[go: up one dir, main page]

CN107798381B - 一种基于卷积神经网络的图像识别方法 - Google Patents

一种基于卷积神经网络的图像识别方法 Download PDF

Info

Publication number
CN107798381B
CN107798381B CN201711114919.3A CN201711114919A CN107798381B CN 107798381 B CN107798381 B CN 107798381B CN 201711114919 A CN201711114919 A CN 201711114919A CN 107798381 B CN107798381 B CN 107798381B
Authority
CN
China
Prior art keywords
layer
convolutional
neural network
image
convolutional neural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711114919.3A
Other languages
English (en)
Other versions
CN107798381A (zh
Inventor
钱燕芳
王敏
秦月红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201711114919.3A priority Critical patent/CN107798381B/zh
Publication of CN107798381A publication Critical patent/CN107798381A/zh
Application granted granted Critical
Publication of CN107798381B publication Critical patent/CN107798381B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/462Salient features, e.g. scale invariant feature transforms [SIFT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开的一种基于卷积神经网络的图像识别方法,包括以下步骤:获取原始图像;对原始图像进行预处理;将上一层的输出结果输入到卷积神经网络中的子网络;将上一层的输出结果输入到卷积神经网络中交替分布的卷积层和池化层;将上一层的输出结果输入到卷积神经网络中的全连接层;将上一层的输出结果输入到卷积神经网络中的最后一层,即Softmax层,得到图像属于各个类别的概率;根据图像属于各个类别的概率,来确定图像分类结果,最后输出图像分类结果。本发明通过将一个子网络结构加入到经典卷积神经网络中,并在子网络结构中计算残差以修正权值矩阵,能够高效的提取图像的特征,且只对子网络结构计算各层残差以减少计算量。

Description

一种基于卷积神经网络的图像识别方法
技术领域
本发明涉及一种基于卷积神经网络的图像识别方法,属于计算机视觉和深度学习技术领域。
背景技术
人的大脑总是不断地接收信息,且能够记住并在以后接收的同时立刻识别出来,神经网络就是根据人脑的神经结构所提出的,并且在图像识别领域取得了很大的进展。20世纪60年代,Hubel和Wiesel在研究猫脑皮层时,发现用于局部敏感和方向选择的神经元时,可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(ConvolutionalNeural Networks,CNN)。后来,卷积神经网络越来越多地被应用在图像识别领域,比如人脸识别和手写数字识别,而且都取得了不错的成绩。直到2012年10月,Hinton教授和他的学生们在著名的ImageNet问题上采用了卷积神经网络模型,象征着卷积神经网络在图像识别领域取得了突破性的研究。
现阶段,图像识别主要包括两个阶段,即“特征提取”和“分类识别”。特征提取阶段总是不可避免的丢失一些图像信息,如果图像本身含有大量噪声,那么提取的特征往往不够准确。随着深度学习的发展,如今的图像识别的效率也在不断地提高。但是,深度学习的框架需要学习的参数太多,计算速度比较慢,有可能出现过拟合的情况,所以图像识别还存在着很多需要改进的地方。
发明内容
针对现有技术存在的不足,本发明目的是提供一种高效的基于卷积神经网络的图像识别方法,能够很好的提取图像的特征,且只对子网络结构计算各层残差以减少计算量。
为了实现上述目的,本发明是通过如下的技术方案来实现:
本发明的一种基于卷积神经网络的图像识别方法,其特征在于,包括以下几个步骤:
a、获取原始图像;
b、对所述原始图像进行预处理;
c、将预处理后的图像输入卷积神经网络中的第一个卷积层,再将结果输入到池化层;
d、将上一层的输出结果输入到卷积神经网络中的子网络;
e、将上一层的输出结果输入到卷积神经网络中交替分布的卷积层和池化层;
f、将上一层的输出结果输入到卷积神经网络中的全连接层;
g、将上一层的输出结果输入到卷积神经网络中的最后一层,即Softmax层,得到图像属于各个类别的概率;
h、根据图像属于各个类别的概率,得出图像分类结果,最后输出图像分类结果。
步骤b中,所述预处理的方法即原始图像的每个位置上的像素值减去均值RGB。
步骤c中,所有卷积层包括一个卷积层以及其后的一个ReLU层,ReLU激活函数的表达式是ReLU(x)=max(0,x),其中x表示卷积层的输出。
步骤c中,为了减少子网络输入与原始图像输入之间的误差,卷积神经网络结构中的第一个卷积层采用3×3的卷积核,步长为1,卷积层提取出的特征映射的大小为((W-F)/S)+1,其中,W是输入的大小,F是卷积核的大小,S是步长;所述池化层的滑动窗口大小为2×2,步长为2,越界时,以0填充,采用最大值的池化方式。
步骤c中,为了与ReLU层的激活函数对应,卷积层的节点只与前一层的节点相连,每一条相连的线对应一个权重。
所述卷积层的权值矩阵的初始化采用xavier方法,其初始化方法如下:
定义参数所在层的输入维度为n,输出维度为m,那么参数将以均匀分布的方式在
Figure BDA0001466101520000021
的范围内进行初始化。
步骤d中,所述子网络依次包含一个1×1卷积层,一个3×3的卷积层,一个5×5的卷积层,一个1×1卷积层和一个Pooling层;在提取特征的同时,子网络计算各层残差。
步骤c中,步骤d中,所述子网络计算各层残差的方法分两种情况:
第一种:当前层l为卷积层,下一层l+1为Pooling层,则第l层的第j个feature map为:
Figure BDA0001466101520000031
其中,*是卷积符号,
Figure BDA0001466101520000032
表示连接第(l-1)层第j个神经元到第l层第i个神经元之间的权值向量,
Figure BDA0001466101520000033
表示第l层的第j个神经元的偏置项,则第l层的第j个feature map的残差计算公式为
Figure BDA0001466101520000034
其中,
Figure BDA0001466101520000035
为采样层权值,
Figure BDA0001466101520000036
为第l层卷积层的输出,。这个运算符代表矩阵的点乘,即对应元素相乘,up表示上采样操作;第二种:当前层l为Pooling层,下一层l+1为卷积层,则第l层的第j个feature map为:
Figure BDA0001466101520000037
其中,
Figure BDA0001466101520000038
表示对l-1层的输出做最大值Pooling操作,则第l层的第j个feature map的残差计算公式为
Figure BDA0001466101520000039
其中,
Figure BDA00014661015200000310
表示第l+1层卷积层第j个feature map的权值矩阵,rot180表示对卷积核矩阵进行180度旋转,full表示卷积模式,conv2表示卷积操作;
随后利用主成分分析法对各层间特征残差和最后提取特征进行降维处理,最后对降维后的特征进行加法融合,获取特征融合后的特征表达,获得输出。
步骤c中,步骤g中,Softmax层通过Softmax函数得到图像属于各个类别的概率,Softmax函数的表达式为:
Figure BDA00014661015200000311
其中,k表示图像分类的个数,zj表示节点属于第j类,zi表示节点属于第i类。
本发明通过将一个子网络结构加入到经典卷积神经网络中,并在子网络结构中计算残差以修正权值矩阵,能够很好的提取图像的特征,且只对子网络结构计算各层残差以减少计算量,对图像的识别比较高效。
附图说明
图1为本发明的基于卷积神经网络的图像识别方法工作流程图;
图2为本发明的基于卷积神经网络的图像识别方法的子网络结构图。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
如图1所示,本发明的基于卷积神经网络的图像识别方法首先获取原始图像imam×n,其中m、n分别是图像的宽和高,然后此图像进行预处理,即原始图像的每个位置上的像素减去均值RGB,得到预处理后的图像fm×n,随后将图像fm×n输入到卷积神经网络中的第一个卷积层,所使用的卷积核大小为3×3,步长为1,得到输出结果
Figure BDA0001466101520000041
然后再将
Figure BDA0001466101520000042
输入到池化层,滑动窗口大小为2×2,步长为2,越界时,以0填充,采用最大值的池化方式,得到输出结果f(2),大小为
Figure BDA0001466101520000043
Figure BDA0001466101520000044
其中,P为填充数量。
然后将f(2)输入到子网络中的第一个卷积层,如图2所示,该卷积层使用的是1×1的核,提取得到的特征映射再输入到子网络中的第二个卷积层,该卷积层使用的是3×3的核,提取得到的特征映射再输入到子网络中的第三个卷积层,该卷积层使用的是5×5的核,随后将提取得到的特征输入到子网络中的最后一层,Pooling层。在提取特征的同时,计算各层特征经过多层传递产生的残差,子网络中计算残差的方法分两种情况,第一种:当前层l为卷积层,下一层l+1为Pooling层,则第l层的第j个feature map为:
Figure BDA0001466101520000045
其中,*是卷积符号,
Figure BDA0001466101520000046
表示连接第(l-1)层第j个神经元到第l层第i个神经元之间的权值向量,
Figure BDA0001466101520000051
表示第l层的第j个神经元的偏置项,则第l层的第j个feature map的残差计算公式为
Figure BDA0001466101520000052
其中,
Figure BDA0001466101520000053
为采样层权值,
Figure BDA0001466101520000054
为第l层卷积层的输出,。这个运算符代表矩阵的点乘,即对应元素相乘。
第二种:当前层l为Pooling层,下一层l+1为卷积层,则第l层的第j个featuremap为:
Figure BDA0001466101520000055
其中,
Figure BDA0001466101520000056
表示对l-1层的输出做最大值Pooling操作,则第l层的第j个feature map的残差计算公式为
Figure BDA0001466101520000057
其中,
Figure BDA0001466101520000058
表示第l+1层卷积层第j个feature map的权值矩阵,rot180表示对卷积核矩阵进行180度旋转,’full’表示卷积模式,
随后利用主成分分析法对各层间特征残差和最后提取特征进行降维处理,最后对降维后的特征进行加法融合,获取特征融合后的特征表达,获得输出f(3)
然后将f(3)输入到卷积神经网络中交替分布的卷积层和池化层,得到输出结果f(4)。其次将f(4)输入到卷积神经网络中的全连接层,得到输出结果f(5),最后将f(5)输入到卷积神经网络中的最后一层,即Softmax层,得到图像属于各个类别的概率f(zj),其中,j=1,2,…,k,k为图像的类别个数。
最后根据图像属于各个类别的概率,来决定图像分类结果。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

1.一种基于卷积神经网络的图像识别方法,其特征在于,包括以下几个步骤:
a、获取原始图像;
b、对所述原始图像进行预处理;
c、将预处理后的图像输入卷积神经网络中的第一个卷积层,再将结果输入到池化层;步骤c中,为了减少子网络输入与原始图像输入之间的误差,卷积神经网络结构中的第一个卷积层采用3×3的卷积核,步长为1,卷积层提取出的特征映射的大小为((W-F)/S)+1,其中,W是输入的大小,F是卷积核的大小,S是步长;所述池化层的滑动窗口大小为2×2,步长为2,越界时,以0填充,采用最大值的池化方式;
d、将上一层的输出结果输入到卷积神经网络中的子网络;所述子网络依次包含一个1×1卷积层,一个3×3的卷积层,一个5×5的卷积层,一个1×1卷积层和一个Pooling层;在提取特征的同时,子网络计算各层残差;
e、将上一层的输出结果输入到卷积神经网络中交替分布的卷积层和池化层;
f、将上一层的输出结果输入到卷积神经网络中的全连接层;
g、将上一层的输出结果输入到卷积神经网络中的最后一层,即Softmax层,得到图像属于各个类别的概率;
h、根据图像属于各个类别的概率,得出图像分类结果,最后输出图像分类结果;
所述子网络计算各层残差的方法分两种情况:
第一种:当前层l为卷积层,下一层l+1为Pooling层,则第l层的第j个feature map为:
Figure FDA0003250337360000011
其中,*是卷积符号,
Figure FDA0003250337360000012
表示连接第(l-1)层第j个神经元到第l层第i个神经元之间的权值向量,
Figure FDA0003250337360000013
表示第l层的第j个神经元的偏置项,则第l层的第j个feature map的残差计算公式为
Figure FDA0003250337360000014
其中,
Figure FDA0003250337360000015
为采样层权值,
Figure FDA0003250337360000016
为第l层卷积层的输出,这个运算符。代表矩阵的点乘,即对应元素相乘,up表示上采样操作;
第二种:当前层l为Pooling层,下一层l+1为卷积层,则第l层的第j个feature map为:
Figure FDA0003250337360000021
其中,
Figure FDA0003250337360000022
表示对l-1层的输出做最大值Pooling操作,则第l层的第j个feature map的残差计算公式为
Figure FDA0003250337360000023
其中,
Figure FDA0003250337360000024
表示第l+1层卷积层第j个feature map的权值矩阵,rot180表示对卷积核矩阵进行180度旋转,full表示卷积模式,conv2表示卷积操作;
随后利用主成分分析法对各层间特征残差和最后提取特征进行降维处理,最后对降维后的特征进行加法融合,获取特征融合后的特征表达,获得输出。
2.根据权利要求1所述的基于卷积神经网络的图像识别方法,其特征在于,步骤b中,所述预处理的方法即原始图像的每个位置上的像素值减去均值RGB。
3.根据权利要求1所述的基于卷积神经网络的图像识别方法,其特征在于,步骤c中,所有卷积层包括一个卷积层以及其后的一个ReLU层,ReLU激活函数的表达式是ReLU(x)=max(0,x),其中x表示卷积层的输出。
4.根据权利要求3所述的基于卷积神经网络的图像识别方法,其特征在于,步骤c中,为了与ReLU层的激活函数对应,卷积层的节点只与前一层的节点相连,每一条相连的线对应一个权重。
5.根据权利要求4所述的基于卷积神经网络的图像识别方法,其特征在于,所述卷积层的权值矩阵的初始化采用xavier方法,其初始化方法如下:
定义参数所在层的输入维度为n,输出维度为m,那么参数将以均匀分布的方式在
Figure FDA0003250337360000025
的范围内进行初始化。
6.根据权利要求1所述的基于卷积神经网络的图像识别方法,其特征在于,步骤c中,步骤g中,Softmax层通过Softmax函数得到图像属于各个类别的概率,Softmax函数的表达式为:
Figure FDA0003250337360000031
其中,k表示图像分类的个数,zj表示节点属于第j类,zi表示节点属于第i类。
CN201711114919.3A 2017-11-13 2017-11-13 一种基于卷积神经网络的图像识别方法 Expired - Fee Related CN107798381B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711114919.3A CN107798381B (zh) 2017-11-13 2017-11-13 一种基于卷积神经网络的图像识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711114919.3A CN107798381B (zh) 2017-11-13 2017-11-13 一种基于卷积神经网络的图像识别方法

Publications (2)

Publication Number Publication Date
CN107798381A CN107798381A (zh) 2018-03-13
CN107798381B true CN107798381B (zh) 2021-11-30

Family

ID=61534906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711114919.3A Expired - Fee Related CN107798381B (zh) 2017-11-13 2017-11-13 一种基于卷积神经网络的图像识别方法

Country Status (1)

Country Link
CN (1) CN107798381B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108596330B (zh) * 2018-05-16 2022-03-15 中国人民解放军陆军工程大学 一种并行特征全卷积神经网络装置及其构建方法
CN108875912A (zh) * 2018-05-29 2018-11-23 天津科技大学 一种用于图像识别的神经网络模型
CN110647898B (zh) * 2018-06-27 2022-11-01 北京市商汤科技开发有限公司 图像处理方法、装置、电子设备及计算机存储介质
CN110751162B (zh) * 2018-07-24 2023-04-07 杭州海康威视数字技术股份有限公司 一种图像识别方法、装置和计算机设备
CN109466725B (zh) * 2018-10-11 2021-05-18 重庆邮电大学 一种基于神经网络和图像识别的智能水面漂浮物打捞系统
CN109508639B (zh) * 2018-10-12 2021-04-16 浙江科技学院 基于多尺度带孔卷积神经网络的道路场景语义分割方法
CN109543586A (zh) * 2018-11-16 2019-03-29 河海大学 一种基于卷积神经网络的香烟真伪鉴别方法
CN109784372B (zh) * 2018-12-17 2020-11-13 北京理工大学 一种基于卷积神经网络的目标分类方法
CN109635763B (zh) * 2018-12-19 2020-06-09 燕山大学 一种人群密度估计方法
CN109800657A (zh) * 2018-12-25 2019-05-24 天津大学 一种针对模糊人脸图像的卷积神经网络人脸识别方法
CN109919243A (zh) * 2019-03-15 2019-06-21 天津拾起卖科技有限公司 一种基于cnn的废钢铁种类自动识别方法及装置
CN110019882B (zh) * 2019-03-18 2022-01-28 新浪网技术(中国)有限公司 一种广告创意分类方法及系统
CN110458147B (zh) * 2019-08-26 2024-01-09 东莞德福得精密五金制品有限公司 人工智能云计算非应用感应器的液体气体污染排放监控方法
CN110738213B (zh) * 2019-09-20 2022-07-01 成都芯云微电子有限公司 一种包括周边环境的图像识别方法及装置
CN110472700B (zh) * 2019-10-14 2020-06-16 深兰人工智能芯片研究院(江苏)有限公司 一种基于卷积神经网络的参数填充方法与装置
CN111144296B (zh) * 2019-12-26 2023-04-18 湖南大学 基于改进cnn模型的视网膜眼底图片分类方法
CN111539461B (zh) * 2020-04-15 2023-09-19 苏州万高电脑科技有限公司 利用视觉不变性特征实现图像分类的方法、系统、装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016119076A1 (en) * 2015-01-27 2016-08-04 Xiaoou Tang A method and a system for face recognition
CN106650781A (zh) * 2016-10-21 2017-05-10 广东工业大学 一种卷积神经网络图像识别方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104850845B (zh) * 2015-05-30 2017-12-26 大连理工大学 一种基于非对称卷积神经网络的交通标志识别方法
US20170124448A1 (en) * 2015-10-30 2017-05-04 Northrop Grumman Systems Corporation Concurrent uncertainty management system
CN106570467B (zh) * 2016-10-25 2019-05-24 南京南瑞集团公司 一种基于卷积神经网络的人员离岗检测方法
CN106845529B (zh) * 2016-12-30 2020-10-27 北京柏惠维康科技有限公司 基于多视野卷积神经网络的影像特征识别方法
CN106887225B (zh) * 2017-03-21 2020-04-07 百度在线网络技术(北京)有限公司 基于卷积神经网络的声学特征提取方法、装置和终端设备
CN106874898B (zh) * 2017-04-08 2021-03-30 复旦大学 基于深度卷积神经网络模型的大规模人脸识别方法
CN107341508B (zh) * 2017-06-22 2020-12-04 苏州飞搜科技有限公司 一种快速美食图片识别方法及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016119076A1 (en) * 2015-01-27 2016-08-04 Xiaoou Tang A method and a system for face recognition
CN106650781A (zh) * 2016-10-21 2017-05-10 广东工业大学 一种卷积神经网络图像识别方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Going deeper with convolutions;Christian Szegedy等;《arXiv》;20140917;第1-12页 *

Also Published As

Publication number Publication date
CN107798381A (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
CN107798381B (zh) 一种基于卷积神经网络的图像识别方法
CN109685819B (zh) 一种基于特征增强的三维医学图像分割方法
CN107239802B (zh) 一种图像分类方法及装置
CN113554665B (zh) 一种血管分割方法及装置
CN110781776B (zh) 一种基于预测和残差细化网络的道路提取方法
CN114048822A (zh) 一种图像的注意力机制特征融合分割方法
CN112232151B (zh) 一种嵌入注意力机制的迭代聚合神经网络高分遥感场景分类方法
CN113749657B (zh) 一种基于多任务胶囊的脑电情绪识别方法
CN108171318B (zh) 一种基于模拟退火—高斯函数的卷积神经网络集成方法
CN108510012A (zh) 一种基于多尺度特征图的目标快速检测方法
CN110598600A (zh) 一种基于unet神经网络的遥感图像云检测方法
CN109949214A (zh) 一种图像风格迁移方法及系统
CN108304826A (zh) 基于卷积神经网络的人脸表情识别方法
CN110046656A (zh) 基于深度学习的多模态场景识别方法
CN110322529B (zh) 一种基于深度学习辅助艺术绘画的方法
CN110659565B (zh) 一种基于带孔卷积的3d多人人体姿态估计方法
CN104615983A (zh) 基于递归神经网络和人体骨架运动序列的行为识别方法
CN112115967A (zh) 一种基于数据保护的图像增量学习方法
CN109598732B (zh) 一种基于三维空间加权的医学图像分割方法
CN112668421B (zh) 一种基于注意力机制的无人机高光谱农作物快速分类方法
CN112837215B (zh) 一种基于生成对抗网络的图像形状变换方法
CN111143567B (zh) 一种基于改进神经网络的评论情感分析方法
CN111783688B (zh) 一种基于卷积神经网络的遥感图像场景分类方法
CN116645287A (zh) 一种基于扩散模型的图像去模糊方法
CN112597873A (zh) 一种基于深度学习的双通道人脸表情识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211130

CF01 Termination of patent right due to non-payment of annual fee