CN108399362A - A kind of rapid pedestrian detection method and device - Google Patents
A kind of rapid pedestrian detection method and device Download PDFInfo
- Publication number
- CN108399362A CN108399362A CN201810069322.XA CN201810069322A CN108399362A CN 108399362 A CN108399362 A CN 108399362A CN 201810069322 A CN201810069322 A CN 201810069322A CN 108399362 A CN108399362 A CN 108399362A
- Authority
- CN
- China
- Prior art keywords
- layer
- network
- target
- neural network
- convolutional neural
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
- G06F18/24137—Distances to cluster centroïds
- G06F18/2414—Smoothing the distance, e.g. radial basis function networks [RBFN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0495—Quantised networks; Sparse networks; Compressed networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/103—Static body considered as a whole, e.g. static pedestrian or occupant recognition
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Human Computer Interaction (AREA)
- Medical Informatics (AREA)
- Databases & Information Systems (AREA)
- Biodiversity & Conservation Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
技术领域technical field
本发明涉及行人检测技术领域,特别是涉及一种基于深度学习的面向嵌入式系统的快速行人检测方法及装置。The invention relates to the technical field of pedestrian detection, in particular to a deep learning-based fast pedestrian detection method and device for embedded systems.
背景技术Background technique
作为计算机视觉中目标检测的一部分,行人检测在现实世界的应用有着重要意义,随着图像采集技术的成熟与存储技术成本的下降,越来越多的摄像机被部署在公共场所,另一方面,随着自动驾驶、智能交通的推行,车载摄像头也产生了海量的视频资源。传统的人工筛选和处理,不仅效率低下,耗费大量人力物力,而且可能引入一些人为因素,导致一些偏差。近年来,深度学习在计算机视觉领域取得前所未有的突破,不仅效率远胜人力,准确度在很多领域也超过人类。因此,有效利用深度学习的方法进行行人检测的课题备受关注。As a part of object detection in computer vision, pedestrian detection is of great significance in real-world applications. With the maturity of image acquisition technology and the decline of storage technology costs, more and more cameras are deployed in public places. On the other hand, With the implementation of autonomous driving and intelligent transportation, car cameras have also produced massive video resources. Traditional manual screening and processing is not only inefficient and consumes a lot of manpower and material resources, but also may introduce some human factors, resulting in some deviations. In recent years, deep learning has made unprecedented breakthroughs in the field of computer vision. Not only is the efficiency far superior to that of manpower, but its accuracy also exceeds that of humans in many fields. Therefore, the subject of effective use of deep learning methods for pedestrian detection has attracted much attention.
人是视频监控或自动驾驶中最主要的目标之一,而行人检测的首要任务就是识别人体的存在,并提供相应的标注信息。由于在现实世界中捕捉到的图像质量参差不齐,对于小物体、遮挡的物体的检测一直是行人检测的难点,另一方面,车载摄像头也经常会捕捉到一些模糊的图像,这样的图像中也存在大量类似行人却不是行人的物体。而具体到嵌入式系统,由于识别能力强的大型神经网络模型通常难以有效率的运行在计算资源有限的嵌入式设备上,而对于嵌入式设备的应用需求又是实时的,因此兼顾检测准确率和效率是面向嵌入式系统的快速行人检测的重中之重。People are one of the most important targets in video surveillance or automatic driving, and the primary task of pedestrian detection is to identify the existence of human bodies and provide corresponding annotation information. Due to the uneven quality of images captured in the real world, the detection of small objects and occluded objects has always been a difficult point in pedestrian detection. On the other hand, vehicle cameras often capture some blurred images. In such images There are also a large number of pedestrian-like objects that are not pedestrians. As for embedded systems, since large-scale neural network models with strong recognition capabilities are usually difficult to efficiently run on embedded devices with limited computing resources, and the application requirements for embedded devices are real-time, so the detection accuracy And efficiency is the top priority for fast pedestrian detection for embedded systems.
发明内容Contents of the invention
为克服上述现有技术存在的不足,本发明之一目的在于提供一种快速行人检测方法及装置,通过利用神经网络感知域的变化规律,使用不同的中间层对特定尺度范围内的目标物体进行检测,更好的适应了感知域与物体大小的关系,有效提高了检测结果。In order to overcome the deficiencies in the above-mentioned prior art, one object of the present invention is to provide a fast pedestrian detection method and device, by using the change rule of the neural network perceptual domain, using different intermediate layers to detect target objects within a specific scale range Detection, better adapted to the relationship between the perception domain and the size of the object, effectively improving the detection results.
本发明之另一目的在于提供一种快速行人检测方法及装置,通过调整并训练VGG-16的网络得到适应嵌入式系统要求的squeeze VGG-16网络,有效降低了网络模型的参数量并加快了计算效率。Another object of the present invention is to provide a kind of fast pedestrian detection method and device, obtain the squeeze VGG-16 network that adapts to the requirement of embedded system by adjusting and training the network of VGG-16, effectively reduce the parameter quantity of network model and accelerate Computational efficiency.
本发明之再一目的在于提供一种快速行人检测方法及装置,通过去卷积的方法对特定网络层的特征图进行放大,增强了对小物体的检测,相比于传统图片放大的方法,几乎不增加显存和计算量。Another object of the present invention is to provide a fast pedestrian detection method and device, which can amplify the feature map of a specific network layer through deconvolution, which enhances the detection of small objects. Compared with the traditional image enlargement method, Almost no increase in video memory and calculation.
本发明之又一目的在于提供一种快速行人检测方法及装置,通过使用目标对象1.5倍大小的区域作为背景语义特征增加到网络中,对于模糊物体和远距离小物体的检测,有着极佳的性能。Yet another object of the present invention is to provide a fast pedestrian detection method and device, by using an area 1.5 times the size of the target object as the background semantic feature and adding it to the network, it has excellent detection of fuzzy objects and long-distance small objects performance.
为达上述及其它目的,本发明提出一种快速行人检测方法,包括如下步骤:In order to achieve the above and other purposes, the present invention proposes a rapid pedestrian detection method, which includes the following steps:
步骤S1,构建可配置的基于卷积神经网络的深度模型,利用训练样本学习出构建的网络参数,获得用于测试过程的模型;Step S1, constructing a configurable deep model based on convolutional neural network, using training samples to learn the constructed network parameters, and obtaining a model for the testing process;
步骤S2,输入测试样本,通过训练好的模型利用神经网络感知域的变化规律使用不同的中间层对不同尺度范围内的目标物体进行检测,预测出图像中目标物体的框图。Step S2, input test samples, use different intermediate layers to detect target objects in different scale ranges through the trained model, and use the changing rules of the neural network perceptual domain to predict the block diagram of the target object in the image.
优选地,步骤S1进一步包括:Preferably, step S1 further includes:
构建可配置的基于卷积神经网络的深度模型;Build configurable convolutional neural network-based deep models;
输入训练样本;input training samples;
初始化卷积神经网络及其参数,包括网络层中每层连接的权重和偏置;Initialize the convolutional neural network and its parameters, including the weights and biases of each layer connection in the network layer;
采用前向传播算法和后向传播算法,利用训练样本学习出构建的网络参数,即用于测试过程的模型。The forward propagation algorithm and the backward propagation algorithm are used to learn the constructed network parameters by using the training samples, that is, the model used for the testing process.
优选地,所述该深度模型包括多尺度的目标候选网络与目标检测网络,所述目标候选网络基于卷积神经网络不同层提出特征的差异性,在中间层分别生成对不同尺度目标物体的候选框图;所述目标检测网络在所述目标候选网络输出的候选框图的基础上进行精细化的分类和检测。Preferably, the depth model includes a multi-scale target candidate network and a target detection network, and the target candidate network is based on the differences in features proposed by different layers of the convolutional neural network, and generates candidates for target objects of different scales in the middle layer. Block diagram: the target detection network performs refined classification and detection on the basis of the candidate block diagram output by the target candidate network.
优选地,所述卷积神经网络由卷积层、降采样层、上采样层堆叠而成。所述卷积层是指对输入的图像或者特征图在二维空间上进行卷积运算,提取层次化特征;所述降采样层使用没有重叠的max-pooling操作,该操作用于提取形状和偏移不变的特征,同时减少特征图大小,提高计算效率;所述上采样层,是指对输入的特征图在二维空间上进行去卷积的操作,用以增大特征图的像素。Preferably, the convolutional neural network is formed by stacking convolutional layers, downsampling layers, and upsampling layers. The convolution layer refers to performing a convolution operation on the input image or feature map in a two-dimensional space to extract hierarchical features; the downsampling layer uses a max-pooling operation without overlap, which is used to extract shape and Offset features are constant, while reducing the size of the feature map and improving computational efficiency; the upsampling layer refers to the deconvolution operation on the input feature map in two-dimensional space to increase the pixels of the feature map .
优选地,所述深度模型采用Squeeze VGG-16卷积神经网络作为骨干网络,所述Squeeze VGG-16卷积神经网络采用conv1-1层和紧随其后的12层Fire模块层为特征提取的网络结构。Preferably, the depth model adopts the Squeeze VGG-16 convolutional neural network as the backbone network, and the Squeeze VGG-16 convolutional neural network adopts the conv1-1 layer and the following 12-layer Fire module layer as feature extraction network structure.
优选地,所述目标候选网络在所述Squeeze VGG-16卷积神经网络基础上,根据卷积层特征,在Fire9、Fire12、conv6以及增加的pooling层,产生网络分支,以进行不同尺度检测到物体的候选框的回归。Preferably, the target candidate network is based on the Squeeze VGG-16 convolutional neural network, according to the convolutional layer features, in Fire9, Fire12, conv6 and the added pooling layer, to generate network branches to detect different scales Regression of object proposals.
优选地,所述目标检测网络在所述目标候选区域的基础上,将目标候选区域预设倍数大小的图片区域作为目标的背景语义信息,将Fire9层的特征图进行一次上采样,作为增强对小物体感知的信息,并将背景语义信息与上采样信息经过感兴趣区域的池化获得固定大小的特征,之后增加一层全连接层,进行类别和最终候选框的回归。Preferably, on the basis of the target candidate area, the target detection network uses the image area of the preset multiple size of the target candidate area as the background semantic information of the target, and performs an upsampling of the feature map of the Fire9 layer as an enhanced pair The information perceived by small objects, and the background semantic information and upsampling information are pooled in the region of interest to obtain fixed-size features, and then a fully connected layer is added to perform category and final candidate frame regression.
优选地,所述训练样本包括RGB图像数据和图像中行人区域的标注信息,实际训练用的图像数据是根据行人所在区域裁剪得到的小的patch。Preferably, the training samples include RGB image data and label information of the pedestrian area in the image, and the image data for actual training is a small patch cut out according to the area where the pedestrian is located.
优选地,所述后向传播算法,需先求出正向传播预测的目标框图与图像实际目标框图的损失函数然后求得其对参数W的梯度,采用梯度下降的算法更新W以最小化损失函数假定中间层有M个分支可以输出目标候选区域,lm表示分支m的损失函数,αm表示lm函数的权重,S={S1,S2,…,SM}指相应尺度的目标对象,则损失函数可定义为:Preferably, the backward propagation algorithm needs to first obtain the loss function between the target block diagram predicted by the forward propagation and the actual target block diagram of the image Then obtain its gradient to the parameter W, and use the gradient descent algorithm to update W to minimize the loss function Assume that there are M branches in the middle layer that can output the target candidate area, l m represents the loss function of branch m, α m represents the weight of the l m function, S={S 1 , S 2 ,...,S M } refers to the target of the corresponding scale object, the loss function can be defined as:
为达到上述目的,本发明还提供一种快速行人检测系统,包括:To achieve the above purpose, the present invention also provides a rapid pedestrian detection system, including:
训练单元,用于构建可配置的基于卷积神经网络的深度模型,利用训练样本学习出构建的网络参数,获得用于测试过程的模型;The training unit is used to build a configurable deep model based on convolutional neural network, use training samples to learn the constructed network parameters, and obtain a model for the testing process;
检测单元,用于输入测试样本,通过训练好的模型利用神经网络感知域的变化规律使用不同的中间层对不同尺度范围内的目标物体进行检测,预测出图像中目标物体的框图。The detection unit is used to input test samples, and use different intermediate layers to detect target objects in different scale ranges by using the trained model and using the changing law of the neural network perceptual domain, and predict the block diagram of the target object in the image.
与现有技术相比,本发明一种快速行人检测方法及装置借鉴压缩网络的方法,调整并训练VGG-16的网络得到适应嵌入式系统要求的squeeze VGG-16网络,有效降低了网络模型的参数量并加快了计算效率;另一方面,针对传统检测方法中感知域与物体大小不一致的问题,本发明利用神经网络感知域的变化规律(即神经网络层越深,感知域越大,适合检测大一些的目标物体),使用不同的中间层对特定尺度范围内的目标物体进行检测,更好的适应了感知域与物体大小的关系,有效提高了检测结果;另外,为了增强对小物体的检测,本发明使用去卷积的方法对特定网络层的特征图进行放大,相比于传统图片放大的方法,几乎不增加显存和计算量;为了增强对于模糊物体的检测,在该层的特征图上,使用目标对象1.5倍大小的区域作为背景语义特征增加到网络中,对于模糊物体和远距离小物体的检测,有着极佳的性能。Compared with the prior art, a fast pedestrian detection method and device of the present invention learn from the method of compressing the network, adjust and train the VGG-16 network to obtain a squeeze VGG-16 network that meets the requirements of the embedded system, and effectively reduce the network model. parameter quantity and speed up the calculation efficiency; on the other hand, in view of the problem that the perception domain and the size of the object are inconsistent in the traditional detection method, the present invention utilizes the change rule of the neural network perception domain (that is, the deeper the neural network layer, the larger the perception domain, suitable for Detect larger target objects), use different intermediate layers to detect target objects within a specific scale range, better adapt to the relationship between the perception domain and the size of the object, and effectively improve the detection results; in addition, in order to enhance the detection of small objects detection, the present invention uses a deconvolution method to amplify the feature map of a specific network layer, compared to the traditional image magnification method, which hardly increases the amount of video memory and calculation; in order to enhance the detection of fuzzy objects, in this layer On the feature map, the area 1.5 times the size of the target object is used as the background semantic feature to add to the network. It has excellent performance for the detection of fuzzy objects and long-distance small objects.
附图说明Description of drawings
图1为本发明一种快速行人检测方法的步骤流程图;Fig. 1 is a flow chart of the steps of a fast pedestrian detection method of the present invention;
图2为本发明具体实施例中Squeeze VGG-16神经网络结构示意图;Fig. 2 is the schematic diagram of Squeeze VGG-16 neural network structure in the specific embodiment of the present invention;
图3为本发明具体实施例中Fire模块的示意图;Fig. 3 is the schematic diagram of Fire module in the specific embodiment of the present invention;
图4为本发明具体实施例中目标候选网络的结构示意图;4 is a schematic structural diagram of a target candidate network in a specific embodiment of the present invention;
图5为本发明具体实施例中目标检测网络的结构示意图;5 is a schematic structural diagram of a target detection network in a specific embodiment of the present invention;
图6为本发明具体实施例中快速行人检测的过程示意图;6 is a schematic diagram of the process of rapid pedestrian detection in a specific embodiment of the present invention;
图7为本发明一种快速行人检测装置的系统架构图;Fig. 7 is a system architecture diagram of a fast pedestrian detection device of the present invention;
图8为本发明具体实施例中训练单元的细部结构图;Fig. 8 is a detailed structural diagram of a training unit in a specific embodiment of the present invention;
图9为本发明具体实施例中检测单元的细部结构图。Fig. 9 is a detailed structure diagram of a detection unit in a specific embodiment of the present invention.
具体实施方式Detailed ways
以下通过特定的具体实例并结合附图说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其它优点与功效。本发明亦可通过其它不同的具体实例加以施行或应用,本说明书中的各项细节亦可基于不同观点与应用,在不背离本发明的精神下进行各种修饰与变更。The implementation of the present invention is described below through specific examples and in conjunction with the accompanying drawings, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific examples, and various modifications and changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention.
图1为本发明一种快速行人检测方法的步骤流程图。如图1所示,本发明一种快速行人检测方法,包括如下步骤:FIG. 1 is a flow chart of steps of a rapid pedestrian detection method of the present invention. As shown in Figure 1, a kind of fast pedestrian detection method of the present invention comprises the following steps:
步骤S1,构建可配置的基于卷积神经网络的深度模型,利用训练样本学习出构建的网络参数,获得用于测试过程的模型。在本发明具体实施例中,该深度模型由两个子网路组成:第一个子网络,为多尺度的目标候选网络,用于提取人物特征并给出候选区域,具体地,该目标候选网络基于卷积神经网络不同层提出特征的差异性,在中间层分别生成对不同尺度行人的候选框图;第二个子网络,为目标检测网络,增强检测的效果,其与目标候选网络共享参数,在候选框图的基础上进行精细化的分类和检测。具体地,步骤S1进一步包括:Step S1, constructing a configurable deep model based on convolutional neural network, using training samples to learn the constructed network parameters, and obtaining a model for the testing process. In a specific embodiment of the present invention, the depth model is composed of two sub-networks: the first sub-network is a multi-scale target candidate network, which is used to extract character features and give candidate areas, specifically, the target candidate network Based on the differences in features proposed by different layers of the convolutional neural network, candidate block diagrams for pedestrians of different scales are generated in the middle layer; the second sub-network is the target detection network, which enhances the detection effect, and it shares parameters with the target candidate network. Refined classification and detection are performed on the basis of candidate block diagrams. Specifically, step S1 further includes:
步骤S100,构建可配置的基于卷积神经网络的深度模型。Step S100, constructing a configurable deep model based on a convolutional neural network.
所述卷积神经网络由卷积层、降采样层、上采样层堆叠而成,所述卷积层是指对输入的图像或者特征图在二维空间上进行卷积运算,提取层次化特征;所述的降采样层使用没有重叠的max-pooling操作,该操作用于提取形状和偏移不变的特征,同时减少特征图大小,提高计算效率;所述的上采样层,是指对输入的特征图在二维空间上进行去卷积的操作,用以增大特征图的像素,主要用于目标检测网络,提升检测效果,在本发明具体实施例中,采用Squeeze VGG-16卷积神经网络作为骨干网络,如图2所示,该Squeeze VGG-16卷积神经网络采用conv1-1层和紧随其后的12层Fire模块作为卷积层,用以提取特征;其中的pool1-pool5是降采样层;使用在ImageNet数据集上预先训练好的模型作为初始化。即本发明首先利用ImageNet数据集预先训练Squeeze VGG-16作为网络初始化。The convolutional neural network is formed by stacking a convolutional layer, a downsampling layer, and an upsampling layer. The convolutional layer refers to performing a convolution operation on an input image or feature map in a two-dimensional space to extract hierarchical features. ; The down-sampling layer uses a max-pooling operation without overlapping, which is used to extract features with invariant shape and offset, while reducing the size of the feature map and improving computational efficiency; the up-sampling layer refers to the The input feature map is deconvoluted in two-dimensional space to increase the pixels of the feature map, which is mainly used in the target detection network to improve the detection effect. In the specific embodiment of the present invention, Squeeze VGG-16 volume The convolutional neural network is used as the backbone network. As shown in Figure 2, the Squeeze VGG-16 convolutional neural network uses the conv1-1 layer and the following 12-layer Fire module as the convolutional layer to extract features; the pool1 -pool5 is the downsampling layer; use the pre-trained model on the ImageNet dataset as initialization. That is, the present invention first uses the ImageNet data set to pre-train Squeeze VGG-16 as network initialization.
图3为本发明具体实施例中Fire模块的结构示意图。如图3所示,Fire模块由两个卷积核大小为1×1的卷积层和一个卷积核大小为3×3的卷积层组成,目的在于用1×1的卷积核代替3×3的卷积核,从而使参数量减少9倍,但为了不影响网络的表征能力,不是全部替代,而是一部分是用1×1的卷积核,一部分使用3×3的卷积核,这样做的另一个好处是减少3×3卷积核的输入通道,同时起到降低参数量的效果,具体地,Fire模块先是使用1×1的卷积层对输入层进行降维操作,然后参照GoogLeNet结构,使用1×1和3×3的卷积层提取特征,最后将两部分特征连接起来,这样的方式极大降低了计算量和模型参数。Fig. 3 is a schematic structural diagram of a Fire module in a specific embodiment of the present invention. As shown in Figure 3, the Fire module consists of two convolution layers with a convolution kernel size of 1×1 and a convolution layer with a convolution kernel size of 3×3. The purpose is to use a convolution kernel of 1×1 instead of 3×3 convolution kernel, which reduces the amount of parameters by 9 times, but in order not to affect the representation ability of the network, it is not all replaced, but part of it uses a 1×1 convolution kernel, and part of it uses a 3×3 convolution Kernel, another advantage of this is to reduce the input channels of the 3×3 convolution kernel, and at the same time reduce the amount of parameters. Specifically, the Fire module first uses a 1×1 convolution layer to perform dimensionality reduction operations on the input layer , and then referring to the GoogLeNet structure, use 1×1 and 3×3 convolutional layers to extract features, and finally connect the two parts of the features, which greatly reduces the amount of calculation and model parameters.
图4为本发明具体实施例中目标候选网络的架构示意图。在本发明具体实施例中,所述目标候选网络在Squeeze VGG-16卷积神经网络基础上,根据卷积层特征,在Fire9、Fire12、conv6以及增加的pooling层共计4层,产生网络分支,分支进行不同尺度检测到物体的候选框的回归。但对于Fire-9层,它比较接近主干网络的低层,相比其他层对梯度的影响会很大,学习过程不稳定,因此多了一个buffer(缓冲)层,如图4中det-conv层所示,buffer层避免检测分支的梯度被直接back-propagated(反向传播)到主干层。Fig. 4 is a schematic diagram of an architecture of a target candidate network in a specific embodiment of the present invention. In a specific embodiment of the present invention, the target candidate network is based on the Squeeze VGG-16 convolutional neural network, and according to the convolutional layer characteristics, a total of 4 layers are generated in Fire9, Fire12, conv6 and the added pooling layer to generate network branches, The branch performs the regression of the candidate boxes of detected objects at different scales. But for the Fire-9 layer, it is relatively close to the lower layer of the backbone network. Compared with other layers, it will have a greater impact on the gradient, and the learning process is unstable, so there is an additional buffer (buffer) layer, as shown in the det-conv layer in Figure 4. As shown, the buffer layer prevents the gradient of the detection branch from being directly back-propagated (backpropagated) to the backbone layer.
本发明利用神经网络感知域的变化规律(即神经网络层越深,感知域越大,适合检测大一些的目标物体),使用不同的中间层对特定尺度范围内的目标物体进行检测,更好的适应了感知域与物体大小的关系,有效提高了检测结果。The present invention utilizes the change law of the neural network perception domain (that is, the deeper the neural network layer, the larger the perception domain, which is suitable for detecting larger target objects), and uses different intermediate layers to detect target objects within a specific scale range, which is better It adapts to the relationship between the perception domain and the size of the object, and effectively improves the detection results.
图5为本发明具体实施例中目标检测网络的架构示意图。所述目标检测网络与目标候选网络共享参数,将目标候选网络的候选框汇总,以增强监测网络对物体与背景的区分能力。在本发明具体实施例中,所述目标检测网络,在目标候选区域的基础上,将目标候选区域1.5倍大小的图片区域作为目标的背景语义信息;将Fire9层的特征图进行一次上采样,作为增强对小物体感知的信息,将背景语义信息与上采样信息经过感兴趣区域的池化(ROI pooling)获得固定大小的特征,之后增加一层全连接层,进行类别和最终候选框的回归,具体地,主干cnn层连接一个proposals的节点,用于汇总目标候选网络所得到的候选框信息;另一方面,针对fire9层的特征图,W和H是输入图片的宽度和高度,立方体1代表物体区域的在特征图的映射,而立方体2代表context区域在特征图上的映射,context区域约为物体区域的1.5倍,同时为了加强对小物体的检测,再对Fire9层进行一次上采样,之后与faster RCNN算法类似,使用感兴趣区域的池化获得固定大小的特征;将Fire9层处理后的特征与proposals汇总的特征连接(concat)到一起,后增加一层全连接层,进行类别和最终候选框的回归,在此不予赘述。Fig. 5 is a schematic diagram of the architecture of the target detection network in a specific embodiment of the present invention. The target detection network shares parameters with the target candidate network, and summarizes the candidate frames of the target candidate network to enhance the ability of the monitoring network to distinguish objects from backgrounds. In a specific embodiment of the present invention, the target detection network, on the basis of the target candidate area, uses a picture area 1.5 times the size of the target candidate area as the background semantic information of the target; performs an upsampling of the feature map of the Fire9 layer, As the information to enhance the perception of small objects, the background semantic information and upsampling information are pooled in the region of interest (ROI pooling) to obtain fixed-size features, and then a fully connected layer is added to perform category and final candidate frame regression. , specifically, the backbone cnn layer is connected to a node of proposals, which is used to summarize the candidate frame information obtained by the target candidate network; on the other hand, for the feature map of the fire9 layer, W and H are the width and height of the input image, cube 1 Represents the mapping of the object area on the feature map, and cube 2 represents the mapping of the context area on the feature map. The context area is about 1.5 times the object area. At the same time, in order to strengthen the detection of small objects, an upsampling is performed on the Fire9 layer , and then similar to the faster RCNN algorithm, use the pooling of the region of interest to obtain fixed-size features; connect (concat) the features processed by the Fire9 layer with the features summarized by the proposals, and then add a fully connected layer to classify and the regression of the final candidate box, which will not be described here.
步骤S101,输入训练样本。Step S101, input training samples.
训练过程需要提供图像中参考人物的对应的框,同时为了加速训练,训练过程将含有参考人物的图像从原始图像中裁剪出来,形成一个个patch(图像块),patch相比于原始图像更小,用以训练,有效加速了训练过程。具体地,在本发明中,输入的训练样本包括RGB图像数据和图像中行人区域的标注信息,实际训练用的图像数据是根据行人所在区域裁剪得到的小的patch(图象块)。用数学语言表示,训练样本其中Xi表示训练图片的一个patch;在实际应用中,除了行人这一类别,还有其他类别,例如背景、骑自行车车的人、坐着的人等K个类别,因此标注数据Yi=(yi,bi)由类别标签yi∈{0,1,2,...,K}和框图坐标点组成,其中为框图左上角的起始坐标点,为框图宽度和高度。The training process needs to provide the corresponding frame of the reference person in the image. At the same time, in order to speed up the training, the training process cuts out the image containing the reference person from the original image to form a patch (image block), and the patch is smaller than the original image. , used for training, effectively speeding up the training process. Specifically, in the present invention, the input training sample includes RGB image data and label information of the pedestrian area in the image, and the image data used for actual training is a small patch (image block) obtained by cutting out the area where the pedestrian is located. Expressed in mathematical language, training samples Where X i represents a patch of the training picture; in practical applications, in addition to the category of pedestrians, there are other categories, such as background, cyclists, sitting people and other K categories, so the labeled data Y i = (y i , b i ) consists of class labels y i ∈ {0, 1, 2, ..., K} and box plot coordinate points composed of is the starting coordinate point of the upper left corner of the block diagram, is the boxplot width and height.
步骤S102,初始化卷积神经网络及其参数,包括网络层中每层连接的权重和偏置。具体地,本发明利用ImageNet数据集预先训练Squeeze VGG-16卷积神经网络作为网络初始化。Step S102, initialize the convolutional neural network and its parameters, including the weight and bias of each layer connection in the network layer. Specifically, the present invention uses the ImageNet dataset to pre-train the Squeeze VGG-16 convolutional neural network as network initialization.
步骤S103,采用前向传播算法和后向传播算法,利用训练样本学习出构建的网络参数,即用于测试过程的模型。Step S103, using the forward propagation algorithm and the backward propagation algorithm, using the training samples to learn the constructed network parameters, that is, the model used in the testing process.
在本发明中,所述前向传播算法,首先将输入图像的大小归一化为3×480×640,截取3×448×448大小的patch和相应的标注信息作为卷积神经网络的输入,经过卷积层、降采样层和矫正线性单元层(ReLU Nonlinearity Layer),在Fire9层,图像特征图大小为512×60×80;在Fire12层,特征图大小为512×30×40,在后面两个分支特征图大小依次是512×15×20和512×8×10。在不同特征图上,采用卷积的方式得到目标框图的四个坐标点和类别信息,以Fire9层为例,假定只检测行人和背景,则输出为特征大小为6×60×80,其中6包含背景、行人两个类别和候选框图四个坐标点。在目标检测网络中,将各个分支层得到的候选框图在proposals节点进行汇总,同时与Fire9层的背景语义信息和上采样信息经过感兴趣区域的池化操作得到的特征进行叠加,做最后的框图回归和类别回归。In the present invention, the forward propagation algorithm first normalizes the size of the input image to 3×480×640, intercepts a patch with a size of 3×448×448 and corresponding label information as the input of the convolutional neural network, After convolutional layer, downsampling layer and rectified linear unit layer (ReLU Nonlinearity Layer), in Fire9 layer, the image feature map size is 512×60×80; in Fire12 layer, the feature map size is 512×30×40, in the back The size of the feature maps of the two branches are 512×15×20 and 512×8×10, respectively. On different feature maps, the four coordinate points and category information of the target block diagram are obtained by convolution. Taking the Fire9 layer as an example, assuming that only pedestrians and backgrounds are detected, the output is a feature size of 6×60×80, of which 6 Contains two categories of background, pedestrian and four coordinate points of the candidate frame. In the target detection network, the candidate block diagrams obtained by each branch layer are summarized at the proposals node, and at the same time, they are superimposed with the background semantic information of the Fire9 layer and the features obtained by the pooling operation of the region of interest through the upsampling information to make the final block diagram Regression and categorical regression.
在本发明中,所述后向传播算法,需要先求出正向(即前向)传播预测的目标框图与图像实际目标框图的损失函数然后求得其对参数W的梯度,采用梯度下降的算法更新W以最小化损失函数假定中间层有M个分支可以输出目标候选区域(M个尺度的感知域可以近似的检测出图像中所有目标物体),lm表示分支m的损失函数,αm表示lm函数的权重,S={S1,S2,…,SM}指相应尺度的目标对象,则损失函数可定义为:In the present invention, the backward propagation algorithm needs to first obtain the loss function of the target block diagram predicted by the forward (ie forward) propagation and the actual target block diagram of the image Then obtain its gradient to the parameter W, and use the gradient descent algorithm to update W to minimize the loss function Assuming that the middle layer has M branches that can output target candidate areas (the perceptual domain of M scales can approximately detect all target objects in the image), l m represents the loss function of branch m, α m represents the weight of l m function, S = {S 1 , S 2 ,..., S M } refers to the target object of the corresponding scale, then the loss function can be defined as:
所述损失函数,对于特定的检测层m,只有目标尺度在m所能检测的范围内,才对损失函数有贡献,故将损失函数定义为The loss function, for a specific detection layer m, only contributes to the loss function if the target scale is within the range that m can detect, so the loss function is defined as
其中,p(X)=(p0(X),...,pK(X))表示目标类别的概率分布;λ是平衡系数;b为框图的4个坐标点,指前向传播得到的坐标点;损失函数中,使用交叉熵损失函数定义类别回归,即Among them, p(X)=(p 0 (X), ..., p K (X)) represents the probability distribution of the target category; λ is the balance coefficient; b is the 4 coordinate points of the frame diagram, Refers to the coordinate points obtained by forward propagation; in the loss function, the cross-entropy loss function is used to define the category regression, ie
Lcls(p(X),y)=-logy(P(X)) (3)L cls (p(X), y)=-log y (P(X)) (3)
使用平滑的曼哈顿距离标准(smooth L1 criterion)进行目标框图的回归,定义如下Use the smooth Manhattan distance criterion (smooth L1 criterion) to perform the regression of the target block diagram, defined as follows
步骤S2,通过训练好的模型利用神经网络感知域的变化规律使用不同的中间层对不同尺度范围内的目标物体进行检测,预测出图像中目标物体(如行人)的框图。In step S2, the trained model is used to detect target objects in different scales using different intermediate layers according to the change law of the neural network perceptual domain, and predict the block diagram of the target object (such as a pedestrian) in the image.
具体地,步骤S2进一步包括:Specifically, step S2 further includes:
步骤S200,载入训练好的模型;Step S200, loading the trained model;
步骤S201,输入测试样本;Step S201, inputting test samples;
步骤S202,利用训练好的模型,通过神经网络感知域的变化规律使用不同的中间层对不同尺度范围内的行人进行检测,预测图像中行人的框图。图6为本发明具体实施例中快速行人检测的过程示意图,即利用模型中的目标候选网络在Squeeze VGG-16卷积神经网络基础上,根据卷积层特征,在fire9、fire12、conv6以及增加的pooling层共计4层产生网络分支,进行不同尺度检测到物体的目标候选区域(中间层a,中间层b,中间层c);然后利用目标检测网络,在目标候选区域的基础上,将目标候选区域1.5倍大小的图片区域作为目标的背景语义信息,将Fire9层的特征图进行一次上采样,作为增强对小物体感知的信息,将背景语义信息与上采样信息经过感兴趣区域的池化获得固定大小的特征,之后增加一层全连接层,进行类别和最终候选框的回归。优选地,于步骤S202中,还使用去卷积的方法对特定网络层的特征图进行放大。Step S202 , using the trained model, using different intermediate layers to detect pedestrians in different scales according to the changing rules of the neural network perceptual domain, and predict the block diagram of the pedestrian in the image. 6 is a schematic diagram of the process of fast pedestrian detection in a specific embodiment of the present invention, that is, using the target candidate network in the model on the basis of the Squeeze VGG-16 convolutional neural network, according to the convolutional layer features, in fire9, fire12, conv6 and increase The pooling layer of the pooling layer has a total of 4 layers to generate network branches, and detects target candidate areas of objects at different scales (middle layer a, middle layer b, middle layer c); The image area 1.5 times the size of the candidate area is used as the background semantic information of the target, and the feature map of the Fire9 layer is up-sampled once as information to enhance the perception of small objects, and the background semantic information and up-sampled information are pooled in the area of interest Obtain fixed-size features, and then add a fully connected layer to perform category and final candidate box regression. Preferably, in step S202, a deconvolution method is also used to enlarge the feature map of a specific network layer.
本发明提出的行人检测方法,分别借鉴两方面的评价指标:平均查准率mAP和每秒帧数FPS。mAP用于评价最后检测区域与真实目标人物区域的交并比的情况,在不同交并比下查准率的平均值;FPS,主要是效率指标,指每秒可以处理的图片数目。The pedestrian detection method proposed by the present invention uses two evaluation indexes for reference respectively: the average precision rate mAP and the number of frames per second FPS. mAP is used to evaluate the intersection ratio between the final detection area and the real target person area, and the average precision rate under different intersection ratios; FPS is mainly an efficiency indicator, which refers to the number of pictures that can be processed per second.
图7为本发明一种快速行人检测装置的系统架构图。如图7所示,本发明一种快速行人检测装置,包括:FIG. 7 is a system architecture diagram of a rapid pedestrian detection device according to the present invention. As shown in Figure 7, a fast pedestrian detection device of the present invention includes:
训练单元70,用于构建可配置的基于卷积神经网络的深度模型,利用训练样本学习出构建的网络参数,获得用于测试过程的模型。在本发明具体实施例中,训练单元70所构建的深度模型由两个子网路组成:第一个子网络,为多尺度的目标候选网络,用于提取人物特征并给出候选区域,具体地,该目标候选网络基于卷积神经网络不同层提出特征的差异性,在中间层分别生成对不同尺度行人的候选框图;第二个子网络,为目标检测网络,增强检测的效果,其与目标候选网络共享参数,在候选框图的基础上进行精细化的分类和检测。具体地,如图8所示,训练单元70进一步包括:The training unit 70 is configured to construct a configurable deep model based on a convolutional neural network, use training samples to learn constructed network parameters, and obtain a model for the testing process. In a specific embodiment of the present invention, the depth model constructed by the training unit 70 is composed of two sub-networks: the first sub-network is a multi-scale target candidate network, which is used to extract character features and give candidate regions, specifically , the target candidate network is based on the difference of features proposed by different layers of the convolutional neural network, and generates candidate block diagrams for pedestrians of different scales in the middle layer; the second sub-network is the target detection network, which enhances the detection effect. The network shares parameters, and performs refined classification and detection on the basis of candidate block diagrams. Specifically, as shown in Figure 8, the training unit 70 further includes:
模型构建单元701,用于构建可配置的基于卷积神经网络的深度模型。A model construction unit 701, configured to construct a configurable deep model based on a convolutional neural network.
所述卷积神经网络由卷积层、降采样层、上采样层堆叠而成,所述卷积层是指对输入的图像或者特征图在二维空间上进行卷积运算,提取层次化特征;所述的降采样层使用没有重叠的max-pooling操作,该操作用于提取形状和偏移不变的特征,同时减少特征图大小,提高计算效率,所述的上采样层,是指对输入的特征图在二维空间上进行去卷积的操作,用以增大特征图的像素。在本发明具体实施例中,采用Squeeze VGG-16卷积神经网络作为骨干网络。The convolutional neural network is formed by stacking a convolutional layer, a downsampling layer, and an upsampling layer. The convolutional layer refers to performing a convolution operation on an input image or feature map in a two-dimensional space to extract hierarchical features. ; The down-sampling layer uses a max-pooling operation without overlapping, which is used to extract features with invariant shape and offset, while reducing the size of the feature map and improving computational efficiency. The up-sampling layer refers to the The input feature map is deconvoluted in two-dimensional space to increase the pixels of the feature map. In a specific embodiment of the present invention, the Squeeze VGG-16 convolutional neural network is used as the backbone network.
在本发明具体实施例中,所述目标候选网络在Squeeze VGG-16卷积神经网络基础上,根据卷积层特征,在fire9、fire12、conv6以及增加的pooling层共计4层,产生网络分支,分支进行不同尺度检测到物体的候选框的回归。但对于fire-9层,它比较接近主干网络的低层,相比其他层对梯度的影响会很大,学习过程不稳定,因此多了一个buffer(缓冲)层,buffer层避免检测分支的梯度被直接back-propagated(反向传播)到主干层。In a specific embodiment of the present invention, the target candidate network is based on the Squeeze VGG-16 convolutional neural network, and according to the convolutional layer features, a total of 4 layers are generated in fire9, fire12, conv6 and the added pooling layer to generate network branches, The branch performs the regression of the candidate boxes of detected objects at different scales. But for the fire-9 layer, it is closer to the lower layer of the backbone network. Compared with other layers, it will have a greater impact on the gradient, and the learning process is unstable. Therefore, a buffer (buffer) layer is added. The buffer layer prevents the gradient of the detection branch from being Directly back-propagated (back propagation) to the backbone layer.
所述目标检测网络与目标候选网络共享参数,将目标候选网络的候选框汇总,以增强监测网络对物体与背景的区分能力。在本发明具体实施例中,所述目标检测网络,在目标候选区域的基础上,将目标候选区域1.5倍大小的图片区域作为目标的背景语义信息;将Fire9层的特征图进行一次上采样,作为增强对小物体感知的信息,将背景语义信息与上采样信息经过感兴趣区域的池化获得固定大小的特征,之后增加一层全连接层,进行类别和最终候选框的回归,具体地,主干cnn层连接一个proposal的子网,W和H是输入图片的宽度和高度,立方体1代表物体区域的pooling,而立方体2代表context区域的pooling,context区域约为物体区域的1.5倍,同时为了加强对小物体的检测,再对Fire9层进行一次上采样,之后与faster RCNN算法类似,使用感兴趣区域的池化获得固定大小的特征,之后增加一层全连接层,进行类别和最终候选框的回归。The target detection network shares parameters with the target candidate network, and summarizes the candidate frames of the target candidate network to enhance the ability of the monitoring network to distinguish objects from backgrounds. In a specific embodiment of the present invention, the target detection network, on the basis of the target candidate area, uses a picture area 1.5 times the size of the target candidate area as the background semantic information of the target; performs an upsampling of the feature map of the Fire9 layer, As the information to enhance the perception of small objects, the background semantic information and upsampling information are pooled in the region of interest to obtain fixed-size features, and then a layer of fully connected layers is added to perform the regression of categories and final candidate boxes. Specifically, The backbone cnn layer is connected to a proposal subnet, W and H are the width and height of the input image, cube 1 represents the pooling of the object area, and cube 2 represents the pooling of the context area, the context area is about 1.5 times the object area, and for Strengthen the detection of small objects, and then perform an upsampling on the Fire9 layer, and then similar to the faster RCNN algorithm, use the pooling of the region of interest to obtain fixed-size features, and then add a layer of fully connected layers to perform category and final candidate boxes return.
训练样本输入单元702,用于输入训练样本。The training sample input unit 702 is configured to input training samples.
具体地,训练样本其中Xi表示训练图片的一个patch,标注数据Yi=(yi,bi)由类别标签yi和框图坐标点组成。Specifically, the training samples Where X i represents a patch of the training picture, and the labeled data Y i = (y i , b i ) consists of the category label y i and the frame coordinate points composition.
初始化单元703,用于初始化卷积神经网络及其参数,包括网络层中每层连接的权重和偏置。具体地,本发明利用ImageNet数据集预先训练Squeeze VGG-16卷积神经网络作为网络初始化。The initialization unit 703 is used to initialize the convolutional neural network and its parameters, including the weight and bias of each layer connection in the network layer. Specifically, the present invention uses the ImageNet dataset to pre-train the Squeeze VGG-16 convolutional neural network as network initialization.
样本训练单元704,用于采用前向传播算法和后向传播算法,利用训练样本学习出构建的网络参数,即用于测试过程的模型。The sample training unit 704 is configured to use the forward propagation algorithm and the backward propagation algorithm to learn the constructed network parameters, that is, the model used in the testing process, by using the training samples.
在本发明中,所述前向传播算法,首先将输入图像的大小归一化为3×480×640,截取3×448×448大小的patch和相应的标注信息作为卷积神经网络的输入,经过卷积层、降采样层和矫正线性单元层(ReLU Nonlinearity Layer),在Fire9层,图像特征图大小为512×60×80;在Fire12层,特征图大小为512×30×40,在后面两个分支特征图大小依次是512×15×20和512×8×10。在不同特征图上,采用卷积的方式得到目标框图的四个坐标点和类别信息,以Fire9层为例,假定只检测行人和背景,则输出为特征大小为6×60×80,其中6包含背景、行人两个类别和候选框图四个坐标点。在目标检测网络中,将各个分支层得到的候选框图在proposals节点进行汇总,同时与Fire9层的背景语义信息和上采样信息经过感兴趣区域的池化操作得到的特征进行叠加,做最后的框图回归和类别回归。In the present invention, the forward propagation algorithm first normalizes the size of the input image to 3×480×640, intercepts a patch with a size of 3×448×448 and corresponding label information as the input of the convolutional neural network, After convolutional layer, downsampling layer and rectified linear unit layer (ReLU Nonlinearity Layer), in Fire9 layer, the image feature map size is 512×60×80; in Fire12 layer, the feature map size is 512×30×40, in the back The size of the feature maps of the two branches are 512×15×20 and 512×8×10, respectively. On different feature maps, the four coordinate points and category information of the target block diagram are obtained by convolution. Taking the Fire9 layer as an example, assuming that only pedestrians and backgrounds are detected, the output is a feature size of 6×60×80, of which 6 Contains two categories of background, pedestrian and four coordinate points of the candidate frame. In the target detection network, the candidate block diagrams obtained by each branch layer are summarized at the proposals node, and at the same time, they are superimposed with the background semantic information of the Fire9 layer and the features obtained by the pooling operation of the region of interest through the upsampling information to make the final block diagram Regression and categorical regression.
所述后向传播算法,需要先求出正向传播预测的目标框图与图像实际目标框图的损失函数然后求得其对参数W的梯度,采用梯度下降的算法更新W以最小化损失函数假定中间层有M个分支可以输出目标候选区域(M个尺度的感知域可以近似的检测出图像中所有目标物体),lm表示分支m的损失函数,αm表示lm函数的权重,S={S1,S2,…,SM}指相应尺度的目标对象,则损失函数可定义为:The backward propagation algorithm needs to first obtain the loss function of the target block diagram predicted by the forward propagation and the actual target block diagram of the image Then obtain its gradient to the parameter W, and use the gradient descent algorithm to update W to minimize the loss function Assuming that the middle layer has M branches that can output target candidate areas (the perceptual domain of M scales can approximately detect all target objects in the image), l m represents the loss function of branch m, α m represents the weight of l m function, S = {S 1 , S 2 ,..., S M } refers to the target object of the corresponding scale, then the loss function can be defined as:
所述损失函数,对于特定的检测层m,只有目标尺度在m所能检测的范围内,才对损失函数有贡献,故将损失函数定义为The loss function, for a specific detection layer m, only contributes to the loss function if the target scale is within the range that m can detect, so the loss function is defined as
其中,p(X)=(p0(X),...,pK(X))为目标类别的概率分布。损失函数中,使用交叉熵损失函数定义类别回归,即Wherein, p(X)=(p 0 (X), . . . , p K (X)) is the probability distribution of the target category. In the loss function, the category regression is defined using the cross-entropy loss function, namely
Lcls(p(X),y)=-logy(P(X))L cls (p(X), y)=-log y (P(X))
使用smooth L1 criterion进行目标框图的回归,定义如下Use the smooth L1 criterion to perform the regression of the target block diagram, which is defined as follows
检测单元71,用于输入测试样本,通过训练好的模型利用神经网络感知域的变化规律使用不同的中间层对不同尺度范围内的目标物体(如行人)进行检测,预测出图像中目标物体(如行人)的框图。The detection unit 71 is used to input test samples, and uses different intermediate layers to detect target objects (such as pedestrians) in different scale ranges by using the trained model and using the change law of the neural network perceptual domain, and predicts the target object in the image ( such as a block diagram of a pedestrian).
具体地,如图9所示,检测单元71进一步包括:Specifically, as shown in FIG. 9, the detection unit 71 further includes:
模型载入单元710,用于载入训练好的模型;A model loading unit 710, configured to load a trained model;
测试样本输入单元711,用于输入测试样本;A test sample input unit 711, configured to input a test sample;
图像预测单元712,用于利用训练好的模型,通过训练好的模型利用神经网络感知域的变化规律使用不同的中间层对不同尺度范围内的行人进行检测,预测图像中行人的框图。具体地,图像预测单元712利用模型中的目标候选网络,在Squeeze VGG-16卷积神经网络基础上,根据卷积层特征,在Fire9、Fire12、conv6以及增加的pooling层共计4层产生网络分支,进行不同尺度检测到物体的目标候选区域;然后利用目标检测网络,在目标候选区域的基础上,将目标候选区域1.5倍大小的图片区域作为目标的背景语义信息,将Fire9层的特征图进行一次上采样,作为增强对小物体感知的信息,将背景语义信息与上采样信息经过感兴趣区域的池化获得固定大小的特征,之后增加一层全连接层,进行类别和最终候选框的回归。The image prediction unit 712 is configured to use the trained model to detect pedestrians in different scale ranges by using the trained model and using different intermediate layers to predict the block diagram of pedestrians in the image. Specifically, the image prediction unit 712 uses the target candidate network in the model, based on the Squeeze VGG-16 convolutional neural network, and according to the convolutional layer characteristics, a total of 4 layers in Fire9, Fire12, conv6 and the added pooling layer generate network branches , to detect the target candidate areas of the object at different scales; then use the target detection network, on the basis of the target candidate area, use the image area 1.5 times the size of the target candidate area as the background semantic information of the target, and perform the feature map of the Fire9 layer One upsampling, as the information to enhance the perception of small objects, the background semantic information and upsampling information are pooled in the region of interest to obtain fixed-size features, and then add a fully connected layer to perform category and final candidate frame regression .
综上所述,本发明一种快速行人检测方法及装置借鉴压缩网络的方法,调整并训练VGG-16的网络得到适应嵌入式系统要求的squeeze VGG-16网络,有效降低了网络模型的参数量并加快了计算效率;另一方面,针对传统检测方法中感知域与物体大小不一致的问题,本发明利用神经网络感知域的变化规律(即神经网络层越深,感知域越大,适合检测大一些的目标物体),使用不同的中间层对特定尺度范围内的目标物体进行检测,更好的适应了感知域与物体大小的关系,有效提高了检测结果;另外,为了增强对小物体的检测,本发明使用去卷积的方法对特定网络层的特征图进行放大,相比于传统图片放大的方法,几乎不增加显存和计算量;为了增强对于模糊物体的检测,在该层的特征图上,使用目标对象1.5倍大小的区域作为背景语义特征增加到网络中,对于模糊物体和远距离小物体的检测,有着极佳的性能。In summary, a method and device for fast pedestrian detection in the present invention draws on the method of compressing the network, adjusts and trains the network of VGG-16 to obtain a squeeze VGG-16 network that meets the requirements of the embedded system, and effectively reduces the amount of parameters of the network model And speed up the calculation efficiency; on the other hand, in view of the problem that the perception domain and the size of the object are inconsistent in the traditional detection method, the present invention utilizes the change rule of the neural network perception domain (that is, the deeper the neural network layer, the larger the perception domain, which is suitable for detecting large objects). Some target objects), use different intermediate layers to detect target objects within a specific scale range, better adapt to the relationship between the perception domain and the size of the object, and effectively improve the detection results; in addition, in order to enhance the detection of small objects , the present invention uses the deconvolution method to enlarge the feature map of a specific network layer. Compared with the traditional image enlargement method, it hardly increases the amount of video memory and calculation; in order to enhance the detection of fuzzy objects, the feature map of this layer In the above, the area 1.5 times the size of the target object is used as the background semantic feature to add to the network, and it has excellent performance for the detection of fuzzy objects and long-distance small objects.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员均可在不违背本发明的精神及范畴下,对上述实施例进行修饰与改变。因此,本发明的权利保护范围,应如权利要求书所列。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Any person skilled in the art can modify and change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be listed in the claims.
Claims (10)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810069322.XA CN108399362B (en) | 2018-01-24 | 2018-01-24 | Rapid pedestrian detection method and device |
| PCT/CN2018/095058 WO2019144575A1 (en) | 2018-01-24 | 2018-07-10 | Fast pedestrian detection method and device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810069322.XA CN108399362B (en) | 2018-01-24 | 2018-01-24 | Rapid pedestrian detection method and device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108399362A true CN108399362A (en) | 2018-08-14 |
| CN108399362B CN108399362B (en) | 2022-01-07 |
Family
ID=63094281
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810069322.XA Active CN108399362B (en) | 2018-01-24 | 2018-01-24 | Rapid pedestrian detection method and device |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN108399362B (en) |
| WO (1) | WO2019144575A1 (en) |
Cited By (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109089040A (en) * | 2018-08-20 | 2018-12-25 | Oppo广东移动通信有限公司 | Image processing method, image processing device and terminal equipment |
| CN109409364A (en) * | 2018-10-16 | 2019-03-01 | 北京百度网讯科技有限公司 | Image annotation method and device |
| CN109508675A (en) * | 2018-11-14 | 2019-03-22 | 广州广电银通金融电子科技有限公司 | A kind of pedestrian detection method for complex scene |
| CN109522855A (en) * | 2018-11-23 | 2019-03-26 | 广州广电银通金融电子科技有限公司 | In conjunction with low resolution pedestrian detection method, system and the storage medium of ResNet and SENet |
| CN109522966A (en) * | 2018-11-28 | 2019-03-26 | 中山大学 | A kind of object detection method based on intensive connection convolutional neural networks |
| CN109670439A (en) * | 2018-12-14 | 2019-04-23 | 中国石油大学(华东) | A kind of pedestrian and its location detection method end to end |
| CN109685718A (en) * | 2018-12-17 | 2019-04-26 | 中国科学院自动化研究所 | Picture quadrate Zoom method, system and device |
| CN109886066A (en) * | 2018-12-17 | 2019-06-14 | 南京理工大学 | Fast target detection method based on the fusion of multiple dimensioned and multilayer feature |
| CN109902800A (en) * | 2019-01-22 | 2019-06-18 | 北京大学 | A method for detecting general objects based on a multi-level backbone network based on quasi-feedback neural network |
| CN109993712A (en) * | 2019-04-01 | 2019-07-09 | 腾讯科技(深圳)有限公司 | Image processing model training method, image processing method and related equipment |
| CN110110783A (en) * | 2019-04-30 | 2019-08-09 | 天津大学 | A kind of deep learning object detection method based on the connection of multilayer feature figure |
| CN110110793A (en) * | 2019-05-10 | 2019-08-09 | 中山大学 | Binocular image fast target detection method based on double-current convolutional neural networks |
| CN110580726A (en) * | 2019-08-21 | 2019-12-17 | 中山大学 | Face sketch generation model and method in natural scene based on dynamic convolutional network |
| CN110909615A (en) * | 2019-10-28 | 2020-03-24 | 西安交通大学 | Target detection method based on multi-scale input mixed perception neural network |
| CN111160527A (en) * | 2019-12-27 | 2020-05-15 | 歌尔股份有限公司 | A target recognition method and device based on MASK RCNN network model |
| CN111176820A (en) * | 2019-12-31 | 2020-05-19 | 中科院计算技术研究所大数据研究院 | Deep neural network-based edge computing task allocation method and device |
| CN111247790A (en) * | 2019-02-21 | 2020-06-05 | 深圳市大疆创新科技有限公司 | Image processing method and device, image shooting and processing system and carrier |
| CN111242127A (en) * | 2020-01-15 | 2020-06-05 | 上海应用技术大学 | Vehicle detection method with granularity level multi-scale characteristics based on asymmetric convolution |
| CN111277751A (en) * | 2020-01-22 | 2020-06-12 | Oppo广东移动通信有限公司 | Photographing method, device, storage medium and electronic device |
| CN111523351A (en) * | 2019-02-02 | 2020-08-11 | 北京地平线机器人技术研发有限公司 | Neural network training method and device and electronic equipment |
| CN111597945A (en) * | 2020-05-11 | 2020-08-28 | 济南博观智能科技有限公司 | Target detection method, device, equipment and medium |
| CN111598951A (en) * | 2020-05-18 | 2020-08-28 | 清华大学 | A method, device and storage medium for identifying a space target |
| CN111709313A (en) * | 2020-05-27 | 2020-09-25 | 杭州电子科技大学 | Pedestrian Re-identification Method Based on Local and Channel Combination Features |
| CN111860508A (en) * | 2020-07-28 | 2020-10-30 | 平安科技(深圳)有限公司 | Image sample selection method and related equipment |
| CN112613359A (en) * | 2020-12-09 | 2021-04-06 | 苏州玖合智能科技有限公司 | Method for constructing neural network for detecting abnormal behaviors of people |
| CN112613472A (en) * | 2020-12-31 | 2021-04-06 | 上海交通大学 | Pedestrian detection method and system based on deep search matching |
| CN113379699A (en) * | 2021-06-08 | 2021-09-10 | 上海电机学院 | Transmission line insulator defect detection method based on deep learning |
| CN113486810A (en) * | 2021-07-08 | 2021-10-08 | 国网江苏省电力有限公司徐州供电分公司 | Intelligent identification method for birds stolen and hunted in park |
| CN115471498A (en) * | 2022-10-10 | 2022-12-13 | 温州市华炜鞋材科技有限公司 | Shoemaking machine and method for multi-angle waterproof monitoring for rain boots production |
| CN116052214A (en) * | 2023-01-18 | 2023-05-02 | 天津大学 | A Pedestrian Search Method Based on Dynamic RoI Feature Extraction |
| CN111144203B (en) * | 2019-11-19 | 2023-06-16 | 浙江工商大学 | Pedestrian shielding detection method based on deep learning |
| CN116523830A (en) * | 2023-03-10 | 2023-08-01 | 上海交通大学 | 3D target detection method, system, medium and terminal |
| CN118196828A (en) * | 2019-06-06 | 2024-06-14 | 华为技术有限公司 | Object recognition method and device |
| CN119762907A (en) * | 2022-01-20 | 2025-04-04 | 辽宁工程技术大学 | A method for intelligent interpretation of objects in remote sensing images with complex backgrounds |
Families Citing this family (324)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018176000A1 (en) | 2017-03-23 | 2018-09-27 | DeepScale, Inc. | Data synthesis for autonomous control systems |
| US11893393B2 (en) | 2017-07-24 | 2024-02-06 | Tesla, Inc. | Computational array microprocessor system with hardware arbiter managing memory requests |
| US11409692B2 (en) | 2017-07-24 | 2022-08-09 | Tesla, Inc. | Vector computational unit |
| US11157441B2 (en) | 2017-07-24 | 2021-10-26 | Tesla, Inc. | Computational array microprocessor system using non-consecutive data formatting |
| US10671349B2 (en) | 2017-07-24 | 2020-06-02 | Tesla, Inc. | Accelerated mathematical engine |
| US12307350B2 (en) | 2018-01-04 | 2025-05-20 | Tesla, Inc. | Systems and methods for hardware-based pooling |
| US11561791B2 (en) | 2018-02-01 | 2023-01-24 | Tesla, Inc. | Vector computational unit receiving data elements in parallel from a last row of a computational array |
| US11215999B2 (en) | 2018-06-20 | 2022-01-04 | Tesla, Inc. | Data pipeline and deep learning system for autonomous driving |
| US11361457B2 (en) | 2018-07-20 | 2022-06-14 | Tesla, Inc. | Annotation cross-labeling for autonomous control systems |
| US11636333B2 (en) | 2018-07-26 | 2023-04-25 | Tesla, Inc. | Optimizing neural network structures for embedded systems |
| US11562231B2 (en) | 2018-09-03 | 2023-01-24 | Tesla, Inc. | Neural networks for embedded devices |
| WO2020077117A1 (en) | 2018-10-11 | 2020-04-16 | Tesla, Inc. | Systems and methods for training machine models with augmented data |
| US11196678B2 (en) | 2018-10-25 | 2021-12-07 | Tesla, Inc. | QOS manager for system on a chip communications |
| US11816585B2 (en) | 2018-12-03 | 2023-11-14 | Tesla, Inc. | Machine learning models operating at different frequencies for autonomous vehicles |
| US11537811B2 (en) | 2018-12-04 | 2022-12-27 | Tesla, Inc. | Enhanced object detection for autonomous vehicles based on field view |
| US11610117B2 (en) | 2018-12-27 | 2023-03-21 | Tesla, Inc. | System and method for adapting a neural network model on a hardware platform |
| US11150664B2 (en) | 2019-02-01 | 2021-10-19 | Tesla, Inc. | Predicting three-dimensional features for autonomous driving |
| US10997461B2 (en) | 2019-02-01 | 2021-05-04 | Tesla, Inc. | Generating ground truth for machine learning from time series elements |
| US11567514B2 (en) | 2019-02-11 | 2023-01-31 | Tesla, Inc. | Autonomous and user controlled vehicle summon to a target |
| US10956755B2 (en) | 2019-02-19 | 2021-03-23 | Tesla, Inc. | Estimating object properties using visual image data |
| CN110659664B (en) * | 2019-08-02 | 2022-12-13 | 杭州电子科技大学 | A method for recognizing small objects with high precision based on SSD |
| CN110633631B (en) * | 2019-08-06 | 2022-02-18 | 厦门大学 | Pedestrian re-identification method based on component power set and multi-scale features |
| CN110619268B (en) * | 2019-08-07 | 2022-11-25 | 北京市新技术应用研究所 | Pedestrian re-identification method and device based on space-time analysis and depth features |
| CN110533084B (en) * | 2019-08-12 | 2022-09-30 | 长安大学 | Multi-scale target detection method based on self-attention mechanism |
| CN110473195B (en) * | 2019-08-13 | 2023-04-18 | 中山大学 | Medical focus detection framework and method capable of being customized automatically |
| CN110427915B (en) * | 2019-08-14 | 2022-09-27 | 北京百度网讯科技有限公司 | Method and apparatus for outputting information |
| CN110705583B (en) * | 2019-08-15 | 2024-03-15 | 平安科技(深圳)有限公司 | Cell detection model training method, device, computer equipment and storage medium |
| CN110490252B (en) * | 2019-08-19 | 2022-11-15 | 西安工业大学 | Indoor people number detection method and system based on deep learning |
| CN110659576A (en) * | 2019-08-23 | 2020-01-07 | 深圳久凌软件技术有限公司 | Pedestrian searching method and device based on joint judgment and generation learning |
| CN110647816B (en) * | 2019-08-26 | 2022-11-22 | 合肥工业大学 | Target detection method for real-time monitoring of goods shelf medicines |
| CN110580727B (en) * | 2019-08-27 | 2023-04-18 | 天津大学 | Depth V-shaped dense network imaging method with increased information flow and gradient flow |
| CN110675309A (en) * | 2019-08-28 | 2020-01-10 | 江苏大学 | An Image Style Transfer Method Based on Convolutional Neural Network and VGGNet16 Model |
| CN112446376B (en) * | 2019-09-05 | 2023-08-01 | 中国科学院沈阳自动化研究所 | Intelligent segmentation and compression method for industrial image |
| CN110728186B (en) * | 2019-09-11 | 2023-04-07 | 中国科学院声学研究所南海研究站 | Fire detection method based on multi-network fusion |
| CN110619676B (en) * | 2019-09-18 | 2023-04-18 | 东北大学 | End-to-end three-dimensional face reconstruction method based on neural network |
| CN110619365B (en) * | 2019-09-18 | 2023-09-12 | 苏州经贸职业技术学院 | Method for detecting falling water |
| CN110619309B (en) * | 2019-09-19 | 2023-07-18 | 天地伟业技术有限公司 | Embedded platform face detection method based on octave convolution and YOLOv3 |
| CN110659601B (en) * | 2019-09-19 | 2022-12-02 | 西安电子科技大学 | Dense vehicle detection method for remote sensing images based on deep fully convolutional network based on central points |
| CN110706239B (en) * | 2019-09-26 | 2022-11-11 | 哈尔滨工程大学 | Scene segmentation method fusing full convolution neural network and improved ASPP module |
| CN110717903A (en) * | 2019-09-30 | 2020-01-21 | 天津大学 | Method for detecting crop diseases by using computer vision technology |
| CN110674777A (en) * | 2019-09-30 | 2020-01-10 | 电子科技大学 | An Optical Character Recognition Method in Patent Text Scenario |
| CN110751076B (en) * | 2019-10-09 | 2023-03-28 | 上海应用技术大学 | Vehicle detection method |
| CN110781895B (en) * | 2019-10-10 | 2023-06-20 | 湖北工业大学 | Image semantic segmentation method based on convolutional neural network |
| CN110728238A (en) * | 2019-10-12 | 2020-01-24 | 安徽工程大学 | A Person Redetection Method Based on Fusion Neural Network |
| CN110728640B (en) * | 2019-10-12 | 2023-07-18 | 合肥工业大学 | A Double-Channel Single Image Fine Rain Removal Method |
| CN110796232A (en) * | 2019-10-12 | 2020-02-14 | 腾讯科技(深圳)有限公司 | Attribute prediction model training method, attribute prediction method and electronic equipment |
| CN111008554B (en) * | 2019-10-16 | 2024-02-02 | 合肥湛达智能科技有限公司 | Deep learning-based method for identifying pedestrians without giving away in dynamic traffic zebra stripes |
| CN112668374A (en) * | 2019-10-16 | 2021-04-16 | 北京灵汐科技有限公司 | Image processing method and device, re-recognition network training method and electronic equipment |
| CN110852179B (en) * | 2019-10-17 | 2023-08-25 | 天津大学 | Detection method of suspicious personnel intrusion based on video surveillance platform |
| CN111008632B (en) * | 2019-10-17 | 2023-06-09 | 安徽清新互联信息科技有限公司 | License plate character segmentation method based on deep learning |
| CN111046723B (en) * | 2019-10-17 | 2023-06-02 | 安徽清新互联信息科技有限公司 | Lane line detection method based on deep learning |
| CN110751644B (en) * | 2019-10-23 | 2023-05-09 | 上海应用技术大学 | Method for detection of road surface cracks |
| CN111008562B (en) * | 2019-10-31 | 2023-04-18 | 北京城建设计发展集团股份有限公司 | Human-vehicle target detection method with feature map depth fusion |
| CN110826476A (en) * | 2019-11-02 | 2020-02-21 | 国网浙江省电力有限公司杭州供电公司 | Image detection method and device for identifying target object, electronic equipment and storage medium |
| CN110837837B (en) * | 2019-11-05 | 2023-10-17 | 安徽工业大学 | Vehicle violation detection method based on convolutional neural network |
| CN110826552A (en) * | 2019-11-05 | 2020-02-21 | 华中农业大学 | Grape non-destructive automatic detection device and method based on deep learning |
| CN110826485B (en) * | 2019-11-05 | 2023-04-18 | 中国人民解放军战略支援部队信息工程大学 | Target detection method and system for remote sensing image |
| CN111008567B (en) * | 2019-11-07 | 2023-03-24 | 郑州大学 | Driver behavior identification method |
| CN110852272B (en) * | 2019-11-11 | 2023-03-28 | 上海应用技术大学 | Pedestrian detection method |
| CN111461160B (en) * | 2019-11-11 | 2023-07-14 | 天津津航技术物理研究所 | Infrared imaging seeker target tracking method for preventing cloud and fog interference |
| CN111222402A (en) * | 2019-11-14 | 2020-06-02 | 北京理工大学 | Crowd gathering density analysis method oriented to unmanned aerial vehicle image |
| CN111008994A (en) * | 2019-11-14 | 2020-04-14 | 山东万腾电子科技有限公司 | Moving target real-time detection and tracking system and method based on MPSoC |
| CN111126359B (en) * | 2019-11-15 | 2023-03-28 | 西安电子科技大学 | High-definition image small target detection method based on self-encoder and YOLO algorithm |
| CN111222534B (en) * | 2019-11-15 | 2022-10-11 | 重庆邮电大学 | Single-shot multi-frame detector optimization method based on bidirectional feature fusion and more balanced L1 loss |
| CN110942008B (en) * | 2019-11-21 | 2023-05-12 | 圆通速递有限公司 | A method and system for face-to-face information positioning based on deep learning |
| CN110909797B (en) * | 2019-11-22 | 2023-05-05 | 北京深睿博联科技有限责任公司 | Image detection method and device, equipment and storage medium |
| CN110705540B (en) * | 2019-11-25 | 2024-05-31 | 中国农业科学院农业信息研究所 | Image recognition method and device for pointer-type instrument in veterinary drug production based on RFID and deep learning |
| CN111144209B (en) * | 2019-11-25 | 2024-07-02 | 浙江工商大学 | Monitoring video head detection method based on heterogeneous multi-branch deep convolutional neural network |
| CN111105393B (en) * | 2019-11-25 | 2023-04-18 | 长安大学 | Grape disease and pest identification method and device based on deep learning |
| CN110956115B (en) * | 2019-11-26 | 2023-09-29 | 证通股份有限公司 | Scene recognition method and device |
| CN112949814B (en) * | 2019-11-26 | 2024-04-26 | 联合汽车电子有限公司 | Compression and acceleration method and device of convolutional neural network and embedded device |
| CN111046928B (en) * | 2019-11-27 | 2023-05-23 | 上海交通大学 | Single-stage real-time universal target detector and method with accurate positioning |
| CN111145195B (en) * | 2019-12-03 | 2023-02-24 | 上海海事大学 | A Method for Contour Detection of Portraits in Video Based on Lightweight Deep Neural Networks |
| CN111062278B (en) * | 2019-12-03 | 2023-04-07 | 西安工程大学 | Abnormal behavior identification method based on improved residual error network |
| CN110986949B (en) * | 2019-12-04 | 2023-05-09 | 日照职业技术学院 | A Path Recognition Method Based on Artificial Intelligence Platform |
| CN111027449B (en) * | 2019-12-05 | 2023-05-30 | 光典信息发展有限公司 | Positioning and identifying method for paper archive electronic image archive chapter |
| CN110942144B (en) * | 2019-12-05 | 2023-05-02 | 深圳牛图科技有限公司 | Neural network construction method integrating automatic training, checking and reconstruction |
| CN111178148B (en) * | 2019-12-06 | 2023-06-02 | 天津大学 | A ground target geographic coordinate positioning method based on UAV vision system |
| CN110992238B (en) * | 2019-12-06 | 2023-10-17 | 上海电力大学 | Digital image tampering blind detection method based on dual-channel network |
| CN111008603B (en) * | 2019-12-08 | 2023-04-18 | 中南大学 | Multi-class target rapid detection method for large-scale remote sensing image |
| CN111160115B (en) * | 2019-12-10 | 2023-05-02 | 上海工程技术大学 | A Video Pedestrian Re-Identification Method Based on Siamese Two-Stream 3D Convolutional Neural Network |
| CN111161217B (en) * | 2019-12-10 | 2023-04-18 | 中国民航大学 | Conv-LSTM multi-scale feature fusion-based fuzzy detection method |
| CN111179338B (en) * | 2019-12-10 | 2023-08-04 | 同济大学 | Lightweight target positioning method for mobile power supply receiving end |
| CN111062297B (en) * | 2019-12-11 | 2023-05-23 | 青岛科技大学 | Violent abnormal behavior detection method based on EANN deep learning model |
| CN111079642B (en) * | 2019-12-13 | 2023-11-14 | 国网浙江余姚市供电有限公司 | Line removable monitoring method and device and computer-readable medium |
| CN110956157A (en) * | 2019-12-14 | 2020-04-03 | 深圳先进技术研究院 | Deep learning remote sensing image target detection method and device based on candidate frame selection |
| CN111178178B (en) * | 2019-12-16 | 2023-10-10 | 汇纳科技股份有限公司 | Multi-scale pedestrian re-identification method, system, medium and terminal combined with region distribution |
| CN111091101B (en) * | 2019-12-23 | 2023-06-02 | 中国科学院自动化研究所 | High-precision pedestrian detection method, system and device based on one-step method |
| CN111126310B (en) * | 2019-12-26 | 2023-03-24 | 华侨大学 | Pedestrian gender identification method based on scene migration |
| CN111178251B (en) * | 2019-12-27 | 2023-07-28 | 汇纳科技股份有限公司 | Pedestrian attribute identification method and system, storage medium and terminal |
| CN111161295B (en) * | 2019-12-30 | 2023-11-21 | 神思电子技术股份有限公司 | Dish image background stripping method |
| CN111160274B (en) * | 2019-12-31 | 2023-03-24 | 合肥湛达智能科技有限公司 | Pedestrian detection method based on binaryzation fast RCNN (radar cross-correlation neural network) |
| CN111199212B (en) * | 2020-01-02 | 2023-04-07 | 西安工程大学 | Pedestrian attribute identification method based on attention model |
| CN111209952B (en) * | 2020-01-03 | 2023-05-30 | 西安工业大学 | Underwater target detection method based on improved SSD and migration learning |
| CN111209860B (en) * | 2020-01-06 | 2023-04-07 | 上海海事大学 | Video attendance system and method based on deep learning and reinforcement learning |
| CN111259898B (en) * | 2020-01-08 | 2023-03-24 | 西安电子科技大学 | Crop segmentation method based on unmanned aerial vehicle aerial image |
| CN111259736B (en) * | 2020-01-08 | 2023-04-07 | 上海海事大学 | Real-time pedestrian detection method based on deep learning in complex environment |
| CN111275711B (en) * | 2020-01-08 | 2023-04-07 | 西安电子科技大学 | Real-time image semantic segmentation method based on lightweight convolutional neural network model |
| CN111242010A (en) * | 2020-01-10 | 2020-06-05 | 厦门博海中天信息科技有限公司 | Method for judging and identifying identity of litter worker based on edge AI |
| CN111260658B (en) * | 2020-01-10 | 2023-10-17 | 厦门大学 | A deep reinforcement learning method for image segmentation |
| CN111242839B (en) * | 2020-01-13 | 2023-04-21 | 华南理工大学 | Image scaling and clipping method based on scale level |
| CN111209887B (en) * | 2020-01-15 | 2023-04-07 | 西安电子科技大学 | SSD model optimization method for small target detection |
| CN113128316B (en) * | 2020-01-15 | 2024-08-02 | 北京四维图新科技股份有限公司 | Target detection method and device |
| CN111259800A (en) * | 2020-01-16 | 2020-06-09 | 天津大学 | A detection method of unmanned special vehicle based on neural network |
| CN111222519B (en) * | 2020-01-16 | 2023-03-24 | 西北大学 | Construction method, method and device of hierarchical colored drawing manuscript line extraction model |
| CN111291785B (en) * | 2020-01-16 | 2024-11-19 | 中国平安人寿保险股份有限公司 | Target detection method, device, equipment and storage medium |
| CN111275688B (en) * | 2020-01-19 | 2023-12-12 | 合肥工业大学 | Small target detection method based on context feature fusion screening of attention mechanism |
| CN111275171B (en) * | 2020-01-19 | 2023-07-04 | 合肥工业大学 | A small target detection method based on multi-scale super-resolution reconstruction based on parameter sharing |
| CN111199220B (en) * | 2020-01-21 | 2023-04-28 | 北方民族大学 | A Lightweight Deep Neural Network Method for People Detection and People Counting in Elevators |
| CN111292366B (en) * | 2020-02-17 | 2023-03-10 | 华侨大学 | Visual driving ranging algorithm based on deep learning and edge calculation |
| CN111339871B (en) * | 2020-02-18 | 2022-09-16 | 中国电子科技集团公司第二十八研究所 | A method and device for judging the distribution pattern of target groups based on convolutional neural network |
| CN111291820B (en) * | 2020-02-19 | 2023-05-30 | 中国电子科技集团公司第二十八研究所 | A Target Detection Method Combining Location Information and Classification Information |
| CN111428751B (en) * | 2020-02-24 | 2022-12-23 | 清华大学 | Object detection method based on compressed sensing and convolutional network |
| CN111428567B (en) * | 2020-02-26 | 2024-02-02 | 沈阳大学 | Pedestrian tracking system and method based on affine multitask regression |
| CN111368673B (en) * | 2020-02-26 | 2023-04-07 | 华南理工大学 | Method for quickly extracting human body key points based on neural network |
| CN113324864B (en) * | 2020-02-28 | 2022-09-20 | 南京理工大学 | Pantograph carbon slide plate abrasion detection method based on deep learning target detection |
| CN111339967B (en) * | 2020-02-28 | 2023-04-07 | 长安大学 | Pedestrian detection method based on multi-view graph convolution network |
| CN111339975B (en) * | 2020-03-03 | 2023-04-21 | 华东理工大学 | Object Detection, Recognition and Tracking Method Based on Central Scale Prediction and Siamese Neural Network |
| CN111368726B (en) * | 2020-03-04 | 2023-11-10 | 西安咏圣达电子科技有限公司 | Construction site operation face personnel number statistics method, system, storage medium and device |
| CN111428586B (en) * | 2020-03-09 | 2023-05-16 | 同济大学 | 3D Human Pose Estimation Method Based on Feature Fusion and Sample Enhancement |
| CN111461291B (en) * | 2020-03-13 | 2023-05-12 | 西安科技大学 | Long-distance pipeline inspection method based on YOLOv3 pruning network and deep learning dehazing model |
| CN111429410B (en) * | 2020-03-13 | 2023-09-01 | 杭州电子科技大学 | A system and method for object X-ray image material discrimination based on deep learning |
| CN111460924B (en) * | 2020-03-16 | 2023-04-07 | 上海师范大学 | Gate ticket-evading behavior detection method based on target detection |
| CN111414909B (en) * | 2020-03-16 | 2023-05-12 | 上海富瀚微电子股份有限公司 | Target detection method and device |
| CN111368453B (en) * | 2020-03-17 | 2023-07-07 | 创新奇智(合肥)科技有限公司 | Fabric cutting optimization method based on deep reinforcement learning |
| CN111753625B (en) * | 2020-03-18 | 2024-04-09 | 北京沃东天骏信息技术有限公司 | Pedestrian detection method, device, equipment and medium |
| CN111462132A (en) * | 2020-03-20 | 2020-07-28 | 西北大学 | A method and system for video object segmentation based on deep learning |
| CN111488805B (en) * | 2020-03-24 | 2023-04-25 | 广州大学 | A Video Behavior Recognition Method Based on Salient Feature Extraction |
| CN111563525A (en) * | 2020-03-25 | 2020-08-21 | 北京航空航天大学 | Moving target detection method based on YOLOv3-Tiny |
| CN111414997B (en) * | 2020-03-27 | 2023-06-06 | 中国人民解放军空军工程大学 | A Method for Battlefield Target Recognition Based on Artificial Intelligence |
| CN111310773B (en) * | 2020-03-27 | 2023-03-24 | 西安电子科技大学 | Efficient license plate positioning method of convolutional neural network |
| CN111310861B (en) * | 2020-03-27 | 2023-05-23 | 西安电子科技大学 | A license plate recognition and location method based on deep neural network |
| CN111460980B (en) * | 2020-03-30 | 2023-04-07 | 西安工程大学 | Multi-scale detection method for small-target pedestrian based on multi-semantic feature fusion |
| CN111462085B (en) * | 2020-03-31 | 2023-09-19 | 上海大学 | Digital image local filtering forensics method based on convolutional neural network |
| CN111553199A (en) * | 2020-04-07 | 2020-08-18 | 厦门大学 | An automatic detection technology for motor vehicle traffic violations based on computer vision |
| CN111462108B (en) * | 2020-04-13 | 2023-05-02 | 山西新华防化装备研究院有限公司 | Machine learning-based head-face product design ergonomics evaluation operation method |
| CN111597897B (en) * | 2020-04-16 | 2023-10-24 | 浙江工业大学 | High-speed service area parking space recognition method |
| CN111597900B (en) * | 2020-04-16 | 2023-10-24 | 浙江工业大学 | Illegal dog walking identification method |
| CN111523645B (en) * | 2020-04-16 | 2023-04-18 | 北京航天自动控制研究所 | Convolutional neural network design method for improving small-scale target detection and identification performance |
| CN111695403B (en) * | 2020-04-19 | 2024-03-22 | 东风汽车股份有限公司 | Depth perception convolutional neural network-based 2D and 3D image synchronous detection method |
| CN111476314B (en) * | 2020-04-27 | 2023-03-07 | 中国科学院合肥物质科学研究院 | Fuzzy video detection method integrating optical flow algorithm and deep learning |
| CN111563440A (en) * | 2020-04-29 | 2020-08-21 | 上海海事大学 | A target detection method based on heterogeneous convolution with multi-kernel iterative RPN |
| CN111652846B (en) * | 2020-04-30 | 2022-08-16 | 成都数之联科技股份有限公司 | Semiconductor defect identification method based on characteristic pyramid convolution neural network |
| CN111597939B (en) * | 2020-05-07 | 2023-04-18 | 西安电子科技大学 | High-speed rail line nest defect detection method based on deep learning |
| CN111783685B (en) * | 2020-05-08 | 2025-01-21 | 西安建筑科技大学 | An improved target detection algorithm based on a single-stage network model |
| CN111582452B (en) * | 2020-05-09 | 2023-10-27 | 北京百度网讯科技有限公司 | Methods and devices for generating neural network models |
| CN111783934B (en) * | 2020-05-15 | 2024-06-21 | 北京迈格威科技有限公司 | Convolutional neural network construction method, device, equipment and medium |
| CN111783523B (en) * | 2020-05-19 | 2022-10-21 | 中国人民解放军93114部队 | A method for detecting rotating objects in remote sensing images |
| CN111709449B (en) * | 2020-05-20 | 2023-08-18 | 西安理工大学 | Multi-layer feature fusion small-scale target detection method based on clustering algorithm |
| CN112001878A (en) * | 2020-05-21 | 2020-11-27 | 合肥合工安驰智能科技有限公司 | Deep learning ore scale measuring method based on binarization neural network and application system |
| CN111881714B (en) * | 2020-05-22 | 2023-11-21 | 北京交通大学 | An unsupervised cross-domain person re-identification method |
| CN113793292B (en) * | 2020-05-25 | 2025-09-16 | 阿里巴巴集团控股有限公司 | Data processing method, device, electronic equipment and storage medium |
| CN111626196B (en) * | 2020-05-27 | 2023-05-16 | 西南石油大学 | Knowledge-graph-based intelligent analysis method for body structure of typical bovine animal |
| CN111709311B (en) * | 2020-05-27 | 2023-11-28 | 西安理工大学 | Pedestrian re-identification method based on multi-scale convolution feature fusion |
| CN111832608B (en) * | 2020-05-29 | 2023-09-12 | 上海海事大学 | A multi-wear particle identification method in ferrogram images based on the single-stage detection model yolov3 |
| CN111652216B (en) * | 2020-06-03 | 2023-04-07 | 北京工商大学 | Multi-scale target detection model method based on metric learning |
| CN111652930B (en) * | 2020-06-04 | 2024-02-27 | 上海媒智科技有限公司 | Image target detection method, system and equipment |
| CN111709336B (en) * | 2020-06-08 | 2024-04-26 | 杭州像素元科技有限公司 | Expressway pedestrian detection method, equipment and readable storage medium |
| CN111881932B (en) * | 2020-06-11 | 2023-09-15 | 中国人民解放军战略支援部队信息工程大学 | A FasterRCNN target detection algorithm for military aircraft |
| CN111860587B (en) * | 2020-06-12 | 2024-02-02 | 长安大学 | Detection method for small targets of pictures |
| CN111738124B (en) * | 2020-06-15 | 2023-08-22 | 西安电子科技大学 | Cloud Detection Method of Remote Sensing Image Based on Gabor Transform and Attention |
| CN111709935B (en) * | 2020-06-17 | 2023-04-07 | 西安科技大学 | Real-time coal gangue positioning and identifying method for ground moving belt |
| CN113807152A (en) * | 2020-06-17 | 2021-12-17 | 阿里巴巴集团控股有限公司 | Image processing and model training method and device |
| CN111797836B (en) * | 2020-06-18 | 2024-04-26 | 中国空间技术研究院 | A deep learning-based obstacle segmentation method for extraterrestrial rover |
| CN111723743A (en) * | 2020-06-19 | 2020-09-29 | 北京邮电大学 | A Fast Pedestrian Detection Method at Small Scale |
| CN111832630A (en) * | 2020-06-23 | 2020-10-27 | 成都恒创新星科技有限公司 | Target detection method based on first-order gradient neural network |
| CN111784652B (en) * | 2020-06-24 | 2024-02-06 | 西安电子科技大学 | MRI (magnetic resonance imaging) segmentation method based on reinforcement learning multi-scale neural network |
| CN111814621B (en) * | 2020-06-29 | 2024-01-23 | 中国科学院合肥物质科学研究院 | Attention mechanism-based multi-scale vehicle pedestrian detection method and device |
| CN111767847B (en) * | 2020-06-29 | 2023-06-09 | 佛山市南海区广工大数控装备协同创新研究院 | A Pedestrian Multi-Target Tracking Method Integrating Object Detection and Association |
| CN111832450B (en) * | 2020-06-30 | 2023-11-28 | 成都睿沿科技有限公司 | Knife holding detection method based on image recognition |
| CN111767878B (en) * | 2020-07-03 | 2022-11-08 | 中国科学院自动化研究所 | Deep learning-based traffic sign detection method and system in embedded device |
| CN112199983B (en) * | 2020-07-08 | 2024-06-18 | 北京航空航天大学 | Long-time large-range pedestrian re-identification method based on multi-level screening |
| CN111986145B (en) * | 2020-07-09 | 2024-06-21 | 浙江工业大学 | A bearing roller defect detection method based on Faster-RCNN |
| CN111860265B (en) * | 2020-07-10 | 2024-01-05 | 武汉理工大学 | Multi-detection-frame loss balanced road scene understanding algorithm based on sample loss |
| CN111667030B (en) * | 2020-07-13 | 2023-04-07 | 华东理工大学 | Method, system and storage medium for realizing remote sensing image target detection based on deep neural network |
| CN111832479B (en) * | 2020-07-14 | 2023-08-01 | 西安电子科技大学 | Video target detection method based on improved self-adaptive anchor point R-CNN |
| CN111986149A (en) * | 2020-07-16 | 2020-11-24 | 江西斯源科技有限公司 | A method for detecting plant diseases and insect pests based on convolutional neural network |
| CN111986126B (en) * | 2020-07-17 | 2022-05-24 | 浙江工业大学 | Multi-target detection method based on improved VGG16 network |
| CN111860637B (en) * | 2020-07-17 | 2023-11-21 | 河南科技大学 | A single-shot multi-frame infrared target detection method |
| CN111832513B (en) * | 2020-07-21 | 2024-02-09 | 西安电子科技大学 | Real-time football target detection method based on neural network |
| CN111881803B (en) * | 2020-07-22 | 2023-10-31 | 安徽农业大学 | An animal face recognition method based on improved YOLOv3 |
| CN112001259A (en) * | 2020-07-28 | 2020-11-27 | 联芯智能(南京)科技有限公司 | Aerial weak human body target intelligent detection method based on visible light image |
| CN112036437B (en) * | 2020-07-28 | 2024-06-07 | 农业农村部南京农业机械化研究所 | Rice seedling detection model based on improved YOLOV network and method thereof |
| CN111915583B (en) * | 2020-07-29 | 2024-02-09 | 西安电子科技大学 | Vehicle and pedestrian detection method based on vehicle-mounted thermal infrared imager in complex scene |
| CN111985365A (en) * | 2020-08-06 | 2020-11-24 | 合肥学院 | A straw burning monitoring method and system based on target detection technology |
| CN112115291B (en) * | 2020-08-12 | 2024-02-27 | 南京止善智能科技研究院有限公司 | Three-dimensional indoor model retrieval method based on deep learning |
| CN111985464B (en) * | 2020-08-13 | 2023-08-22 | 山东大学 | Court judgment document-oriented multi-scale learning text recognition method and system |
| CN111986172B (en) * | 2020-08-18 | 2024-06-04 | 华北电力科学研究院有限责任公司 | Infrared image fault detection method and device for power equipment |
| CN111984879A (en) * | 2020-08-19 | 2020-11-24 | 交控科技股份有限公司 | User guidance method, device, device and storage medium applied to trains |
| CN112001385B (en) * | 2020-08-20 | 2024-02-06 | 长安大学 | A target cross-domain detection and understanding method, system, equipment and storage medium |
| CN111985473A (en) * | 2020-08-20 | 2020-11-24 | 中再云图技术有限公司 | A method of out-of-store business identification |
| CN111986186B (en) * | 2020-08-25 | 2024-03-22 | 华中科技大学 | Quantitative in-furnace PCB patch defect online detection system and method |
| CN112001339B (en) * | 2020-08-27 | 2024-02-23 | 杭州电子科技大学 | Pedestrian social distance real-time monitoring method based on YOLO v4 |
| CN112364974B (en) * | 2020-08-28 | 2024-02-09 | 西安电子科技大学 | YOLOv3 algorithm based on activation function improvement |
| CN112149664B (en) * | 2020-09-04 | 2024-05-07 | 浙江工业大学 | Target detection method for optimizing classification and positioning tasks |
| CN112101434B (en) * | 2020-09-04 | 2022-09-09 | 河南大学 | Infrared image weak and small target detection method based on improved YOLO v3 |
| CN112464765B (en) * | 2020-09-10 | 2022-09-23 | 天津师范大学 | A safety helmet detection method based on single-pixel feature amplification and its application |
| CN112101455B (en) * | 2020-09-15 | 2022-08-09 | 重庆市农业科学院 | Tea lesser leafhopper identification and counting method based on convolutional neural network |
| CN112347843B (en) * | 2020-09-18 | 2024-10-18 | 深圳数联天下智能科技有限公司 | Method and related device for training wrinkle detection model |
| CN112163492B (en) * | 2020-09-21 | 2023-09-08 | 华南理工大学 | A long-term cross-scenario optimized traffic object detection method, system and medium |
| CN112115885B (en) * | 2020-09-22 | 2023-08-11 | 中国农业科学院农业信息研究所 | A method for locating cutting points of fruit tree fruit branches for picking based on deep convolutional neural network |
| CN112215100B (en) * | 2020-09-27 | 2024-02-09 | 浙江工业大学 | Target detection method for degraded image under unbalanced training sample |
| CN112085126B (en) * | 2020-09-30 | 2023-12-12 | 浙江大学 | Single sample target detection method focusing on classification task |
| CN112347851B (en) * | 2020-09-30 | 2023-02-21 | 山东理工大学 | Construction method of multi-target detection network, multi-target detection method and device |
| CN112200045B (en) * | 2020-09-30 | 2024-03-19 | 华中科技大学 | Method and application of remote sensing image target detection model based on context enhancement |
| CN112183430B (en) * | 2020-10-12 | 2024-04-05 | 河北工业大学 | Sign language recognition method and device based on dual neural network |
| CN112232411B (en) * | 2020-10-15 | 2024-05-14 | 苏州凌图科技有限公司 | HarDNet-Lite optimization method in embedded platform |
| CN112257796B (en) * | 2020-10-28 | 2024-06-28 | 辽宁工程技术大学 | An image integration method based on convolutional neural network with selective feature connection |
| CN112419237B (en) * | 2020-11-03 | 2023-06-30 | 中国计量大学 | A method for surface defect detection of automobile clutch master cylinder groove based on deep learning |
| CN112381792B (en) * | 2020-11-13 | 2023-05-23 | 中国人民解放军空军工程大学 | Intelligent imaging on-line detection method for radar wave-absorbing coating/electromagnetic shielding film damage based on deep learning |
| CN112446308B (en) * | 2020-11-16 | 2024-09-13 | 北京科技大学 | Pedestrian detection method based on semantic enhancement multi-scale feature pyramid fusion |
| CN112396000B (en) * | 2020-11-19 | 2023-09-05 | 中山大学 | Method for constructing multi-mode dense prediction depth information transmission model |
| CN112308062B (en) * | 2020-11-23 | 2022-08-23 | 浙江卡易智慧医疗科技有限公司 | Medical image access number identification method in complex background image |
| CN112434828B (en) * | 2020-11-23 | 2023-05-16 | 南京富岛软件有限公司 | Intelligent safety protection identification method in 5T operation and maintenance |
| CN112580778A (en) * | 2020-11-25 | 2021-03-30 | 江苏集萃未来城市应用技术研究所有限公司 | Job worker mobile phone use detection method based on YOLOv5 and Pose-animation |
| CN112348036B (en) * | 2020-11-26 | 2025-01-14 | 北京工业大学 | Adaptive object detection method based on lightweight residual learning and deconvolution cascade |
| CN112487979B (en) * | 2020-11-30 | 2023-08-04 | 北京百度网讯科技有限公司 | Target detection method, model training method, device, electronic equipment and medium |
| CN112528826B (en) * | 2020-12-04 | 2024-02-02 | 江苏省农业科学院 | Control method of picking device based on 3D visual perception |
| CN112560627A (en) * | 2020-12-09 | 2021-03-26 | 江苏集萃未来城市应用技术研究所有限公司 | Real-time detection method for abnormal behaviors of construction site personnel based on neural network |
| CN112633086B (en) * | 2020-12-09 | 2024-01-26 | 西安电子科技大学 | Near-infrared pedestrian monitoring method, system, medium and equipment based on multitasking EfficientDet |
| CN112396036B (en) * | 2020-12-09 | 2023-08-08 | 中山大学 | An Occluded Person Re-Identification Method Combining Spatial Transformation Network and Multi-Scale Feature Extraction |
| CN112770325B (en) * | 2020-12-09 | 2022-12-16 | 华南理工大学 | Cognitive internet of vehicles spectrum sensing method based on deep learning |
| CN112382388A (en) * | 2020-12-14 | 2021-02-19 | 中南大学 | Early warning method for adverse pressure sore event |
| CN112560682A (en) * | 2020-12-16 | 2021-03-26 | 重庆守愚科技有限公司 | Valve automatic detection method based on deep learning |
| CN112465815B (en) * | 2020-12-17 | 2023-09-19 | 杭州电子科技大学 | A remote sensing target saliency detection method based on edge-subject fusion information |
| CN112634367A (en) * | 2020-12-25 | 2021-04-09 | 天津大学 | Anti-occlusion object pose estimation method based on deep neural network |
| CN112651441B (en) * | 2020-12-25 | 2022-08-16 | 深圳市信义科技有限公司 | Fine-grained non-motor vehicle feature detection method, storage medium and computer equipment |
| CN112699808B (en) * | 2020-12-31 | 2024-06-07 | 深圳市华尊科技股份有限公司 | Dense target detection method, electronic equipment and related products |
| CN112733848B (en) * | 2021-01-08 | 2022-11-04 | 中国电子科技集团公司第二十八研究所 | Object detection method based on multi-scale features and dilated inverse residual full connection |
| CN112733714B (en) * | 2021-01-11 | 2024-03-01 | 北京大学 | VGG network-based automatic crowd counting image recognition method |
| CN112784921A (en) * | 2021-02-02 | 2021-05-11 | 西北工业大学 | Task attention guided small sample image complementary learning classification algorithm |
| CN112556682B (en) * | 2021-02-07 | 2023-06-23 | 天津蓝鳍海洋工程有限公司 | Automatic detection algorithm for underwater composite sensor target |
| CN112700444B (en) * | 2021-02-19 | 2023-06-23 | 中国铁道科学研究院集团有限公司铁道建筑研究所 | Bridge bolt detection method based on self-attention and center point regression model |
| CN112862796B (en) * | 2021-02-23 | 2024-11-29 | 中国农业机械化科学研究院 | Multi-category external quality detection method and detection device for kernel and fruit |
| CN112949508B (en) * | 2021-03-08 | 2024-07-19 | 咪咕文化科技有限公司 | Model training method, pedestrian detection method, electronic device and readable storage medium |
| CN112906718B (en) * | 2021-03-09 | 2023-08-22 | 西安电子科技大学 | A multi-target detection method based on convolutional neural network |
| CN113012208B (en) * | 2021-03-22 | 2024-05-17 | 上海应用技术大学 | Multi-view remote sensing image registration method and system |
| CN112906658B (en) * | 2021-03-30 | 2025-01-10 | 航天时代飞鸿技术有限公司 | A lightweight automatic detection method for UAV reconnaissance of ground targets |
| CN113312961A (en) * | 2021-04-03 | 2021-08-27 | 国家计算机网络与信息安全管理中心 | Logo recognition acceleration method |
| CN113221957B (en) * | 2021-04-17 | 2024-04-16 | 南京航空航天大学 | A radar information fusion feature enhancement method based on Centernet |
| CN113112511B (en) * | 2021-04-19 | 2024-01-05 | 新东方教育科技集团有限公司 | Method and device for correcting test paper, storage medium and electronic equipment |
| CN113076957A (en) * | 2021-04-21 | 2021-07-06 | 河南大学 | RGB-D image saliency target detection method based on cross-modal feature fusion |
| CN113011398A (en) * | 2021-04-28 | 2021-06-22 | 北京邮电大学 | Target change detection method and device for multi-temporal remote sensing image |
| CN113177545B (en) * | 2021-04-29 | 2023-08-04 | 北京百度网讯科技有限公司 | Target object detection method, target object detection device, electronic equipment and storage medium |
| CN113158968A (en) * | 2021-05-10 | 2021-07-23 | 苏州大学 | Embedded object cognitive system based on image processing |
| CN113408340B (en) * | 2021-05-12 | 2024-03-29 | 北京化工大学 | Dual polarization SAR small ship detection method based on enhanced feature pyramid |
| CN113221787B (en) * | 2021-05-18 | 2023-09-29 | 西安电子科技大学 | Pedestrian multi-target tracking method based on multi-element difference fusion |
| CN113312995B (en) * | 2021-05-18 | 2023-02-14 | 华南理工大学 | Anchor-free vehicle-mounted pedestrian detection method based on central axis |
| CN113297961B (en) * | 2021-05-24 | 2023-11-17 | 南京邮电大学 | A target tracking method based on boundary feature fusion twin recurrent neural networks |
| CN113222064A (en) * | 2021-05-31 | 2021-08-06 | 苏州晗林信息技术发展有限公司 | Image target object real-time detection method, system, terminal and storage medium |
| CN113343853B (en) * | 2021-06-08 | 2024-06-14 | 深圳格瑞健康科技有限公司 | Intelligent screening method and device for dental caries of children |
| CN113379709B (en) * | 2021-06-16 | 2024-03-08 | 浙江工业大学 | Three-dimensional target detection method based on sparse multi-scale voxel feature fusion |
| CN113449634A (en) * | 2021-06-28 | 2021-09-28 | 上海翰声信息技术有限公司 | Video detection method and device for processing under strong light environment |
| CN113379718B (en) * | 2021-06-28 | 2024-02-02 | 北京百度网讯科技有限公司 | A target detection method, device, electronic equipment and readable storage medium |
| CN113469254B (en) * | 2021-07-02 | 2024-04-16 | 上海应用技术大学 | Target detection method and system based on target detection model |
| CN113627257B (en) * | 2021-07-09 | 2024-09-10 | 上海智臻智能网络科技股份有限公司 | Detection method, detection system, device and storage medium |
| CN113449743B (en) * | 2021-07-12 | 2022-12-09 | 西安科技大学 | Coal dust particle feature extraction method |
| CN113642410B (en) * | 2021-07-15 | 2024-03-29 | 南京航空航天大学 | Method for detecting ampullaria gigas eggs based on multi-scale feature fusion and dynamic convolution |
| CN113361491A (en) * | 2021-07-19 | 2021-09-07 | 厦门大学 | Method for predicting pedestrian crossing intention of unmanned automobile |
| CN113657174A (en) * | 2021-07-21 | 2021-11-16 | 北京中科慧眼科技有限公司 | Vehicle pseudo-3D information detection method and device and automatic driving system |
| CN113487600B (en) * | 2021-07-27 | 2024-05-03 | 大连海事大学 | Feature enhancement scale self-adaptive perception ship detection method |
| CN113592825A (en) * | 2021-08-02 | 2021-11-02 | 安徽理工大学 | YOLO algorithm-based real-time coal gangue detection method |
| CN113591735A (en) * | 2021-08-04 | 2021-11-02 | 上海新纪元机器人有限公司 | Pedestrian detection method and system based on deep learning |
| CN113591854B (en) * | 2021-08-12 | 2023-09-26 | 中国海洋大学 | A low-redundancy and fast reconstruction method for plankton holograms |
| CN113805151B (en) * | 2021-08-17 | 2024-09-10 | 青岛本原微电子有限公司 | Medium-frequency radar target detection method based on attention mechanism |
| US12462575B2 (en) | 2021-08-19 | 2025-11-04 | Tesla, Inc. | Vision-based machine learning model for autonomous driving with adjustable virtual camera |
| CN113869361A (en) * | 2021-08-20 | 2021-12-31 | 深延科技(北京)有限公司 | Model training method, target detection method and related device |
| CN113706491B (en) * | 2021-08-20 | 2024-02-13 | 西安电子科技大学 | Meniscal injury grading method based on hybrid attention weakly supervised transfer learning |
| CN113989630B (en) * | 2021-08-31 | 2024-04-23 | 中通服公众信息产业股份有限公司 | Lens shielding judging method based on semantic analysis |
| CN113822185B (en) * | 2021-09-09 | 2024-10-29 | 安徽农业大学 | Method for detecting daily behaviors of group-raised pigs |
| CN113887330A (en) * | 2021-09-10 | 2022-01-04 | 国网吉林省电力有限公司 | Target detection system based on remote sensing image |
| CN113962933A (en) * | 2021-09-15 | 2022-01-21 | 上海大学 | PCB defect image detection method based on improved YOLOv3 |
| CN113780193B (en) * | 2021-09-15 | 2024-09-24 | 易采天成(郑州)信息技术有限公司 | RCNN-based cattle group target detection method and RCNN-based cattle group target detection equipment |
| CN113887341B (en) * | 2021-09-16 | 2025-04-29 | 同济大学 | A method for human skeleton action recognition based on parallel convolutional neural network |
| CN113807243B (en) * | 2021-09-16 | 2023-12-05 | 上海交通大学 | Water obstacle detection system and method based on attention to unknown target |
| CN113762209B (en) * | 2021-09-22 | 2025-03-18 | 重庆邮电大学 | A multi-scale parallel feature fusion landmark detection method based on YOLO |
| CN114067186B (en) * | 2021-09-26 | 2024-04-16 | 北京建筑大学 | Pedestrian detection method and device, electronic equipment and storage medium |
| CN113902024B (en) * | 2021-10-20 | 2024-06-04 | 浙江大立科技股份有限公司 | Small-volume target detection and identification method based on deep learning and dual-band fusion |
| CN114091518A (en) * | 2021-10-21 | 2022-02-25 | 安徽深核信息技术有限公司 | A Multi-stage Weak Object Image Detection Method Using Combined Features |
| CN113901944B (en) * | 2021-10-25 | 2024-04-09 | 大连理工大学 | Marine organism target detection method based on improved YOLO algorithm |
| CN114067228B (en) * | 2021-10-26 | 2024-11-29 | 神思电子技术股份有限公司 | Target detection method and system for enhancing foreground and background distinction |
| CN115082909B (en) * | 2021-11-03 | 2024-04-12 | 中国人民解放军陆军军医大学第一附属医院 | Method and system for identifying lung lesions |
| CN113989518B (en) * | 2021-11-08 | 2024-11-15 | 中国科学院合肥物质科学研究院 | A lightweight target detection method for intelligent terminals |
| CN114170531B (en) * | 2021-11-23 | 2024-08-09 | 北京航天自动控制研究所 | Infrared image target detection method and device based on difficult sample transfer learning |
| CN114170633B (en) * | 2021-12-06 | 2024-08-02 | 南开大学 | Sea surface small pedestrian detection method based on collaborative supervision |
| CN114241220B (en) * | 2021-12-10 | 2025-08-15 | 北京科技大学 | Unmanned aerial vehicle ground object detection method |
| CN114399644B (en) * | 2021-12-15 | 2025-02-07 | 北京邮电大学 | Small sample target detection method and device |
| CN114419663A (en) * | 2021-12-17 | 2022-04-29 | 江西洪都航空工业集团有限责任公司 | Detection method for mask worn by human body |
| CN114359644B (en) * | 2021-12-22 | 2024-04-16 | 华南农业大学 | Crop pest and disease recognition method based on improved VGG-16 network |
| CN114283320B (en) * | 2021-12-25 | 2024-06-14 | 福州大学 | Branch-free structure target detection method based on full convolution |
| CN114332008B (en) * | 2021-12-28 | 2024-06-28 | 福州大学 | Unsupervised defect detection and positioning method based on multi-level feature reconstruction |
| CN114332029A (en) * | 2021-12-30 | 2022-04-12 | 上海华力微电子有限公司 | Method and device for classifying abnormal crystal back images by using neural network model |
| CN114372971A (en) * | 2022-01-10 | 2022-04-19 | 重庆邮电大学 | Rapid three-dimensional target detection algorithm based on binocular vision |
| CN114359838B (en) * | 2022-01-14 | 2025-03-28 | 北京理工大学重庆创新中心 | A cross-modal pedestrian detection method based on Gaussian cross-attention network |
| CN114495166A (en) * | 2022-01-17 | 2022-05-13 | 北京小龙潜行科技有限公司 | A kind of pasture changing shoe action recognition method applied to edge computing equipment |
| CN114419589B (en) * | 2022-01-17 | 2025-04-25 | 东南大学 | A road object detection method based on attention feature enhancement module |
| CN114565753B (en) * | 2022-02-22 | 2025-04-15 | 电子科技大学长三角研究院(湖州) | A method for identifying small targets of drones based on improved YOLOv4 network |
| CN114612769B (en) * | 2022-03-14 | 2023-05-26 | 电子科技大学 | An Integrated Perception Infrared Imaging Ship Detection Method Incorporating Local Structure Information |
| CN114638971B (en) * | 2022-03-21 | 2025-01-07 | 天津大学 | Object detection method based on adaptive fusion of multi-level local and global features |
| CN114884775A (en) * | 2022-03-31 | 2022-08-09 | 南京邮电大学 | Deep learning-based large-scale MIMO system channel estimation method |
| CN114863097B (en) * | 2022-04-06 | 2024-05-31 | 北京航空航天大学 | A method for infrared dim small target detection based on attention mechanism convolutional neural network |
| CN114821477B (en) * | 2022-05-05 | 2025-06-27 | 南京大学 | A video recognition method for multi-person clothing features suitable for complex scenes |
| CN115019036B (en) * | 2022-05-10 | 2024-02-27 | 西北工业大学 | A small-sample semantic segmentation method for learning non-target knowledge |
| CN114998616A (en) * | 2022-05-13 | 2022-09-02 | 南京林业大学 | Multi-scale target number statistics network based on online mask perception |
| CN114943986B (en) * | 2022-05-31 | 2024-09-27 | 武汉理工大学 | Regional pedestrian detection lighting method and system based on camera image segmentation |
| CN115082386B (en) * | 2022-06-07 | 2024-04-26 | 华南理工大学 | Injection molded parts defect detection method, device and medium based on normal sample auxiliary feature extraction |
| CN115272175B (en) * | 2022-06-16 | 2025-12-02 | 上海互觉科技有限公司 | A Surface Defect Detection Method and System Based on Multi-Light Source Collaboration |
| CN115063701B (en) * | 2022-06-21 | 2025-06-13 | 南京理工大学 | A small target detection method for UAV aerial photography based on improved YOLOv4 |
| CN115147711B (en) * | 2022-07-23 | 2024-07-16 | 河南大学 | Underwater target detection network and method based on improvement RETINANET |
| CN115205686B (en) * | 2022-07-26 | 2025-10-24 | 中山大学·深圳 | A SAR image aircraft detection method and device |
| CN115512326B (en) * | 2022-10-18 | 2025-07-25 | 上海寻序人工智能科技有限公司 | BEV visual perception method based on multiple cameras |
| CN115601790A (en) * | 2022-10-26 | 2023-01-13 | 功夫链(上海)体育文化发展有限公司(Cn) | A method and system for close-range human detection based on super large convolution kernel |
| CN115546784B (en) * | 2022-10-27 | 2025-12-19 | 奥特酷智能科技(南京)有限公司 | 3D target detection method based on deep learning |
| CN115423810B (en) * | 2022-11-04 | 2023-03-14 | 国网江西省电力有限公司电力科学研究院 | A Method for Analyzing the Icing Form of Wind Turbine Blades |
| CN116403151A (en) * | 2022-12-20 | 2023-07-07 | 南京工业大学 | Subway people stream density estimation method based on self-adaptive deep neural network |
| CN116468928B (en) * | 2022-12-29 | 2023-12-19 | 长春理工大学 | Thermal infrared small target detection method based on visual perception correlator |
| CN117079342A (en) * | 2023-02-27 | 2023-11-17 | 盛视科技股份有限公司 | Man-box interaction detection method and system based on two-stage target detection |
| CN117197687B (en) * | 2023-03-13 | 2025-11-18 | 西南科技大学 | A detection method for dense small targets in UAV aerial photography |
| CN116524517B (en) * | 2023-03-31 | 2025-09-30 | 西安电子科技大学 | Electricity meter image target recognition method based on deep learning |
| CN116524293B (en) * | 2023-04-10 | 2024-01-30 | 哈尔滨市科佳通用机电股份有限公司 | Brake adjuster pull rod head loss fault identification method and system based on deep learning |
| CN116433979A (en) * | 2023-04-18 | 2023-07-14 | 安徽理工大学 | Tunnel anomaly detection method based on small feature-aware pyramid network |
| CN116563734B (en) * | 2023-05-12 | 2025-11-21 | 贵州理工学院 | Real-time target detection method and system for unmanned aerial vehicle platform |
| CN117237614B (en) * | 2023-11-10 | 2024-02-06 | 江西啄木蜂科技有限公司 | Deep learning-based lake surface floater small target detection method |
| CN118379848B (en) * | 2024-06-21 | 2024-08-20 | 珠海华熠电子有限公司 | Personnel safety monitoring system and method based on binocular camera |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105787439A (en) * | 2016-02-04 | 2016-07-20 | 广州新节奏智能科技有限公司 | Depth image human body joint positioning method based on convolution nerve network |
| CN105956608A (en) * | 2016-04-21 | 2016-09-21 | 恩泊泰(天津)科技有限公司 | Objective positioning and classifying algorithm based on deep learning |
| CN106934346A (en) * | 2017-01-24 | 2017-07-07 | 北京大学 | A kind of method of target detection performance optimization |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107341517B (en) * | 2017-07-07 | 2020-08-11 | 哈尔滨工业大学 | Multi-scale small object detection method based on deep learning inter-level feature fusion |
| CN107563349A (en) * | 2017-09-21 | 2018-01-09 | 电子科技大学 | A kind of Population size estimation method based on VGGNet |
-
2018
- 2018-01-24 CN CN201810069322.XA patent/CN108399362B/en active Active
- 2018-07-10 WO PCT/CN2018/095058 patent/WO2019144575A1/en not_active Ceased
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105787439A (en) * | 2016-02-04 | 2016-07-20 | 广州新节奏智能科技有限公司 | Depth image human body joint positioning method based on convolution nerve network |
| CN105956608A (en) * | 2016-04-21 | 2016-09-21 | 恩泊泰(天津)科技有限公司 | Objective positioning and classifying algorithm based on deep learning |
| CN106934346A (en) * | 2017-01-24 | 2017-07-07 | 北京大学 | A kind of method of target detection performance optimization |
Cited By (53)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109089040A (en) * | 2018-08-20 | 2018-12-25 | Oppo广东移动通信有限公司 | Image processing method, image processing device and terminal equipment |
| CN109089040B (en) * | 2018-08-20 | 2021-05-14 | Oppo广东移动通信有限公司 | Image processing method, image processing device and terminal device |
| CN109409364A (en) * | 2018-10-16 | 2019-03-01 | 北京百度网讯科技有限公司 | Image annotation method and device |
| CN109508675A (en) * | 2018-11-14 | 2019-03-22 | 广州广电银通金融电子科技有限公司 | A kind of pedestrian detection method for complex scene |
| CN109522855A (en) * | 2018-11-23 | 2019-03-26 | 广州广电银通金融电子科技有限公司 | In conjunction with low resolution pedestrian detection method, system and the storage medium of ResNet and SENet |
| CN109522966A (en) * | 2018-11-28 | 2019-03-26 | 中山大学 | A kind of object detection method based on intensive connection convolutional neural networks |
| CN109522966B (en) * | 2018-11-28 | 2022-09-27 | 中山大学 | A target detection method based on densely connected convolutional neural network |
| CN109670439A (en) * | 2018-12-14 | 2019-04-23 | 中国石油大学(华东) | A kind of pedestrian and its location detection method end to end |
| CN109685718A (en) * | 2018-12-17 | 2019-04-26 | 中国科学院自动化研究所 | Picture quadrate Zoom method, system and device |
| CN109886066B (en) * | 2018-12-17 | 2023-05-09 | 南京理工大学 | Rapid target detection method based on multi-scale and multi-layer feature fusion |
| CN109886066A (en) * | 2018-12-17 | 2019-06-14 | 南京理工大学 | Fast target detection method based on the fusion of multiple dimensioned and multilayer feature |
| CN109902800A (en) * | 2019-01-22 | 2019-06-18 | 北京大学 | A method for detecting general objects based on a multi-level backbone network based on quasi-feedback neural network |
| CN109902800B (en) * | 2019-01-22 | 2020-11-27 | 北京大学 | A method for detecting general objects based on a multi-level backbone network based on quasi-feedback neural network |
| CN111523351A (en) * | 2019-02-02 | 2020-08-11 | 北京地平线机器人技术研发有限公司 | Neural network training method and device and electronic equipment |
| CN111247790A (en) * | 2019-02-21 | 2020-06-05 | 深圳市大疆创新科技有限公司 | Image processing method and device, image shooting and processing system and carrier |
| US11741581B2 (en) | 2019-04-01 | 2023-08-29 | Tencent Technology (Shenzhen) Company Limited | Training method for image processing model, image processing method, network device, and storage medium |
| CN109993712A (en) * | 2019-04-01 | 2019-07-09 | 腾讯科技(深圳)有限公司 | Image processing model training method, image processing method and related equipment |
| CN110110783A (en) * | 2019-04-30 | 2019-08-09 | 天津大学 | A kind of deep learning object detection method based on the connection of multilayer feature figure |
| CN110110793A (en) * | 2019-05-10 | 2019-08-09 | 中山大学 | Binocular image fast target detection method based on double-current convolutional neural networks |
| CN118196828A (en) * | 2019-06-06 | 2024-06-14 | 华为技术有限公司 | Object recognition method and device |
| CN110580726A (en) * | 2019-08-21 | 2019-12-17 | 中山大学 | Face sketch generation model and method in natural scene based on dynamic convolutional network |
| CN110580726B (en) * | 2019-08-21 | 2022-10-04 | 中山大学 | Dynamic convolution network-based face sketch generation model and method in natural scene |
| CN110909615A (en) * | 2019-10-28 | 2020-03-24 | 西安交通大学 | Target detection method based on multi-scale input mixed perception neural network |
| CN110909615B (en) * | 2019-10-28 | 2023-03-28 | 西安交通大学 | Target detection method based on multi-scale input mixed perception neural network |
| CN111144203B (en) * | 2019-11-19 | 2023-06-16 | 浙江工商大学 | Pedestrian shielding detection method based on deep learning |
| WO2021129105A1 (en) * | 2019-12-27 | 2021-07-01 | 歌尔股份有限公司 | Mask rcnn network model-based target identification method and apparatus |
| US11688163B2 (en) | 2019-12-27 | 2023-06-27 | Goertek Inc. | Target recognition method and device based on MASK RCNN network model |
| CN111160527A (en) * | 2019-12-27 | 2020-05-15 | 歌尔股份有限公司 | A target recognition method and device based on MASK RCNN network model |
| CN111176820A (en) * | 2019-12-31 | 2020-05-19 | 中科院计算技术研究所大数据研究院 | Deep neural network-based edge computing task allocation method and device |
| CN111242127B (en) * | 2020-01-15 | 2023-02-24 | 上海应用技术大学 | Vehicle detection method with granularity level multi-scale characteristic based on asymmetric convolution |
| CN111242127A (en) * | 2020-01-15 | 2020-06-05 | 上海应用技术大学 | Vehicle detection method with granularity level multi-scale characteristics based on asymmetric convolution |
| CN111277751A (en) * | 2020-01-22 | 2020-06-12 | Oppo广东移动通信有限公司 | Photographing method, device, storage medium and electronic device |
| CN111277751B (en) * | 2020-01-22 | 2021-06-15 | Oppo广东移动通信有限公司 | Photographing method and device, storage medium and electronic equipment |
| CN111597945A (en) * | 2020-05-11 | 2020-08-28 | 济南博观智能科技有限公司 | Target detection method, device, equipment and medium |
| CN111597945B (en) * | 2020-05-11 | 2023-08-18 | 济南博观智能科技有限公司 | Target detection method, device, equipment and medium |
| CN111598951B (en) * | 2020-05-18 | 2022-09-30 | 清华大学 | Method, device and storage medium for identifying space target |
| CN111598951A (en) * | 2020-05-18 | 2020-08-28 | 清华大学 | A method, device and storage medium for identifying a space target |
| CN111709313B (en) * | 2020-05-27 | 2022-07-29 | 杭州电子科技大学 | Person Re-identification Method Based on Local and Channel Combination Features |
| CN111709313A (en) * | 2020-05-27 | 2020-09-25 | 杭州电子科技大学 | Pedestrian Re-identification Method Based on Local and Channel Combination Features |
| CN111860508A (en) * | 2020-07-28 | 2020-10-30 | 平安科技(深圳)有限公司 | Image sample selection method and related equipment |
| CN111860508B (en) * | 2020-07-28 | 2024-07-02 | 平安科技(深圳)有限公司 | Image sample selection method and related equipment |
| CN112613359A (en) * | 2020-12-09 | 2021-04-06 | 苏州玖合智能科技有限公司 | Method for constructing neural network for detecting abnormal behaviors of people |
| CN112613359B (en) * | 2020-12-09 | 2024-02-02 | 苏州玖合智能科技有限公司 | Construction method of neural network for detecting abnormal behaviors of personnel |
| CN112613472A (en) * | 2020-12-31 | 2021-04-06 | 上海交通大学 | Pedestrian detection method and system based on deep search matching |
| CN112613472B (en) * | 2020-12-31 | 2022-04-26 | 上海交通大学 | A pedestrian detection method and system based on deep search matching |
| CN113379699A (en) * | 2021-06-08 | 2021-09-10 | 上海电机学院 | Transmission line insulator defect detection method based on deep learning |
| CN113486810A (en) * | 2021-07-08 | 2021-10-08 | 国网江苏省电力有限公司徐州供电分公司 | Intelligent identification method for birds stolen and hunted in park |
| CN113486810B (en) * | 2021-07-08 | 2024-06-18 | 国网江苏省电力有限公司徐州供电分公司 | An intelligent identification method for poached birds in parks |
| CN119762907A (en) * | 2022-01-20 | 2025-04-04 | 辽宁工程技术大学 | A method for intelligent interpretation of objects in remote sensing images with complex backgrounds |
| CN115471498A (en) * | 2022-10-10 | 2022-12-13 | 温州市华炜鞋材科技有限公司 | Shoemaking machine and method for multi-angle waterproof monitoring for rain boots production |
| CN116052214A (en) * | 2023-01-18 | 2023-05-02 | 天津大学 | A Pedestrian Search Method Based on Dynamic RoI Feature Extraction |
| CN116052214B (en) * | 2023-01-18 | 2025-06-27 | 天津大学 | Pedestrian searching method based on dynamic RoI feature extraction |
| CN116523830A (en) * | 2023-03-10 | 2023-08-01 | 上海交通大学 | 3D target detection method, system, medium and terminal |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2019144575A1 (en) | 2019-08-01 |
| CN108399362B (en) | 2022-01-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108399362A (en) | A kind of rapid pedestrian detection method and device | |
| CN111462126B (en) | Semantic image segmentation method and system based on edge enhancement | |
| CN112418236B (en) | Automobile drivable area planning method based on multitask neural network | |
| CN108830280B (en) | Small target detection method based on regional nomination | |
| CN106845478B (en) | A kind of secondary licence plate recognition method and device of character confidence level | |
| CN111461213B (en) | A training method for a target detection model and a fast target detection method | |
| CN114220035A (en) | Rapid pest detection method based on improved YOLO V4 | |
| CN111797712B (en) | Remote sensing image cloud and cloud shadow detection method based on multi-scale feature fusion network | |
| WO2021218786A1 (en) | Data processing system, object detection method and apparatus thereof | |
| CN112861970B (en) | Fine-grained image classification method based on feature fusion | |
| CN110580461A (en) | A Facial Expression Recognition Algorithm Combining Multi-Level Convolutional Feature Pyramid | |
| CN110781744A (en) | A small-scale pedestrian detection method based on multi-level feature fusion | |
| CN114612769A (en) | Integrated sensing infrared imaging ship detection method integrated with local structure information | |
| CN114332780A (en) | Traffic man-vehicle non-target detection method for small target | |
| CN112733614A (en) | Pest image detection method with similar size enhanced identification | |
| CN115546500A (en) | A small target detection method in infrared images | |
| CN114220126A (en) | Target detection system and acquisition method | |
| CN116403127A (en) | A method, device, and storage medium for object detection in aerial images taken by drones | |
| CN111738114A (en) | Vehicle target detection method based on accurate sampling of remote sensing images without anchor points | |
| CN116342931A (en) | A fur image classification method, system and storage medium based on multi-scale attention | |
| CN110472632B (en) | Character segmentation method and device based on character features and computer storage medium | |
| CN107958219A (en) | Image scene classification method based on multi-model and Analysis On Multi-scale Features | |
| Lee et al. | SAF-Nets: Shape-adaptive filter networks for 3D point cloud processing | |
| CN117830626A (en) | Real-time semantic segmentation method for low-altitude remote sensing image | |
| CN116310368A (en) | A LiDAR 3D target detection method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |