CN108303740B - Aviation electromagnetic data noise suppression method and device - Google Patents
Aviation electromagnetic data noise suppression method and device Download PDFInfo
- Publication number
- CN108303740B CN108303740B CN201810068165.0A CN201810068165A CN108303740B CN 108303740 B CN108303740 B CN 108303740B CN 201810068165 A CN201810068165 A CN 201810068165A CN 108303740 B CN108303740 B CN 108303740B
- Authority
- CN
- China
- Prior art keywords
- principal component
- matrix
- data
- low
- order
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000001629 suppression Effects 0.000 title claims abstract description 23
- 238000000926 separation method Methods 0.000 claims abstract description 48
- 230000009466 transformation Effects 0.000 claims abstract description 47
- 238000012545 processing Methods 0.000 claims abstract description 7
- 239000011159 matrix material Substances 0.000 claims description 265
- 238000000354 decomposition reaction Methods 0.000 claims description 46
- 230000014509 gene expression Effects 0.000 claims description 33
- 238000004422 calculation algorithm Methods 0.000 claims description 14
- 238000001914 filtration Methods 0.000 claims description 14
- 230000003044 adaptive effect Effects 0.000 claims description 12
- 230000001186 cumulative effect Effects 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 3
- 238000000513 principal component analysis Methods 0.000 abstract description 18
- 230000002159 abnormal effect Effects 0.000 abstract description 6
- 238000007619 statistical method Methods 0.000 abstract description 2
- 238000004364 calculation method Methods 0.000 description 11
- 238000001514 detection method Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- YTAHJIFKAKIKAV-XNMGPUDCSA-N [(1R)-3-morpholin-4-yl-1-phenylpropyl] N-[(3S)-2-oxo-5-phenyl-1,3-dihydro-1,4-benzodiazepin-3-yl]carbamate Chemical compound O=C1[C@H](N=C(C2=C(N1)C=CC=C2)C1=CC=CC=C1)NC(O[C@H](CCN1CCOCC1)C1=CC=CC=C1)=O YTAHJIFKAKIKAV-XNMGPUDCSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012847 principal component analysis method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/36—Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
- G01V1/364—Seismic filtering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/38—Processing data, e.g. for analysis, for interpretation, for correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/15—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat
- G01V3/16—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat specially adapted for use from aircraft
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Acoustics & Sound (AREA)
- Complex Calculations (AREA)
- Geophysics And Detection Of Objects (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
本发明涉及航空电磁数据处理领域,涉及一种航空电磁数据噪声压制方法及装置,基于主成分分析将剖面数据分解为按照方差大小排列的主成分;利用最小噪声分离变换去除低阶主成分中的残余噪声。针对航空电磁晚期道剖面数据噪声水平较高,异常难以提取的问题,引入统计分析的理论,不仅可以全面去除低阶主成分中的残余噪声,有效提取低阶主成分中被噪声湮没的异常信息,而且也避免了由直接实现最小噪声分离变换而引起的晚期道异常信息受早期道影响的问题,实现晚期道噪声的有效压制。
The invention relates to the field of aviation electromagnetic data processing, and relates to a method and device for suppressing noise of aviation electromagnetic data. Based on principal component analysis, profile data is decomposed into principal components arranged according to variance size; minimum noise separation transformation is used to remove low-order principal components residual noise. Aiming at the problem that the noise level of the airborne electromagnetic late track profile data is relatively high and the anomaly is difficult to extract, the theory of statistical analysis is introduced, which can not only completely remove the residual noise in the low-order principal components, but also effectively extract the anomaly information annihilated by the noise in the low-order principal components. , and also avoids the problem that the abnormal information of the late channel is affected by the early channel caused by the direct realization of the minimum noise separation transformation, and realizes the effective suppression of the late channel noise.
Description
技术领域technical field
本发明涉及航空电磁数据处理领域,特别涉及一种航空电磁数据噪声压制方法及装置。The invention relates to the field of aviation electromagnetic data processing, in particular to a noise suppression method and device for aviation electromagnetic data.
背景技术Background technique
时间域航空电磁探测技术采用机载方式,根据电磁感应原理实现大深度、高效率的地球物理探测,具有速度快、成本低、通行性好、可大面积覆盖等优势,广泛应用于基础地质调查、矿产资源勘查、油气勘查,以及水文、工程、环境勘察等领域。航空电磁探测系统在飞行探测过程中受环境噪声、系统噪声、运动噪声等影响,干扰航空电磁数据的观测和有效信号的提取,严重影响系统的深部探测能力,是制约航空电磁探测技术发展的重要指标。The time-domain aerial electromagnetic detection technology adopts the airborne method to realize large-depth and high-efficiency geophysical detection according to the principle of electromagnetic induction. It has the advantages of high speed, low cost, good trafficability, and large-area coverage. , mineral resources exploration, oil and gas exploration, as well as hydrology, engineering, environmental exploration and other fields. The aviation electromagnetic detection system is affected by environmental noise, system noise, motion noise, etc. during the flight detection process, which interferes with the observation of aviation electromagnetic data and the extraction of effective signals, which seriously affects the deep detection capability of the system. index.
朱凯光等论文题目为“航空电磁数据主成分滤波重构的噪声去除方法”[J].地球物理学报,2015,58(08):2803-2811.利用主成分分析提取航空电磁数据特征,有效地压制航空电磁数据剖面残余噪声;陈斌等论文题目为基于核主成分分析的时间域航空电磁去噪方法[J].地球物理学报,2014,57(01):295-302.进一步研究了基于核主成分分析的航空电磁数据噪声压制方法;王凌群等“基于主成分分析的航空电磁数据噪声去除方法”[J].中国有色金属学报,2013,23(09):2430-2435.改进主成分分析算法,采用在主成分域滤波后再重构的方法滤除电磁数据噪声;李玥等论文题目为“Noise removal for airborne timedomain electromagnetic data based on minimum noise fraction”ExplorationGeophysics,2016,Online Early,采用最小噪声分离变换压制航空电磁剖面数据中的噪声。The title of Zhu Kaiguang et al.'s paper is "Noise Removal Method for Principal Component Filtering and Reconstruction of Aviation Electromagnetic Data" [J]. Acta Geophysics, 2015, 58(08): 2803-2811. Using principal component analysis to extract the characteristics of aviation electromagnetic data, effectively Suppressing residual noise of airborne electromagnetic data profiles; Chen Bin et al.'s paper titled Time Domain Airborne Electromagnetic Denoising Method Based on Kernel Principal Component Analysis [J]. Acta Geophysics, 2014,57(01):295-302. Further research based on The Noise Suppression Method of Aeronautical Electromagnetic Data Based on Kernel Principal Component Analysis; Wang Lingqun et al. "Noise Removal Method of Aeronautical Electromagnetic Data Based on Principal Component Analysis" [J]. Chinese Journal of Nonferrous Metals, 2013, 23(09): 2430-2435. Improved Principal Components The analysis algorithm uses the method of filtering and then reconstructing the principal component domain to filter out the electromagnetic data noise; Li Yue et al.'s paper is titled "Noise removal for airborne timedomain electromagnetic data based on minimum noise fraction" ExplorationGeophysics, 2016, Online Early, using the minimum Noise Separation Transform suppresses noise in airborne electromagnetic profile data.
中国专利公开号为CN106094046A公开了“基于奇异值分解和小波分析的时间域航空电磁数据去噪方法”。该方法通过采用奇异值分解与小波分析相结合,对时间域航空电磁探测剖面数据进行时间域和空间域滤波处理,抑制信号中的人文噪声和天电噪声。但是,至今仍未能有效去除航空电磁剖面数据晚期道残余噪声,并在晚期道噪声淹没信号的情况下能够提取出异常信息。The Chinese Patent Publication No. CN106094046A discloses "A Time Domain Airborne Electromagnetic Data Denoising Method Based on Singular Value Decomposition and Wavelet Analysis". The method combines singular value decomposition and wavelet analysis to filter the time-domain and spatial-domain airborne electromagnetic detection profile data to suppress human noise and astronomical noise in the signal. However, it has not been able to effectively remove the residual noise in the late trace of the aeronautical electromagnetic profile data, and can extract the abnormal information when the late trace noise drowns the signal.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供一种航空电磁数据噪声压制方法及装置,解决晚期道噪声淹没信号的情况下提取出异常信息困难的问题。Embodiments of the present invention provide a method and device for suppressing noise of aeronautical electromagnetic data, which solves the problem of difficulty in extracting abnormal information under the condition of late-channel noise submerging signals.
本发明是这样实现的,The present invention is realized in this way,
本发明的第一方面,提供了一种航空电磁数据噪声压制方法,所述方法包括:A first aspect of the present invention provides a method for suppressing noise in aviation electromagnetic data, the method comprising:
计算航空电磁剖面数据协方差矩阵并对其进行特征值分解,分解得到的特征值和特征向量降序排列,形成特征向量矩阵;Calculate the covariance matrix of the airborne electromagnetic profile data and decompose the eigenvalues, and arrange the obtained eigenvalues and eigenvectors in descending order to form an eigenvector matrix;
根据特征向量矩阵得到旋转矩阵,将航空电磁剖面数据线性变换为主成分数据;Obtain the rotation matrix according to the eigenvector matrix, and linearly transform the aviation electromagnetic profile data into the principal component data;
对主成分数据的低阶主成分数据进行噪声估计;Perform noise estimation on the low-order principal component data of the principal component data;
计算低阶主成分数据噪声协方差矩阵并对其进行特征值分解,分解得到的特征值和特征向量降序排列;Calculate the noise covariance matrix of the low-order principal component data and perform eigenvalue decomposition on it, and arrange the eigenvalues and eigenvectors obtained by the decomposition in descending order;
计算低阶主成分数据协方差矩阵并构造调整矩阵对所述低阶主成分数据协方差矩阵进行调整;Calculate the low-order principal component data covariance matrix and construct an adjustment matrix to adjust the low-order principal component data covariance matrix;
对调整后的低阶主成分协方差矩阵进行特征值分解,并对分解得到的特征值和特征向量降序排列;Perform eigenvalue decomposition on the adjusted low-order principal component covariance matrix, and arrange the eigenvalues and eigenvectors obtained by the decomposition in descending order;
构造变换矩阵,将低阶主成分数据变换为最小噪声分离变换成分;Construct the transformation matrix to transform the low-order principal component data into the minimum noise separation transformation component;
选取低阶最小噪声分离变换成分重构低阶主成分数据;Select low-order minimum noise separation transform components to reconstruct low-order principal component data;
低阶主成分数据重构剖面数据。The low-order principal component data reconstructs the profile data.
结合第一方面,在第一种可能的实现方式中,计算航空电磁剖面数据的协方差矩阵并对其进行特征值分解前对航空电磁原始数据进行预处理,预处理包括对测线各道数据进行零均值化处理,得到航空电磁剖面数据,用于下一步的计算。Combined with the first aspect, in the first possible implementation manner, the covariance matrix of the aeronautical electromagnetic profile data is calculated and the eigenvalue decomposition is performed on the original aeronautical electromagnetic data, and the preprocessing includes the data of each channel of the survey line. Perform zero-average processing to obtain airborne electromagnetic profile data for the next calculation.
结合第一方面,在第一种可能的实现方式中,航空电磁剖面数据协方差矩阵中元素αkq的计算表达式如下:In combination with the first aspect, in the first possible implementation manner, the calculation expression of the element α kq in the covariance matrix of the airborne electromagnetic profile data is as follows:
式中,xk(j)表示第k道第j个测点数据,j=1,2,...,n,和分别是航空电磁剖面数据的第k道和第q道的均值,k,q=1,2,...,m,对航空电磁剖面数据协方差矩阵进行特征值分解,表达式如下:In the formula, x k (j) represents the data of the jth measurement point of the kth channel, j=1,2,...,n, and are the mean values of the k-th and q-th channels of the aviation electromagnetic profile data, respectively, k,q=1,2,...,m, the eigenvalue decomposition of the covariance matrix of the aviation electromagnetic profile data is performed, and the expression is as follows:
C=VDVT,C=VDV T ,
式中,C为航空电磁剖面数据的协方差矩阵,D是航空电磁剖面数据协方差矩阵特征值按照降序排列的对角矩阵,V是与航空电磁剖面数据协方差矩阵特征值相对应的特征向量矩阵,VT为旋转矩阵。where C is the covariance matrix of the airborne electromagnetic profile data, D is the diagonal matrix in which the eigenvalues of the airborne electromagnetic profile data covariance matrix are arranged in descending order, and V is the eigenvector corresponding to the eigenvalues of the airborne electromagnetic profile data covariance matrix matrix, V T is the rotation matrix.
结合第一方面的第一种可能的实现方式中,在第二种可实现的方式中根据航空电磁剖面数据协方差矩阵特征值相对应的特征向量矩阵得到旋转矩阵,将航空电磁剖面数据线性变换为主成分数据,采用的公式为:Φ=VTX,VT为旋转矩阵,X为航空电磁剖面数据,Φ(m×n)为主成分数据。In combination with the first possible implementation manner of the first aspect, in the second possible implementation manner, a rotation matrix is obtained according to the eigenvector matrix corresponding to the eigenvalues of the covariance matrix of the aviation electromagnetic profile data, and the aviation electromagnetic profile data is linearly transformed For the principal component data, the formula used is: Φ=V T X, V T is the rotation matrix, X is the airborne electromagnetic profile data, and Φ(m×n) is the principal component data.
结合第一方面,在第三种可实现方式中计算前p阶主成分数据的累积贡献率,当前p阶主成分数据累积贡献率高于90%时,取前p阶主成分数据为低阶主成分数据,剩余的高阶主成分中包含大量的不相关噪声。Combined with the first aspect, in the third implementation manner, the cumulative contribution rate of the first p-order principal component data is calculated. When the cumulative contribution rate of the current p-order principal component data is higher than 90%, the first p-order principal component data is taken as the lower order. Principal component data, the remaining high-order principal components contain a lot of uncorrelated noise.
结合第一方面,第三种可实现方式,在第四种可实现方式中,采用自适应窗宽滤波算法对前p阶主成分数据进行噪声估计。In combination with the first aspect, the third achievable manner, in the fourth achievable manner, adopts an adaptive window width filtering algorithm to perform noise estimation on the first p-order principal component data.
结合第一方面,第三种可实现方式,在第五种可实现方式中,计算低阶主成分数据的协方差矩阵并构造调整矩阵对其进行调整,包括:通过构造调整矩阵使各最小噪声分离变换成分中噪声方差转换为单位方差,调整矩阵的表达式为:P=UNDN -0.5,其中P为调整矩阵,DN是低阶主成分数据噪声协方差矩阵特征值按照降序排列的对角矩阵,UN是低阶主成分数据噪声协方差矩阵的特征值相对应的特征向量矩阵,对低阶主成分数据的协方差矩阵进行调整,表达式如下:其中CD为调整后的前p阶主成分数据协方差矩阵,为前p阶主成分数据的协方差矩阵。In combination with the first aspect, the third achievable manner, in the fifth achievable manner, calculating the covariance matrix of the low-order principal component data and constructing an adjustment matrix to adjust it, including: constructing an adjustment matrix to make each minimum noise The noise variance in the separation transform component is converted into unit variance, and the expression of the adjustment matrix is: P= UN D N -0.5 , where P is the adjustment matrix, D N is the low -order principal component data noise covariance matrix The eigenvalues are arranged in descending order The diagonal matrix of , U N is the eigenvector matrix corresponding to the eigenvalues of the noise covariance matrix of the low-order principal component data, and the covariance matrix of the low-order principal component data is adjusted, and the expression is as follows: where C D is the adjusted covariance matrix of the first p-order principal component data, is the covariance matrix of the first p-order principal component data.
结合第一方面,在第六种可实现方式中,对调整后的低阶主成分协方差矩阵进行特征值分解包括:采用的表达式为:CD=VDDDVD T,式中,DD是调整后的低阶主成分协方差矩阵按照降序排列的对角矩阵,VD是调整后的低阶主成分协方差矩阵的特征值相对应的特征向量矩阵,CD为调整后的低阶主成分协方差矩阵。In combination with the first aspect, in the sixth achievable manner, the eigenvalue decomposition of the adjusted low-order principal component covariance matrix includes: the adopted expression is: C D =V D D D V D T , where , D D is the diagonal matrix of the adjusted low-order principal component covariance matrix in descending order, V D is the eigenvector matrix corresponding to the eigenvalues of the adjusted low-order principal component covariance matrix, C D is the adjusted The low-order principal component covariance matrix of .
