CN107703762B - Human-machine interaction force identification and control method for rehabilitation walking training robot - Google Patents
Human-machine interaction force identification and control method for rehabilitation walking training robot Download PDFInfo
- Publication number
- CN107703762B CN107703762B CN201711121857.9A CN201711121857A CN107703762B CN 107703762 B CN107703762 B CN 107703762B CN 201711121857 A CN201711121857 A CN 201711121857A CN 107703762 B CN107703762 B CN 107703762B
- Authority
- CN
- China
- Prior art keywords
- chip
- pin
- human
- interaction force
- resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Rehabilitation Tools (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
本发明公开了一种康复步行训练机器人的补偿人机互作用力的辨识控制方法。针对康复步行训练机器人动力学模型中的广义控制输入力,将其分解为跟踪控制力和人机互作用力,得到具有人机互作用力的系统动力学模型;把人机互作用力作为系统的扩展状态,利用机器人的实时位置输出,设计定常增益和时变增益相结合的系统观测器,估计人机互作用力;基于状态观测误差以及轨迹跟踪误差和速度跟踪误差设计Lyapunov函数,使观测误差系统及跟踪误差系统实现渐近稳定。该控制方法通过设计新颖的系统扩展状态观测器,获得了人机互作用力,并利用补偿控制,消除了人机互作用力对跟踪性能的影响,提高了康复步行训练机器人的跟踪精度和系统的安全性。
The invention discloses an identification control method for compensating human-machine interaction force of a rehabilitation walking training robot. Aiming at the generalized control input force in the dynamic model of the rehabilitation walking training robot, it is decomposed into the tracking control force and the human-machine interaction force, and the system dynamics model with the human-machine interaction force is obtained. Using the real-time position output of the robot, a system observer with a combination of constant gain and time-varying gain is designed to estimate the human-machine interaction force; based on the state observation error, trajectory tracking error and velocity tracking error, the Lyapunov function is designed to make the observation The error system and the tracking error system are asymptotically stable. The control method obtains the human-machine interaction force by designing a novel system to expand the state observer, and uses the compensation control to eliminate the influence of the human-machine interaction force on the tracking performance, and improve the tracking accuracy and system of the rehabilitation walking training robot. security.
Description
技术领域technical field
本发明属于轮式康复机器人的控制领域,尤其涉及一种康复步行训练机器人的人机互作用力辨识及控制方法。The invention belongs to the control field of wheeled rehabilitation robots, in particular to a human-machine interaction force identification and control method of a rehabilitation walking training robot.
背景技术Background technique
随着全球进入老龄化,高龄人口逐年增加,由于老年人腿部肌肉力量的减弱,导致步行功能逐渐下降,如果不及时加强老年人步行训练,会导致步行功能的丧失,从而无法实现自立生活。因此,发展康复步行训练机器人,使其精确跟踪医生指定的训练轨迹,帮助老年人安全地步行锻炼具有重要意义。With the aging of the world, the elderly population is increasing year by year. Due to the weakening of the leg muscle strength of the elderly, the walking function gradually declines. If the elderly walking training is not strengthened in time, it will lead to the loss of walking function, so that self-reliance cannot be achieved. Therefore, it is of great significance to develop a rehabilitation walking training robot so that it can accurately track the training trajectory specified by the doctor and help the elderly to walk and exercise safely.
近年来,关于康复步行训练机器人轨迹跟踪控制方法已有许多研究成果,然而这些成果都没有考虑人机之间的互作用力。康复步行训练机器人直接与康复者接触,康复者对支撑身体重量机构的压力、腿部的主动步行力,这些人机之间的互作用力会导致机器人严重偏离医生指定的训练轨迹,不仅使机器人可能碰撞周围物体,而且会使机器人与康复者的运动不协调,从而威胁康复者的安全。因此,不考虑人机互作用力的跟踪控制方法在实际应用中均具有一定的局限性。由于人机互作用力是时变量,在实际应用中很难直接获得,这样给康复步行训练机器人跟踪控制器的设计带来了难度。本发明研究人机互作用力的观测方法和补偿人机互作用力的控制方法,对提高康复步行训练机器人的跟踪精度和安全性具有重要意义。In recent years, there have been many research results on trajectory tracking control methods for rehabilitation walking training robots, but these results do not consider the interaction between human and machine. The rehabilitation walking training robot is in direct contact with the rehabilitated person. The pressure of the rehabilitated person on the body supporting the body and the active walking force of the legs will cause the robot to seriously deviate from the training trajectory specified by the doctor. It may collide with surrounding objects, and it will make the movement of the robot and the recovered person uncoordinated, thus threatening the safety of the recovered person. Therefore, the tracking control methods that do not consider the human-machine interaction force have certain limitations in practical applications. Since the human-computer interaction force is time-varying, it is difficult to obtain directly in practical applications, which brings difficulties to the design of the tracking controller of the rehabilitation walking training robot. The invention studies the observation method of the human-machine interaction force and the control method for compensating the human-machine interaction force, which has important significance for improving the tracking accuracy and safety of the rehabilitation walking training robot.
发明内容SUMMARY OF THE INVENTION
为了解决上述问题,本发明提供了一种具有定常增益和时变增益相结合的人机互作用力观测方法,以及对人机互作用力进行补偿的跟踪控制方法,从而提高康复步行训练机器人的跟踪精度和安全性。In order to solve the above problems, the present invention provides a human-machine interaction force observation method with a combination of constant gain and time-varying gain, and a tracking control method for compensating the human-machine interaction force, thereby improving the performance of the rehabilitation walking training robot. Tracking accuracy and safety.
为实现上述目的,本发明采用如下技术方案,本发明包括以下步骤:To achieve the above object, the present invention adopts the following technical solutions, and the present invention comprises the following steps:
步骤1)基于康复步行训练机器人系统动力学模型,将广义输入力分解为跟踪控制力和人机互作用力,得到具有人机互作用力的机器人系统动力学模型;系统动力学模型描述如下Step 1) Based on the system dynamics model of the rehabilitation walking training robot, the generalized input force is decomposed into the tracking control force and the human-machine interaction force, and the robot system dynamics model with the human-machine interaction force is obtained; the system dynamics model is described as follows
其中in
X(t)为康复步行训练机器人的实际行走轨迹,u(t)表示广义控制输入力,M表示康复步行训练机器人的质量,m表示康复者的质量,I0表示转动惯量,为系数矩阵;θ表示水平轴和机器人中心与第一个轮子中心连线间的夹角,即θ=θ1,由康复步行机器人结构可知,θ3=θ+π,li表示系统重心到每个轮子中心的距离,r0表示中心到重心的距离,φi表示x′轴和每个轮子对应的li之间的夹角,λi表示重心到每个轮子的距离,i=1,2,3,4;符号将u(t)分解为u0(t)和u1(t)并代入模型(1),得X(t) is the actual walking trajectory of the rehabilitation walking training robot, u(t) represents the generalized control input force, M represents the mass of the rehabilitation walking training robot, m represents the quality of the rehabilitation person, I 0 represents the moment of inertia, is the coefficient matrix; θ represents the angle between the horizontal axis and the line connecting the center of the robot and the center of the first wheel, that is, θ=θ 1 . It can be known from the structure of the rehabilitation walking robot, θ 3 =θ+π, l i represents the distance from the center of gravity of the system to the center of each wheel, r 0 represents the distance from the center to the center of gravity, φ i represents the angle between the x′ axis and the corresponding li of each wheel, λ i represents the center of gravity to each wheel distance, i=1,2,3,4; symbol Decomposing u(t) into u 0 (t) and u 1 (t) and substituting them into model (1), we get
其中u0(t)表示待设计的跟踪控制力,用于驱动康复步行训练机器人跟踪医生指定的训练轨迹;u1(t)表示待观测的人机互作用力;令X(t)=x1(t)表示机器人的运动位置,表示机器人的运动速度,表示系统的扩展状态,于是得到具有人机互作用力的机器人系统动力学模型如下where u 0 (t) represents the tracking control force to be designed, which is used to drive the rehabilitation walking training robot to track the training trajectory specified by the doctor; u 1 (t) represents the human-machine interaction force to be observed; let X(t)=x 1 (t) represents the motion position of the robot, represents the movement speed of the robot, Represents the extended state of the system, so the dynamic model of the robot system with human-robot interaction force is obtained as follows
其中h为有界常数,表示机器人系统扩展状态的变化量;Among them, h is a bounded constant, which represents the change of the expansion state of the robot system;
步骤2)基于人机互作用力的康复步行训练机器人系统动力学模型,利用机器人的实时位置输出,设计定常增益和时变增益相结合的系统观测器,估计人机互作用力;康复步行训练机器人的实时位置输出y(t)=X(t)=x1(t),设表示xj(t)(j=1,2,3)的观测值,表示观测误差,设计观测器如下:Step 2) The system dynamics model of the rehabilitation walking training robot based on the human-computer interaction force, using the real-time position output of the robot to design a system observer combining constant gain and time-varying gain to estimate the human-computer interaction force; rehabilitation walking training The real-time position output of the robot y(t)=X(t)=x 1 (t), set represents the observed value of x j (t)(j=1,2,3), represents the observation error, and the observer is designed as follows:
其中λ0,λ2为待设计的观测器定常增益,λ1(t)为待设计的观测器时变增益;根据模型(3)和观测器(4),得到观测误差系统为where λ 0 , λ 2 are the constant gains of the observer to be designed, and λ 1 (t) is the time-varying gain of the observer to be designed; according to the model (3) and the observer (4), the observation error system is obtained as
步骤3)基于状态观测误差以及轨迹跟踪误差和速度跟踪误差设计Lyapunov函数,使观测误差系统及跟踪误差系统实现渐近稳定;康复步行训练机器人实际行走轨迹X(t),医生指定训练轨迹Xd(t),设轨迹跟踪误差e1(t)和速度跟踪误差e2(t)分别为Step 3) Design the Lyapunov function based on the state observation error, trajectory tracking error and velocity tracking error, so that the observation error system and the tracking error system are asymptotically stable; the actual walking trajectory X(t) of the rehabilitation walking training robot, and the training trajectory X d specified by the doctor (t), let the trajectory tracking error e 1 (t) and velocity tracking error e 2 (t) be respectively
e1(t)=X(t)-Xd(t) (6)e 1 (t)=X(t)-X d (t) (6)
进一步,由式(6)、(7)及模型(3)得到跟踪误差系统为Further, the tracking error system obtained from equations (6), (7) and model (3) is
根据观测误差和跟踪误差设计设计Lyapunov函数如下:The Lyapunov function is designed according to the observation error and tracking error as follows:
步骤4)使观测误差系统及跟踪误差系统达到渐近稳定时,获得观测器增益和人机互作用力的求解方法,并根据获得的人机互作用力,设计补偿跟踪控制器;沿观测误差系统(5)和跟踪误差系统(8)对式(9)求导,调整观测器增益为Step 4) When the observation error system and the tracking error system are asymptotically stable, obtain the solution method of the observer gain and the human-machine interaction force, and design a compensation tracking controller according to the obtained human-machine interaction force; along the observation error The system (5) and the tracking error system (8) are derived from equation (9), and the observer gain is adjusted as
可使观测误差系统(5)渐近稳定,其中εσ(σ=1,2,3)表示指定的小正数,于是得进一步,由系统扩展状态x3(t)得人机互作用力为The observation error system (5) can be made asymptotically stable, where ε σ (σ=1, 2, 3) represents a specified small positive number, so we get Further, the human-machine interaction force obtained from the system expansion state x 3 (t) is
获得人机互作用力后,设计补偿跟踪控制器u0(t)为After obtaining the human-machine interaction force, the design compensation tracking controller u 0 (t) is
可使跟踪误差系统(8)渐近稳定;其中表示B(θ)的伪逆矩阵。The tracking error system (8) can be made asymptotically stable; wherein Represents the pseudo-inverse of B(θ).
作为一种优选方案,本发明基于ARM Cortex-M4的STM32F411系列单片机将输出PWM信号提供给电机驱动模块,使康复步行训练机器人补偿人机互作用力,并精确跟踪医生指定的训练轨迹;以STM32F411系列单片机为主控制器,主控制器的输入接MPU9250传感器模块、输出接电机驱动模块;电机驱动模块与直流电机相连;电源系统给各单元模块供电;主控制器控制方法为读取传感器模块的反馈信号X(t)与主控制器给定的控制命令信号Xd(t),计算得出误差信号,并利用反馈信号X(t)获得人机互作用力;根据误差信号及人机互作用力,主控制器按照预定的控制算法计算出电机的控制量,送给电机驱动模块,电机转动带动轮子维持自身平衡及按指定方式运动。As a preferred solution, the STM32F411 series single-chip microcomputer based on ARM Cortex-M4 of the present invention provides the output PWM signal to the motor drive module, so that the rehabilitation walking training robot can compensate the human-machine interaction force and accurately track the training trajectory specified by the doctor; the STM32F411 The series of single-chip microcomputer is the main controller, the input of the main controller is connected to the MPU9250 sensor module, and the output is connected to the motor drive module; the motor drive module is connected to the DC motor; the power supply system supplies power to each unit module; the main controller control method is to read the sensor module. The feedback signal X(t) and the control command signal X d (t) given by the main controller can calculate the error signal, and use the feedback signal X(t) to obtain the man-machine interaction force; according to the error signal and the man-machine interaction force The main controller calculates the control amount of the motor according to the predetermined control algorithm and sends it to the motor drive module, and the motor rotates to drive the wheel to maintain its own balance and move in a specified way.
作为另一种优选方案,本发明所述单片机采用STM32F411CEU6芯片,STM32F411CEU6芯片的5脚接8MHz晶振一端,8MHz晶振另一端接STM32F411CEU6芯片的6脚,STM32F411CEU6芯片的7脚通过电容C1接地,STM32F411CEU6芯片的14脚与MPU9250传感器模块的12脚相连;As another preferred solution, the single-chip microcomputer of the present invention adopts the STM32F411CEU6 chip, the 5th pin of the STM32F411CEU6 chip is connected to one end of the 8MHz crystal oscillator, the other end of the 8MHz crystal oscillator is connected to the 6th pin of the STM32F411CEU6 chip, the 7th pin of the STM32F411CEU6 chip is grounded through the capacitor C1, and the STM32F411CEU6 chip is grounded.
STM32F411CEU6芯片的15脚通过电阻R12分别与电阻R16一端、NMOS管MOS4的栅极相连,NMOS管MOS4的源极分别与电阻R16另一端、地线相连,NMOS管MOS4的漏极分别与二极管D4阳极、第四个轮子的驱动电机的电源负极相连,第四个轮子的驱动电机的电源正极分别与电池正极、二极管D4阴极相连;
STM32F411CEU6芯片的20脚通过电阻R4接地;
STM32F411CEU6芯片的21脚通过电阻R11分别与电阻R15一端、NMOS管MOS3的栅极相连,NMOS管MOS3的源极分别与电阻R15另一端、地线相连,NMOS管MOS3的漏极分别与二极管D3阳极、第三个轮子的驱动电机的电源负极相连,第三个轮子的驱动电机的电源正极分别与电池正极、二极管D3阴极相连;
STM32F411CEU6芯片的22脚通过电容C2接地;
STM32F411CEU6芯片的42脚通过电阻R10分别与电阻R14一端、NMOS管MOS2的栅极相连,NMOS管MOS2的源极分别与电阻R14另一端、地线相连,NMOS管MOS2的漏极分别与二极管D2阳极、第二个轮子的驱动电机的电源负极相连,第二个轮子的驱动电机的电源正极分别与电池正极、二极管D2阴极相连;
STM32F411CEU6芯片的43脚通过电阻R9分别与电阻R13一端、NMOS管MOS1的栅极相连,NMOS管MOS1的源极分别与电阻R13另一端、地线相连,NMOS管MOS1的漏极分别与二极管D1阳极、第一个轮子的驱动电机的电源负极相连,第一个轮子的驱动电机的电源正极分别与电池正极、二极管D1阴极相连;
STM32F411CEU6芯片的44脚通过R1接地;
STM32F411CEU6芯片的45脚与MPU9250传感器模块的23脚相连,STM32F411CEU6芯片的46脚与MPU9250传感器模块的24脚相连。
另外,本发明所述电源系统包括TP4059芯片、第一XC6204芯片和第二XC6204芯片,TP4059芯片的3脚分别与电池正极、电阻R8一端、电容C12一端、第二XC6204芯片的1脚相连,电阻R8另一端分别与第一XC6204芯片的1脚和3脚相连,电容C12另一端接地;第二XC6204芯片的5脚通过电感L1与MPU9250传感器模块的1脚相连;In addition, the power supply system of the present invention includes a TP4059 chip, a first XC6204 chip and a second XC6204 chip. The 3 pins of the TP4059 chip are respectively connected to the positive electrode of the battery, one end of the resistor R8, one end of the capacitor C12, and one pin of the second XC6204 chip. The other end of R8 is connected to
TP4059芯片的4脚分别与电容C8一端、电阻R6一端相连,电阻R6另一端通过电阻R7分别与地线、电容C8另一端相连。The 4 pins of the TP4059 chip are respectively connected to one end of the capacitor C8 and one end of the resistor R6, and the other end of the resistor R6 is respectively connected to the ground wire and the other end of the capacitor C8 through the resistor R7.
本发明有益效果。The present invention has beneficial effects.
本发明结合动力学模型,将广义控制输入力进行分解,并将人机互作用力作为系统扩展状态,建立具有人机互作用力的系统动力学方程;根据康复步行训练机器人的实时位置输出,设计定常增益和时变增益相结合的人机互作用力观测器,并利用获得的人机互作用力设计补偿跟踪控制器,从而消除人机互作用力对康复步行训练机器人跟踪精度的影响。本发明人机互作用力观测方法新颖,且控制器直接对人机互作用力进行补偿,易于实现,该控制方法能提高康复步行训练机器人的跟踪精度和安全性。The invention combines the dynamics model, decomposes the generalized control input force, and takes the human-machine interaction force as the system expansion state to establish a system dynamics equation with the human-machine interaction force; according to the real-time position output of the rehabilitation walking training robot, A human-machine interaction force observer with a combination of constant gain and time-varying gain is designed, and a compensation tracking controller is designed by using the obtained human-machine interaction force, so as to eliminate the influence of the human-machine interaction force on the tracking accuracy of the rehabilitation walking training robot. The human-machine interaction force observation method of the invention is novel, and the controller directly compensates the human-machine interaction force, which is easy to implement, and the control method can improve the tracking accuracy and safety of the rehabilitation walking training robot.
本发明解决了康复步行训练机器人的补偿人机互作用力的跟踪控制问题,通过构建Lyapunov函数使观测误差系统和跟踪误差系统渐近稳定,求解观测器增益和人机互作用力。The invention solves the tracking control problem of compensating the human-machine interaction force of the rehabilitation walking training robot, makes the observation error system and the tracking error system asymptotically stable by constructing the Lyapunov function, and solves the observer gain and the human-machine interaction force.
附图说明Description of drawings
下面结合附图和具体实施方式对本发明做进一步说明。本发明保护范围不仅局限于以下内容的表述。The present invention will be further described below with reference to the accompanying drawings and specific embodiments. The protection scope of the present invention is not limited to the following descriptions.
图1为本发明控制器工作框图;Fig. 1 is the working block diagram of the controller of the present invention;
图2为本发明系统坐标图;Fig. 2 is the system coordinate diagram of the present invention;
图3为本发明STM32F411单片机最小系统图;Fig. 3 is the minimum system diagram of the STM32F411 single-chip microcomputer of the present invention;
图4为本发明MPU9250外围电路图;Fig. 4 is the peripheral circuit diagram of MPU9250 of the present invention;
图5为本发明电机驱动模块外围电路图;Fig. 5 is the peripheral circuit diagram of the motor drive module of the present invention;
图6为本发明电源系统电路原理图。FIG. 6 is a schematic diagram of the power supply system circuit of the present invention.
具体实施方式Detailed ways
本发明是通过以下技术方案来实现的:The present invention is achieved through the following technical solutions:
1)针对康复步行训练机器人动力学模型中的广义控制输入力,将其分解为跟踪控制力和人机互作用力,得到具有人机互作用力的机器人系统动力学模型;1) Aiming at the generalized control input force in the dynamic model of the rehabilitation walking training robot, it is decomposed into the tracking control force and the human-machine interaction force, and the robot system dynamics model with the human-machine interaction force is obtained;
2)把人机互作用力作为系统的扩展状态,利用机器人的实时位置输出,设计定常增益和时变增益相结合的系统观测器,估计人机互作用力;2) Taking the human-machine interaction force as the extended state of the system, and using the real-time position output of the robot, a system observer combining constant gain and time-varying gain is designed to estimate the human-machine interaction force;
3)基于状态观测误差以及轨迹跟踪误差和速度跟踪误差设计Lyapunov函数,使观测误差系统及跟踪误差系统实现渐近稳定;同时,获得观测器增益和人机互作用力的求解方法,并根据获得的人机互作用力,设计补偿跟踪控制器,使康复步行训练机器人精确跟踪医生指定的训练轨迹。3) The Lyapunov function is designed based on the state observation error, trajectory tracking error and velocity tracking error, so that the observation error system and the tracking error system are asymptotically stable; The human-computer interaction force is designed to compensate for the tracking controller, so that the rehabilitation walking training robot can accurately track the training trajectory specified by the doctor.
如图所示,本发明具体包括以下步骤:As shown in the figure, the present invention specifically comprises the following steps:
步骤1)基于康复步行训练机器人系统动力学模型,将广义输入力分解为跟踪控制力和人机互作用力,得到具有人机互作用力的机器人系统动力学模型;系统动力学模型描述如下Step 1) Based on the system dynamics model of the rehabilitation walking training robot, the generalized input force is decomposed into the tracking control force and the human-machine interaction force, and the robot system dynamics model with the human-machine interaction force is obtained; the system dynamics model is described as follows
其中in
X(t)为康复步行训练机器人的实际行走轨迹,u(t)表示广义控制输入力,M表示康复步行训练机器人的质量,m表示康复者的质量,I0表示转动惯量,为系数矩阵;θ表示水平轴和机器人中心与第一个轮子中心连线间的夹角,即θ=θ1,由康复步行机器人结构可知,θ3=θ+π,li表示系统重心到每个轮子中心的距离,r0表示中心到重心的距离,φi表示x′轴和每个轮子对应的li之间的夹角,λi表示重心到每个轮子的距离,i=1,2,3,4;符号将u(t)分解为u0(t)和u1(t)并代入模型(1),得X(t) is the actual walking trajectory of the rehabilitation walking training robot, u(t) represents the generalized control input force, M represents the mass of the rehabilitation walking training robot, m represents the quality of the rehabilitation person, I 0 represents the moment of inertia, is the coefficient matrix; θ represents the angle between the horizontal axis and the line connecting the center of the robot and the center of the first wheel, that is, θ=θ 1 . It can be known from the structure of the rehabilitation walking robot, θ 3 =θ+π, l i represents the distance from the center of gravity of the system to the center of each wheel, r 0 represents the distance from the center to the center of gravity, φ i represents the angle between the x′ axis and the corresponding li of each wheel, λ i represents the center of gravity to each wheel distance, i=1,2,3,4; symbol Decomposing u(t) into u 0 (t) and u 1 (t) and substituting them into model (1), we get
其中u0(t)表示待设计的跟踪控制力,用于驱动康复步行训练机器人跟踪医生指定的训练轨迹;u1(t)表示待观测的人机互作用力;令X(t)=x1(t)表示机器人的运动位置,表示机器人的运动速度,表示系统的扩展状态,于是得到具有人机互作用力的机器人系统动力学模型如下where u 0 (t) represents the tracking control force to be designed, which is used to drive the rehabilitation walking training robot to track the training trajectory specified by the doctor; u 1 (t) represents the human-machine interaction force to be observed; let X(t)=x 1 (t) represents the motion position of the robot, represents the movement speed of the robot, Represents the extended state of the system, so the dynamic model of the robot system with human-robot interaction force is obtained as follows
其中h为有界常数,表示机器人系统扩展状态的变化量;Among them, h is a bounded constant, which represents the change of the expansion state of the robot system;
步骤2)基于人机互作用力的康复步行训练机器人系统动力学模型,利用机器人的实时位置输出,设计定常增益和时变增益相结合的系统观测器,估计人机互作用力;康复步行训练机器人的实时位置输出y(t)=X(t)=x1(t),设表示xj(t)(j=1,2,3)的观测值,表示观测误差,设计观测器如下:Step 2) The system dynamics model of the rehabilitation walking training robot based on the human-computer interaction force, using the real-time position output of the robot to design a system observer combining constant gain and time-varying gain to estimate the human-computer interaction force; rehabilitation walking training The real-time position output of the robot y(t)=X(t)=x 1 (t), set represents the observed value of x j (t)(j=1,2,3), represents the observation error, and the observer is designed as follows:
其中λ0,λ2为待设计的观测器定常增益,λ1(t)为待设计的观测器时变增益;根据模型(3)和观测器(4),得到观测误差系统为where λ 0 , λ 2 are the constant gains of the observer to be designed, and λ 1 (t) is the time-varying gain of the observer to be designed; according to the model (3) and the observer (4), the observation error system is obtained as
步骤3)基于状态观测误差以及轨迹跟踪误差和速度跟踪误差设计Lyapunov函数,使观测误差系统及跟踪误差系统实现渐近稳定;康复步行训练机器人实际行走轨迹X(t),医生指定训练轨迹Xd(t),设轨迹跟踪误差e1(t)和速度跟踪误差e2(t)分别为Step 3) Design the Lyapunov function based on the state observation error, trajectory tracking error and velocity tracking error, so that the observation error system and the tracking error system are asymptotically stable; the actual walking trajectory X(t) of the rehabilitation walking training robot, and the training trajectory X d specified by the doctor (t), let the trajectory tracking error e 1 (t) and velocity tracking error e 2 (t) be respectively
e1(t)=X(t)-Xd(t) (6)e 1 (t)=X(t)-X d (t) (6)
进一步,由式(6)、(7)及模型(3)得到跟踪误差系统为Further, the tracking error system obtained from equations (6), (7) and model (3) is
根据观测误差和跟踪误差设计设计Lyapunov函数如下:The Lyapunov function is designed according to the observation error and tracking error as follows:
步骤4)使观测误差系统及跟踪误差系统达到渐近稳定时,获得观测器增益和人机互作用力的求解方法,并根据获得的人机互作用力,设计补偿跟踪控制器;沿观测误差系统(5)和跟踪误差系统(8)对式(9)求导,调整观测器增益为Step 4) When the observation error system and the tracking error system are asymptotically stable, obtain the solution method of the observer gain and the human-machine interaction force, and design a compensation tracking controller according to the obtained human-machine interaction force; along the observation error The system (5) and the tracking error system (8) are derived from equation (9), and the observer gain is adjusted as
可使观测误差系统(5)渐近稳定,其中εσ(σ=1,2,3)表示指定的小正数,于是得进一步,由系统扩展状态x3(t)得人机互作用力为The observation error system (5) can be made asymptotically stable, where ε σ (σ=1, 2, 3) represents a specified small positive number, so we get Further, the human-machine interaction force obtained from the system expansion state x 3 (t) is
获得人机互作用力后,设计补偿跟踪控制器u0(t)为After obtaining the human-machine interaction force, the design compensation tracking controller u 0 (t) is
可使跟踪误差系统(8)渐近稳定;其中表示B(θ)的伪逆矩阵。The tracking error system (8) can be made asymptotically stable; wherein Represents the pseudo-inverse of B(θ).
基于ARM Cortex-M4的STM32F411系列单片机将输出PWM信号提供给电机驱动模块,使康复步行训练机器人补偿人机互作用力,并精确跟踪医生指定的训练轨迹;以STM32F411系列单片机为主控制器,主控制器的输入接MPU9250传感器模块、输出接电机驱动模块;电机驱动模块与直流电机相连;电源系统给各单元模块供电;主控制器控制方法为读取传感器模块的反馈信号X(t)与主控制器给定的控制命令信号Xd(t),计算得出误差信号,并利用反馈信号X(t)获得人机互作用力;根据误差信号及人机互作用力,主控制器按照预定的控制算法计算出电机的控制量,送给电机驱动模块,电机转动带动轮子维持自身平衡及按指定方式运动。The STM32F411 series MCU based on ARM Cortex-M4 provides the output PWM signal to the motor drive module, so that the rehabilitation walking training robot can compensate the human-machine interaction force and accurately track the training trajectory specified by the doctor; the STM32F411 series MCU is used as the main controller and the main controller. The input of the controller is connected to the MPU9250 sensor module, and the output is connected to the motor drive module; the motor drive module is connected to the DC motor; the power supply system supplies power to each unit module; the control method of the main controller is to read the feedback signal X(t) of the sensor module and the main controller. The controller gives the control command signal X d (t), calculates the error signal, and uses the feedback signal X (t) to obtain the man-machine interaction force; according to the error signal and the man-machine interaction force, the main controller according to the predetermined The control algorithm calculates the control amount of the motor and sends it to the motor drive module. The rotation of the motor drives the wheel to maintain its own balance and move in a specified way.
所述单片机采用STM32F411CEU6芯片,STM32F411CEU6芯片的5脚接8MHz晶振一端,8MHz晶振另一端接STM32F411CEU6芯片的6脚,STM32F411CEU6芯片的7脚通过电容C1接地,STM32F411CEU6芯片的14脚与MPU9250传感器模块的12脚相连;The single-chip microcomputer adopts STM32F411CEU6 chip. Pin 5 of STM32F411CEU6 chip is connected to one end of 8MHz crystal oscillator, and the other end of 8MHz crystal oscillator is connected to pin 6 of STM32F411CEU6 chip. connected;
STM32F411CEU6芯片的15脚通过电阻R12分别与电阻R16一端、NMOS管MOS4的栅极相连,NMOS管MOS4的源极分别与电阻R16另一端、地线相连,NMOS管MOS4的漏极分别与二极管D4阳极、第四个轮子的驱动电机的电源负极相连,第四个轮子的驱动电机的电源正极分别与电池正极、二极管D4阴极相连;
STM32F411CEU6芯片的20脚通过电阻R4接地;
STM32F411CEU6芯片的21脚通过电阻R11分别与电阻R15一端、NMOS管MOS3的栅极相连,NMOS管MOS3的源极分别与电阻R15另一端、地线相连,NMOS管MOS3的漏极分别与二极管D3阳极、第三个轮子的驱动电机的电源负极相连,第三个轮子的驱动电机的电源正极分别与电池正极、二极管D3阴极相连;
STM32F411CEU6芯片的22脚通过电容C2接地;
STM32F411CEU6芯片的42脚通过电阻R10分别与电阻R14一端、NMOS管MOS2的栅极相连,NMOS管MOS2的源极分别与电阻R14另一端、地线相连,NMOS管MOS2的漏极分别与二极管D2阳极、第二个轮子的驱动电机的电源负极相连,第二个轮子的驱动电机的电源正极分别与电池正极、二极管D2阴极相连;
STM32F411CEU6芯片的43脚通过电阻R9分别与电阻R13一端、NMOS管MOS1的栅极相连,NMOS管MOS1的源极分别与电阻R13另一端、地线相连,NMOS管MOS1的漏极分别与二极管D1阳极、第一个轮子的驱动电机的电源负极相连,第一个轮子的驱动电机的电源正极分别与电池正极、二极管D1阴极相连;
STM32F411CEU6芯片的44脚通过R1接地;
STM32F411CEU6芯片的45脚与MPU9250传感器模块的23脚相连,STM32F411CEU6芯片的46脚与MPU9250传感器模块的24脚相连。
所述电源系统包括TP4059芯片、第一XC6204芯片和第二XC6204芯片,TP4059芯片的3脚分别与电池正极、电阻R8一端、电容C12一端、第二XC6204芯片的1脚相连,电阻R8另一端分别与第一XC6204芯片的1脚和3脚相连,电容C12另一端接地;第二XC6204芯片的5脚通过电感L1与MPU9250传感器模块的1脚相连;The power supply system includes a TP4059 chip, a first XC6204 chip and a second XC6204 chip. The 3 pins of the TP4059 chip are respectively connected to the positive electrode of the battery, one end of the resistor R8, one end of the capacitor C12, and one pin of the second XC6204 chip, and the other end of the resistor R8 is respectively connected. It is connected with
TP4059芯片的4脚分别与电容C8一端、电阻R6一端相连,电阻R6另一端通过电阻R7分别与地线、电容C8另一端相连。The 4 pins of the TP4059 chip are respectively connected to one end of the capacitor C8 and one end of the resistor R6, and the other end of the resistor R6 is respectively connected to the ground wire and the other end of the capacitor C8 through the resistor R7.
可以理解的是,以上关于本发明的具体描述,仅用于说明本发明而并非受限于本发明实施例所描述的技术方案,本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换,以达到相同的技术效果;只要满足使用需要,都在本发明的保护范围之内。It can be understood that the above specific description of the present invention is only used to illustrate the present invention and is not limited to the technical solutions described in the embodiments of the present invention. Those of ordinary skill in the art should understand that the present invention can still be modified or It is equivalent to replacement to achieve the same technical effect; as long as the needs of use are met, they are all within the protection scope of the present invention.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711121857.9A CN107703762B (en) | 2017-11-14 | 2017-11-14 | Human-machine interaction force identification and control method for rehabilitation walking training robot |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711121857.9A CN107703762B (en) | 2017-11-14 | 2017-11-14 | Human-machine interaction force identification and control method for rehabilitation walking training robot |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN107703762A CN107703762A (en) | 2018-02-16 |
| CN107703762B true CN107703762B (en) | 2020-12-29 |
Family
ID=61178601
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201711121857.9A Active CN107703762B (en) | 2017-11-14 | 2017-11-14 | Human-machine interaction force identification and control method for rehabilitation walking training robot |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107703762B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110666794B (en) * | 2019-09-25 | 2022-03-04 | 天津大学 | A method for compensating load force and moment of robot end tool |
| CN112068434B (en) * | 2020-09-09 | 2021-09-21 | 北京航空航天大学 | Iterative learning control method for rehabilitation mechanical device based on extended state observer |
| CN112433475B (en) * | 2020-11-27 | 2022-05-13 | 沈阳工业大学 | SCN system offset identification-based cushion robot time-limited learning control method |
| CN112506054B (en) * | 2020-11-27 | 2022-06-03 | 沈阳工业大学 | Rehabilitation robot random finite time stable control based on SCN observation active thrust |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4246534B2 (en) * | 2003-04-17 | 2009-04-02 | 本田技研工業株式会社 | Method for estimating point of action of floor reaction force of bipedal mobile body and method of estimating joint moment of bipedal mobile body |
| JP5288418B2 (en) * | 2008-06-04 | 2013-09-11 | 国立大学法人 東京大学 | Identification of mechanical parameters |
| CN104375503B (en) * | 2013-11-20 | 2017-05-03 | 沈阳工业大学 | Wheel type rehabilitation robot control method independent from convalescent quality |
| CN104698848B (en) * | 2015-02-11 | 2017-07-28 | 电子科技大学 | A kind of control method of lower limb exoskeleton rehabilitation robot rehabilitation training |
| CN105867130B (en) * | 2016-04-15 | 2018-11-13 | 沈阳工业大学 | The track following error constraints method of controlling security of rehabilitation ambulation training robot |
-
2017
- 2017-11-14 CN CN201711121857.9A patent/CN107703762B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN107703762A (en) | 2018-02-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107831667B (en) | Tracking control method for compensating human-computer interaction force of rehabilitation walking training robot | |
| CN105963100B (en) | By the lower limb rehabilitation robot self-adaptation control method assisted needed for patient motion | |
| CN105867130B (en) | The track following error constraints method of controlling security of rehabilitation ambulation training robot | |
| Huang et al. | Fuzzy enhanced adaptive admittance control of a wearable walking exoskeleton with step trajectory shaping | |
| CN107703762B (en) | Human-machine interaction force identification and control method for rehabilitation walking training robot | |
| CN110215648A (en) | Ectoskeleton based on body gait motor coordination characteristic coordinates gait control method | |
| CN113001540B (en) | Human-computer interaction intelligent control method and exoskeleton system for load mobile exoskeleton | |
| CN114851171B (en) | Gait trajectory tracking control method for lower extremity exoskeleton rehabilitation robot | |
| CN110262510B (en) | A humanoid robot mass center trajectory planning method to reduce walking energy consumption | |
| CN104698848A (en) | Control method for rehabilitation training of lower extremity exoskeleton rehabilitation robot | |
| CN109330819B (en) | Master-slave type upper limb exoskeleton rehabilitation robot control system and control method thereof | |
| CN107479381A (en) | Each axle tracking error optimal preventive control method of redundancy rehabilitation ambulation training robot | |
| CN112775937A (en) | Self-adaptive robust control method and device for under-actuated hydraulic single-leg power-assisted exoskeleton | |
| CN112433495B (en) | Fast finite time control of rehabilitation robot based on SCN human-machine uncertainty model | |
| CN114721258B (en) | Backstepping control method for lower extremity exoskeleton based on nonlinear extended state observer | |
| Qiu et al. | Exoskeleton active walking assistance control framework based on frequency adaptive dynamics movement primitives | |
| Wang et al. | ZMP theory-based gait planning and model-free trajectory tracking control of lower limb carrying exoskeleton system | |
| CN116125817A (en) | Lower limb exoskeleton fuzzy self-adaptive control method based on nonlinear disturbance observer | |
| CN117936022A (en) | Self-adaptive on-demand auxiliary training control method for rehabilitation training robot | |
| CN112388616B (en) | Adaptive robust force control method and device for under-actuated support leg assistance exoskeleton | |
| Qu et al. | Research on fuzzy adaptive impedance control of lower extremity exoskeleton | |
| CN114952823A (en) | Lower limb exoskeleton sensitivity amplification control method based on adaptive parameter estimation | |
| CN104808657B (en) | The full free degree controling power optimal track following method of rehabilitation ambulation training robot | |
| Zhang et al. | Fuzzy adaptive sliding mode control of lower limb exoskeleton rehabilitation robot | |
| CN116423517A (en) | Three-loop control method for lower extremity exoskeleton based on dynamic motion primitives |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20250813 Address after: 100089 Room 115, Building 4, No. 2 Jia, Tiyuan West Road, Haidian District, Beijing Patentee after: BEIJING KELLYMED Co.,Ltd. Country or region after: China Address before: Shen Liaoning Road 110870 in Liaoning province Shenyang City Economic and Technological Development Zone No. 111 Patentee before: SHENYANG University OF TECHNOLOGY Country or region before: China |