1, return to step 8);
11)输出估计解,根据传感矩阵列号索引集合恢复出2N维向量作为雅可比矩阵第m行 的估计结果,m=m+1;若m大于2N,停止迭代,输出雅可比矩阵估计结果,否则,返回步 骤4)。所述的根据传感矩阵列号索引集合恢复出2N维向量作为雅可比矩阵第m行的估计结 果表示为:11) Output the estimated solution, and recover the 2N-dimensional vector according to the index set of the column number of the sensing matrix as the estimation result of the mth row of the Jacobian matrix, m=m+1; if m is greater than 2N, stop the iteration and output the Jacobian matrix estimation result , otherwise, go back to step 4). The described estimation result of recovering 2N-dimensional vector as the mth row of Jacobian matrix according to the index set of sensing matrix column number is expressed as:
式中,表示第n次迭代时的估计解,表示2N维恢复向量,表示的第g个元素,表 示传感矩阵列号索引集合Λn中各元素所对应的向量的元素组成的向量,对于其他不在列号 索引集合中的元素取值为0;矩阵第q列的2范数, 表示雅可比矩阵Y的第m行第q个元素的估计解,其中,g=q。In the formula, represents the estimated solution at the nth iteration, represents a 2N-dimensional recovery vector, express the gth element of , Represents the vector corresponding to each element in the sensor matrix column number index set Λ n A vector of elements of , for Other elements not in the column index set have the
下面给出具体实例:Specific examples are given below:
首先输入IEEE33节点算例网络拓扑连接关系如图2所示,其中节点0为平衡节点,其 他节点1~32为PQ节点,系统的基准容量为1MVA,基准电压为12.66kV,各个PQ节点的 当前功率量测如表1所示。输入网络的最大度的保守估计值为4,模拟量测功率变化和误差 随机数的标准差分别设为0.01和0.025%,设置量测组数分别为30、35、40、45、50、55、 60。采用下式计算雅可比矩阵和电压功率灵敏度矩阵的误差。First enter the IEEE33 node calculation example network topology connection relationship as shown in Figure 2, where
式中,分别表示雅可比矩阵元素的估计值,Ji,j为雅可比矩阵元素的理论值。In the formula, represent the estimated values of the Jacobian matrix elements, respectively, and J i,j are the theoretical values of the Jacobian matrix elements.
采用下式计算雅可比矩阵第i行的估计误差,当估计误差小于10时,认为该行估计成功。The following formula is used to calculate the estimation error of the ith row of the Jacobian matrix. When the estimation error is less than 10, the estimation of the row is considered to be successful.
为验证本发明方法的先进性,采取如下两种场景进行分析:In order to verify the advanced nature of the method of the present invention, the following two scenarios are adopted for analysis:
场景1,无坏数据,分别在本发明的步骤9)中采用最小二乘解进行求解和本发明的最小 相关熵模型求解,得到的雅可比矩阵估计成功的行数和估计的误差分别如表2和表3所示。
场景2,分别在节点24的第10组有功功率量测和节点29的第20组有功功率量测加入 坏数据,坏数据情况如表4和表5所示,分别在步骤9)中采用最小二乘解进行求解和本发明的采用最小相关熵模型求解,得到的雅可比矩阵估计成功的行数和估计的误差分别如表6和表7所示。
执行优化计算的计算机硬件环境为Intel(R)Xeon(R)CPU E5-1620,主频为3.70GHz,内 存为32GB;软件环境为Windows 7操作系统,采用MATLAB的MATPOWER工具包计算潮 流。The computer hardware environment for the optimization calculation is Intel(R) Xeon(R) CPU E5-1620, the main frequency is 3.70GHz, and the memory is 32GB; the software environment is
从表2和表3中可以看出,在没有坏数据时,采用本发明的最小化相关熵方法与采用最 小二乘方法具有同样的估计成功率和估计精度,从而本发明方法能够实现在量测数据没有坏 数据的情况下不牺牲估计精度;从表6和表7中可以看出,在量测中含有坏数据时,采用最 小二乘方法不能实现雅可比矩阵任意一行的估计,而本发明方法在量测组数达到35组时,即 可实现潮流雅可比矩阵所有行的估计,虽然估计精度较无坏数据时有所增加,但是同样保持 在同一水平下。因此,本发明的方法能够在利用雅可比矩阵稀疏性的同时,实现对坏数据的 鲁棒性,最终实现了潮流雅可比矩阵的鲁棒估计。As can be seen from Table 2 and Table 3, when there is no bad data, the method of minimizing the correlation entropy of the present invention has the same estimation success rate and estimation accuracy as the least squares method, so that the method of the present invention can realize the quantitative When the measurement data has no bad data, the estimation accuracy is not sacrificed; it can be seen from Tables 6 and 7 that when the measurement contains bad data, the least squares method cannot be used to estimate any row of the Jacobian matrix, and this The inventive method can realize the estimation of all rows of the power flow Jacobian matrix when the number of measurement groups reaches 35. Although the estimation accuracy is increased compared with that without bad data, it remains at the same level. Therefore, the method of the present invention can realize the robustness to bad data while utilizing the sparseness of the Jacobian matrix, and finally realize the robust estimation of the power flow Jacobian matrix.
表1 IEEE 33节点算例PQ节点当前功率量测值Table 1 Current power measurement value of PQ node in IEEE 33 node calculation example
表2场景1雅可比矩阵估计不成功的行数Table 2
表3场景1雅可比矩阵估计误差Table 3
表4节点24的坏数据情况Table 4 Bad data situation of
表5节点29的坏数据情况Table 5 Bad data situation of
表6场景2雅可比矩阵估计不成功的行数Table 6
表7场景2雅可比矩阵估计误差Table 7
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810100944.4A CN108462181B (en) | 2018-01-31 | 2018-01-31 | Sparse-considered robust estimation method for jacobian matrix of power flow of intelligent power distribution network |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810100944.4A CN108462181B (en) | 2018-01-31 | 2018-01-31 | Sparse-considered robust estimation method for jacobian matrix of power flow of intelligent power distribution network |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108462181A CN108462181A (en) | 2018-08-28 |
| CN108462181B true CN108462181B (en) | 2021-04-27 |
Family
ID=63238382
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810100944.4A Active CN108462181B (en) | 2018-01-31 | 2018-01-31 | Sparse-considered robust estimation method for jacobian matrix of power flow of intelligent power distribution network |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108462181B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109858061B (en) * | 2018-11-13 | 2023-06-30 | 天津大学 | Distribution Network Equivalence and Simplification Method for Voltage Power Sensitivity Estimation |
| CN111355231A (en) * | 2018-12-24 | 2020-06-30 | 中国电力科学研究院有限公司 | Power distribution network topology identification method and system |
| CN110011742A (en) * | 2019-04-16 | 2019-07-12 | 西安交通大学 | Robust and sparse broadband spectrum sensing algorithm based on maximum cross-correlation entropy criterion |
| CN113221298B (en) * | 2021-04-21 | 2023-02-24 | 南方电网科学研究院有限责任公司 | Method and system for simulating electromechanical transient process |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103065059A (en) * | 2013-01-29 | 2013-04-24 | 河海大学 | Method for calculating power flow of radial power distribution network based on variable substitution |
| CN107565571A (en) * | 2017-09-21 | 2018-01-09 | 中国农业大学 | A kind of method and device for judging power system steady state voltage stability |
| CN107578137A (en) * | 2016-07-04 | 2018-01-12 | 华北电力大学(保定) | A kind of Power Grid Vulnerability Assessment method for considering minimum singular value sensitivity entropy |
| CN107577870A (en) * | 2017-09-04 | 2018-01-12 | 天津大学 | The distribution network voltage power sensitivity robust estimation method measured based on synchronized phasor |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9600775B2 (en) * | 2014-01-23 | 2017-03-21 | Schlumberger Technology Corporation | Large survey compressive designs |
-
2018
- 2018-01-31 CN CN201810100944.4A patent/CN108462181B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103065059A (en) * | 2013-01-29 | 2013-04-24 | 河海大学 | Method for calculating power flow of radial power distribution network based on variable substitution |
| CN107578137A (en) * | 2016-07-04 | 2018-01-12 | 华北电力大学(保定) | A kind of Power Grid Vulnerability Assessment method for considering minimum singular value sensitivity entropy |
| CN107577870A (en) * | 2017-09-04 | 2018-01-12 | 天津大学 | The distribution network voltage power sensitivity robust estimation method measured based on synchronized phasor |
| CN107565571A (en) * | 2017-09-21 | 2018-01-09 | 中国农业大学 | A kind of method and device for judging power system steady state voltage stability |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108462181A (en) | 2018-08-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108199375B (en) | Topology identification method of intelligent distribution network based on synchrophasor measurement | |
| CN107577870B (en) | Power distribution network voltage power sensitivity robust estimation method based on synchronous phasor measurement | |
| CN107742885B (en) | A method for estimating voltage and power sensitivity of distribution network based on regular matching tracking | |
| CN108462181B (en) | Sparse-considered robust estimation method for jacobian matrix of power flow of intelligent power distribution network | |
| CN107133406B (en) | A Fast Search Method for Static Voltage Stability Domain Boundaries in Power Systems | |
| CN107332240B (en) | Boundary search method of power system static voltage stability domain based on optimization model | |
| CN111797974B (en) | Power system state estimation method combining particle filtering and convolutional neural network | |
| CN107749627B (en) | Estimation method of power flow Jacobian matrix for smart distribution network based on improved matching tracking | |
| CN109088407B (en) | State estimation method of distribution network based on deep belief network pseudo-measurement modeling | |
| CN107016489A (en) | A kind of electric power system robust state estimation method and device | |
| CN110443724B (en) | Electric power system rapid state estimation method based on deep learning | |
| CN104184144A (en) | Robust state estimation method used for multi-voltage-class power grid model | |
| CN103034787A (en) | Method for estimating state of microgrid | |
| CN109888773B (en) | Multi-region distributed state evaluation method for power system | |
| CN106443496A (en) | Battery charge state estimation method with improved noise estimator | |
| CN107634516A (en) | A Distribution Network State Estimation Method Based on Gray-Markov Chain | |
| CN113553538B (en) | A recursive modified hybrid linear state estimation method | |
| CN103838962B (en) | Step-by-step linear state estimation method with measurement of PMU | |
| CN113158135A (en) | Noise-containing sag source positioning data missing value estimation method | |
| CN111355231A (en) | Power distribution network topology identification method and system | |
| CN108649585A (en) | Direct method for quickly searching static voltage stability domain boundary of power system | |
| CN110829434B (en) | A method to improve the scalability of deep neural network power flow model | |
| CN113488989B (en) | Local hybrid linear state estimation method based on stream calculation | |
| CN117540139A (en) | An interval harmonic tolerance state estimation method integrating multi-source measurement data | |
| Cai et al. | Low rank matrix completion for recovering missing load data in power system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |