CN108399435B - 一种基于动静特征的视频分类方法 - Google Patents
一种基于动静特征的视频分类方法 Download PDFInfo
- Publication number
- CN108399435B CN108399435B CN201810237226.1A CN201810237226A CN108399435B CN 108399435 B CN108399435 B CN 108399435B CN 201810237226 A CN201810237226 A CN 201810237226A CN 108399435 B CN108399435 B CN 108399435B
- Authority
- CN
- China
- Prior art keywords
- frame
- video
- motion
- dynamic
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/50—Extraction of image or video features by performing operations within image blocks; by using histograms, e.g. histogram of oriented gradients [HoG]; by summing image-intensity values; Projection analysis
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20024—Filtering details
- G06T2207/20032—Median filtering
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Probability & Statistics with Applications (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810237226.1A CN108399435B (zh) | 2018-03-21 | 2018-03-21 | 一种基于动静特征的视频分类方法 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810237226.1A CN108399435B (zh) | 2018-03-21 | 2018-03-21 | 一种基于动静特征的视频分类方法 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108399435A CN108399435A (zh) | 2018-08-14 |
| CN108399435B true CN108399435B (zh) | 2020-09-25 |
Family
ID=63091556
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810237226.1A Active CN108399435B (zh) | 2018-03-21 | 2018-03-21 | 一种基于动静特征的视频分类方法 |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108399435B (zh) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109446872B (zh) * | 2018-08-24 | 2022-04-19 | 南京理工大学 | 一种基于递归神经网络的群体动作识别方法 |
| CN109522937B (zh) * | 2018-10-23 | 2021-02-19 | 北京市商汤科技开发有限公司 | 图像处理方法及装置、电子设备和存储介质 |
| CN109523993B (zh) * | 2018-11-02 | 2022-02-08 | 深圳市网联安瑞网络科技有限公司 | 一种基于cnn与gru融合深度神经网络的语音语种分类方法 |
| US11593581B2 (en) | 2019-02-28 | 2023-02-28 | Stats Llc | System and method for calibrating moving camera capturing broadcast video |
| CN109903339B (zh) * | 2019-03-26 | 2021-03-05 | 南京邮电大学 | 一种基于多维融合特征的视频群体人物定位检测方法 |
| CN111309035B (zh) * | 2020-05-14 | 2022-03-04 | 浙江远传信息技术股份有限公司 | 多机器人协同移动与动态避障方法、装置、设备及介质 |
| CN112308306A (zh) * | 2020-10-27 | 2021-02-02 | 贵州工程应用技术学院 | 一种多模态输入的煤与瓦斯突出危险预测方法 |
| CN112633261A (zh) * | 2021-03-09 | 2021-04-09 | 北京世纪好未来教育科技有限公司 | 图像检测方法、装置、设备及存储介质 |
| CN113221694B (zh) | 2021-04-29 | 2023-08-01 | 苏州大学 | 一种动作识别方法 |
| CN117173605B (zh) * | 2023-07-21 | 2025-10-10 | 赣州职业技术学院 | 一种基于Farneback-GRU的稀土熔盐反应状态识别方法 |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106778854B (zh) * | 2016-12-07 | 2019-12-24 | 西安电子科技大学 | 基于轨迹和卷积神经网络特征提取的行为识别方法 |
| CN107169415B (zh) * | 2017-04-13 | 2019-10-11 | 西安电子科技大学 | 基于卷积神经网络特征编码的人体动作识别方法 |
| CN107346414B (zh) * | 2017-05-24 | 2020-06-12 | 北京航空航天大学 | 行人属性识别方法和装置 |
| CN107330362B (zh) * | 2017-05-25 | 2020-10-09 | 北京大学 | 一种基于时空注意力的视频分类方法 |
| CN107316005B (zh) * | 2017-06-06 | 2020-04-14 | 西安电子科技大学 | 基于稠密轨迹核协方差描述子的行为识别方法 |
-
2018
- 2018-03-21 CN CN201810237226.1A patent/CN108399435B/zh active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN108399435A (zh) | 2018-08-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108399435B (zh) | 一种基于动静特征的视频分类方法 | |
| CN112200111B (zh) | 一种全局与局部特征融合的遮挡鲁棒行人重识别方法 | |
| CN109858390B (zh) | 基于端到端时空图学习神经网络的人体骨架行为识别方法 | |
| Si et al. | Skeleton-based action recognition with spatial reasoning and temporal stack learning | |
| CN108898620B (zh) | 基于多重孪生神经网络与区域神经网络的目标跟踪方法 | |
| CN107767405B (zh) | 一种融合卷积神经网络的核相关滤波目标跟踪方法 | |
| CN106056628B (zh) | 基于深度卷积神经网络特征融合的目标跟踪方法及系统 | |
| CN102930302B (zh) | 基于在线序贯极限学习机的递增式人体行为识别方法 | |
| CN107633226B (zh) | 一种人体动作跟踪特征处理方法 | |
| CN108764308A (zh) | 一种基于卷积循环网络的行人重识别方法 | |
| CN109948561A (zh) | 基于迁移网络的无监督图像视频行人重识别的方法及系统 | |
| CN108960140A (zh) | 基于多区域特征提取和融合的行人再识别方法 | |
| CN110781790A (zh) | 基于卷积神经网络与vlad的视觉slam闭环检测方法 | |
| CN107067410B (zh) | 一种基于增广样本的流形正则化相关滤波目标跟踪方法 | |
| CN109801311B (zh) | 一种基于深度残差网络特征的视觉目标跟踪方法 | |
| CN107767416B (zh) | 一种低分辨率图像中行人朝向的识别方法 | |
| CN109753897B (zh) | 基于记忆单元强化-时序动态学习的行为识别方法 | |
| CN105809672A (zh) | 一种基于超像素和结构化约束的图像多目标协同分割方法 | |
| CN106296734B (zh) | 基于极限学习机和boosting多核学习的目标跟踪方法 | |
| CN111242003B (zh) | 一种基于多尺度受约束自注意机制的视频显著性物体检测的方法 | |
| CN103065158A (zh) | 基于相对梯度的isa模型的行为识别方法 | |
| Su et al. | Transfer learning for video recognition with scarce training data for deep convolutional neural network | |
| CN105989369A (zh) | 基于度量学习的行人再识别方法 | |
| CN107609509A (zh) | 一种基于运动显著性区域检测的动作识别方法 | |
| Wang et al. | Hierarchical spatiotemporal context-aware correlation filters for visual tracking |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB02 | Change of applicant information | ||
| CB02 | Change of applicant information |
Address after: No.66 xinmodel Road, Gulou District, Nanjing City, Jiangsu Province Applicant after: NANJING University OF POSTS AND TELECOMMUNICATIONS Address before: No. 9, Wen Yuan Road, Xincheng, Ya Dong, Nanjing, Jiangsu Applicant before: NANJING University OF POSTS AND TELECOMMUNICATIONS |
|
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| EE01 | Entry into force of recordation of patent licensing contract | ||
| EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20180814 Assignee: Hongzhen Technology Co.,Ltd. Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS Contract record no.: X2020980007073 Denomination of invention: A video classification method based on dynamic and static features Granted publication date: 20200925 License type: Common License Record date: 20201023 |
|
| EC01 | Cancellation of recordation of patent licensing contract | ||
| EC01 | Cancellation of recordation of patent licensing contract |
Assignee: Hongzhen Technology Co.,Ltd. Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS Contract record no.: X2020980007073 Date of cancellation: 20220304 |