结合第一方面,在第七种可实现方式中,构造变换矩阵包括采用的表示式为:R=PVD,P为调整矩阵,VD是调整后的低阶主成分协方差矩阵的特征值相对应的特征向量矩阵,R为变换矩阵,其中低阶主成分数据通过变换矩阵R线性变换为最小噪声分离变换成分,最小噪声分离变换成分所构成的矩阵表示为:In combination with the first aspect, in a seventh possible implementation, the expression used in constructing the transformation matrix is: R=PV D , P is the adjustment matrix, and V D is the eigenvalue of the adjusted low-order principal component covariance matrix The corresponding eigenvector matrix, R is the transformation matrix, in which the low-order principal component data is linearly transformed into the minimum noise separation transformation component through the transformation matrix R, and the matrix formed by the minimum noise separation transformation component is expressed as:
式中,为低阶主成分数据,ψ为最小噪声分离变换成分,DN是低阶主成分数据噪声协方差矩阵特征值按照降序排列的对角矩阵,UN是与低阶主成分数据噪声协方差矩阵的特征值相对应的特征向量矩阵,最小噪声分离变换成分按照信噪比从大到小排列,低阶成分包含电磁剖面数据的主要信号部分,选取前L(1<L<p)最小噪声分离变换成分重构低阶主成分数据。In the formula, is the low-order principal component data, ψ is the minimum noise separation transform component, D N is the diagonal matrix in which the eigenvalues of the noise covariance matrix of the low-order principal component data are arranged in descending order, and U N is the noise covariance matrix with the low-order principal component data. The eigenvector matrix corresponding to the eigenvalue of , the minimum noise separation transformation components are arranged in descending order of signal-to-noise ratio, and the low-order components contain the main signal part of the electromagnetic profile data. Select the first L (1<L<p) minimum noise separation Transform components reconstruct low-order principal component data.
结合第一方面,在第八种可实现方式中,低阶主成分数据重构剖面数据包括:对重构主成分数据矩阵补零成为m×n的矩阵,重构剖面数据表达式如下:In combination with the first aspect, in an eighth implementation manner, reconstructing the profile data from the low-order principal component data includes: zero-filling the reconstructed principal component data matrix to form an m×n matrix, and the reconstructed profile data expression is as follows:
式中,B(m×m)是前p行元素为1其余元素为0的截断矩阵。In the formula, B(m×m) is a truncated matrix whose first p row elements are 1 and the remaining elements are 0.
第二方面,本发明提供了一种航空电磁数据噪声压制装置,所述装置包括:存储器、处理器以及输出模块,所述存储器与处理器所述建立通信连接,所述输出模块调取所述存储器的数据进行输出,In a second aspect, the present invention provides a device for suppressing airborne electromagnetic data noise, the device includes: a memory, a processor, and an output module, the memory and the processor establish a communication connection, and the output module retrieves the The data in the memory is output,
所述存储器用于存储航空电磁剖面数据;the memory is used for storing aviation electromagnetic profile data;
所述处理器用于调取所述存储器的数据后计算航空电磁剖面数据协方差矩阵并对其进行特征值分解,分解得到的特征值和特征向量降序排列,形成特征向量矩阵存储于存储器内;The processor is used to calculate the covariance matrix of the aviation electromagnetic profile data after fetching the data of the memory, and perform eigenvalue decomposition on it, and the eigenvalues and eigenvectors obtained by the decomposition are arranged in descending order to form an eigenvector matrix and store in the memory;
所述处理器用于根据特征向量矩阵得到旋转矩阵,将航空电磁剖面数据线性变换为主成分数据;The processor is used to obtain the rotation matrix according to the eigenvector matrix, and linearly transform the aviation electromagnetic profile data into the principal component data;
所述处理器用于将主成分数据的低阶主成分数据进行噪声估计;The processor is configured to perform noise estimation on the low-order principal component data of the principal component data;
所述处理器用于计算低阶主成分数据噪声协方差矩阵并对其进行特征值分解,分解得到的特征值和特征向量降序排列;The processor is used to calculate the low-order principal component data noise covariance matrix and perform eigenvalue decomposition on it, and the eigenvalues and eigenvectors obtained by the decomposition are arranged in descending order;
所述处理器用于计算低阶主成分数据协方差矩阵并构造调整矩阵对所述低阶主成分数据协方差矩阵进行调整;The processor is used to calculate the covariance matrix of the low-order principal component data and construct an adjustment matrix to adjust the covariance matrix of the low-order principal component data;
所述处理器用于对调整后的低阶主成分协方差矩阵进行特征值分解,并对分解得到的特征值和特征向量降序排列;The processor is configured to perform eigenvalue decomposition on the adjusted low-order principal component covariance matrix, and arrange the eigenvalues and eigenvectors obtained by the decomposition in descending order;
所述处理器用于构造变换矩阵,将低阶主成分数据变换为最小噪声分离变换成分;The processor is used to construct a transformation matrix, and transform the low-order principal component data into the minimum noise separation transformation component;
所述处理器用于选取低阶最小噪声分离变换成分重构低阶主成分数据;The processor is used to select low-order minimum noise separation transform components to reconstruct low-order principal component data;
所述处理器用于将低阶主成分数据重构剖面数据;The processor is configured to reconstruct the profile data from the low-order principal component data;
所述输出模块将通过处理器处理的数据输出噪声压制结果并成图。The output module outputs the noise suppression result from the data processed by the processor and forms a graph.
本发明还有一方面提供了一种计算机程序,该程序代码用于运行在处理器上,在所述处理器上执行第一方面可能实现方式的方法。Still another aspect of the present invention provides a computer program, the program code being used for running on a processor, and executing the method of the possible implementation of the first aspect on the processor.
本发明与现有技术相比,有益效果在于:Compared with the prior art, the present invention has the following beneficial effects:
本发明噪声压制方法首先基于主成分分析算法(PCA)将剖面数据分解为按照方差大小排列的主成分;其次,利用最小噪声分离变换(MNF)去除低阶主成分中的残余噪声。本方法针对航空电磁晚期道剖面数据噪声水平较高,异常难以提取的问题,引入统计分析的理论,不仅可以全面去除低阶主成分中的残余噪声,有效提取低阶主成分中被噪声湮没的异常信息,而且也避免了由直接实现最小噪声分离变换而引起的晚期道异常信息受早期道影响的问题,实现晚期道噪声的有效压制。可以有效提取被噪声湮没的晚期道数据异常,其噪声压制效果优于主成分分析噪声压制效果和最小噪声分离变换噪声压制效果。The noise suppression method of the present invention first decomposes the profile data into principal components arranged according to the variance size based on the principal component analysis algorithm (PCA); secondly, uses the minimum noise separation transform (MNF) to remove the residual noise in the low-order principal components. Aiming at the problem that the noise level of the airborne electromagnetic late track profile data is relatively high and it is difficult to extract anomalies, the method introduces the theory of statistical analysis, which can not only comprehensively remove the residual noise in the low-order principal components, but also effectively extract the noise annihilated in the low-order principal components. It also avoids the problem that the abnormal information of the late channel is affected by the early channel caused by the direct realization of the minimum noise separation transformation, and realizes the effective suppression of the late channel noise. It can effectively extract the late-stage data anomalies annihilated by noise, and its noise suppression effect is better than the noise suppression effect of principal component analysis and the minimum noise separation transformation noise suppression effect.
附图说明Description of drawings
图1为本发明实施例提供的基于PCA和MNF联合算法的航空电磁数据噪声压制方法的流程图;FIG. 1 is a flowchart of a method for suppressing airborne electromagnetic data noise based on a PCA and MNF joint algorithm provided by an embodiment of the present invention;
图2为本本发明实施例提供的基于PCA和MNF联合算法的航空电磁数据噪声压制装置的结构框图;2 is a structural block diagram of a device for suppressing airborne electromagnetic data noise based on a PCA and MNF joint algorithm provided by an embodiment of the present invention;
图3为本发明实施例提供的一实施例中的航空电磁数据剖面图;3 is a cross-sectional view of aeronautical electromagnetic data in an embodiment provided by an embodiment of the present invention;
图4a为本发明实施例提供的一实施例中的航空电磁数据晚期道剖面图;FIG. 4a is a cross-sectional view of the late track of aeronautical electromagnetic data in an embodiment provided by an embodiment of the present invention;
图4b为本发明实施例提供的一实施例中的基于主成分分析的噪声压制结果晚期道剖面图;4b is a cross-sectional view of a late stage of a noise suppression result based on principal component analysis in an embodiment according to an embodiment of the present invention;
图4c为本发明实施例提供的一实施例中的基于最小噪声分离变换的噪声压制结果晚期道剖面图;FIG. 4c is a cross-sectional view of a late-stage channel of a noise suppression result based on a minimum noise separation transformation in an embodiment according to an embodiment of the present invention;
图4d为本发明实施例提供的一实施例中的基于PCA和MNF联合算法的噪声压制结果晚期道剖面图。FIG. 4d is a cross-sectional view of a late stage of a noise suppression result based on a PCA and MNF joint algorithm in an embodiment according to an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
本发明实施例提供的航空电磁数据噪声压制方法,基于主成分分析算法(PCA)将剖面数据分解为按照方差大小排列的主成分;其次,利用最小噪声分离变换(MNF)去除低阶主成分中的残余噪声。方法包括:The method for suppressing the noise of aviation electromagnetic data provided by the embodiment of the present invention decomposes the profile data into principal components arranged according to the variance size based on the principal component analysis algorithm (PCA); residual noise. Methods include:
基于一定的录入数据,该数据通过采集后为原始的数据,录入航空电磁原始数据后对航空电磁原始数据进行预处理,得到测线剖面数据。具体为设一条测线X(n×m)共有n个测点m道数据,且各道数据均已经过零均值化处理,测线剖面数据即航空电磁剖面数据表述如下:Based on certain input data, the data is collected as the original data, and after inputting the original aviation electromagnetic data, the original aviation electromagnetic data is preprocessed to obtain the survey line profile data. Specifically, a survey line X(n×m) has a total of n survey points and m channels of data, and the data of each channel has been zero-averaged. The survey line profile data, that is, the aviation electromagnetic profile data, is expressed as follows:
式中,xk(j)表示第k道第j个测点数据,k=1,2,...,m;j=1,2,...,n。In the formula, x k (j) represents the data of the jth measurement point of the kth channel, k=1, 2,...,m; j=1, 2,...,n.
计算航空电磁剖面数据协方差矩阵并对其进行特征值分解,分解得到的特征值和特征向量降序排列,形成特征向量矩阵;在此过程中,航空电磁剖面数据协方差矩阵C中元素αkq的计算表达式如下:Calculate the covariance matrix of the airborne electromagnetic profile data and decompose it into eigenvalues, and arrange the obtained eigenvalues and eigenvectors in descending order to form an eigenvector matrix; in this process, the element α kq in the airborne electromagnetic profile data covariance matrix C The calculation expression is as follows:
式中,和分别是航空电磁剖面数据的第k道和第q道的均值,k,q=1,2,...,m。对航空电磁剖面数据协方差矩阵C进行特征值分解,表达式如下:In the formula, and are the mean values of the kth and qth tracks of the airborne electromagnetic profile data, respectively, k,q=1,2,...,m. The eigenvalue decomposition is performed on the covariance matrix C of the airborne electromagnetic profile data, and the expression is as follows:
C=VDVT,C=VDV T ,
式中,D是航空电磁剖面数据协方差矩阵特征值按照降序排列的对角矩阵,V是与航空电磁剖面数据协方差矩阵特征值相对应的特征向量矩阵,VT为旋转矩阵。In the formula, D is the diagonal matrix in which the eigenvalues of the covariance matrix of the airborne electromagnetic profile data are arranged in descending order, V is the eigenvector matrix corresponding to the eigenvalues of the covariance matrix of the airborne electromagnetic profile data, and V T is the rotation matrix.
得到旋转矩阵后,将航空电磁剖面数据线性变换为主成分数据;再此过程中,利用旋转矩阵VT把剖面数据X线性变换为主成分数据Φ(m×n),采用的公式为:Φ=VTX,VT为旋转矩阵,X为航空电磁剖面数据。After obtaining the rotation matrix, linearly transform the aviation electromagnetic profile data into the principal component data; in this process, use the rotation matrix V T to linearly transform the profile data X into the principal component data Φ(m×n), the formula used is: Φ =V T X, V T is the rotation matrix, and X is the airborne electromagnetic profile data.
对主成分数据的低阶主成分数据进行噪声估计;优选的,计算前p阶主成分的累积贡献率Δp,Noise estimation is performed on the low-order principal component data of the principal component data; preferably, the cumulative contribution rate Δp of the first p-order principal components is calculated,
式中,λj是第j阶主成分数据对应的特征值。当前p阶主成分数据累积贡献率高于90%时,取前p阶主成分数据为剩余的高阶主成分中包含大量的不相关噪声。In the formula, λj is the eigenvalue corresponding to the jth order principal component data. When the cumulative contribution rate of the current p-order principal component data is higher than 90%, take the former p-order principal component data as The remaining high-order principal components contain a large amount of uncorrelated noise.
采用自适应窗宽滤波算法对前p阶主成分进行噪声估计。以数据中的第k道数据为例,自适应窗宽滤波算法过程如下:An adaptive window-width filtering algorithm is used to detect the first p-order principal components. Perform noise estimation. Take the kth channel data in the data For example, the adaptive window width filtering algorithm process is as follows:
假定窗宽范围为WL-WU,WL和WU分别表示最小窗宽和最大窗宽。为第k阶的最大窗宽平滑滤波结果,的二阶差分计算表达式如下:Assuming that the window width range is W L -W U , W L and W U represent the minimum and maximum window widths, respectively. is the maximum window width smoothing filtering result of the kth order, The second-order difference calculation expression is as follows:
其中,[]是向下取整计算,是的第j个测点的元素,即各测点最大窗宽滤波后数据。各测点的自适应窗宽Wk(j)包含在最小窗宽WL和最大窗宽WU范围内,表达式如下:Among them, [] is round down calculation, Yes The element of the jth measuring point of , that is, the filtered data of the maximum window width of each measuring point. The adaptive window width W k (j) of each measuring point is included in the range of the minimum window width W L and the maximum window width W U , and the expression is as follows:
其中,Δr是二阶差分的阈值。where Δr is the threshold of the second order difference.
第k阶主成分经过自适应窗宽滤波后的前p阶主成分数据表示如下:The first p-order principal component data of the k-th order principal component after adaptive window width filtering is expressed as follows:
则第k阶主成分经过自适应窗宽滤波后估计的噪声表示如下:Then the noise estimated by the k-th principal component after adaptive window width filtering is expressed as follows:
计算低阶主成分数据(也就是前p阶主成分数据)噪声协方差矩阵并对其进行特征值分解,分解得到的特征值和特征向量降序排列;前p阶主成分数据的噪声协方差矩阵CN中元素γkq的计算表达式如下:Calculate the noise covariance matrix of the low-order principal component data (that is, the first p-order principal component data) and perform eigenvalue decomposition on it, and the decomposed eigenvalues and eigenvectors are arranged in descending order; the noise covariance matrix of the first p-order principal component data The calculation expression of element γ kq in CN is as follows:
其中,和分别是噪声数据的第k道和第q道的均值,k,q=1,2,...,m,对噪声协方差矩阵进行特征值分解,表达式如下:in, and are the mean values of the k-th channel and the q-th channel of the noise data, k,q=1,2,...,m, the eigenvalue decomposition of the noise covariance matrix is performed, and the expression is as follows:
CN=UNDNUN T,C N = UN D N U N T ,
式中,DN是噪声协方差矩阵特征值按照降序排列的对角矩阵,UN是与特征值相对应的特征向量矩阵。In the formula, D N is the diagonal matrix of noise covariance matrix eigenvalues arranged in descending order, and U N is the eigenvector matrix corresponding to the eigenvalues.
计算低阶主成分数据协方差矩阵并构造调整矩阵对所述低阶主成分数据协方差矩阵进行调整;前p阶主成分数据协方差矩阵中元素βkq的计算表达式如下:Calculate the low-order principal component data covariance matrix and construct an adjustment matrix to adjust the low-order principal component data covariance matrix; the first p-order principal component data covariance matrix The calculation expression of element β kq is as follows:
式中,和分别是前p阶主成分数据的第k道和第q道的均值,k,q=1,2,...,m,In the formula, and are the mean values of the kth and qth tracks of the first p-order principal component data, respectively, k,q=1,2,...,m,
构造调整矩阵目的是各最小噪声分离变换成分中噪声方差转换为单位方差,其中调整矩阵P满足等式PTCNP=E,E为单位矩阵。调整矩阵表达式如下:P=UNDN -0.5。其中P为调整矩阵,UN是低阶主成分数据噪声协方差矩阵的特征值相对应的特征向量矩阵,DN是低阶主成分数据噪声协方差矩阵特征值按照降序排列的对角矩阵,对低阶主成分数据的协方差矩阵进行调整。The purpose of constructing the adjustment matrix is to convert the noise variance in each minimum noise separation transform component into unit variance, wherein the adjustment matrix P satisfies the equation P T C N P=E, where E is the unit matrix. The adjustment matrix expression is as follows: P= UN D N -0.5 . where P is the adjustment matrix, U N is the eigenvector matrix corresponding to the eigenvalues of the low-order principal component data noise covariance matrix, D N is the diagonal matrix in which the eigenvalues of the low-order principal component data noise covariance matrix are arranged in descending order, Make adjustments to the covariance matrix of low-order principal component data.
对前p阶主成分数据的协方差矩阵进行调整,表达式如下:其中CD为调整后的前p阶主成分数据协方差矩阵,为前p阶主成分数据的协方差矩阵。Covariance matrix for first p-order principal component data To adjust, the expression is as follows: where C D is the adjusted covariance matrix of the first p-order principal component data, is the covariance matrix of the first p-order principal component data.
对调整后的低阶主成分协方差矩阵进行特征值分解,并对分解得到的特征值和特征向量降序排列;采用的表达式为:CD=VDDDVD T,式中,DD是调整后的低阶主成分协方差矩阵按照降序排列的对角矩阵,VD是调整后的低阶主成分协方差矩阵的特征值相对应的特征向量矩阵,CD为调整后的低阶主成分协方差矩阵。Perform eigenvalue decomposition on the adjusted low-order principal component covariance matrix, and arrange the eigenvalues and eigenvectors obtained by the decomposition in descending order; the expression used is: C D =V D D D V D T , where D D is the diagonal matrix of the adjusted low-order principal component covariance matrix in descending order, V D is the eigenvector matrix corresponding to the eigenvalues of the adjusted low-order principal component covariance matrix, C D is the adjusted low Order principal components covariance matrix.
构造变换矩阵,将低阶主成分数据变换为最小噪声分离变换成分;构造变换矩阵包括采用的表示式为:R=PVD,P为调整矩阵,VD是调整后的低阶主成分协方差矩阵的特征值相对应的特征向量矩阵,R为变换矩阵,其中低阶主成分数据通过变换矩阵R线性变换为最小噪声分离变换成分,最小噪声分离变换成分所构成的矩阵表示为:Construct the transformation matrix to transform the low-order principal component data into the minimum noise separation transform component; constructing the transformation matrix includes the following expressions: R=PV D , P is the adjustment matrix, and V D is the adjusted low-order principal component covariance The eigenvector matrix corresponding to the eigenvalues of the matrix, R is the transformation matrix, in which the low-order principal component data is linearly transformed into the minimum noise separation transformation component through the transformation matrix R, and the matrix formed by the minimum noise separation transformation component is expressed as:
式中,为低阶主成分数据,ψ为最小噪声分离变换成分,DN是低阶主成分数据噪声协方差矩阵特征值按照降序排列的对角矩阵,UN是与低阶主成分数据噪声协方差矩阵的特征值相对应的特征向量矩阵,最小噪声分离变换成分按照信噪比从大到小排列,低阶成分包含电磁剖面数据的主要信号部分,选取前L(1<L<p)最小噪声分离变换成分重构低阶主成分数据。In the formula, is the low-order principal component data, ψ is the minimum noise separation transform component, D N is the diagonal matrix in which the eigenvalues of the noise covariance matrix of the low-order principal component data are arranged in descending order, and U N is the noise covariance matrix with the low-order principal component data. The eigenvector matrix corresponding to the eigenvalue of , the minimum noise separation transformation components are arranged in descending order of signal-to-noise ratio, and the low-order components contain the main signal part of the electromagnetic profile data. Select the first L (1<L<p) minimum noise separation Transform components reconstruct low-order principal component data.
选取低阶最小噪声分离变换成分重构低阶主成分数据;重构主成分数据表达式如下:Select the low-order minimum noise separation transform component to reconstruct the low-order principal component data; the expression of the reconstructed principal component data is as follows:
低阶主成分数据重构剖面数据,重构电磁剖面数据需对重构主成分数据矩阵补零成为m×n的矩阵,重构剖面数据表达式如下:The low-order principal component data reconstructs the profile data, and the reconstruction of the electromagnetic profile data requires the reconstruction of the principal component data matrix. The zero-padding becomes an m×n matrix, and the reconstructed profile data is expressed as follows:
式中,B(m×m)是前p行元素为1其余元素为0的截断矩阵。In the formula, B(m×m) is a truncated matrix whose first p row elements are 1 and the remaining elements are 0.
本发明还提供了一种航空电磁数据噪声压制装置,参见图2,装置包括:存储器、处理器以及输出模块,存储器与处理器所述建立通信连接,输出模块调取所述存储器的数据进行输出,The present invention also provides a device for suppressing airborne electromagnetic data noise. Referring to FIG. 2, the device includes: a memory, a processor, and an output module. The memory and the processor establish a communication connection, and the output module retrieves data from the memory for output. ,
存储器用于存储航空电磁剖面数据;The memory is used to store aviation electromagnetic profile data;
处理器用于调取所述存储器的数据后计算航空电磁剖面数据协方差矩阵并对其进行特征值分解,分解得到的特征值和特征向量降序排列,形成特征向量矩阵存储于存储器内;The processor is used to retrieve the data of the memory and calculate the covariance matrix of the aviation electromagnetic profile data and perform eigenvalue decomposition on it, and the eigenvalues and eigenvectors obtained from the decomposition are arranged in descending order to form an eigenvector matrix and store in the memory;
处理器用于根据特征向量矩阵得到旋转矩阵,将航空电磁剖面数据线性变换为主成分数据;The processor is used to obtain the rotation matrix according to the eigenvector matrix, and linearly transform the aviation electromagnetic profile data into the principal component data;
处理器用于将主成分数据的低阶主成分数据进行噪声估计;The processor is used to perform noise estimation on the low-order principal component data of the principal component data;
处理器用于计算低阶主成分数据噪声协方差矩阵并对其进行特征值分解,分解得到的特征值和特征向量降序排列;The processor is used to calculate the noise covariance matrix of the low-order principal component data and perform eigenvalue decomposition on it, and the eigenvalues and eigenvectors obtained by the decomposition are arranged in descending order;
处理器用于计算低阶主成分数据协方差矩阵并构造调整矩阵对所述低阶主成分数据协方差矩阵进行调整;The processor is used to calculate the covariance matrix of the low-order principal component data and construct an adjustment matrix to adjust the covariance matrix of the low-order principal component data;
处理器用于对调整后的低阶主成分协方差矩阵进行特征值分解,并对分解得到的特征值和特征向量降序排列;The processor is used to perform eigenvalue decomposition on the adjusted low-order principal component covariance matrix, and arrange the eigenvalues and eigenvectors obtained by the decomposition in descending order;
处理器用于构造变换矩阵,将低阶主成分数据变换为最小噪声分离变换成分;The processor is used to construct a transformation matrix, and transform the low-order principal component data into the minimum noise separation transformation component;
处理器用于选取低阶最小噪声分离变换成分重构低阶主成分数据;The processor is used to select low-order minimum noise separation transform components to reconstruct low-order principal component data;
处理器用于将低阶主成分数据重构剖面数据;The processor is used to reconstruct the profile data from the low-order principal component data;
输出模块将通过处理器处理的数据输出噪声压制结果并成图。The output module outputs the noise-suppressed results from the data processed by the processor and forms a graph.
所述处理器还包括预处理单元用于计算航空电磁剖面数据的协方差矩阵并对其进行特征值分解前对航空电磁原始数据进行预处理,对测线各道数据均过零均值化处理,得到航空电磁剖面数据。The processor further includes a preprocessing unit for calculating the covariance matrix of the aviation electromagnetic profile data and preprocessing the original aviation electromagnetic data before performing eigenvalue decomposition on it, and performing zero-crossing averaging processing on each channel data of the survey line, Obtain airborne electromagnetic profile data.
航空电磁剖面数据协方差矩阵中元素αkq的计算表达式如下:The calculation expression of element α kq in the covariance matrix of airborne electromagnetic profile data is as follows:
式中,xk(j)表示第k道第j个测点数据,j=1,2,...,n,和分别是航空电磁剖面数据的第k道和第q道的均值,k,q=1,2,...,m,第二方面进一步地,所述处理器还包括分解模块用于对航空电磁剖面数据协方差矩阵进行特征值分解,表达式如下:In the formula, x k (j) represents the data of the jth measurement point of the kth channel, j=1,2,...,n, and are the mean values of the k-th channel and the q-th channel of the aviation electromagnetic profile data, k,q=1,2,...,m. In the second aspect, further, the processor further includes a decomposition module for analyzing the aviation electromagnetic The eigenvalue decomposition of the profile data covariance matrix is carried out, and the expression is as follows:
C=VDVT,C=VDV T ,
式中,C为航空电磁剖面数据的协方差矩阵,D是航空电磁剖面数据协方差矩阵特征值按照降序排列的对角矩阵,V是与航空电磁剖面数据协方差矩阵特征值相对应的特征向量矩阵,VT为旋转矩阵。where C is the covariance matrix of the airborne electromagnetic profile data, D is the diagonal matrix in which the eigenvalues of the airborne electromagnetic profile data covariance matrix are arranged in descending order, and V is the eigenvector corresponding to the eigenvalues of the airborne electromagnetic profile data covariance matrix matrix, V T is the rotation matrix.
所述处理器还包括计算单元用于根据航空电磁剖面数据协方差矩阵特征值相对应的特征向量矩阵得到旋转矩阵,将航空电磁剖面数据线性变换为主成分数据,采用的公式为:Φ=VTX,VT为旋转矩阵,X为航空电磁剖面数据,Φ(m×n)为主成分数据。The processor also includes a calculation unit for obtaining a rotation matrix according to the eigenvector matrix corresponding to the eigenvalues of the covariance matrix of the aviation electromagnetic profile data, and linearly transforming the aviation electromagnetic profile data into the principal component data, and the formula used is: Φ=V T X, V T are rotation matrices, X is the airborne electromagnetic profile data, and Φ(m×n) is the main component data.
所述处理器采用噪声估计单元用于计算前p阶主成分数据的累积贡献率,当前p阶主成分数据累积贡献率高于90%时,取前p阶主成分数据为低阶主成分数据,剩余的高阶主成分中包含大量的不相关噪声。并采用自适应窗宽滤波算法对前p阶主成分数据进行噪声估计。The processor adopts a noise estimation unit to calculate the cumulative contribution rate of the first p-order principal component data. When the current p-order principal component data cumulative contribution rate is higher than 90%, the former p-order principal component data is taken as the low-order principal component data. , the remaining high-order principal components contain a large amount of uncorrelated noise. An adaptive window-width filtering algorithm is used to estimate the noise of the first p-order principal component data.
所述处理器还包括调整单元用于计算低阶主成分数据的协方差矩阵并构造调整矩阵对其进行调整,包括:通过构造调整矩阵使各最小噪声分离变换成分中噪声方差转换为单位方差,调整矩阵的表达式为:P=UNDN -0.5,其中P为调整矩阵,UN是低阶主成分数据噪声协方差矩阵的特征值相对应的特征向量矩阵,DN是低阶主成分数据噪声协方差矩阵特征值按照降序排列的对角矩阵,对低阶主成分数据的协方差矩阵进行调整,表达式如下:其中CD为调整后的前p阶主成分数据协方差矩阵,为前p阶主成分数据的协方差矩阵。The processor further includes an adjustment unit for calculating the covariance matrix of the low-order principal component data and constructing an adjustment matrix to adjust it, including: converting the noise variance in each minimum noise separation transform component into a unit variance by constructing an adjustment matrix, The expression of the adjustment matrix is: P=UN D N -0.5 , where P is the adjustment matrix, U N is the eigenvector matrix corresponding to the eigenvalues of the low-order principal component data noise covariance matrix, and D N is the low - order principal The eigenvalues of the noise covariance matrix of the component data are arranged in descending order of the diagonal matrix, and the covariance matrix of the low-order principal component data is adjusted, and the expression is as follows: where C D is the adjusted covariance matrix of the first p-order principal component data, is the covariance matrix of the first p-order principal component data.
所述处理器采用计算模块对调整后的低阶主成分协方差矩阵进行特征值分解包括:采用的表达式为:CD=VDDDVD T,式中,DD是调整后的低阶主成分协方差矩阵按照降序排列的对角矩阵,VD是调整后的低阶主成分协方差矩阵的特征值相对应的特征向量矩阵,CD为调整后的低阶主成分协方差矩阵。The processor uses the calculation module to perform eigenvalue decomposition on the adjusted low-order principal component covariance matrix, including: the adopted expression is: C D =V D D D V D T , where D D is the adjusted The low-order principal component covariance matrix is a diagonal matrix arranged in descending order, V D is the eigenvector matrix corresponding to the eigenvalues of the adjusted low-order principal component covariance matrix, and C D is the adjusted low-order principal component covariance matrix.
所述处理器还包括构造单元用于构造变换矩阵包括采用的表示式为:R=PVD,P为调整矩阵,VD是调整后的低阶主成分协方差矩阵的特征值相对应的特征向量矩阵,R为变换矩阵,其中低阶主成分数据通过变换矩阵R线性变换为最小噪声分离变换成分,最小噪声分离变换成分所构成的矩阵表示为:The processor also includes a construction unit for constructing the transformation matrix, including the following expression: R=PV D , P is the adjustment matrix, and V D is the characteristic corresponding to the eigenvalue of the adjusted low-order principal component covariance matrix. vector matrix, R is the transformation matrix, in which the low-order principal component data is linearly transformed into the minimum noise separation transformation component through the transformation matrix R, and the matrix formed by the minimum noise separation transformation component is expressed as:
式中,为低阶主成分数据,ψ为最小噪声分离变换成分,DN是低阶主成分数据噪声协方差矩阵特征值按照降序排列的对角矩阵,UN是与低阶主成分数据噪声协方差矩阵的特征值相对应的特征向量矩阵,最小噪声分离变换成分按照信噪比从大到小排列,低阶成分包含电磁剖面数据的主要信号部分,选取前L(1<L<p)最小噪声分离变换成分重构低阶主成分数据。In the formula, is the low-order principal component data, ψ is the minimum noise separation transform component, D N is the diagonal matrix in which the eigenvalues of the noise covariance matrix of the low-order principal component data are arranged in descending order, and U N is the noise covariance matrix with the low-order principal component data. The eigenvector matrix corresponding to the eigenvalue of , the minimum noise separation transformation components are arranged in descending order of signal-to-noise ratio, and the low-order components contain the main signal part of the electromagnetic profile data. Select the first L (1<L<p) minimum noise separation Transform components reconstruct low-order principal component data.
所述处理器还包括重构单元用于低阶主成分数据重构剖面数据包括:对重构主成分数据矩阵补零成为m×n的矩阵,重构剖面数据表达式如下:The processor further includes a reconstruction unit for reconstructing the profile data from the low-order principal component data, including: zero-filling the reconstructed principal component data matrix to form an m×n matrix, and the reconstructed profile data expression is as follows:
式中,B(m×m)是前p行元素为1其余元素为0的截断矩阵。In the formula, B(m×m) is a truncated matrix whose first p row elements are 1 and the remaining elements are 0.
在上述的实施例中可以全部或部分通过软件、硬件、固件或者其任意组合来实现,当使用软件来实现时,可以全部或部分地以计算机程序产品的形式实现。所述的程序代码用于所述计算机程序在处理器上执行上述的实施例方法的程序代码,所述的计算机程序可以存储于一种计算机可读存储介质中,这里的可读存储介质可以为硬盘、光盘以及只读形式存储器。The above-mentioned embodiments may be implemented in whole or in part by software, hardware, firmware or any combination thereof, and when implemented in software, it may be implemented in whole or in part in the form of a computer program product. The program code is used for the computer program to execute the program code of the above-mentioned embodiment method on the processor, and the computer program can be stored in a computer-readable storage medium, and the readable storage medium here can be Hard disks, optical disks, and read-only forms of memory.
本发明以一组系统在加拿大安大略省尼斯特瀑布西北部的航空电磁剖面数据为例。对上述提到的方法进行说明,该测线包含3500个测点。The present invention is based on a set of An example of the system's aerial electromagnetic profile data northwest of Nistel Falls, Ontario, Canada. To illustrate the method mentioned above, the survey line contains 3500 survey points.
步骤a、读入时间域航空电磁剖面数据,记为X,如图3所示。Step a. Read in the time domain airborne electromagnetic profile data, denoted as X, as shown in Figure 3.
步骤b、剖面数据的协方差矩阵C中元素αkq为:Step b. The element α kq in the covariance matrix C of the profile data is:
式中,和分别是剖面数据的第k道和第q道的均值,k,q=1,2,...,3500。对剖面数据的协方差矩阵C进行特征值分解,In the formula, and are the mean values of the k-th and q-th traces of the profile data, respectively, k,q=1,2,...,3500. Perform eigenvalue decomposition on the covariance matrix C of the profile data,
C=VDVT,C=VDV T ,
式中,D是剖面数据协方差矩阵特征值按照降序排列的对角矩阵,V是与特征值相对应的特征向量矩阵,VT为旋转矩阵。In the formula, D is the diagonal matrix in which the eigenvalues of the profile data covariance matrix are arranged in descending order, V is the eigenvector matrix corresponding to the eigenvalues, and V T is the rotation matrix.
步骤c、利用旋转矩阵VT把剖面数据X线性变换为主成分Φ(31×3500),Step c, use the rotation matrix V T to linearly transform the profile data X into the main component Φ (31×3500),
Φ=VTX。Φ= VTX .
步骤d、计算前p阶主成分的累积贡献率Δp,Step d. Calculate the cumulative contribution rate Δ p of the first p-order principal components,
式中,λj是第j阶主成分对应特征值。前3阶主成分累积贡献率高于90%,取前3阶主成分为剩余的高阶主成分中包含大量的不相关噪声。In the formula, λj is the corresponding eigenvalue of the jth -order principal component. The cumulative contribution rate of the first three-order principal components is higher than 90%, and the first three-order principal components are taken as The remaining high-order principal components contain a large amount of uncorrelated noise.
采用自适应窗宽滤波算法对前3阶主成分进行噪声估计。以数据中的第k阶主成分为例,窗宽范围为WL-WU。为第k阶的最大窗宽平滑滤波结果,的二阶差分为:The first three-order principal components are analyzed by adaptive window-width filtering algorithm. Perform noise estimation. Take the k-th principal components in the data For example, the window width range is W L -W U . is the maximum window width smoothing filtering result of the kth order, The second-order difference is:
其中,[]是向下取整计算,是的第j个测点的元素,即各测点最大窗宽滤波后数据。各测点的自适应窗宽Wk(j)为:Among them, [] is round down calculation, Yes The element of the jth measuring point of , that is, the filtered data of the maximum window width of each measuring point. The adaptive window width W k (j) of each measuring point is:
其中,Δr是二阶差分的阈值。where Δr is the threshold of the second order difference.
第k阶主成分经过自适应窗宽滤波后的前3阶主成分数据为:The first three-order principal component data of the k-th principal component after adaptive window width filtering are:
则第k阶主成分经过自适应窗宽滤波后估计的噪声为:Then the noise estimated by the k-th principal component after adaptive window width filtering is:
步骤e、前3阶主成分数据的噪声协方差矩阵CN中元素γkq为:In step e, the element γ kq in the noise covariance matrix CN of the first three-order principal component data is:
其中,和分别是噪声数据的第k道和第q道的均值,k,q=1,2,...,3500。对噪声协方差矩阵进行特征值分解,in, and are the mean values of the kth channel and the qth channel of the noise data, respectively, k,q=1,2,...,3500. Eigenvalue decomposition of the noise covariance matrix,
CN=UNDNUN T,C N = UN D N U N T ,
式中,DN是噪声协方差矩阵特征值按照降序排列的对角矩阵,UN是与特征值相对应的特征向量矩阵。In the formula, D N is the diagonal matrix of noise covariance matrix eigenvalues arranged in descending order, and U N is the eigenvector matrix corresponding to the eigenvalues.
步骤f、前3阶主成分数据的协方差矩阵中元素βkq为:Step f, the covariance matrix of the first 3-order principal component data The element β kq is:
式中,和分别是前3阶主成分数据的第k道和第q道的均值,k,q=1,2,...,3500。In the formula, and are the mean values of the k-th and q-th channels of the first 3-order principal component data, respectively, k, q=1, 2, ..., 3500.
构造调整矩阵,Construct the adjustment matrix,
P=UNDN -0.5。P= UN D N -0.5 .
对前3阶主成分数据的协方差矩阵进行调整,Covariance matrix for first 3 order principal component data make adjustments,
步骤g、对调整后的前3阶主成分数据的协方差矩阵CD进行特征值分解,Step g, perform eigenvalue decomposition on the covariance matrix C D of the adjusted first-order principal component data,
CD=VDDDVD T,C D =V D D D V D T ,
式中,DD是调整后剖面数据协方差矩阵特征值按照降序排列的对角矩阵,VD是与特征值相对应的特征向量矩阵。In the formula, D D is the diagonal matrix in which the eigenvalues of the covariance matrix of the adjusted profile data are arranged in descending order, and V D is the eigenvector matrix corresponding to the eigenvalues.
步骤h、构造变换矩阵,Step h, construct the transformation matrix,
R=PVD。R= PVD .
前3阶主成分数据可以通过变换矩阵R线性变换为最小噪声分离变换成分,各成分所构成的矩阵表示为:The first 3 order principal component data It can be linearly transformed into the minimum noise separation transformation component through the transformation matrix R, and the matrix formed by each component is expressed as:
由于最小噪声分离变换成分按照信噪比从大到小排列,低阶成分包含电磁剖面数据的主要信号部分,因此选取前2阶最小噪声分离变换成分重构前3阶主成分数据。Since the minimum noise separation and transformation components are arranged in descending order of signal-to-noise ratio, and the low-order components contain the main signal part of the electromagnetic profile data, the first 2-order minimum noise separation and transformation components are selected to reconstruct the first 3-order principal component data.
步骤i、重构主成分数据,Step i, reconstruct the principal component data,
步骤j、重构电磁剖面数据,对重构主成分数据矩阵补零成为31×3500的矩阵,Step j, reconstruct the electromagnetic profile data, and reconstruct the principal component data matrix Zero-padding becomes a 31×3500 matrix,
式中,B(31×31)是前3行元素为1其余元素为0的截断矩阵。In the formula, B(31×31) is a truncated matrix whose first 3 rows are 1 and the remaining elements are 0.
步骤k、输出噪声压制结果并成图。图4a-图4d是航空电磁数据噪声压制结果分析。如图4d所示,为基于PCA和MNF联合算法的噪声压制结果剖面图,为对比噪声压制结果,本实例给出了航空电磁晚期道数据如图4a、基于主成分分析的噪声压制结果如图4b和基于最小噪声分离变换的噪声压制结果如图4c。PCA和MNF联合算法在主成分分析的基础上增加了对低阶主成分的最小噪声分离变换处理,有效压制低阶主成分中被噪声淹没的异常信息,同时避免了由于直接进行MNF处理而造成的晚期道异常形态失调问题,更有利于航空电磁数据的噪声压制和异常提取。对比图,4a、图4b、图4c和图4d,可以看出该方法在航空电磁剖面数据噪声压制效果上优于单独进行主成分分析方法和最小噪声分离变换方法处理,具有一定的有效性和实用性。Step k, output the noise suppression result and form a graph. Fig. 4a-Fig. 4d are the analysis of the noise suppression results of aviation electromagnetic data. As shown in Figure 4d, it is a cross-sectional view of the noise suppression result based on the PCA and MNF joint algorithm. In order to compare the noise suppression results, this example gives the aviation electromagnetic late channel data as shown in Figure 4a, and the noise suppression result based on principal component analysis is shown in the figure. 4b and the noise suppression results based on the minimum noise separation transform are shown in Fig. 4c. The PCA and MNF joint algorithm adds the minimum noise separation transformation processing for the low-order principal components on the basis of the principal component analysis, which effectively suppresses the abnormal information submerged by noise in the low-order principal components, and at the same time avoids the direct MNF processing. It is more conducive to the noise suppression and abnormal extraction of aviation electromagnetic data. Comparing Figure 4a, Figure 4b, Figure 4c and Figure 4d, it can be seen that this method is better than the principal component analysis method and the minimum noise separation and transformation method alone in the noise suppression effect of the airborne electromagnetic profile data, and it has certain effectiveness and efficiency. practicality.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (11)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810068165.0A CN108303740B (en) | 2018-01-24 | 2018-01-24 | Aviation electromagnetic data noise suppression method and device |
| PCT/CN2018/079729 WO2019144486A1 (en) | 2018-01-24 | 2018-03-21 | Method and device for suppressing noise in airborne electromagnetic data |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810068165.0A CN108303740B (en) | 2018-01-24 | 2018-01-24 | Aviation electromagnetic data noise suppression method and device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108303740A CN108303740A (en) | 2018-07-20 |
| CN108303740B true CN108303740B (en) | 2020-11-06 |
Family
ID=62865937
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810068165.0A Active CN108303740B (en) | 2018-01-24 | 2018-01-24 | Aviation electromagnetic data noise suppression method and device |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN108303740B (en) |
| WO (1) | WO2019144486A1 (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109101954B (en) * | 2018-09-11 | 2020-11-27 | 吉林大学 | A method for removing tidal strain components from borehole strain data based on minimum noise separation |
| CN109933047B (en) * | 2019-03-22 | 2020-10-27 | 北京航空航天大学 | A Joint Reliability Test Profile Construction Method for a Hybrid System of Software and Hardware |
| CN110412656B (en) * | 2019-07-18 | 2021-05-04 | 长江大学 | Magnetotelluric sounding data time domain noise suppression method and system |
| CN113568058B (en) * | 2021-07-20 | 2022-06-03 | 湖南师范大学 | A method and system for separation of magnetotelluric signal-to-noise based on multi-resolution singular value decomposition |
| CN113781332B (en) * | 2021-08-24 | 2023-09-29 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | Noise reduction method, device, computer equipment and storage medium for electromagnetic data |
| CN116719088B (en) * | 2023-05-30 | 2024-05-14 | 长安大学 | A method for suppressing noise in aviation transient electromagnetic data |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102819745A (en) * | 2012-07-04 | 2012-12-12 | 杭州电子科技大学 | Hyper-spectral remote sensing image classifying method based on AdaBoost |
| CN103500343A (en) * | 2013-09-30 | 2014-01-08 | 河海大学 | Hyperspectral image classification method based on MNF (Minimum Noise Fraction) transform in combination with extended attribute filtering |
| US9476865B2 (en) * | 2009-01-10 | 2016-10-25 | Goldfinch Solutions, Llc | System and method for analyzing properties of meat using multispectral imaging |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104777442B (en) * | 2015-04-07 | 2017-06-16 | 吉林大学 | A kind of nuclear magnetic resonance depth measurement FID signal noise suppressing method |
| CN104793253B (en) * | 2015-04-22 | 2018-01-26 | 吉林大学 | Denoising method for airborne electromagnetic data based on mathematical morphology |
| CN104865608B (en) * | 2015-05-22 | 2017-07-14 | 吉林大学 | Time-domain AEM motion artifacts detection means and suppressing method |
| CN107356978B (en) * | 2017-07-11 | 2019-03-01 | 中国科学院电子学研究所 | Boat magnetic compensation method based on principal component analysis |
-
2018
- 2018-01-24 CN CN201810068165.0A patent/CN108303740B/en active Active
- 2018-03-21 WO PCT/CN2018/079729 patent/WO2019144486A1/en not_active Ceased
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9476865B2 (en) * | 2009-01-10 | 2016-10-25 | Goldfinch Solutions, Llc | System and method for analyzing properties of meat using multispectral imaging |
| CN102819745A (en) * | 2012-07-04 | 2012-12-12 | 杭州电子科技大学 | Hyper-spectral remote sensing image classifying method based on AdaBoost |
| CN103500343A (en) * | 2013-09-30 | 2014-01-08 | 河海大学 | Hyperspectral image classification method based on MNF (Minimum Noise Fraction) transform in combination with extended attribute filtering |
Non-Patent Citations (1)
| Title |
|---|
| feature reduction using minimum noise fraction and principal component analysis transforms for improving the classification of hyperspectral image;Murinto 等;《aisa-pacific journal of science and technology》;20171231;第22卷(第1期);正文第1-5页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2019144486A1 (en) | 2019-08-01 |
| CN108303740A (en) | 2018-07-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108303740B (en) | Aviation electromagnetic data noise suppression method and device | |
| Dong et al. | Non-iterative denoising algorithm for mechanical vibration signal using spectral graph wavelet transform and detrended fluctuation analysis | |
| CN110031899B (en) | Weak Signal Extraction Algorithm Based on Compressed Sensing | |
| CN109557429B (en) | GIS partial discharge fault detection method based on improved wavelet threshold denoising | |
| CN102419972B (en) | A method of sound signal detection and recognition | |
| CN113640891B (en) | A Noise Filtering Method for Transient Electromagnetic Detection Data Based on Singular Spectrum Analysis | |
| CN107957566A (en) | Magnetic resonance depth measurement method for extracting signal based on frequency selection singular spectrum analysis | |
| CN107144879A (en) | A kind of seismic wave noise-reduction method combined based on adaptive-filtering with wavelet transformation | |
| Xu et al. | Monochromatic noise removal via sparsity-enabled signal decomposition method | |
| Geetha et al. | Seismic random noise attenuation using optimal empirical wavelet transform with a new wavelet thresholding technique | |
| CN109871758A (en) | SVD noise reduction method for fault signal based on multi-scale morphological optimization | |
| CN110515063A (en) | Underwater acoustic signal processing method and device based on iterative stationary discrete wavelet transform | |
| Li et al. | Distributed acoustic sensing vertical seismic profile data denoising based on multistage denoising network | |
| Wang et al. | De-noising magnetotelluric data using variational mode decomposition combined with mathematical morphology filtering and wavelet thresholding | |
| Jian-hua | A combinatorial filtering method for magnetotelluric data series with strong interference | |
| Murphy et al. | Joint Bayesian removal of impulse and background noise | |
| CN120276057A (en) | Method and device for suppressing wave induction electromagnetic noise | |
| Sui et al. | Cosine spectral association network for DAS VSP data high-precision recovery | |
| Bai et al. | Nonstationary least-squares decomposition with structural constraint for denoising multi-channel seismic data | |
| CN119901485A (en) | A mechanical system fault monitoring method and system based on signal pulse feature enhancement | |
| CN110703089B (en) | A Wavelet Threshold Denoising Method for Low Frequency Oscillation Prony Analysis | |
| Fengwei et al. | SINGULAR SPECTRUM ANALYSIS FOR HETEROGENEOUS TIME SERIES BY TAKING ITS FORMAL ERRORS INTO ACCOUNT. | |
| Sun et al. | Removal of baseline wander in ECG signals using singular spectrum analysis | |
| Li et al. | Desert seismic noise suppression based on an improved low-rank matrix approximation method | |
| CN111323227A (en) | Method for extracting fault features of aeroengine rotor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |