CN108427921A - A kind of face identification method based on convolutional neural networks - Google Patents
A kind of face identification method based on convolutional neural networks Download PDFInfo
- Publication number
- CN108427921A CN108427921A CN201810166076.XA CN201810166076A CN108427921A CN 108427921 A CN108427921 A CN 108427921A CN 201810166076 A CN201810166076 A CN 201810166076A CN 108427921 A CN108427921 A CN 108427921A
- Authority
- CN
- China
- Prior art keywords
- face
- layer
- convolutional neural
- neural network
- convolutional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/172—Classification, e.g. identification
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
本发明提供一种基于卷积神经网络的人脸识别方法,基于深度学习的人脸识别方法克服传统人脸识别方法的不足,通过搭建一种新的卷积神经网络模型在CASIA‑WebFace人脸数据集上进行大规模训练,其中本发明的网络模型的卷积层采用Mlp卷积层来提高对人脸的特征提取能力,使用MFM激励函数来对模型增加非线性,加入Center Loss损失函数来提高网络对人脸的分类能力。最后将训练好的模型应用于人脸分类预测和人脸验证中。其中在人脸分类预测中取得了90.3%的识别率,在人脸验证实验中取得了92.5%的准确率。
The present invention provides a face recognition method based on convolutional neural network. The face recognition method based on deep learning overcomes the shortcomings of traditional face recognition methods. By building a new convolutional neural network model in CASIA-WebFace face Large-scale training is carried out on the data set, wherein the convolutional layer of the network model of the present invention uses the Mlp convolutional layer to improve the feature extraction ability of the face, uses the MFM activation function to increase the nonlinearity of the model, and adds the Center Loss loss function to Improve the network's ability to classify faces. Finally, the trained model is applied to face classification prediction and face verification. Among them, the recognition rate of 90.3% has been achieved in the face classification prediction, and the accuracy rate of 92.5% has been achieved in the face verification experiment.
Description
技术领域technical field
本发明涉及人脸识别方法技术领域,特别涉及一种基于卷积神经网络的人脸识别方法。The invention relates to the technical field of face recognition methods, in particular to a face recognition method based on a convolutional neural network.
背景技术Background technique
由于各个国家对国家安全、社会安全加大了监管力度,而身份识别正是其中一个重要手段,因此生物特征识别技术逐渐走入了人们的视线。其中人脸识别技术为人类身份识别验证提供了一个简单、易行、可靠性高的方式。由于近年深度学习方法的兴起,基于深度学习的人脸识别方法识别效果提升了很多,人脸识别技术得到了很大的进展。Since various countries have increased their supervision on national security and social security, and identification is one of the important means, biometric identification technology has gradually come into people's sight. Among them, face recognition technology provides a simple, easy and reliable way for human identity verification. Due to the rise of deep learning methods in recent years, the recognition effect of face recognition methods based on deep learning has improved a lot, and face recognition technology has made great progress.
人脸识别是模式识别分类中一大研究热点。人脸识别最大的难点在于怎样区分因为光照、动作和表情等因素产生的类内变化和由于不同个体之间产生的类间变化。对人脸图像进行特征提取是人脸识别中的关键问题,人脸特征的有效性决定着人脸识别性能的高低。现有的人脸识别方法有几何特征的人脸识别方法、弹性图匹配的人脸识别方法、线段Hausdorff距离(LHD)的人脸识别方法、支持向量机(SVM)的人脸识别方法、基于特征脸(PCA)的人脸识别方法。这些人脸识别方法计算都比较复杂,实际使用时需要靠人工手动操作才能完成。此外上述的方法很难满足大数据量的人脸识别需求,因此所取得的识别效果不令人满意,有待进一步提高。Face recognition is a major research hotspot in pattern recognition classification. The biggest difficulty in face recognition is how to distinguish between intra-class changes due to factors such as lighting, actions, and expressions, and inter-class changes due to different individuals. Feature extraction from face images is a key issue in face recognition, and the effectiveness of face features determines the performance of face recognition. Existing face recognition methods include geometric feature face recognition methods, elastic graph matching face recognition methods, line Hausdorff distance (LHD) face recognition methods, support vector machine (SVM) face recognition methods, and face recognition methods based on Face recognition method based on eigenface (PCA). The calculations of these face recognition methods are relatively complicated, and manual operations are required to complete them in actual use. In addition, the above-mentioned methods are difficult to meet the needs of face recognition with a large amount of data, so the recognition effect obtained is not satisfactory and needs to be further improved.
深度学习作为一种新的机器学习理论,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释图像、声音和文本等数据。深度学习的本质是通过组合低层特征形成更加抽象的高层表示属性特征,以发现数据的分布式特征表示。所以深度学习也被称为无监督特征学习。深度学习中的卷积神经网络对于图像的识别具有很好的性能,它已成为一种代表性的深度学习技术,被广泛的应用于图像处理和计算机视觉等领域。As a new machine learning theory, deep learning is motivated by establishing and simulating a neural network that simulates the human brain for analysis and learning. It imitates the mechanism of the human brain to interpret data such as images, sounds, and texts. The essence of deep learning is to discover the distributed feature representation of data by combining low-level features to form more abstract high-level representation attribute features. So deep learning is also called unsupervised feature learning. The convolutional neural network in deep learning has good performance for image recognition. It has become a representative deep learning technology and is widely used in image processing and computer vision.
发明内容Contents of the invention
为了解决背景技术中所述问题,本发明提供一种基于卷积神经网络的人脸识别方法。,目的是克服上述人脸识别技术的不足,提供一种基于深度学习的人脸识别方法,利用深度学习所具有的较强的无监督特征学习能力,以便于进一步提高人脸识别的性能。In order to solve the problems described in the background technology, the present invention provides a face recognition method based on a convolutional neural network. , the purpose is to overcome the shortcomings of the above-mentioned face recognition technology, provide a face recognition method based on deep learning, and use the strong unsupervised feature learning ability of deep learning to further improve the performance of face recognition.
为了达到上述目的,本发明采用以下技术方案实现:In order to achieve the above object, the present invention adopts the following technical solutions to realize:
一种基于卷积神经网络的人脸识别方法,包括以下步骤:A face recognition method based on convolutional neural network, comprising the following steps:
步骤1:选择人脸图像的数据库并对人脸图像进行预处理;Step 1: Select a database of face images and preprocess the face images;
步骤2:搭建卷积神经网络模型zy_net;Step 2: Build the convolutional neural network model zy_net;
步骤3:卷积神经网络模型zy_net的训练;Step 3: training of convolutional neural network model zy_net;
步骤4:对训练好的网络模型进行人脸分类预测和人脸验证;Step 4: Perform face classification prediction and face verification on the trained network model;
所述的所述步骤1中,采用的人脸数据库为CASIA-WebFace;In the described step 1, the face database adopted is CASIA-WebFace;
所述步骤2中,搭建卷积神经网络包括卷积神经网络zy_net的设计与实现,其中有卷积层的设计,激励函数的设计以及损失函数的设计;其中卷积层采用Mlp卷积层来提高对人脸的特征提取能力,激励函数使用的MFM激励函数来增加非线性,并对噪声信号与信息信号进行有效的分离,加入center loss损失函数来提高网络对人脸的分类能力;In said step 2, building the convolutional neural network includes the design and implementation of the convolutional neural network zy_net, which includes the design of the convolutional layer, the design of the activation function and the design of the loss function; wherein the convolutional layer uses the Mlp convolutional layer to Improve the feature extraction ability of the face, the MFM excitation function used in the excitation function increases the nonlinearity, and effectively separates the noise signal from the information signal, and adds a center loss loss function to improve the classification ability of the network for faces;
所述步骤3中的卷积神经网络zy_net的训练,包括:前向训练和反向调优两个步骤:The training of the convolutional neural network zy_net in the step 3 includes two steps of forward training and reverse tuning:
步骤301、卷积神经网络zy_net的前向训练,包括采用自下而上的无监督学习方式进行前向训练;卷积神经网络的前向训练具体过程如下:Step 301, the forward training of the convolutional neural network zy_net, including the forward training of the bottom-up unsupervised learning method; the specific process of the forward training of the convolutional neural network is as follows:
(a)卷积层操作:公式表达如下:(a) Convolution layer operation: the formula is expressed as follows:
其中,表示第l层的第j个特征图,f(·)表示激励函数,Mj代表选择的输入图的集合,表示第j个特征图对应的偏置项,代表第l层第j个特征图于第l-1层第i个特征图连接之间的卷积核,“*”表示卷积运算;in, Represents the jth feature map of the l-th layer, f( ) represents the activation function, Mj represents the set of selected input maps, Indicates the bias item corresponding to the jth feature map, Represents the convolution kernel between the j-th feature map of the l-th layer and the i-th feature map connection of the l-1 layer, "*" indicates the convolution operation;
(b)下采样层操作;对于下采样层来说,有N个输入图,就有N个输出图,公式表达为:(b) Downsampling layer operation; for the downsampling layer, if there are N input images, there are N output images, and the formula is expressed as:
其中,down(·)代表下采样函数,典型的操作就是对输入图像的不同N×N大小的区域内所有像素进行求和;表示第l层第j个特征图对应的系数,为其对应的偏置项;Among them, down( ) represents the downsampling function, and the typical operation is to sum all the pixels in different N×N size regions of the input image; Indicates the coefficient corresponding to the jth feature map of the l-th layer, Its corresponding bias term;
步骤302、卷积神经网络的反向调优是采用自顶向下的有监督学习方式进行调优通过调优之后,使得卷积神经网络模型中的每一层隐层的网络权重值都能够达到最优值;卷积神经网络调优过程具体如下:Step 302, the reverse tuning of the convolutional neural network is to use a top-down supervised learning method for tuning. After tuning, the network weight value of each hidden layer in the convolutional neural network model can be Reach the optimal value; the convolutional neural network tuning process is as follows:
(a)卷积层的梯度计算;(a) Gradient calculation of the convolutional layer;
这个过程用公式描述为:This process is described by the formula:
其中,*表示点乘运算,即每个像素相乘,up(.)表示一个上采样操作,过程若是下采样的采样因子是n的话,将其每个像素水平和垂直方向上拷贝n次,这个函数可以用Kronecker乘积来实现:Among them, * represents the dot multiplication operation, that is, multiplication of each pixel, and up(.) represents an upsampling operation. If the sampling factor of the downsampling is n, each pixel is copied n times in the horizontal and vertical directions. This function can be multiplied by the Kronecker product to fulfill:
这样,对于卷积层一个给定的特征图,就可以计算得到其残差图,通过这个残差图,就可以求得该特征图对应偏置项的梯度及对应卷积核的梯度,见以下公式;In this way, for a given feature map of the convolutional layer, its residual map can be calculated, and through this residual map, the gradient of the bias item corresponding to the feature map and the gradient of the corresponding convolution kernel can be obtained, see The following formula;
其中,J为代价函数,项中在卷积时与逐元素相乘的一块区域,u,v表示特征图中的像坐标;Among them, J is the cost function, item During convolution with An area that is multiplied element by element, u, v represent the image coordinates in the feature map;
(b)下采样层的梯度计算;(b) Gradient calculation of the downsampling layer;
下采样的前向过程涉及的参数是每个特征图对应的一个乘性因子β和一个偏置项b,若是求得此层的残差图,这两个参数的梯度就很容易求得;该过程可以用公式表达为:The parameters involved in the forward process of downsampling are a multiplicative factor β and a bias term b corresponding to each feature map. If the residual map of this layer is obtained, the gradient of these two parameters can be easily obtained; This process can be expressed in formulas as:
在得到残差图后,乘性因子β和偏执项b对应的梯度计算满足公式:After obtaining the residual graph, the gradient calculation corresponding to the multiplicative factor β and the paranoid term b satisfies the formula:
其中, in,
所述的步骤四具体为,人脸分类预测结果和人脸验证结果的输出方法如下:Described step four is specifically, the output method of face classification prediction result and face verification result is as follows:
步骤401、在测试样本选取10575张不同类别的人脸图像输入到网络模型中,最后输出人脸图像的分类预测结果;Step 401, select 10575 face images of different categories in the test sample and input them into the network model, and finally output the classification prediction results of the face images;
步骤402、人脸验证数据库采用的是LFW人脸数据库,训练时依次将每对图像输入到训练好的网络模型中,最终得到每张图像的一个1×512×1×1维的特征向量,它表示该人脸图像的特征并计算每个人脸对特征向量的余弦距离之差,并选定合适的阈值来判定该人脸对是否属于同一身份。Step 402, the face verification database adopts the LFW face database. During training, each pair of images is input into the trained network model in turn, and finally a 1×512×1×1 dimensional feature vector of each image is obtained. It represents the features of the face image and calculates the difference of the cosine distance of each face pair feature vector, and selects an appropriate threshold to determine whether the face pair belongs to the same identity.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
1、本发明基于深度学习的人脸识别方法克服传统人脸识别方法的不足,通过搭建一种新的卷积神经网络模型在CASIA-WebFace人脸数据集上进行大规模训练,其中本发明的网络模型的卷积层采用Mlp卷积层来提高对人脸的特征提取能力,使用MFM激励函数来对模型增加非线性,加入Center Loss损失函数来提高网络对人脸的分类能力。最后将训练好的模型应用于人脸分类预测和人脸验证中。其中在人脸分类预测中取得了90.3%的识别率,在人脸验证实验中取得了92.5%的准确率。1. The face recognition method based on deep learning of the present invention overcomes the deficiencies of traditional face recognition methods, and conducts large-scale training on the CASIA-WebFace face data set by building a new convolutional neural network model, wherein the present invention The convolutional layer of the network model uses the Mlp convolutional layer to improve the feature extraction ability of faces, uses the MFM activation function to add nonlinearity to the model, and adds the Center Loss loss function to improve the network's ability to classify faces. Finally, the trained model is applied to face classification prediction and face verification. Among them, the recognition rate of 90.3% has been achieved in the face classification prediction, and the accuracy rate of 92.5% has been achieved in the face verification experiment.
2、针对人脸特征的提取,采用对图像卷积的方式提取人脸图像特征,不需要任何的人工手动操作。2. For the extraction of facial features, the method of image convolution is used to extract facial image features without any manual operation.
3、该发明方法提供一个轻量级的人脸识别网络模型,达到了较好的识别效果。3. The inventive method provides a lightweight face recognition network model, which achieves a better recognition effect.
4、训练好的网络模型可用于人脸分类预测以及人脸验证两个方面。4. The trained network model can be used for face classification prediction and face verification.
附图说明Description of drawings
图1是本发明的基于深度学习的人脸识别系统框图;Fig. 1 is a block diagram of the face recognition system based on deep learning of the present invention;
图2是本发明的方法网络模型结构;Fig. 2 is the method network model structure of the present invention;
图3是本发明的预处理后的部分人脸图像;Fig. 3 is the partial human face image after the preprocessing of the present invention;
图4是本发明方法与其他方法在人脸分类预测上的比较;Fig. 4 is a comparison between the method of the present invention and other methods on face classification prediction;
图5是本发明方法与其他方法在人脸验证结果上的比较。Fig. 5 is a comparison of the face verification results between the method of the present invention and other methods.
具体实施方式Detailed ways
以下结合附图对本发明提供的具体实施方式进行详细说明。The specific embodiments provided by the present invention will be described in detail below in conjunction with the accompanying drawings.
图1为本系统框图,包括:Figure 1 is a block diagram of the system, including:
步骤1:选择人脸图像的数据库及对人脸图像进行预处理;Step 1: Select the database of face images and preprocess the face images;
步骤2:搭建卷积神经网络模型;Step 2: Build a convolutional neural network model;
步骤3:卷积神经网络模型zy_net的训练;Step 3: training of convolutional neural network model zy_net;
步骤4:输出分类结果。Step 4: Output classification results.
图2是本发明的网络模型结构,其中包含5层Mlp卷积层、4层下采样层以及两个全连接层和一个Softmax分类层。Fig. 2 is a network model structure of the present invention, which includes 5 layers of Mlp convolutional layers, 4 layers of downsampling layers, two fully connected layers and a Softmax classification layer.
图3是预处理后的人脸图像,人脸数据集中的原图像具有各种形态,所以为了提升识别效果,需要对人脸数据库中的人脸图像进行预处理(人脸特征点检测、人脸对齐、人脸剪裁),预处理后的人脸图像为一张128×128大小的人脸面部图像。Figure 3 is the face image after preprocessing. The original images in the face data set have various forms, so in order to improve the recognition effect, it is necessary to preprocess the face images in the face database (face feature point detection, human face alignment, face cropping), and the preprocessed face image is a face image with a size of 128×128.
图4是本发明的人脸识别方法与Alexnet网络模型在人脸分类预测上效果的对比。从图4中可以看出本发明的人脸识别方法比Alexnet模型在人脸识别率上高出22.8%。Fig. 4 is a comparison of the face recognition method of the present invention and the Alexnet network model on the effect of face classification prediction. It can be seen from Fig. 4 that the face recognition method of the present invention is 22.8% higher than the Alexnet model in face recognition rate.
图5是本发明的人脸识别方法与Alexnet网络模型在人脸验证结果上的对比。从图5中可以看出本发明的网络模型在人脸验证上的正确率比Alexnet模型在人脸验证上的正确率高出23.6%。Fig. 5 is a comparison between the face recognition method of the present invention and the Alexnet network model on the face verification results. It can be seen from Fig. 5 that the correct rate of the network model of the present invention in face verification is 23.6% higher than that of the Alexnet model in face verification.
具体的实施步骤:Specific implementation steps:
(1)选择人脸图像的数据库及对人脸图像进行预处理(1) Select the database of face images and preprocess the face images
选择李子青的CASIA-WebFace人脸数据库,其中人脸图片数量超50万,一共有10575个人的人脸,每个类别人脸图像数量从几十张到几百张不等,是一个非常适合训练人脸识别网络的数据库。CASIA-WebFace样本图像示例,如图3所示。图像预处理首先对数据库中的大小不一的原始图像进行脸部特征点检测,分类检测出人脸图像脸部两只眼睛、鼻子和两个嘴角的位置,一共检测出5个特征点。根据检测出的特征点我们可以进行人脸对齐操作,将人脸数据集中的偏倚的人脸图像进行校正。最后人脸剪裁操作则是根据特征点位置将人脸剪裁出来,最后截取的人脸图像为128×128大小的图像样本。Choose Li Ziqing's CASIA-WebFace face database, which contains more than 500,000 face pictures, a total of 10,575 faces, and the number of face images in each category ranges from dozens to hundreds, which is a very suitable A database for training face recognition networks. An example of a CASIA-WebFace sample image is shown in Figure 3. Image preprocessing first detects facial feature points on the original images of different sizes in the database, and classifies and detects the positions of the two eyes, the nose and the two corners of the mouth of the face image, and detects a total of 5 feature points. According to the detected feature points, we can perform a face alignment operation to correct the biased face images in the face dataset. The final face clipping operation is to clip the face according to the position of the feature points, and the final captured face image is an image sample with a size of 128×128.
(2)卷积神经网络zy_net的搭建(2) Construction of convolutional neural network zy_net
本发明网络模型包含5个Mlp卷积层,每个卷积层后面跟着1个激励函数层和1个下采样层(Max pooling),最后是2个全连接层和1个Softmax层。下面对网络模型的搭建原理详细介绍:The network model of the present invention includes 5 Mlp convolutional layers, each convolutional layer is followed by an activation function layer and a downsampling layer (Max pooling), and finally 2 fully connected layers and a Softmax layer. The following is a detailed introduction to the construction principle of the network model:
(2-1)卷积层采用Mlp卷积层来提高对人脸的特征提取能力。Mlp卷积层就相当于在传统卷积层后加了多个1×1的卷积层,对于传统卷积层输出的每张特征图都进行再一次的卷积。公式如下:(2-1) The convolutional layer uses the Mlp convolutional layer to improve the feature extraction ability of the face. The Mlp convolutional layer is equivalent to adding multiple 1×1 convolutional layers after the traditional convolutional layer, and performing another convolution on each feature map output by the traditional convolutional layer. The formula is as follows:
......
其中(i,j)表示图片像素点的位置索引,xi,j表示卷积窗口中的图片块,k则表示要提取的特征图的索引。Where (i, j) represents the position index of the image pixel, x i, j represents the image block in the convolution window, and k represents the index of the feature map to be extracted.
(2-2)激励函数使用的MFM激励函数来增加非线性,最大特征映射图(MFM)操作,这是一个扩展MAXOUT激励函数的操作,它可以有效的对噪声信号和信息信号进行分割以提高识别精度。不同于MAXOUT激励函数,MFM使卷积神经网模型更加简单和更具鲁棒性。(2-2) The MFM activation function used by the activation function to increase nonlinearity, the maximum feature map (MFM) operation, which is an operation that extends the MAXOUT activation function, can effectively segment the noise signal and the information signal to improve recognition accuracy. Unlike the MAXOUT activation function, MFM makes the convolutional neural network model simpler and more robust.
(2-3)加入Center Loss损失函数来提高网络对人脸的分类能力。Center Loss损失函数的加入使得类间元素间隔变得更小,便于对未被识别过的人脸特征进行泛化,避免了由于不同类的类间距离太小而发生识别错误。Center Loss损失函数对每一个类都维护一个类中心c,而后在特征层如果该样本里类中心的特征太远就要惩罚。公式为:xi为第i张图片的特征值,cyi是该图片所属分类的中心(该分类的特征值的中心)。(2-3) Add the Center Loss loss function to improve the network's ability to classify faces. The addition of the Center Loss loss function makes the inter-class element spacing smaller, which facilitates the generalization of unrecognized face features, and avoids recognition errors due to too small inter-class distances between different classes. The Center Loss loss function maintains a class center c for each class, and then in the feature layer, if the feature of the class center in the sample is too far away, it will be punished. The formula is: x i is the feature value of the i-th picture, and c yi is the center of the category to which the picture belongs (the center of the feature value of the category).
(3)卷积神经网络zy_net的训练(3) Training of convolutional neural network zy_net
包括前向传播训练和后向传播调优两个步骤。训练过程中采用的图像样本来源于人脸数据库中的训练样本。卷积神经网络结构参数设置:Mlp卷积层的卷积核数量分别设置为96、192、384、256、256个,第一全连接层输出为一个1×512×1×1维的特征向量。最后一层全连接层输出10575个类别。训练过程中卷积神经网络的循环次数为5000000次,以便取得较好的收敛效果。It includes two steps of forward propagation training and backward propagation tuning. The image samples used in the training process come from the training samples in the face database. Convolutional neural network structure parameter setting: the number of convolution kernels of the Mlp convolutional layer is set to 96, 192, 384, 256, and 256 respectively, and the output of the first fully connected layer is a 1×512×1×1-dimensional feature vector . The last fully connected layer outputs 10575 categories. During the training process, the number of cycles of the convolutional neural network is 5,000,000 in order to achieve a better convergence effect.
(3-1)卷积神经网络zy_net的前向训练具体过程如下:(3-1) The specific process of the forward training of the convolutional neural network zy_net is as follows:
(a)卷积层操作:在一个卷积层,上一层的特征图被可学习的卷积核进行卷积,组合这些卷积运算,然后通过一个激励函数就可以得到一个输出的特征图,公式表达如下:(a) Convolutional layer operation: In a convolutional layer, the feature map of the previous layer is convoluted by a learnable convolution kernel, these convolution operations are combined, and then an output feature map can be obtained through an activation function , the formula is expressed as follows:
其中,表示第l层的第j个特征图,f(·)表示激励函数,Mj代表选择的输入图的集合,表示第j个特征图对应的偏置项,代表第l层第j个特征图于第l-1层第i个特征图连接之间的卷积核,“*”表示卷积运算。其中激励函数是MFM激励函数,即神经元的非线性作用函数。in, Represents the jth feature map of the l-th layer, f( ) represents the activation function, Mj represents the set of selected input maps, Indicates the bias item corresponding to the jth feature map, Represents the convolution kernel between the j-th feature map of the l-th layer and the i-th feature map connection of the l-1 layer, "*" indicates the convolution operation. where the activation function Is the MFM activation function, that is, the nonlinear action function of neurons.
(b)下采样层操作。对于下采样层来说,有N个输入图,就有N个输出图,只是每个输出图都变小了,公式表达为:(b) Downsampling layer operation. For the downsampling layer, there are N input images, and there are N output images, but each output image becomes smaller. The formula is expressed as:
其中,down(·)代表下采样函数,典型的操作就是对输入图像的不同N×N大小的区域内所有像素进行求和。表示第l层第j个特征图对应的系数,为其对应的偏置项。Among them, down(·) represents the downsampling function, and the typical operation is to sum all the pixels in different N×N size regions of the input image. Indicates the coefficient corresponding to the jth feature map of the l-th layer, Its corresponding bias term.
(3-2)卷积神经网络的反向调优是采用自顶向下的有监督学习方式进行调优,即使用标签的样本数据进行训练,误差自顶向下进行传输,对网络进行调优。通过调优之后,使得卷积神经网络模型中的每一层隐层的网络权重值都能够达到最优值。卷积神经网络调优过程具体如下:(3-2) The reverse tuning of the convolutional neural network is to use a top-down supervised learning method for tuning, that is, to use labeled sample data for training, and the error is transmitted from top to bottom to tune the network. excellent. After tuning, the network weight value of each hidden layer in the convolutional neural network model can reach the optimal value. The convolutional neural network tuning process is as follows:
(a)卷积层的梯度计算。(a) Gradient calculation for convolutional layers.
假定每个卷积层l都会接一个下采样层l+1,根据经典神经网络的反向传播算法知道,要想得到第l层的每个神经元对应权值的梯度,就需要先求第l的每一个神经节点的残差δ。为了求这个残差,必须先对下一层的节点(连接到当前l的感兴趣节点的第l+1层节点)的残差求和(得到δl+1),然后乘以这些连接对应的权值(连接层第l层节点和第l+1层节点的权值)W,再乘以当前层l的该神经元节点的输入u的激励函数f的导数值,这样也就可以得到当前层l每个神经节点对应的残差。Assuming that each convolutional layer l will be connected to a downsampling layer l+1, according to the backpropagation algorithm of the classical neural network, in order to obtain the gradient of the weight corresponding to each neuron in the lth layer, it is necessary to first obtain the lth The residual δ of each neural node of . In order to find this residual, we must first sum the residuals of the nodes in the next layer (nodes of layer l+1 connected to the node of interest in current l) (to obtain δ l+1 ), and then multiply these connections by the corresponding The weight (the weight of the connection layer node l and the l+1 layer node) W, and then multiplied by the derivative value of the activation function f of the input u of the neuron node of the current layer l, so that we can get The residual corresponding to each neural node in the current layer l.
由于下采样的存在,采样层的一个神经元节点对应的残差δ对应于上一层的输出特征图的一块区域(下采样窗口大小)。因此层l中每个特征图的每个节点只与l+1层中的一个节点连接。上述的残差其实是代价函数对每个神经元的偏导,所以特征图中每个像素都有一个对应的残差,也就组成了特征图对应的残差图。为了有效计算层l的残差,需要上采样下采样层对应的残差图,然后将这个上采样得到的残差图与当前层l的特征图的激励值的偏导数逐元相乘。下采样层特征图的权值都取一个相同值β,所以将上一步骤得到的结果乘以β就完成了第层l残差的计算。这个过程用公式描述为:Due to the existence of downsampling, the residual δ corresponding to a neuron node in the sampling layer corresponds to an area of the output feature map of the previous layer (downsampling window size). Therefore each node of each feature map in layer l is connected to only one node in layer l+1. The above residual is actually the partial derivative of the cost function to each neuron, so each pixel in the feature map has a corresponding residual, which constitutes the residual map corresponding to the feature map. In order to efficiently calculate the residual of layer l, it is necessary to upsample the residual map corresponding to the downsampling layer, and then multiply the residual map obtained by this upsampling with the partial derivative of the excitation value of the feature map of the current layer l. The weights of the feature maps of the downsampling layer all take the same value β, so multiplying the result obtained in the previous step by β completes the calculation of the residual of the first layer l. This process is described by the formula:
其中,*表示点乘运算,即每个像素相乘,up(.)表示一个上采样操作,过程是若下采样的采样因子是n的话,将其每个像素水平水平和垂直方向上拷贝n次,实际上,这个函数可以用Kronecker乘积来实现:Among them, * represents the dot multiplication operation, that is, multiplication of each pixel, and up(.) represents an up-sampling operation. The process is that if the sampling factor of the down-sampling is n, each pixel is copied horizontally and vertically by n Second, in fact, this function can be multiplied by the Kronecker product to fulfill:
这样,对于卷积层一个给定的特征图,就可以计算得到其残差图,通过这个残差图,就可以求得该特征图对应偏置项的梯度及对应卷积核的梯度,见以下公式。In this way, for a given feature map of the convolutional layer, its residual map can be calculated, and through this residual map, the gradient of the bias item corresponding to the feature map and the gradient of the corresponding convolution kernel can be obtained, see The following formula.
其中,J为代价函数,项中在卷积时与逐元素相乘的一块区域,u,v表示特征图中的像坐标。Among them, J is the cost function, item During convolution with An area multiplied element by element, u, v represent the image coordinates in the feature map.
(b)下采样层的梯度计算。(b) Gradient calculation for the downsampling layer.
下采样的前向过程涉及的参数是每个特征图对应的一个乘性因子β和一个偏置项b,若是求得此层的残差图,这两个参数的梯度就很容易求得。在计算卷积核的梯度时需要找到输入图中哪个区域对应输出图中哪个像素,这里需要找到当前层的残差图中哪个区域对应下一层的残差图中的给定像素,这样便能将残差反向传播回去,另外,需要乘以输入区域与输出像素之间的权值,公式表达为:The parameters involved in the forward process of downsampling are a multiplicative factor β and a bias term b corresponding to each feature map. If the residual map of this layer is obtained, the gradient of these two parameters can be easily obtained. When calculating the gradient of the convolution kernel, it is necessary to find which area in the input image corresponds to which pixel in the output image. Here, it is necessary to find which area in the residual image of the current layer corresponds to a given pixel in the residual image of the next layer, so that The residual can be backpropagated back. In addition, it needs to be multiplied by the weight between the input area and the output pixel. The formula is expressed as:
在得到残差图后,乘性因子β和偏置项b的梯度计算过程如以下公式。After obtaining the residual map, the gradient calculation process of the multiplicative factor β and the bias term b is as follows.
其中, in,
(4)人脸分类预测结果和人脸验证结果的输出。(4) Output of face classification prediction results and face verification results.
(4-1)人脸分类预测是将训练好的卷积神经网络模型应用于人脸识别分类中,在测试样本选取10575张不同类别的人脸图像输入到网络模型中,然后输出人脸图像的分类预测结果。网络模型输出10575张人脸图像的识别率,取10575张图像识别率的平均值作为该网络模型对于人脸图像分类的识别结果,通过10575次实验,计算得到模型识别率为90.3%。(4-1) Face classification prediction is to apply the trained convolutional neural network model to face recognition classification, select 10575 face images of different categories in the test sample, input them into the network model, and then output the face image classification prediction results. The network model outputs the recognition rate of 10575 face images, and the average recognition rate of 10575 images is taken as the recognition result of the network model for face image classification. Through 10575 experiments, the calculated model recognition rate is 90.3%.
(4-2)人脸验证数据集采用的是LFW人脸数据库,LFW中一共有3000对同身份的人脸图像以及3000对不同身份的人脸图像。训练时依次将每张图像输入到训练好的网络模型中,最终会得到每张图像的一个1×512×1×1维的特征向量,它就表示该人脸图像的特征并计算每个人脸对的余弦距离之差,选定合适的阈值来判定该人脸对是否属于同一身份。最后将正确的人脸验证次数与6000的比值作为该模型人脸验证的结果,即为人脸验证的准确率,最终模型的人脸验证准确率为92.5%。(4-2) The face verification data set uses the LFW face database. There are 3000 pairs of face images of the same identity and 3000 pairs of face images of different identities in LFW. During training, input each image into the trained network model in turn, and finally get a 1×512×1×1 dimensional feature vector of each image, which represents the features of the face image and calculates the The difference between the cosine distances of the pairs, and select an appropriate threshold to determine whether the face pair belongs to the same identity. Finally, the ratio of the number of correct face verifications to 6000 is taken as the result of face verification of the model, which is the accuracy rate of face verification, and the accuracy rate of face verification of the final model is 92.5%.
本发明基于深度学习的人脸识别方法克服传统人脸识别方法的不足,通过搭建一种新的卷积神经网络模型在CASIA-WebFace人脸数据集上进行大规模训练,其中本发明的网络模型的卷积层采用Mlp卷积层来提高对人脸的特征提取能力,使用MFM激励函数来对模型增加非线性,加入Center Loss损失函数来提高网络对人脸的分类能力。最后将训练好的模型应用于人脸分类预测和人脸验证中。其中在人脸分类预测中取得了90.3%的识别率,在人脸验证实验中取得了92.5%的准确率。本发明为人脸识别提供一种高性能的基于深度学习的人脸识别方法。The face recognition method based on deep learning of the present invention overcomes the deficiencies of traditional face recognition methods, and conducts large-scale training on the CASIA-WebFace face data set by building a new convolutional neural network model, wherein the network model of the present invention The convolutional layer uses the Mlp convolutional layer to improve the feature extraction ability of faces, uses the MFM activation function to add nonlinearity to the model, and adds the Center Loss loss function to improve the network's ability to classify faces. Finally, the trained model is applied to face classification prediction and face verification. Among them, the recognition rate of 90.3% has been achieved in the face classification prediction, and the accuracy rate of 92.5% has been achieved in the face verification experiment. The present invention provides a high-performance face recognition method based on deep learning for face recognition.
以上实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于上述的实施例。上述实施例中所用方法如无特别说明均为常规方法。The above embodiments are implemented on the premise of the technical solutions of the present invention, and detailed implementation methods and specific operation processes are given, but the protection scope of the present invention is not limited to the above embodiments. The methods used in the above examples are conventional methods unless otherwise specified.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810166076.XA CN108427921A (en) | 2018-02-28 | 2018-02-28 | A kind of face identification method based on convolutional neural networks |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810166076.XA CN108427921A (en) | 2018-02-28 | 2018-02-28 | A kind of face identification method based on convolutional neural networks |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN108427921A true CN108427921A (en) | 2018-08-21 |
Family
ID=63157138
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810166076.XA Pending CN108427921A (en) | 2018-02-28 | 2018-02-28 | A kind of face identification method based on convolutional neural networks |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108427921A (en) |
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109214360A (en) * | 2018-10-15 | 2019-01-15 | 北京亮亮视野科技有限公司 | A kind of construction method of the human face recognition model based on ParaSoftMax loss function and application |
| CN109512423A (en) * | 2018-12-06 | 2019-03-26 | 杭州电子科技大学 | A kind of myocardial ischemia Risk Stratification Methods based on determining study and deep learning |
| CN109670506A (en) * | 2018-11-05 | 2019-04-23 | 中国科学院计算技术研究所 | Scene Segmentation and system based on Kronecker convolution |
| CN109815814A (en) * | 2018-12-21 | 2019-05-28 | 天津大学 | A face detection method based on convolutional neural network |
| CN110119686A (en) * | 2019-04-17 | 2019-08-13 | 电子科技大学 | A kind of safety cap real-time detection method based on convolutional neural networks |
| CN110210325A (en) * | 2019-05-09 | 2019-09-06 | 五邑大学 | A kind of human face recognition model construction method and its system, device, storage medium |
| CN110228673A (en) * | 2019-04-17 | 2019-09-13 | 华南师范大学 | A kind of intelligent classification dustbin |
| CN110472495A (en) * | 2019-07-08 | 2019-11-19 | 南京邮电大学盐城大数据研究院有限公司 | A Deep Learning Face Recognition Method Based on Graph Reasoning Global Features |
| CN110781829A (en) * | 2019-10-28 | 2020-02-11 | 华北电力大学 | A lightweight deep learning face recognition method for smart business halls |
| CN110781724A (en) * | 2018-09-11 | 2020-02-11 | 开放智能机器(上海)有限公司 | Face recognition neural network, method, device, equipment and storage medium |
| CN110889487A (en) * | 2018-09-10 | 2020-03-17 | 富士通株式会社 | Neural network architecture search apparatus and method and computer readable recording medium |
| CN111144392A (en) * | 2019-11-21 | 2020-05-12 | 贵州财经大学 | A very low-power optical target detection method and device based on neural network |
| CN111539247A (en) * | 2020-03-10 | 2020-08-14 | 西安电子科技大学 | A kind of hyperspectral face recognition method, device, electronic device and storage medium thereof |
| CN111583502A (en) * | 2020-05-08 | 2020-08-25 | 辽宁科技大学 | A multi-label recognition method for the renminbi title number based on deep convolutional neural network |
| CN112069895A (en) * | 2020-08-03 | 2020-12-11 | 广州杰赛科技股份有限公司 | Small target face recognition method and device |
| CN112232184A (en) * | 2020-10-14 | 2021-01-15 | 南京邮电大学 | A multi-angle face recognition method based on deep learning and spatial transformation network |
| CN112446267A (en) * | 2019-09-04 | 2021-03-05 | 北京君正集成电路股份有限公司 | Setting method of face recognition network suitable for front end |
| CN112541521A (en) * | 2020-11-12 | 2021-03-23 | 南京市公安局栖霞分局 | Method for identifying ground pressed area of entrance and exit of house |
| CN112766097A (en) * | 2021-01-06 | 2021-05-07 | 中国科学院上海微系统与信息技术研究所 | Sight line recognition model training method, sight line recognition method, device and equipment |
| CN113069080A (en) * | 2021-03-22 | 2021-07-06 | 上海交通大学医学院附属第九人民医院 | Difficult airway assessment method and device based on artificial intelligence |
| WO2021134871A1 (en) * | 2019-12-30 | 2021-07-08 | 深圳市爱协生科技有限公司 | Forensics method for synthesized face image based on local binary pattern and deep learning |
| CN113192240A (en) * | 2021-03-12 | 2021-07-30 | 广州朗国电子科技有限公司 | Deep learning-based identification module identification method, equipment and medium |
| CN113283312A (en) * | 2021-05-08 | 2021-08-20 | 江苏商贸职业学院 | Improved DeNet-5 embedded face recognition method and system |
| CN115510905A (en) * | 2022-09-26 | 2022-12-23 | 电子科技大学 | Multitask learning method for blind identification of channel coding |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104866810A (en) * | 2015-04-10 | 2015-08-26 | 北京工业大学 | Face recognition method of deep convolutional neural network |
| CN106204779A (en) * | 2016-06-30 | 2016-12-07 | 陕西师范大学 | Classroom attendance method based on multi-face data acquisition strategy and deep learning |
| WO2017214968A1 (en) * | 2016-06-17 | 2017-12-21 | Nokia Technologies Oy | Method and apparatus for convolutional neural networks |
-
2018
- 2018-02-28 CN CN201810166076.XA patent/CN108427921A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104866810A (en) * | 2015-04-10 | 2015-08-26 | 北京工业大学 | Face recognition method of deep convolutional neural network |
| WO2017214968A1 (en) * | 2016-06-17 | 2017-12-21 | Nokia Technologies Oy | Method and apparatus for convolutional neural networks |
| CN106204779A (en) * | 2016-06-30 | 2016-12-07 | 陕西师范大学 | Classroom attendance method based on multi-face data acquisition strategy and deep learning |
Non-Patent Citations (1)
| Title |
|---|
| 范自柱: "《新型特征抽取算法研究》", 31 December 2016, 合肥:中国科学技术大学出版社 * |
Cited By (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110889487A (en) * | 2018-09-10 | 2020-03-17 | 富士通株式会社 | Neural network architecture search apparatus and method and computer readable recording medium |
| CN110781724A (en) * | 2018-09-11 | 2020-02-11 | 开放智能机器(上海)有限公司 | Face recognition neural network, method, device, equipment and storage medium |
| CN109214360B (en) * | 2018-10-15 | 2021-03-26 | 北京亮亮视野科技有限公司 | Construction method and application of face recognition model based on Parasoft Max loss function |
| CN109214360A (en) * | 2018-10-15 | 2019-01-15 | 北京亮亮视野科技有限公司 | A kind of construction method of the human face recognition model based on ParaSoftMax loss function and application |
| CN109670506A (en) * | 2018-11-05 | 2019-04-23 | 中国科学院计算技术研究所 | Scene Segmentation and system based on Kronecker convolution |
| CN109512423A (en) * | 2018-12-06 | 2019-03-26 | 杭州电子科技大学 | A kind of myocardial ischemia Risk Stratification Methods based on determining study and deep learning |
| CN109815814A (en) * | 2018-12-21 | 2019-05-28 | 天津大学 | A face detection method based on convolutional neural network |
| CN109815814B (en) * | 2018-12-21 | 2023-01-24 | 天津大学 | Face detection method based on convolutional neural network |
| CN110119686B (en) * | 2019-04-17 | 2020-09-25 | 电子科技大学 | A real-time detection method of safety helmet based on convolutional neural network |
| CN110119686A (en) * | 2019-04-17 | 2019-08-13 | 电子科技大学 | A kind of safety cap real-time detection method based on convolutional neural networks |
| CN110228673A (en) * | 2019-04-17 | 2019-09-13 | 华南师范大学 | A kind of intelligent classification dustbin |
| CN110210325A (en) * | 2019-05-09 | 2019-09-06 | 五邑大学 | A kind of human face recognition model construction method and its system, device, storage medium |
| CN110472495A (en) * | 2019-07-08 | 2019-11-19 | 南京邮电大学盐城大数据研究院有限公司 | A Deep Learning Face Recognition Method Based on Graph Reasoning Global Features |
| CN112446267A (en) * | 2019-09-04 | 2021-03-05 | 北京君正集成电路股份有限公司 | Setting method of face recognition network suitable for front end |
| CN112446267B (en) * | 2019-09-04 | 2023-05-05 | 北京君正集成电路股份有限公司 | Setting method of face recognition network suitable for front end |
| CN110781829A (en) * | 2019-10-28 | 2020-02-11 | 华北电力大学 | A lightweight deep learning face recognition method for smart business halls |
| CN111144392A (en) * | 2019-11-21 | 2020-05-12 | 贵州财经大学 | A very low-power optical target detection method and device based on neural network |
| CN111144392B (en) * | 2019-11-21 | 2025-08-29 | 国网新疆电力有限公司昌吉供电公司 | A neural network-based method and device for detecting extremely low-power optical targets |
| WO2021134871A1 (en) * | 2019-12-30 | 2021-07-08 | 深圳市爱协生科技有限公司 | Forensics method for synthesized face image based on local binary pattern and deep learning |
| CN111539247A (en) * | 2020-03-10 | 2020-08-14 | 西安电子科技大学 | A kind of hyperspectral face recognition method, device, electronic device and storage medium thereof |
| CN111539247B (en) * | 2020-03-10 | 2023-02-10 | 西安电子科技大学 | A hyperspectral face recognition method, device, electronic equipment and storage medium thereof |
| CN111583502A (en) * | 2020-05-08 | 2020-08-25 | 辽宁科技大学 | A multi-label recognition method for the renminbi title number based on deep convolutional neural network |
| CN112069895A (en) * | 2020-08-03 | 2020-12-11 | 广州杰赛科技股份有限公司 | Small target face recognition method and device |
| CN112232184A (en) * | 2020-10-14 | 2021-01-15 | 南京邮电大学 | A multi-angle face recognition method based on deep learning and spatial transformation network |
| CN112232184B (en) * | 2020-10-14 | 2022-08-26 | 南京邮电大学 | Multi-angle face recognition method based on deep learning and space conversion network |
| CN112541521A (en) * | 2020-11-12 | 2021-03-23 | 南京市公安局栖霞分局 | Method for identifying ground pressed area of entrance and exit of house |
| CN112766097A (en) * | 2021-01-06 | 2021-05-07 | 中国科学院上海微系统与信息技术研究所 | Sight line recognition model training method, sight line recognition method, device and equipment |
| CN112766097B (en) * | 2021-01-06 | 2024-02-13 | 中国科学院上海微系统与信息技术研究所 | Sight line recognition model training method, sight line recognition device and sight line recognition equipment |
| CN113192240A (en) * | 2021-03-12 | 2021-07-30 | 广州朗国电子科技有限公司 | Deep learning-based identification module identification method, equipment and medium |
| CN113069080A (en) * | 2021-03-22 | 2021-07-06 | 上海交通大学医学院附属第九人民医院 | Difficult airway assessment method and device based on artificial intelligence |
| CN113283312A (en) * | 2021-05-08 | 2021-08-20 | 江苏商贸职业学院 | Improved DeNet-5 embedded face recognition method and system |
| CN113283312B (en) * | 2021-05-08 | 2023-10-17 | 江苏商贸职业学院 | An improved LeNet-5 embedded face recognition method and system |
| CN115510905A (en) * | 2022-09-26 | 2022-12-23 | 电子科技大学 | Multitask learning method for blind identification of channel coding |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108427921A (en) | A kind of face identification method based on convolutional neural networks | |
| CN112926396B (en) | Action identification method based on double-current convolution attention | |
| CN112766158B (en) | Face occlusion expression recognition method based on multi-task cascade | |
| CN107368831B (en) | English words and digit recognition method in a kind of natural scene image | |
| CN109615582B (en) | A Face Image Super-resolution Reconstruction Method Based on Attribute Description Generative Adversarial Network | |
| CN108960127B (en) | Re-identification of occluded pedestrians based on adaptive deep metric learning | |
| CN105975931B (en) | A Convolutional Neural Network Face Recognition Method Based on Multi-scale Pooling | |
| CN103605972B (en) | Non-restricted environment face verification method based on block depth neural network | |
| CN104077613B (en) | Crowd density estimation method based on cascaded multilevel convolution neural network | |
| CN111339988B (en) | Video face recognition method based on dynamic interval loss function and probability characteristic | |
| CN105138973B (en) | The method and apparatus of face authentication | |
| CN109359608B (en) | A face recognition method based on deep learning model | |
| CN114299559A (en) | Finger vein identification method based on lightweight fusion global and local feature network | |
| CN112597866B (en) | A Visible-Infrared Cross-modal Person Re-identification Method Based on Knowledge Distillation | |
| CN105138998B (en) | Pedestrian based on the adaptive sub-space learning algorithm in visual angle recognition methods and system again | |
| CN107977932A (en) | It is a kind of based on can differentiate attribute constraint generation confrontation network face image super-resolution reconstruction method | |
| CN104636732B (en) | A kind of pedestrian recognition method based on the deep belief network of sequence | |
| CN112766229A (en) | Human face point cloud image intelligent identification system and method based on attention mechanism | |
| CN116311387B (en) | A cross-modal person re-identification method based on feature intersection | |
| CN107491729B (en) | Handwritten digit recognition method based on cosine similarity activated convolutional neural network | |
| CN113205103A (en) | A Lightweight Tattoo Detection Method | |
| CN117831138A (en) | Multi-mode biological feature recognition method based on third-order knowledge distillation | |
| CN108520213A (en) | A face beauty prediction method based on multi-scale depth | |
| CN108009512A (en) | A kind of recognition methods again of the personage based on convolutional neural networks feature learning | |
| CN114937298A (en) | Micro-expression recognition method based on feature decoupling |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180821 |
|
| RJ01 | Rejection of invention patent application after publication |