[go: up one dir, main page]

CN107704727A - Neoantigen Activity Prediction and sort method based on tumour neoantigen characteristic value - Google Patents

Neoantigen Activity Prediction and sort method based on tumour neoantigen characteristic value Download PDF

Info

Publication number
CN107704727A
CN107704727A CN201711071334.8A CN201711071334A CN107704727A CN 107704727 A CN107704727 A CN 107704727A CN 201711071334 A CN201711071334 A CN 201711071334A CN 107704727 A CN107704727 A CN 107704727A
Authority
CN
China
Prior art keywords
neoantigen
activity
tumor
neoantigens
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711071334.8A
Other languages
Chinese (zh)
Other versions
CN107704727B (en
Inventor
刘琦
周驰
刘洪马
刘峰
陈珂
马骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wang Yong
Original Assignee
Hangzhou Wind Intelligent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Wind Intelligent Technology Co Ltd filed Critical Hangzhou Wind Intelligent Technology Co Ltd
Priority to CN201711071334.8A priority Critical patent/CN107704727B/en
Publication of CN107704727A publication Critical patent/CN107704727A/en
Application granted granted Critical
Publication of CN107704727B publication Critical patent/CN107704727B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于肿瘤新抗原特征值的新抗原免疫活性打分和排序方法,包括以下步骤:肿瘤‑正常样本的WGS/WES、RNA‑seq测序数据的输入,肿瘤体细胞突变的预测及注释、相关特征值计算;基于肿瘤体细胞突变的MHC‑I结合新抗原预测、相关特征值计算;新抗原相关特征值的提取;新抗原活性打分函数的设定;基于新抗原活性打分函数的新抗原排序。本发明首先分析计算出肿瘤体细胞的突变并完成突变注释,计算出部分特征值,然后预测MHC‑I结合新抗原,计算出部分特征值;提取肿瘤新抗原的所有相关特征值,进而设定新抗原活性打分函数,最后通过新抗原活性打分函数对新抗原进行排序。本方法与传统的筛选方法相比更为高效精准,对于肿瘤免疫疗法具有重要的应用价值。

The invention discloses a neoantigen immune activity scoring and sorting method based on tumor neoantigen characteristic values, comprising the following steps: input of WGS/WES and RNA-seq sequencing data of tumor-normal samples, prediction of tumor somatic mutation and Annotation, calculation of related eigenvalues; prediction of MHC‑I combined with neoantigens based on tumor somatic mutations, calculation of related eigenvalues; extraction of related eigenvalues of neoantigens; setting of scoring functions for neoantigen activity; scoring functions based on neoantigen activity Neoantigen sequencing. The present invention first analyzes and calculates the mutation of tumor somatic cells and completes the mutation annotation, calculates some characteristic values, then predicts MHC-I binding neoantigens, and calculates some characteristic values; extracts all relevant characteristic values of tumor neoantigens, and then sets The neoantigen activity scoring function, and finally the neoantigens are sorted by the neoantigen activity scoring function. Compared with traditional screening methods, this method is more efficient and accurate, and has important application value for tumor immunotherapy.

Description

基于肿瘤新抗原特征值的新抗原活性预测和排序方法Neoantigen Activity Prediction and Ranking Method Based on Tumor Neoantigen Characteristic Value

技术领域technical field

本发明涉及肿瘤免疫治疗领域,具体地,涉及一种基于肿瘤新抗原特征值的新抗原活性打分和排序方法。The present invention relates to the field of tumor immunotherapy, in particular to a neoantigen activity scoring and sorting method based on characteristic values of tumor neoantigens.

背景技术Background technique

近年来,肿瘤免疫治疗大放异彩,临床试验不断取得特破,治愈率和有效缓解率持续提升。肿瘤新抗原的高效精准筛选在肿瘤免疫疗法中是极其重要而基础的工作,特别是对TCR-T/TIL、个体化疫苗等肿瘤免疫疗法尤为重要。In recent years, tumor immunotherapy has shined brilliantly, clinical trials have continuously achieved breakthroughs, and the cure rate and effective remission rate have continued to increase. Efficient and precise screening of tumor neoantigens is an extremely important and basic work in tumor immunotherapy, especially for tumor immunotherapy such as TCR-T/TIL and individualized vaccines.

目前,对于肿瘤新抗原的筛选方法目前通行的方案是两个步骤:步骤一、基于肿瘤-正常组织的WGS/WES数据,调用Mutect/Varscan等工具计算肿瘤细胞的基因突变;步骤二、调用NetMHCpan等算法预测MHC-I结合新抗原。At present, the current scheme for screening tumor neoantigens is two steps: step 1, based on WGS/WES data of tumor-normal tissue, using tools such as Mutect/Varscan to calculate the gene mutation of tumor cells; step 2, calling NetMHCpan et al. algorithms predict MHC-I binding neoantigens.

目前还没有有效的方法基于抗原的活性进行排序,以提升抗原筛选效率。上述方案中由于没有对预测得到的MHC-I结合新抗原进行活性排序,因此会给实验验证的带来巨大的工作量,造成肿瘤新抗原的筛选效率的低下。At present, there is no effective method to sort antigens based on their activity to improve the efficiency of antigen screening. In the above scheme, since the activity of the predicted MHC-I binding neoantigens is not sorted, it will bring a huge workload to the experimental verification, resulting in low screening efficiency of tumor neoantigens.

发明内容Contents of the invention

本发明针对上述现有技术中存在的不足,提供了一种基于肿瘤新抗原特征值的新抗原活性打分和排序方法,可大大降低实验验证的工作量,并进一步实现肿瘤新抗原的高效精准筛选。Aiming at the deficiencies in the above-mentioned prior art, the present invention provides a neoantigen activity scoring and sorting method based on the characteristic value of tumor neoantigens, which can greatly reduce the workload of experimental verification, and further realize efficient and accurate screening of tumor neoantigens .

本发明的技术方案是这样实现的:Technical scheme of the present invention is realized like this:

基于肿瘤新抗原特征值的新抗原免疫活性预测和排序方法,其特征在于,包括以下步骤:The neoantigen immune activity prediction and sorting method based on tumor neoantigen characteristic value is characterized in that it comprises the following steps:

(1),肿瘤-正常样本的WGS/WES、RNA-SEQ测序数据的输入:输入肿瘤-正常样本的全基因测序数据WGS或全外显子组测序数据WES、转录组测序数据RNA-SEQ;(1), input of WGS/WES and RNA-SEQ sequencing data of tumor-normal samples: input whole-genome sequencing data WGS or whole exome sequencing data WES, transcriptome sequencing data RNA-SEQ of tumor-normal samples;

(2),肿瘤体细胞突变的预测及注释、相关特征值的计算:基于步骤(1)输入的测序数据,调用Varscan或Mutect工具分析计算出肿瘤体细胞突变,调用VEP(Variant EffectPrediction)工具完成突变注释,调用PyClone、Kallisto、Varscan或Mutect工具计算出如下特征值:突变基因克隆比、突变基因表达值TPM、等位基因突变频率VAF;(2) Prediction and annotation of tumor somatic mutations, and calculation of related feature values: Based on the sequencing data input in step (1), use Varscan or Mutect tool to analyze and calculate tumor somatic mutations, and call VEP (Variant Effect Prediction) tool to complete Mutation annotation, call PyClone, Kallisto, Varscan or Mutect tools to calculate the following feature values: mutant gene clone ratio, mutant gene expression value TPM, allelic mutation frequency VAF;

(3)基于肿瘤体细胞突变的MHC-I结合新抗原预测、相关特征值的计算:基于步骤(2)中的肿瘤体细胞突变及注释数据,调用NetMHCpan、Netchop、OptiType工具预测MHC-I结合新抗原,并计算出如下特征值:突变肽段与MHC亲和力排序百分比、未突变肽段与MHC亲和力排序百分比、肽段剪切呈递效率;(3) MHC-I binding neoantigen prediction based on tumor somatic mutations and calculation of related feature values: Based on the tumor somatic mutations and annotation data in step (2), use NetMHCpan, Netchop, and OptiType tools to predict MHC-I binding Neoantigen, and calculate the following eigenvalues: mutated peptides and MHC affinity ranking percentage, unmutated peptides and MHC affinity ranking percentage, peptide clipping presentation efficiency;

(4)新抗原所有相关特征值的提取:针对步骤(3)中预测的MHC-I结合新抗原,提取出肿瘤新抗原的所有相关特征值;(4) Extraction of all relevant eigenvalues of neoantigens: for the predicted MHC-I binding neoantigens in step (3), extract all relevant eigenvalues of tumor neoantigens;

(5)新抗原活性打分函数的设定:针对步骤(4)中提取的新抗原特征值,设定新抗原活性打分函数;(5) Setting of neoantigen activity scoring function: for the neoantigen characteristic value extracted in step (4), set the neoantigen activity scoring function;

(6)基于新抗原活性打分函数的新抗原排序:通过新抗原活性打分函数对新抗原进行排序。(6) Neoantigen sorting based on the neoantigen activity scoring function: the neoantigens are sorted by the neoantigen activity scoring function.

作为优选,步骤(4)中,新抗原相关特征值包括Rm、A、Rn、E、NC、CL,其中:As a preference, in step (4), the neoantigen-related feature values include R m , A, R n , E, NC, CL, wherein:

Rm—突变肽段与MHC亲和力排序百分比,由NetMHCpan计算得出;R m —the percentage of mutant peptides and MHC affinity ranking, calculated by NetMHCpan;

A—等位基因突变频率VAF,由Varscan/Mutect/Strelka2计算得到;A—allele mutation frequency VAF, calculated by Varscan/Mutect/Strelka2;

Rn—未突变肽段与MHC亲和力排序百分比,由NetMHCpan计算得出;R n —the percentage of unmutated peptides and MHC affinity ranking, calculated by NetMHCpan;

E—突变基因表达值TPM,由Kallisto计算;E—mutant gene expression value TPM, calculated by Kallisto;

NC—肽段剪切呈递效率,由netchop计算得出;NC—peptide clipping and presentation efficiency, calculated by netchop;

CL—突变基因克隆比,由pyclone计算得出。CL—mutant gene clone ratio, calculated by pyclone.

作为优选,步骤(5)中,提出的新抗原活性预测打分函数为:As a preference, in step (5), the proposed neoantigen activity prediction scoring function is:

Neo_Score=abundance·dissimilarity·clonality;Neo_Score = abundance dissimilarity clonality;

clonality=NC·CL;clonality = NC · CL;

abundance=L(Rm)·A·tanh(E/k);abundance=L(Rm)·A·tanh(E/k);

dissimilarity=(1-L(Rn)/2));dissimilarity=(1-L(Rn)/2));

其中:L(x)=1/(1+e5(x-2)),tanh(x)为双曲正切函数;Wherein: L(x)=1/(1+e 5(x-2) ), tanh(x) is hyperbolic tangent function;

k为转录本表达丰度阈值,默认值为1。k is the transcript expression abundance threshold, the default value is 1.

作为优选,步骤(6)中,通过新抗原活性预测函数对新抗原进行排序算法过程如下:As a preference, in step (6), the algorithm process of sorting the neoantigens through the neoantigen activity prediction function is as follows:

a),对于所有预测的MHC-I结合新抗原,调用新抗原活性预测函数Neo_score计算出新抗原活性的预测值;a), for all predicted MHC-I binding neoantigens, call the neoantigen activity prediction function Neo_score to calculate the predicted value of neoantigen activity;

b),基于新抗原活性的预测值,采用快速排序算法对新抗原进行排序;b), based on the predicted value of neoantigen activity, the neoantigens are sorted using a quick sort algorithm;

c),输出新抗原排序结果。c), output the neoantigen sorting results.

采用了上述技术方案的本发明的设计思想及有益效果是:Design idea and beneficial effect of the present invention that have adopted above-mentioned technical scheme are:

本发明的技术方案,提出了一种肿瘤新抗原活性预测打分函数,基于新抗原活性预测函数对所预测的MHC-I结合新抗原进行活性排序,从而实现高效精准的肿瘤新抗原筛选。The technical solution of the present invention proposes a scoring function for tumor neoantigen activity prediction, which sorts the predicted activity of MHC-I binding neoantigens based on the neoantigen activity prediction function, thereby realizing efficient and accurate tumor neoantigen screening.

此函数基于肿瘤新抗原生成、切割转运、新抗原与MHC结合这个完整过程设计,打分函数分为3个部分,其中,克隆性(clonality)衡量新抗原由突变至短肽的效率NC及新抗原在所有肿瘤细胞中分布的比例CL,是影响肿瘤疫苗疗效的重要因素;丰度(abundance)衡量新抗原表达量及新抗原与MHC-I结合并形成pMHC复合物的效率,新抗原突变基因表达量E越高,等位基因突变频率A越高,复合物间结合亲和力Rm越高(IC50值越小),免疫原性则越强;不相似度(dissimilarity)衡量突变肽段与对应正常肽段亲和力的差异Rn,由于中枢耐受机制存在,二者差异越大,新抗原的特异性就越强,用于治疗的副作用也越小。函数中两个映射函数用于归一化(0到1)计算值,L(x)中阈值2为肽段-MHC结合亲和力筛选阈值,tanh(x/k)保证新抗原表达丰度超过设定阈值k时,函数值变化趋于平缓。This function is designed based on the complete process of tumor neoantigen generation, cleavage and transport, and the combination of neoantigen and MHC. The scoring function is divided into three parts. Among them, clonality measures the efficiency of neoantigens from mutations to short peptides NC and neoantigens The proportion of CL distributed in all tumor cells is an important factor affecting the efficacy of tumor vaccines; abundance (abundance) measures the expression of neoantigens and the efficiency of neoantigens combining with MHC-I to form pMHC complexes, and the expression of neoantigen mutant genes The higher the amount E, the higher the allelic mutation frequency A, the higher the binding affinity R m between the complexes (the smaller the IC50 value), and the stronger the immunogenicity; the dissimilarity measures the difference between the mutant peptide and the corresponding normal The difference in peptide affinity R n is due to the existence of the central tolerance mechanism, the greater the difference between the two, the stronger the specificity of the neoantigen, and the smaller the side effects of the treatment. The two mapping functions in the function are used to normalize (0 to 1) calculated values, the threshold 2 in L(x) is the screening threshold for peptide-MHC binding affinity, and tanh(x/k) ensures that the expression abundance of neoantigens exceeds the set value. When the threshold k is set, the change of the function value tends to be gentle.

此活性预测函数考虑了新抗原产生过程中的综合影响因素,排序后的抗原更有意义与应用价值。This activity prediction function takes into account the comprehensive influencing factors in the process of neoantigen production, and the sorted antigens are more meaningful and applicable.

附图说明Description of drawings

图1是本发明实施例所述的基于肿瘤新抗原特征值的新抗原活性方法和排序方法示意图。Fig. 1 is a schematic diagram of the neoantigen activity method and sorting method based on tumor neoantigen characteristic values described in the embodiment of the present invention.

具体实施方式Detailed ways

以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。The preferred embodiments of the present invention will be described below in conjunction with the accompanying drawings. It should be understood that the preferred embodiments described here are only used to illustrate and explain the present invention, and are not intended to limit the present invention.

实施例一:Embodiment one:

如图1所示,一种基于肿瘤新抗原特征值的新抗原活性方法和排序方法,包括以下步骤:As shown in Figure 1, a neoantigen activity method and sorting method based on tumor neoantigen characteristic value comprises the following steps:

步骤101:肿瘤-正常样本的WGS/WES、RNA-seq测序数据的输入(使用黑色素瘤病人样本一mel_21,Science 2015:Carreno B M,Magrini V,Beckerhapak M,et al.Cancerimmunotherapy.A dendritic cell vaccine increases the breadth and diversity ofmelanoma neoantigen-specific T cells.[J].Science,2015,348(6236):803-8.)Step 101: Input of WGS/WES and RNA-seq sequencing data of tumor-normal samples (using melanoma patient sample-mel_21, Science 2015: Carreno B M, Magrini V, Beckerhapak M, et al.Cancerimmunotherapy.A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells.[J].Science,2015,348(6236):803-8.)

步骤102:肿瘤体细胞突变的预测及注释、相关特征值的计算:基于肿瘤-正常样本的WGS/WES、RNA-seq测序数据,调用Varscan/Mutect等工具分析计算出肿瘤体细胞突变,调用VEP(Variant Effect Prediction)工具完成突变注释,调用PyClone、Kallisto、Varscan/Mutect工具计算出如下特征值:突变基因克隆比CL、突变基因表达值TPM、等位基因突变频率VAF。以文献中有活性肽段对应的特征值为例,病人样本一mel_21的3个肽段对应计算出的E(TPM)和A(VAF)值如下:Step 102: Prediction and annotation of tumor somatic mutations, and calculation of related feature values: based on WGS/WES and RNA-seq sequencing data of tumor-normal samples, use tools such as Varscan/Mutect to analyze and calculate tumor somatic mutations, and call VEP The (Variant Effect Prediction) tool completes mutation annotation, and calls PyClone, Kallisto, and Varscan/Mutect tools to calculate the following feature values: mutant gene clone ratio CL, mutant gene expression value TPM, and allelic mutation frequency VAF. Taking the eigenvalues corresponding to the active peptides in the literature as an example, the calculated E(TPM) and A(VAF) values for the three peptides of the patient sample mel_21 are as follows:

表1Table 1

步骤103:基于肿瘤体细胞突变的MHC-I结合新抗原预测、相关特征值的计算:基于步骤(1)中的肿瘤体细胞突变及注释数据,调用NetMHCpan、Netchop、OptiType工具预测MHC-I结合新抗原,并计算出如下特征值:突变肽段与MHC亲和力排序百分比Rm、未突变肽段与MHC亲和力排序百分比Rn、肽段剪切呈递效率NC。以文献中有活性肽段对应的特征值为例,病人样本一mel_21的3个肽段对应计算出的Rm,Rn和NC值如下:Step 103: Prediction of MHC-I binding neoantigens based on tumor somatic mutations and calculation of related feature values: Based on the tumor somatic mutations and annotation data in step (1), call NetMHCpan, Netchop, OptiType tools to predict MHC-I binding Neoantigens, and the following characteristic values were calculated: affinity ranking percentage between mutated peptides and MHC R m , affinity ranking percentage between unmutated peptides and MHC R n , and peptide cleavage and presentation efficiency NC. Taking the eigenvalues corresponding to the active peptides in the literature as an example, the calculated values of R m , R n and NC for the three peptides of the patient sample mel_21 are as follows:

表2Table 2

步骤104:新抗原相关特征值的提取:针对步骤103中预测的MHC-I结合新抗原,提取出肿瘤新抗原的所有相关特征值,病人样本一mel_21的新抗原及特征值见表1、表2;Step 104: Extraction of neoantigen-related eigenvalues: For the MHC-I binding neoantigens predicted in step 103, extract all relevant eigenvalues of tumor neoantigens, and the neoantigens and eigenvalues of patient sample 1 mel_21 are shown in Table 1 and Table 1. 2;

步骤105:新抗原活性打分函数的设定:针对步骤104中提取的新抗原特征值,设定新抗原活性打分函数;Step 105: setting of neoantigen activity scoring function: setting neoantigen activity scoring function for the neoantigen characteristic value extracted in step 104;

步骤106:基于新抗原活性打分函数的新抗原排序:通过新抗原活性打分函数对新抗原进行排序,表3给出了病人样本一mel_21中经PMHC活性实验验证的新抗原的打分(Neo_Score)以及在全集中的排序(Rank)。Step 106: Neoantigen sorting based on the neoantigen activity scoring function: sort the neoantigens by the neoantigen activity scoring function, and Table 3 shows the scoring (Neo_Score) of the neoantigens verified by the PMHC activity experiment in the patient sample mel_21 and The ranking (Rank) in the corpus.

表3table 3

在3个鉴定出的新抗原中,CLNEYHLFL为使用肿瘤疫苗刺激DC细胞之前就表现出可激活CD8+T细胞的免疫活性,其余2个则是在使用疫苗增强免疫系统能力后,具备不同程度的免疫活性。我们看到,KMIGNHLWV和CLNEYHLFL处于排序Top 3(总候选新抗原数94)位置。而AMFWSVPTS无论是在体外实验还是人体肿瘤微环境中,由于表达量偏低,决定其免疫原性和免疫应答偏弱,在我们的排序结果中处于33位,实验结果与我们的预测排序相当吻合。Among the three identified neoantigens, CLNEYHLFL showed the immune activity of activating CD8+ T cells before stimulating DC cells with tumor vaccines, and the other two had different degrees of immune activity after using vaccines to enhance the immune system. immune activity. We can see that KMIGNHLWV and CLNEYHLFL are ranked Top 3 (the total number of candidate neoantigens is 94). However, AMFWSVPTS is ranked 33rd in our ranking results due to its low expression level in both in vitro experiments and human tumor microenvironment, which determines its weak immunogenicity and immune response. The experimental results are quite consistent with our predicted ranking. .

实施例二:Embodiment two:

如图1所示,一种基于肿瘤新抗原特征值的新抗原活性方法和排序方法,包括以下步骤:As shown in Figure 1, a neoantigen activity method and sorting method based on tumor neoantigen characteristic value comprises the following steps:

步骤101:肿瘤-正常样本的WGS/WES、RNA-seq测序数据的输入(使用黑色素瘤病人样本二mel_38,Science 2015:Carreno B M,Magrini V,Beckerhapak M,et al.Cancerimmunotherapy.A dendritic cell vaccine increases the breadth and diversity ofmelanoma neoantigen-specific T cells.[J].Science,2015,348(6236):803-8.)Step 101: Input of WGS/WES and RNA-seq sequencing data of tumor-normal samples (using melanoma patient sample 2 mel_38, Science 2015: Carreno B M, Magrini V, Beckerhapak M, et al.Cancerimmunotherapy.A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells.[J].Science,2015,348(6236):803-8.)

步骤102:肿瘤体细胞突变的预测及注释、相关特征值的计算:基于肿瘤-正常样本的WGS/WES、RNA-seq测序数据,调用Varscan/Mutect等工具分析计算出肿瘤体细胞突变,调用VEP(Variant Effect Prediction)工具完成突变注释,调用PyClone、Kallisto、Varscan/Mutect工具计算出如下特征值:突变基因克隆比CL、突变基因表达值TPM、等位基因突变频率VAF;以文献中有活性肽段对应的特征值为例,病人样本二mel_38的3个肽段对应计算出的E(TPM)和A(VAF)值如下:Step 102: Prediction and annotation of tumor somatic mutations, and calculation of related feature values: based on WGS/WES and RNA-seq sequencing data of tumor-normal samples, use tools such as Varscan/Mutect to analyze and calculate tumor somatic mutations, and call VEP (Variant Effect Prediction) tool completes the mutation annotation, calls PyClone, Kallisto, Varscan/Mutect tools to calculate the following eigenvalues: mutant gene clone ratio CL, mutant gene expression value TPM, allelic mutation frequency VAF; active peptides in the literature Take the eigenvalues corresponding to the segment as an example, the E(TPM) and A(VAF) values calculated corresponding to the three peptide segments of patient sample 2 mel_38 are as follows:

表4Table 4

步骤103:基于肿瘤体细胞突变的MHC-I结合新抗原预测、相关特征值的计算:基于步骤(1)中的肿瘤体细胞突变及注释数据,调用NetMHCpan、Netchop、OptiType工具预测MHC-I结合新抗原,并计算出如下特征值:突变肽段与MHC亲和力排序百分比Rm、未突变肽段与MHC亲和力排序百分比Rn、肽段剪切呈递效率NC;以文献中有活性肽段对应的特征值为例,病人样本二mel_38的3个肽段对应计算出的Rm,Rn和NC值如下:Step 103: Prediction of MHC-I binding neoantigens based on tumor somatic mutations and calculation of related feature values: Based on the tumor somatic mutations and annotation data in step (1), call NetMHCpan, Netchop, OptiType tools to predict MHC-I binding Neoantigens, and calculate the following characteristic values: affinity ranking percentage between mutant peptides and MHC R m , affinity ranking percentage between unmutated peptides and MHC R n , peptide clipping and presentation efficiency NC; Take the eigenvalues as an example, the R m , R n and NC values calculated corresponding to the three peptides of patient sample 2 mel_38 are as follows:

表5table 5

步骤104:新抗原相关特征值的提取:针对步骤(2)中预测的MHC-I结合新抗原,提取出肿瘤新抗原的所有相关特征值,病人样本二mel_38的新抗原及特征值见表4、表5;Step 104: Extraction of neoantigen-related eigenvalues: for the MHC-I binding neoantigens predicted in step (2), extract all relevant eigenvalues of tumor neoantigens, and the neoantigens and eigenvalues of patient sample 2 mel_38 are shown in Table 4 ,table 5;

步骤105:新抗原活性打分函数的设定:针对步骤(3)中提取的新抗原特征值,设定新抗原活性打分函数;Step 105: setting of neoantigen activity scoring function: setting neoantigen activity scoring function for the neoantigen characteristic value extracted in step (3);

步骤106:基于新抗原活性打分函数的新抗原排序:通过新抗原活性打分函数对新抗原进行排序,表6给出了病人样本二mel_38中经PMHC活性实验验证的新抗原的打分(Neo_Score)以及在全集中的排序(Rank)Step 106: Neoantigen sorting based on the neoantigen activity scoring function: sort the neoantigens through the neoantigen activity scoring function, and Table 6 shows the scoring (Neo_Score) of the neoantigens verified by the PMHC activity experiment in the patient sample 2 mel_38 and Rank in the corpus

表6Table 6

在3个鉴定出的新抗原中,FLYNLLTRVY为使用肿瘤疫苗刺激DC细胞之前就表现出可激活CD8+T细胞的免疫活性,其余2个则是在使用疫苗增强免疫系统能力后,具备不同程度的免疫活性。我们看到QLSCISTYV和FLYNLLTRVY处于Top 20(总候选新抗原数117)。而KLMNIQQKL无论是在体外实验还是人体肿瘤微环境中,由于表达量偏低,决定其免疫原性和免疫应答偏弱,在我们的排序结果中处于66位,实验结果与我们的预测排序相当吻合。Among the three identified neoantigens, FLYNLLTRVY showed the immune activity of activating CD8+ T cells before using tumor vaccines to stimulate DC cells, and the other two had different degrees of immune activity after using vaccines to enhance the immune system. immune activity. We see that QLSCISTYV and FLYNLLTRVY are in the Top 20 (117 total candidate neoantigens). However, KLMNIQQKL, whether in vitro or in the human tumor microenvironment, due to its low expression level, determines its immunogenicity and weak immune response. It ranks 66th in our ranking results, and the experimental results are quite consistent with our predicted ranking. .

综上所述,我们提出的新抗原免疫活性打分函数,可以很有效的衡量新抗原的免疫活性,为临床实验与肿瘤研究与免疫治疗提供帮助。In summary, the neoantigen immune activity scoring function we proposed can effectively measure the immune activity of neoantigens, and provide assistance for clinical experiments, tumor research, and immunotherapy.

Claims (4)

1. the prediction of neoantigen immunocompetence and sort method based on tumour neoantigen characteristic value, it is characterised in that including following Step:
(1), the input of WGS/WES, RNA-SEQ sequencing data of tumour-normal sample:Input the full base of tumour-normal sample Because of sequencing data WGS or full sequencing of extron group data WES, transcript profile sequencing data RNA-SEQ;
(2), the prediction of tumour somatic mutation and annotation, the calculating of associated eigenvalue:Sequencing number based on step (1) input According to calling Varscan or Mutect tool analysis calculates tumour somatic mutation, calls VEP (Variant Effect Prediction) instrument complete mutation annotation, call PyClone, Kallisto, Varscan or Mutect instrument calculate as Lower eigenvalue:Mutator clone ratio, mutator expression value TPM, allelic mutation frequency VAF;
(3) prediction of MHC-I combinations neoantigen, the calculating of associated eigenvalue based on tumour somatic mutation:Based in step (2) Tumour somatic mutation and annotation data, call NetMHCpan, Netchop, OptiType instrument prediction MHC-I to combine new Antigen, and calculate such as lower eigenvalue:Peptide fragment is mutated to arrange with MHC affinity sequence percentage, unmutated peptide fragment and MHC affinity Sequence percentage, peptide fragment shearing present efficiency;
(4) extraction of all associated eigenvalues of neoantigen:For the MHC-I combination neoantigens of prediction in step (3), extract swollen All associated eigenvalues of knurl neoantigen;
(5) setting of neoantigen activity scoring functions:For the neoantigen characteristic value of extraction in step (4), setting neoantigen is lived Property scoring functions;
(6) the neoantigen sequence based on neoantigen activity scoring functions:Neoantigen is carried out by neoantigen activity scoring functions Sequence.
2. the method according to claim 11, it is characterized in that:
In step (4), neoantigen associated eigenvalue includes Rm、A、Rn, E, NC, CL, wherein:
Rm- mutation peptide fragment and MHC affinity sequence percentage, are calculated by NetMHCpan;
A-allelic mutation frequency VAF, is calculated by Varscan/Mutect/Strelka2;
Rn- unmutated peptide fragment and MHC affinity sequence percentage, are calculated by NetMHCpan;
E-mutator expression value TPM, is calculated by Kallisto;
NC-peptide fragment shearing presents efficiency, is calculated by netchop;
CL-mutator clone's ratio, is calculated by pyclone.
3. the method according to claim 11, it is characterized in that:
In step (5), the neoantigen Activity Prediction scoring functions of proposition are:
Neo_Score=abundancedissimilarityclonality;
Clonality=NCCL;
Abundance=L (Rm) Atanh (E/k);
Dissimilarity=(1-L (Rn)/2));
Wherein:L (x)=1/ (1+e5(x-2)), tanh (x) is hyperbolic tangent function;
K is transcript gene expression abundance threshold value, default value 1.
4. the method according to claim 11, it is characterized in that:In step (6), newly resisted by neoantigen Activity Prediction function pair It is as follows that original is ranked up algorithmic procedure:
A), for the MHC-I combination neoantigens of all predictions, neoantigen Activity Prediction function Neo_score is called to calculate newly The predicted value of antigen active;
B), the predicted value based on neoantigen activity, is ranked up using quick sorting algorithm to neoantigen;
C), neoantigen ranking results are exported.
CN201711071334.8A 2017-11-03 2017-11-03 Neoantigen activity prediction and sequencing method based on tumor neoantigen characteristic value Expired - Fee Related CN107704727B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711071334.8A CN107704727B (en) 2017-11-03 2017-11-03 Neoantigen activity prediction and sequencing method based on tumor neoantigen characteristic value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711071334.8A CN107704727B (en) 2017-11-03 2017-11-03 Neoantigen activity prediction and sequencing method based on tumor neoantigen characteristic value

Publications (2)

Publication Number Publication Date
CN107704727A true CN107704727A (en) 2018-02-16
CN107704727B CN107704727B (en) 2020-01-31

Family

ID=61177577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711071334.8A Expired - Fee Related CN107704727B (en) 2017-11-03 2017-11-03 Neoantigen activity prediction and sequencing method based on tumor neoantigen characteristic value

Country Status (1)

Country Link
CN (1) CN107704727B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108796055A (en) * 2018-06-12 2018-11-13 深圳裕策生物科技有限公司 Tumor neogenetic antigen detection method, device and storage medium based on the sequencing of two generations
CN109021062A (en) * 2018-08-06 2018-12-18 倍而达药业(苏州)有限公司 A kind of screening technique of tumour neoantigen
WO2018183980A3 (en) * 2017-03-31 2018-12-20 Pei Jia Yang Ranking system for immunogenic cancer-specific epitopes
CN109880894A (en) * 2019-03-05 2019-06-14 杭州西合森医学检验实验室有限公司 The construction method of tumour immunity microenvironment prediction model based on RNAseq
WO2019206725A1 (en) * 2018-04-25 2019-10-31 Koninklijke Philips N.V. Tumor functional mutation and epitope loads as improved predictive biomarkers for immunotherapy response
CN110706742A (en) * 2019-09-30 2020-01-17 中生康元生物科技(北京)有限公司 Pan-cancer tumor neoantigen high-throughput prediction method and application thereof
CN111415707A (en) * 2020-03-10 2020-07-14 四川大学 Prediction method of clinical individualized tumor neoantigen
WO2020187143A1 (en) * 2019-03-15 2020-09-24 痕准生物科技有限公司 Method for identifying neoantigens
CN113160884A (en) * 2020-12-24 2021-07-23 广东因微解码生物科技有限公司 Method for predicting novel antigen derived from non-coding region by integrating multiple sets of mathematical data
CN113762416A (en) * 2021-10-15 2021-12-07 南京澄实生物科技有限公司 Antigen immunogenicity prediction method and system based on multi-mode depth coding
CN117797250A (en) * 2022-12-28 2024-04-02 四川康德赛医疗科技有限公司 Personalized mRNA compositions, vectors, mRNA vaccines and their applications

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118792A (en) * 1997-10-17 1999-04-30 Ajinomoto Co Inc Method for sorting macrophage, assay for immunological disease and screening method of remedy for immunological disease
CN103257236A (en) * 2012-02-20 2013-08-21 南京市疾病预防控制中心 Application of specific CTL cell epitope peptide of HLA-A24 restrictive Mycobacterium tuberculosis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118792A (en) * 1997-10-17 1999-04-30 Ajinomoto Co Inc Method for sorting macrophage, assay for immunological disease and screening method of remedy for immunological disease
CN103257236A (en) * 2012-02-20 2013-08-21 南京市疾病预防控制中心 Application of specific CTL cell epitope peptide of HLA-A24 restrictive Mycobacterium tuberculosis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵恢准: "构建小鼠肉瘤随机表达文库筛选肿瘤新抗原", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018183980A3 (en) * 2017-03-31 2018-12-20 Pei Jia Yang Ranking system for immunogenic cancer-specific epitopes
US11485784B2 (en) 2017-03-31 2022-11-01 Act Genomics (Ip) Co., Ltd. Ranking system for immunogenic cancer-specific epitopes
CN112292464A (en) * 2018-04-25 2021-01-29 皇家飞利浦有限公司 Tumor function mutations and epitope burden as improved predictive biomarkers of immunotherapy response
WO2019206725A1 (en) * 2018-04-25 2019-10-31 Koninklijke Philips N.V. Tumor functional mutation and epitope loads as improved predictive biomarkers for immunotherapy response
CN108796055B (en) * 2018-06-12 2022-04-08 深圳裕策生物科技有限公司 Method, device and storage medium for detecting tumor neoantigen based on second-generation sequencing
CN108796055A (en) * 2018-06-12 2018-11-13 深圳裕策生物科技有限公司 Tumor neogenetic antigen detection method, device and storage medium based on the sequencing of two generations
CN109021062A (en) * 2018-08-06 2018-12-18 倍而达药业(苏州)有限公司 A kind of screening technique of tumour neoantigen
CN109880894A (en) * 2019-03-05 2019-06-14 杭州西合森医学检验实验室有限公司 The construction method of tumour immunity microenvironment prediction model based on RNAseq
WO2020187143A1 (en) * 2019-03-15 2020-09-24 痕准生物科技有限公司 Method for identifying neoantigens
CN113316818B (en) * 2019-03-15 2024-04-02 痕准生物医学技术(厦门)有限公司 How to identify neoantigens
CN113316818A (en) * 2019-03-15 2021-08-27 痕准生物科技有限公司 Method for identifying neoantigens
CN110706742A (en) * 2019-09-30 2020-01-17 中生康元生物科技(北京)有限公司 Pan-cancer tumor neoantigen high-throughput prediction method and application thereof
CN111415707A (en) * 2020-03-10 2020-07-14 四川大学 Prediction method of clinical individualized tumor neoantigen
CN113160884A (en) * 2020-12-24 2021-07-23 广东因微解码生物科技有限公司 Method for predicting novel antigen derived from non-coding region by integrating multiple sets of mathematical data
CN113762416A (en) * 2021-10-15 2021-12-07 南京澄实生物科技有限公司 Antigen immunogenicity prediction method and system based on multi-mode depth coding
CN117797250A (en) * 2022-12-28 2024-04-02 四川康德赛医疗科技有限公司 Personalized mRNA compositions, vectors, mRNA vaccines and their applications

Also Published As

Publication number Publication date
CN107704727B (en) 2020-01-31

Similar Documents

Publication Publication Date Title
CN107704727B (en) Neoantigen activity prediction and sequencing method based on tumor neoantigen characteristic value
Hanada et al. A phenotypic signature that identifies neoantigen-reactive T cells in fresh human lung cancers
Espinosa-Carrasco et al. Intratumoral immune triads are required for immunotherapy-mediated elimination of solid tumors
Xia et al. BCL6-dependent TCF-1+ progenitor cells maintain effector and helper CD4+ T cell responses to persistent antigen
Yang et al. Single-cell RNA sequencing reveals the heterogeneity of tumor-associated macrophage in non-small cell lung cancer and differences between sexes
Robinson et al. Distinguishing functional polymorphism from random variation in the sequences of> 10,000 HLA-A,-B and-C alleles
Li et al. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells
CN108796055B (en) Method, device and storage medium for detecting tumor neoantigen based on second-generation sequencing
Kim et al. Neopepsee: accurate genome-level prediction of neoantigens by harnessing sequence and amino acid immunogenicity information
ES3029080T3 (en) Neoantigen identification using hotspots
Warren et al. Effect of MHC and non-MHC donor/recipient genetic disparity on the outcome of allogeneic HCT
CN111415707B (en) Prediction method of clinical individualized tumor neoantigen
Yi et al. ATM mutations benefit bladder cancer patients treated with immune checkpoint inhibitors by acting on the tumor immune microenvironment
CN110706742B (en) A high-throughput prediction method for pan-cancer tumor neoantigens and its application
KR20190140935A (en) Identification, manufacture, and uses of new antigens
Fisch et al. Integral use of immunopeptidomics and immunoinformatics for the characterization of antigen presentation and rational identification of BoLA-DR–presented peptides and epitopes
JP2016513460A5 (en)
CN116580771A (en) Method and device for predicting tumor neoantigen
WO2020187143A1 (en) Method for identifying neoantigens
Kroemer et al. Can the exome and the immunome converge on the design of efficient cancer vaccines?
Kamali et al. Advancing personalized immunotherapy for melanoma: integrating immunoinformatics in multi-epitope vaccine development, neoantigen identification via NGS, and immune simulation evaluation
Borden et al. NeoScore integrates characteristics of the neoantigen: MHC class I interaction and expression to accurately prioritize immunogenic neoantigens
WO2024192143A1 (en) Epitope prediction via a learned genotype network across class ii mhc alleles
Yao et al. Long noncoding RNA Malat1 is not essential for T cell development and response to LCMV infection
CN113129998B (en) Method for constructing prediction model of clinical individualized tumor neoantigen

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210926

Address after: 310000 room 2-201-6, xinwan science and Technology Innovation Park, xinwan street, Qiantang new area, Hangzhou, Zhejiang Province

Patentee after: Hangzhou zhuotong Internet Co.,Ltd.

Address before: 310019 room 301-3, floor 2, building 3, No. 9, Jiuhuan Road, Jianggan District, Hangzhou City, Zhejiang Province

Patentee before: HANGZHOU FENGQI INTELLIGENT TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221103

Address after: 231261 Hongxing Villager Group, Fengxiang Village, Guanting Town, Feixi County, Hefei City, Anhui Province

Patentee after: Wang Yong

Address before: 310000 room 2-201-6, xinwan science and Technology Innovation Park, xinwan street, Qiantang new area, Hangzhou, Zhejiang Province

Patentee before: Hangzhou zhuotong Internet Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200131

CF01 Termination of patent right due to non-payment of annual fee