[go: up one dir, main page]

CN107505837A - A kind of semi-supervised neural network model and the soft-measuring modeling method based on the model - Google Patents

A kind of semi-supervised neural network model and the soft-measuring modeling method based on the model Download PDF

Info

Publication number
CN107505837A
CN107505837A CN201710551671.0A CN201710551671A CN107505837A CN 107505837 A CN107505837 A CN 107505837A CN 201710551671 A CN201710551671 A CN 201710551671A CN 107505837 A CN107505837 A CN 107505837A
Authority
CN
China
Prior art keywords
neural network
layer
network model
semi
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710551671.0A
Other languages
Chinese (zh)
Inventor
葛志强
李�浩
宋执环
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710551671.0A priority Critical patent/CN107505837A/en
Publication of CN107505837A publication Critical patent/CN107505837A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Data Mining & Analysis (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention discloses a kind of soft-measuring modeling method based on semi-supervised neural network model, the model is divided into three layers, first layer is input layer, the second layer is hidden layer, third layer is output layer, output layer is divided into self-encoding encoder output layer and neural network model output layer, self-encoding encoder and neural network model share input layer and hidden layer, the modeling method is made up of self-encoding encoder and neutral net, it is few can effectively to have solved exemplar, caused by unlabeled exemplars are more the problem of soft sensor modeling inaccuracy, so as to establish more accurate semi-supervised soft-sensing model, the monitoring of implementation process and corresponding control.

Description

一种半监督神经网络模型及基于该模型的软测量建模方法A semi-supervised neural network model and a soft sensor modeling method based on the model

技术领域technical field

本发明属于工业过程预测和控制领域,涉及一种半监督神经网络模型及基于该模型的软测量建模方法。The invention belongs to the field of industrial process prediction and control, and relates to a semi-supervised neural network model and a soft sensor modeling method based on the model.

背景技术Background technique

在实际的工业生产过程中,往往存在或多或少的关键过程变量无法实现在线检测,为了解决这个难题,通过采集过程中比较容易检测的变量,根据某种最优准侧,构造出一种以这些变量为输入,关键过程变量为输出的数学模型,实现对关键过程变量的在线估计,这便是工业过程中常用的软测量建模。In the actual industrial production process, there are often more or less key process variables that cannot be detected online. In order to solve this problem, a variable that is easier to detect in the collection process is constructed according to an optimal standard. With these variables as input and key process variables as output mathematical model, the online estimation of key process variables is realized. This is the soft sensor modeling commonly used in industrial processes.

统计过程软测量建模的发展对于大规模的工业数据的需求极为显著。然而,软测量建模目前还存在很多问题。在工业过程中系统的复杂程度也是日益提高,过程数据中的非线性关系越来越突出,如果仍然利用传统的线性方法建立软测量模型,无疑不能胜任变量准确预测的任务针对非线性过程特性,有神经网络核方法等模型,在众多模型中神经网络模型的适应性和非线性过程的拟合能力都极强,可以准确的完成工业过程的变量预测的任务。The development of statistical process soft-sensing modeling has an extremely significant demand for large-scale industrial data. However, there are still many problems in soft sensor modeling. The complexity of the system in the industrial process is also increasing day by day, and the nonlinear relationship in the process data is becoming more and more prominent. If you still use the traditional linear method to establish a soft sensor model, it is undoubtedly not up to the task of accurately predicting variables. For nonlinear process characteristics, There are models such as the neural network kernel method. Among many models, the adaptability of the neural network model and the fitting ability of the nonlinear process are extremely strong, and the task of variable prediction of the industrial process can be accurately completed.

与此同时,许多情况下机器学习问题中的有标签样本极为珍贵且非常稀少,无标签样本容易获得但人工标记过程又困难重重。如何充分提取无标签数据中的有用信息以达到提升模型性能,于是半监督领域越来越得到人们的关注和重视。At the same time, in many cases, labeled samples in machine learning problems are extremely rare and rare, and unlabeled samples are easy to obtain but the manual labeling process is difficult. How to fully extract the useful information in the unlabeled data to improve the performance of the model, so the semi-supervised field has attracted more and more attention and attention.

发明内容Contents of the invention

针对目前工业过程中有标签样本少、无标签样本多和过程非线性严重等问题,本发明提出了一种基于半监督神经网络的软测量建模方法,该方法将自编码器和神经网络模型相结合用来进行工业过程的半监督软测量建模,实现了关键过程变量的精确在线估计,具体技术方案如下:Aiming at the problems of few labeled samples, many unlabeled samples and serious process nonlinearity in the current industrial process, the present invention proposes a soft sensor modeling method based on semi-supervised neural network, which combines autoencoder and neural network model Combined with semi-supervised soft sensor modeling for industrial processes, accurate online estimation of key process variables is realized. The specific technical solutions are as follows:

一种半监督神经网络模型,所述的模型由自编码器和神经网络组成,分为三层,第一层为输入层,第二层为隐藏层,第三层为输出层,自编码器和神经网络模型共用输入层和隐藏层,而输出层分为自编码器输出层和神经网络模型输出层,输入层输入变量为x,输入层到隐藏层的权重和偏置分别为ω1和b1,隐藏层到神经网络输出层的权重和偏置为ωy和by,隐藏层到自编码器输出层的权重和偏置为ω2和b2,自编码器输出层输出的重构值为神经网络模型输出层输出的预测值为 A kind of semi-supervised neural network model, described model is made up of autoencoder and neural network, is divided into three layers, the first layer is input layer, the second layer is hidden layer, the third layer is output layer, autoencoder The input layer and the hidden layer are shared with the neural network model, and the output layer is divided into the output layer of the autoencoder and the output layer of the neural network model. The input variable of the input layer is x, and the weight and bias from the input layer to the hidden layer are ω 1 and b 1 , the weights and biases from the hidden layer to the output layer of the neural network are ω y and b y , the weights and biases from the hidden layer to the output layer of the autoencoder are ω 2 and b 2 , and the weights and biases output from the output layer of the autoencoder configuration value The predicted value of the output layer output of the neural network model is

一种基于上述半监督神经网络模型的软测量建模方法,其步骤如下:A soft sensor modeling method based on the above-mentioned semi-supervised neural network model, the steps are as follows:

步骤一:收集历史工业过程的数据组成建模用的训练数据集,所述的训练数据集既包括包含主导变量也包含辅助变量的有标签数据集L,L∈Rn×d,也包括仅包含辅助变量的无标签数据集U,U∈RN×M,n表示有标签数据集的数据样本个数,d表示过程变量个数,R为实数集,N表示无标签数据集的数据样本个数,M表示无标签数据集的辅助变量的个数;Step 1: Collect historical industrial process data to form a training data set for modeling. The training data set includes a labeled data set L containing both leading variables and auxiliary variables, L∈R n×d , and only An unlabeled data set U containing auxiliary variables, U∈R N×M , n represents the number of data samples in the labeled data set, d represents the number of process variables, R is a real number set, and N represents the data samples in the unlabeled data set The number, M represents the number of auxiliary variables in the unlabeled data set;

步骤二:将收集到的训练数据集标准化,将过程变量化成均值为0,方差为1的新的数据集;Step 2: Standardize the collected training data set, and transform the process variable into a new data set with a mean value of 0 and a variance of 1;

步骤三:把标准化后的有标签数据集和无标签数据集中的辅助变量xl和xu作为模型的输入变量x,把标准化后的有标签数据集中的主导变量作为输出变量y,进行半监督神经网络模型训练,从而得到半监督神经网络模型输出层输出的主导变量的预测值和自编码器模型输出层输出的对应于输入变量x的重构值进一步得到该半监督神经网络模型的整个预测误差:Step 3: Use the auxiliary variables x l and x u in the standardized labeled data set and unlabeled data set as the input variable x of the model, and use the leading variable in the standardized labeled data set as the output variable y for semi-supervised Neural network model training, so as to obtain the predicted value of the leading variable output by the output layer of the semi-supervised neural network model and the reconstructed value corresponding to the input variable x output by the output layer of the autoencoder model Further get the entire prediction error of the semi-supervised neural network model:

E=σ*Eae+(1-σ)*Enn+λEweight E=σ*E ae +(1-σ)*E nn +λE weight

其中,Eae表示自编码器的重构误差, where E ae represents the reconstruction error of the autoencoder,

Enn表示神经网络的预测误差, E nn represents the prediction error of the neural network,

表示对于权重的正则化约束;σ来控制Eae和Enn之间的平衡,λ是正则化系数,取经验值; Represents the regularization constraint on the weight; σ to control the balance between E ae and E nn , λ is the regularization coefficient, which is an empirical value;

步骤四:采用反向传播算法计算相关权重和偏置的梯度;Step 4: Calculate the gradient of relevant weights and offsets using the backpropagation algorithm;

步骤五:根据梯度下降法不断训练半监督神经网络模型,计算出该模型的最优参数,完成半监督神经网络模型建模过程;Step 5: Continuously train the semi-supervised neural network model according to the gradient descent method, calculate the optimal parameters of the model, and complete the semi-supervised neural network model modeling process;

步骤六:收集新的工业过程数据,重复步骤一至二,并将处理后的工业过程数据代入到优化后的半监督神经网络模型中,得到主导变量的预测值从而实现过程的监测和控制。Step 6: Collect new industrial process data, repeat steps 1 to 2, and substitute the processed industrial process data into the optimized semi-supervised neural network model to obtain the predicted value of the leading variable In order to realize the monitoring and control of the process.

附图说明Description of drawings

图1是半监督神经网络模型结构图;Fig. 1 is a semi-supervised neural network model structure diagram;

图2是脱丁烷塔过程结构;Fig. 2 is the process structure of debutanizer;

图3表示在有标签比例为5%的情况下样本真实值和半监督神经网络模型预测值效果图;Fig. 3 shows the sample real value and semi-supervised neural network model prediction value effect diagram when the label ratio is 5%;

图4表示在有标签比例为5%的情况下样本真实值和传统神经网络模型的预测值效果图;Fig. 4 shows the effect diagram of the actual value of the sample and the predicted value of the traditional neural network model when the label ratio is 5%;

具体实施方式detailed description

下面结合具体的实施方式对本发明进行进一步的详述。The present invention will be further described in detail below in combination with specific embodiments.

一种半监督神经网络模型,所述的模型由自编码器和神经网络组成,分为三层,第一层为输入层,第二层为隐藏层,第三层为输出层,自编码器和神经网络模型共用输入层和隐藏层,而输出层分为自编码器输出层和神经网络模型输出层,输入层输入变量为x,输入层到隐藏层的权重和偏置分别为ω1和b1,隐藏层到神经网络输出层的权重和偏置为ωy和by,隐藏层到自编码器输出层的权重和偏置为ω2和b2,自编码器输出层输出的重构值为神经网络模型输出层输出的预测值为 A kind of semi-supervised neural network model, described model is made up of autoencoder and neural network, is divided into three layers, the first layer is input layer, the second layer is hidden layer, the third layer is output layer, autoencoder The input layer and the hidden layer are shared with the neural network model, and the output layer is divided into the output layer of the autoencoder and the output layer of the neural network model. The input variable of the input layer is x, and the weight and bias from the input layer to the hidden layer are ω 1 and b 1 , the weights and biases from the hidden layer to the output layer of the neural network are ω y and b y , the weights and biases from the hidden layer to the output layer of the autoencoder are ω 2 and b 2 , and the weights and biases output from the output layer of the autoencoder configuration value The predicted value of the output layer output of the neural network model is

一种基于上述半监督神经网络模型的软测量建模方法,其步骤如下:A soft sensor modeling method based on the above-mentioned semi-supervised neural network model, the steps are as follows:

步骤一:收集历史工业过程的数据组成建模用的训练数据集,所述的训练数据集既包括包含主导变量也包含辅助变量的有标签数据集L,L∈Rn×d,也包括仅包含辅助变量的无标签数据集U,U∈RN×M,n表示有标签数据集的数据样本个数,d表示过程变量个数,R为实数集,N表示无标签数据集的数据样本个数,M表示无标签数据集的辅助变量的个数;Step 1: Collect historical industrial process data to form a training data set for modeling. The training data set includes a labeled data set L containing both leading variables and auxiliary variables, L∈R n×d , and only An unlabeled data set U containing auxiliary variables, U∈R N×M , n represents the number of data samples in the labeled data set, d represents the number of process variables, R is a real number set, and N represents the data samples in the unlabeled data set The number, M represents the number of auxiliary variables in the unlabeled data set;

步骤二:将收集到的训练数据集标准化,将过程变量化成均值为0,方差为1的新的数据集;Step 2: Standardize the collected training data set, and transform the process variable into a new data set with a mean value of 0 and a variance of 1;

步骤三:把标准化后的有标签数据集和无标签数据集中的辅助变量xl和xu作为模型的输入变量x,把标准化后的有标签数据集中的主导变量作为输出变量y,进行半监督神经网络模型训练,从而得到半监督神经网络模型输出层输出的主导变量的预测值和自编码器模型输出层输出的对应于输入变量x的重构值进一步得到该半监督神经网络模型的整个预测误差:Step 3: Use the auxiliary variables x l and x u in the standardized labeled data set and unlabeled data set as the input variable x of the model, and use the leading variable in the standardized labeled data set as the output variable y for semi-supervised Neural network model training, so as to obtain the predicted value of the leading variable output by the output layer of the semi-supervised neural network model and the reconstructed value corresponding to the input variable x output by the output layer of the autoencoder model Further get the entire prediction error of the semi-supervised neural network model:

E=σ*Eae+(1-σ)*Enn+λEweight E=σ*E ae +(1-σ)*E nn +λE weight

其中,Eae表示自编码器的重构误差, where E ae represents the reconstruction error of the autoencoder,

Enn表示神经网络的预测误差, E nn represents the prediction error of the neural network,

表示对于权重的正则化约束;σ来控制Eae和Enn之间的平衡,λ是正则化系数,取经验值; Represents the regularization constraint on the weight; σ to control the balance between E ae and E nn , λ is the regularization coefficient, which is an empirical value;

步骤四:采用反向传播算法计算相关权重和偏置的梯度;Step 4: Calculate the gradient of relevant weights and offsets using the backpropagation algorithm;

(1)引入自编码器输出层的误差参数其中上标3表示输出层,下标j表示输出层的第j个神经元,zj表示隐藏层第j个神经元的加权输入值,其中,表示输入层第k个神经元到隐藏层第j个神经元的连接上的权重,表示隐藏层第j个神经元的偏置,xk表示输入层第k个神经元的输入;(1) Introduce the error parameters of the output layer of the autoencoder where the superscript 3 represents the output layer, the subscript j represents the jth neuron of the output layer, and z j represents the weighted input value of the jth neuron of the hidden layer, in, Indicates the weight on the connection from the kth neuron of the input layer to the jth neuron of the hidden layer, Indicates the bias of the jth neuron in the hidden layer, and x k represents the input of the kth neuron in the input layer;

(2)根据反向传播算法求出隐藏层到自编码器输出层的权重和偏置的梯度其中表示隐藏层第k个神经元到自编码器的输出层第j个神经元的连接上的权重,表示自编码器的输出层第j个神经元的偏置,ak表示隐藏层第k个神经元的输出;(2) Calculate the weight and bias gradient from the hidden layer to the output layer of the autoencoder according to the backpropagation algorithm in Indicates the weight on the connection from the kth neuron in the hidden layer to the jth neuron in the output layer of the autoencoder, Represents the bias of the jth neuron in the output layer of the autoencoder, and a k represents the output of the kth neuron in the hidden layer;

(3)引入神经网络输出层的误差其中,上标3表示输出层,下标j表示输出层的第j个神经元;(3) Introduce the error of the output layer of the neural network Among them, the superscript 3 indicates the output layer, and the subscript j indicates the jth neuron of the output layer;

(4)根据反向传播算法求出隐藏层到神经网络输出层权重和偏置的梯度 其中表示隐藏层第k个神经元到神经网络的输出层第j个神经元的连接上的权重,表示神经网络的输出层第j个神经元的偏置,ak表示隐藏层第k个神经元的输出;(4) Calculate the gradient from the hidden layer to the neural network output layer weight and bias according to the backpropagation algorithm in Represents the weight on the connection from the kth neuron in the hidden layer to the jth neuron in the output layer of the neural network, Represents the bias of the jth neuron in the output layer of the neural network, and a k represents the output of the kth neuron in the hidden layer;

(5)计算输入层到隐藏层的误差:(5) Calculate the error from the input layer to the hidden layer:

对于隐藏层在计算误差的时候使用的损失函数是整体的预测误差,在计算隐藏层的误差的时候要分两种情况,一种是有标签数据,一种是无标签数据。For the hidden layer, the loss function used when calculating the error is the overall prediction error. When calculating the error of the hidden layer, there are two cases, one is labeled data, and the other is unlabeled data.

a)有标签数据的误差既来自于神经网络的预测误差,也来自自编码器的重构误差,计算如下:a) The error of labeled data comes from both the prediction error of the neural network and the reconstruction error of the autoencoder, calculated as follows:

表示隐藏层的第j个神经元的有标签数据的误差,表示自编码器输出层第k个神经元的误差,表示神经网络输出层第k个神经元的误差,表示隐藏层第j个神经元到自编码器的输出层第k个神经元的连接上的权重,表示隐藏层第j个神经元到神经网络的输出层第k个神经元的连接上的权重,f'(zj)表示隐藏层神经元激活函数的导数; Indicates the error of the labeled data of the jth neuron of the hidden layer, Indicates the error of the kth neuron in the output layer of the autoencoder, Indicates the error of the kth neuron in the output layer of the neural network, Indicates the weight on the connection from the jth neuron in the hidden layer to the kth neuron in the output layer of the autoencoder, Represents the weight on the connection between the jth neuron in the hidden layer and the kth neuron in the output layer of the neural network, and f'(z j ) represents the derivative of the activation function of the hidden layer neuron;

b)无标签数据的误差只是来自于自编码器的重构误差:b) The error of unlabeled data is only from the reconstruction error of the autoencoder:

表示隐藏层的第j个神经元的无标签数据的误差; Indicates the error of the unlabeled data of the jth neuron of the hidden layer;

c)计算输入层到隐藏层权重和偏置的梯度 c) Calculate the gradient from the input layer to the hidden layer weights and biases

其中,xk,u表示无标签数据的输入层第k个神经元的输入值,xk,l表示有标签数据的输入层第k个神经元的输入值;Among them, x k, u represent the input value of the kth neuron in the input layer of unlabeled data, and x k, l represent the input value of the kth neuron in the input layer of labeled data;

步骤五:根据梯度下降法不断训练半监督神经网络模型,计算出该模型的最优参数,完成半监督神经网络模型建模过程。Step 5: Continuously train the semi-supervised neural network model according to the gradient descent method, calculate the optimal parameters of the model, and complete the modeling process of the semi-supervised neural network model.

步骤六:收集新的工业过程数据,重复步骤一至二,并将处理后的工业过程数据代入到优化后的半监督神经网络模型中,得到主导变量的预测值从而实现过程的监测和控制。Step 6: Collect new industrial process data, repeat steps 1 to 2, and substitute the processed industrial process data into the optimized semi-supervised neural network model to obtain the predicted value of the leading variable In order to realize the monitoring and control of the process.

为了更好地说明半监督神经网络模型的结构,假设输入变量为x,输入层神经元个数为3,隐藏层中神经元个数为4,因为自编码器是重构输入变量x,所以自编码器的输出神经元个数与输入相同,神经网络模型的输出神经元个数为2,此时的半监督神经网络模型结构如图1所示。In order to better illustrate the structure of the semi-supervised neural network model, suppose the input variable is x, the number of neurons in the input layer is 3, and the number of neurons in the hidden layer is 4, because the autoencoder reconstructs the input variable x, so The number of output neurons of the autoencoder is the same as that of the input, and the number of output neurons of the neural network model is 2. The structure of the semi-supervised neural network model at this time is shown in Figure 1.

以下结合一个具体的脱丁烷塔的例子来说明半监督神经网络模型的性能。脱丁烷塔是一个用于软测量建模算法验证的一个常用的标准工业过程平台。脱丁烷塔是精炼过程中的一个重要装置,结构如图2所示,该装置的目的是为了去除石脑油气体中丙烷和丁烷的过程脱丁烷塔,塔底的丁烷含量是一个十分重要的关键指标,为了提高脱丁烷塔的控制质量,需要对塔底丁烷含量建立软测量模型。The performance of the semi-supervised neural network model is illustrated below with a specific example of a debutanizer. The debutanizer is a commonly used standard industrial process platform for the validation of soft-sensing modeling algorithms. The debutanizer is an important device in the refining process. The structure is shown in Figure 2. The purpose of this device is to remove propane and butane from naphtha gas. The butane content at the bottom of the tower is A very important key indicator, in order to improve the control quality of the debutanizer, it is necessary to establish a soft-sensing model for the butane content in the bottom of the tower.

表1给出了针对关键质量变量丁烷含量所选择的7个辅助变量,分别为塔顶温度、塔顶压力、回流流量、下一级流量、灵敏板的温度、塔底温度和塔底压力。针对该过程,连续等时间间隔采集了2394个过程数据,其中1197个数据作为训练样本进行建模,并为其对应的丁烷含量值进行离线分析和标注。另外采集的1197个数据样本作为测试样本用来验证本发明的半监督神经网络模型的有效性。在选取训练集和测试集的过程中,采用了将每空两个相邻的样本点分别纳入训练集和测试集的间隔取样的方式。在训练集中随机选取一定比例的数据作为有标签样本,训练集除去有标签样本剩下的作为无标签样本。Table 1 shows the seven auxiliary variables selected for the key quality variable butane content, which are tower top temperature, tower top pressure, reflux flow rate, next stage flow rate, temperature of sensitive plate, tower bottom temperature and tower bottom pressure . For this process, 2394 process data were collected continuously at equal time intervals, 1197 of which were modeled as training samples, and their corresponding butane content values were analyzed and marked offline. In addition, 1197 data samples collected are used as test samples to verify the effectiveness of the semi-supervised neural network model of the present invention. In the process of selecting the training set and the test set, the interval sampling method of including two adjacent sample points in each space into the training set and the test set is adopted. Randomly select a certain proportion of data in the training set as labeled samples, and remove the labeled samples from the training set as unlabeled samples.

表1:输入变量说明Table 1: Input variable description

输入变量input variable 变量描述variable description X1 x1 塔顶温度Top temperature X2 x2 塔顶压力Top pressure X3 x3 回流量return flow X4 x4 下一级流量next level traffic X5 x5 第六块塔板温度Sixth tray temperature X6 X 6 塔底温度1Bottom temperature 1 X7 X 7 塔底温度2Bottom temperature 2

为了评价半监督神经网络模型的预测精度,按照传统的方式定义误差标准均方根误差(RMSE),计算公式如下:In order to evaluate the prediction accuracy of the semi-supervised neural network model, the error standard root mean square error (RMSE) is defined in the traditional way, and the calculation formula is as follows:

其中M为测试样本个数,yj为主导变量的真实值,为主导变量的半监督神经网络模型预测值。Where M is the number of test samples, y j is the true value of the leading variable, is the predicted value of the semi-supervised neural network model of the leading variable.

在图3-图4中,图3表示半监督神经网络模型的预测值和真实值的曲线,图4表示传统神经网络模型的预测值和真实值的曲线,通过图3-图4,可以看出本发明的半监督神经网络模型的拟合效果更好,同时本发明的模型半监督神经网络模型的RMSE=0.16261,而传统神经网络的RMSE=0.24076,半监督神经网络模型的预测精度要高于传统的神经网络模型。本发明的模型要优于传统神经网络模型,精度也得到进一步的提高。In Figure 3-Figure 4, Figure 3 shows the curve of the predicted value and the real value of the semi-supervised neural network model, Figure 4 shows the curve of the predicted value and the real value of the traditional neural network model, through Figure 3-Figure 4, you can see The fitting effect of semi-supervised neural network model of the present invention is better, and the RMSE=0.16261 of model semi-supervised neural network model of the present invention simultaneously, and the RMSE=0.24076 of traditional neural network, the predictive precision of semi-supervised neural network model will be high than traditional neural network models. The model of the invention is superior to the traditional neural network model, and the accuracy is further improved.

Claims (2)

1. A semi-supervised neural network model is composed of self-encoder and neural network, and is divided into three layers, the first layer is input layer, the second layer is hidden layer, the third layer is output layer, the self-encoder and neural network model share input layer and hidden layer, the output layer is divided into self-encoder output layer and neural network model output layer, the input variable of input layer is x, and the weight and bias from input layer to hidden layer are omega respectively1And b1The weight and bias of the hidden layer to the output layer of the neural network is omegayAnd byHidden layer to self codingThe weight and offset of the output layer of the filter are omega2And b2The reconstructed value of x output from the encoder output layer isThe predicted value output by the output layer of the neural network model is
2. A soft measurement modeling method based on the semi-supervised neural network model of claim 1, comprising the following steps:
collecting data of historical industrial processes to form a training data set for modeling, wherein the training data set comprises labeled data sets L, L ∈ R containing main variables and auxiliary variablesn×dAlso included are unlabeled datasets U, U ∈ R containing only auxiliary variablesN×MN represents the number of data samples of the labeled data set, d represents the number of process variables, R is a real number set, N represents the number of data samples of the unlabeled data set, and M represents the number of auxiliary variables of the unlabeled data set;
step two: standardizing the collected training data set, and quantizing the process variables into a new data set with a mean value of 0 and a variance of 1;
step three: normalizing the auxiliary variable x in the labeled dataset and the unlabeled datasetlAnd xuTaking the main variable in the standardized labeled data set as an output variable y as an input variable x of the model, and performing semi-supervised neural network model training to obtain a predicted value of the main variable output by a neural network model output layer in the semi-supervised neural network modelAnd a reconstructed value corresponding to the input variable x output from the encoder model output layerFurther obtaining the whole prediction error of the semi-supervised neural network model:
E=σ*Eae+(1-σ)*Enn+λEweight
wherein E isaeRepresenting the reconstruction error from the encoder,
Ennrepresenting the prediction error of the neural network,
representing regularization constraints for the weights; σ to control EaeAnd EnnThe balance between the weight of the two parts,λ is the regularization coefficient, taking the empirical value.
Step four: calculating the related weight and the gradient of the bias by adopting a back propagation algorithm;
step five: continuously training a semi-supervised neural network model according to a gradient descent method, calculating the optimal parameters of the model, and completing the modeling process of the semi-supervised neural network model;
step six: collecting new industrial process data, repeating the first step to the second step, substituting the processed industrial process data into the optimized semi-supervised neural network model to obtain the predicted value of the dominant variableThereby realizing the monitoring and control of the process.
CN201710551671.0A 2017-07-07 2017-07-07 A kind of semi-supervised neural network model and the soft-measuring modeling method based on the model Pending CN107505837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710551671.0A CN107505837A (en) 2017-07-07 2017-07-07 A kind of semi-supervised neural network model and the soft-measuring modeling method based on the model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710551671.0A CN107505837A (en) 2017-07-07 2017-07-07 A kind of semi-supervised neural network model and the soft-measuring modeling method based on the model

Publications (1)

Publication Number Publication Date
CN107505837A true CN107505837A (en) 2017-12-22

Family

ID=60679786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710551671.0A Pending CN107505837A (en) 2017-07-07 2017-07-07 A kind of semi-supervised neural network model and the soft-measuring modeling method based on the model

Country Status (1)

Country Link
CN (1) CN107505837A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108334943A (en) * 2018-01-03 2018-07-27 浙江大学 The semi-supervised soft-measuring modeling method of industrial process based on Active Learning neural network model
CN108445752A (en) * 2018-03-02 2018-08-24 北京工业大学 A kind of random weight Artificial neural network ensemble modeling method of adaptively selected depth characteristic
CN108628164A (en) * 2018-03-30 2018-10-09 浙江大学 A kind of semi-supervised flexible measurement method of industrial process based on Recognition with Recurrent Neural Network model
CN108664706A (en) * 2018-04-16 2018-10-16 浙江大学 A kind of synthetic ammonia process primary reformer oxygen content On-line Estimation method based on semi-supervised Bayes's gauss hybrid models
CN110210495A (en) * 2019-05-21 2019-09-06 浙江大学 The XGBoost soft-measuring modeling method extracted based on parallel LSTM self-encoding encoder behavioral characteristics
CN111062118A (en) * 2019-11-18 2020-04-24 华侨大学 Multilayer soft measurement modeling system and method based on neural network prediction layering
CN111222283A (en) * 2019-10-24 2020-06-02 中国人民解放军空军工程大学 Particle size distribution modeling and control method in crystallization process
CN111245673A (en) * 2019-12-30 2020-06-05 浙江工商大学 SDN time delay sensing method based on graph neural network
CN111460606A (en) * 2020-02-21 2020-07-28 东南大学 Beam forming transmitter behavior level modeling system and method based on neural network
CN111912875A (en) * 2020-06-23 2020-11-10 宁波大学 Fractionating tower benzene content soft measurement method based on stack type Elman neural network
CN111914952A (en) * 2020-08-21 2020-11-10 山东省医学影像学研究所 AD characteristic parameter screening method and system based on deep neural network
CN112101445A (en) * 2020-09-09 2020-12-18 浙江大学 Method for forecasting continuous casting billet subsurface slag inclusion defect in real time based on supervised neural network
CN112740631A (en) * 2018-07-20 2021-04-30 诺基亚技术有限公司 Learning in a communication system by receiving updates of parameters in an algorithm
CN113158473A (en) * 2021-04-27 2021-07-23 昆明理工大学 Semi-supervised integrated instant learning industrial rubber compound Mooney viscosity soft measurement method
CN113485261A (en) * 2021-06-29 2021-10-08 西北师范大学 CAEs-ACNN-based soft measurement modeling method
CN113722973A (en) * 2020-05-25 2021-11-30 中国石油化工股份有限公司 Correction system and correction method of computer simulation model
CN113723649A (en) * 2020-05-25 2021-11-30 中国石油化工股份有限公司 Chemical process abnormity monitoring method based on semi-supervised model and model optimization method
CN113723650A (en) * 2020-05-25 2021-11-30 中国石油化工股份有限公司 Chemical process abnormity monitoring system based on semi-supervised model and model optimization device
CN114927179A (en) * 2021-02-02 2022-08-19 阿里巴巴集团控股有限公司 Information and medical diagnosis classification method, computing device and storage medium
CN115023677A (en) * 2020-03-31 2022-09-06 Abb瑞士股份有限公司 Method and apparatus for monitoring machine learning models
CN115271784A (en) * 2022-06-13 2022-11-01 上海数鸣人工智能科技有限公司 Click prediction method for feature interaction and pseudo tag learning based on genetic algorithm
CN116821695A (en) * 2023-08-30 2023-09-29 中国石油大学(华东) Semi-supervised neural network soft measurement modeling method
CN118130135A (en) * 2024-03-07 2024-06-04 华中科技大学 A system and method for precise measurement and decoupling of generalized inertia of complex engineering equipment
CN119541704A (en) * 2024-11-15 2025-02-28 百威(佛山)啤酒有限公司 A deep semi-supervised soft sensing method for carbon emissions in beer production
CN115023677B (en) * 2020-03-31 2025-12-30 Abb瑞士股份有限公司 Methods and apparatus for monitoring machine learning models

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706882A (en) * 2009-11-23 2010-05-12 浙江大学 Embedded platform based neural network model online training method
EP3054403A2 (en) * 2015-02-06 2016-08-10 Google, Inc. Recurrent neural networks for data item generation
CN105844331A (en) * 2015-01-15 2016-08-10 富士通株式会社 Neural network system and training method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706882A (en) * 2009-11-23 2010-05-12 浙江大学 Embedded platform based neural network model online training method
CN105844331A (en) * 2015-01-15 2016-08-10 富士通株式会社 Neural network system and training method thereof
EP3054403A2 (en) * 2015-02-06 2016-08-10 Google, Inc. Recurrent neural networks for data item generation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LE YAO 等: ""Locally Weighted Prediction Methods for Latent Factor Analysis With Supervised and Semisupervised Process Data"", 《IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING》 *
吴海燕: ""基于自动编码器的半监督表示学习与分类学习研究"", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108334943A (en) * 2018-01-03 2018-07-27 浙江大学 The semi-supervised soft-measuring modeling method of industrial process based on Active Learning neural network model
CN108445752A (en) * 2018-03-02 2018-08-24 北京工业大学 A kind of random weight Artificial neural network ensemble modeling method of adaptively selected depth characteristic
CN108628164A (en) * 2018-03-30 2018-10-09 浙江大学 A kind of semi-supervised flexible measurement method of industrial process based on Recognition with Recurrent Neural Network model
CN108664706B (en) * 2018-04-16 2020-11-03 浙江大学 Semi-supervised Bayesian Gaussian mixture model-based online estimation method for oxygen content of one-stage furnace in ammonia synthesis process
CN108664706A (en) * 2018-04-16 2018-10-16 浙江大学 A kind of synthetic ammonia process primary reformer oxygen content On-line Estimation method based on semi-supervised Bayes's gauss hybrid models
CN112740631A (en) * 2018-07-20 2021-04-30 诺基亚技术有限公司 Learning in a communication system by receiving updates of parameters in an algorithm
CN110210495A (en) * 2019-05-21 2019-09-06 浙江大学 The XGBoost soft-measuring modeling method extracted based on parallel LSTM self-encoding encoder behavioral characteristics
CN110210495B (en) * 2019-05-21 2021-05-04 浙江大学 XGBoost Soft Sensing Modeling Method Based on Parallel LSTM Autoencoder Dynamic Feature Extraction
CN111222283B (en) * 2019-10-24 2022-10-14 中国人民解放军空军工程大学 Particle size distribution modeling and control method in crystallization process
CN111222283A (en) * 2019-10-24 2020-06-02 中国人民解放军空军工程大学 Particle size distribution modeling and control method in crystallization process
CN111062118A (en) * 2019-11-18 2020-04-24 华侨大学 Multilayer soft measurement modeling system and method based on neural network prediction layering
CN111245673A (en) * 2019-12-30 2020-06-05 浙江工商大学 SDN time delay sensing method based on graph neural network
CN111245673B (en) * 2019-12-30 2022-03-25 浙江工商大学 A SDN latency sensing method based on graph neural network
CN111460606A (en) * 2020-02-21 2020-07-28 东南大学 Beam forming transmitter behavior level modeling system and method based on neural network
CN111460606B (en) * 2020-02-21 2023-10-03 东南大学 Neural network-based beam forming transmitter behavior level modeling system and method thereof
CN115023677B (en) * 2020-03-31 2025-12-30 Abb瑞士股份有限公司 Methods and apparatus for monitoring machine learning models
CN115023677A (en) * 2020-03-31 2022-09-06 Abb瑞士股份有限公司 Method and apparatus for monitoring machine learning models
CN113723649A (en) * 2020-05-25 2021-11-30 中国石油化工股份有限公司 Chemical process abnormity monitoring method based on semi-supervised model and model optimization method
CN113723650A (en) * 2020-05-25 2021-11-30 中国石油化工股份有限公司 Chemical process abnormity monitoring system based on semi-supervised model and model optimization device
CN113723649B (en) * 2020-05-25 2025-02-25 中国石油化工股份有限公司 Chemical process abnormality monitoring method and model optimization method based on semi-supervised model
CN113723650B (en) * 2020-05-25 2024-10-29 中国石油化工股份有限公司 Chemical process abnormity monitoring system and model optimization device based on semi-supervision model
CN113722973A (en) * 2020-05-25 2021-11-30 中国石油化工股份有限公司 Correction system and correction method of computer simulation model
CN111912875A (en) * 2020-06-23 2020-11-10 宁波大学 Fractionating tower benzene content soft measurement method based on stack type Elman neural network
CN111912875B (en) * 2020-06-23 2024-02-13 江苏淮河化工有限公司 A soft measurement method for benzene content in fractionation tower based on stacked Elman neural network
CN111914952A (en) * 2020-08-21 2020-11-10 山东省医学影像学研究所 AD characteristic parameter screening method and system based on deep neural network
CN111914952B (en) * 2020-08-21 2024-03-08 山东第一医科大学附属省立医院(山东省立医院) AD characteristic parameter screening method and system based on deep neural network
CN112101445A (en) * 2020-09-09 2020-12-18 浙江大学 Method for forecasting continuous casting billet subsurface slag inclusion defect in real time based on supervised neural network
CN112101445B (en) * 2020-09-09 2023-11-28 浙江大学 A real-time prediction method for subcutaneous slag inclusion defects in continuous casting billets based on supervised neural network
CN114927179A (en) * 2021-02-02 2022-08-19 阿里巴巴集团控股有限公司 Information and medical diagnosis classification method, computing device and storage medium
CN114927179B (en) * 2021-02-02 2025-08-22 阿里巴巴集团控股有限公司 Classification method, computing device and storage medium for information and medical diagnosis
CN113158473A (en) * 2021-04-27 2021-07-23 昆明理工大学 Semi-supervised integrated instant learning industrial rubber compound Mooney viscosity soft measurement method
CN113158473B (en) * 2021-04-27 2022-03-15 昆明理工大学 A semi-supervised ensemble real-time learning soft measurement method for Mooney viscosity of industrial rubber compounds
CN113485261B (en) * 2021-06-29 2022-06-28 西北师范大学 A Soft Sensing Modeling Method Based on CAEs-ACNN
CN113485261A (en) * 2021-06-29 2021-10-08 西北师范大学 CAEs-ACNN-based soft measurement modeling method
CN115271784A (en) * 2022-06-13 2022-11-01 上海数鸣人工智能科技有限公司 Click prediction method for feature interaction and pseudo tag learning based on genetic algorithm
CN116821695B (en) * 2023-08-30 2023-11-03 中国石油大学(华东) Semi-supervised neural network soft measurement modeling method
CN116821695A (en) * 2023-08-30 2023-09-29 中国石油大学(华东) Semi-supervised neural network soft measurement modeling method
CN118130135A (en) * 2024-03-07 2024-06-04 华中科技大学 A system and method for precise measurement and decoupling of generalized inertia of complex engineering equipment
CN119541704A (en) * 2024-11-15 2025-02-28 百威(佛山)啤酒有限公司 A deep semi-supervised soft sensing method for carbon emissions in beer production

Similar Documents

Publication Publication Date Title
CN107505837A (en) A kind of semi-supervised neural network model and the soft-measuring modeling method based on the model
Pan et al. Data-driven estimation of building energy consumption with multi-source heterogeneous data
CN103942457B (en) Water quality parameter time series prediction method based on relevance vector machine regression
CN112598248B (en) Load prediction method, load prediction device, computer equipment and storage medium
CN114169091B (en) Prediction model establishment method and prediction method for remaining life of construction machinery components
CN112101480A (en) Multivariate clustering and fused time sequence combined prediction method
CN108334943A (en) The semi-supervised soft-measuring modeling method of industrial process based on Active Learning neural network model
CN102937534B (en) Method for predicting fault of electromechanical device based on combined prediction model
CN108776831A (en) A kind of complex industrial process Data Modeling Method based on dynamic convolutional neural networks
CN105160437A (en) Load model prediction method based on extreme learning machine
CN111178585A (en) Fault reporting amount prediction method based on multi-algorithm model fusion
CN102183802B (en) Short-term climate forecast method based on Kalman filtering and evolution modeling
CN114626594A (en) Medium-and-long-term electric quantity prediction method based on cluster analysis and deep learning
CN108628164A (en) A kind of semi-supervised flexible measurement method of industrial process based on Recognition with Recurrent Neural Network model
CN110442911A (en) A kind of higher-dimension complication system Uncertainty Analysis Method based on statistical machine learning
CN107463994A (en) Semi-supervised flexible measurement method based on coorinated training extreme learning machine model
CN119477260A (en) Maintenance decision method and system for new energy equipment system based on fault coupling model
CN118747279A (en) Calculation method and device for time downscaling of river material flux, and electronic equipment
CN118114108A (en) A method and system for predicting degradation trend of smart electric energy meter in high dry heat environment
CN108416463B (en) A kind of product quality prediction technique and system of hydrocracking process
CN112651537A (en) Photovoltaic power generation ultra-short term power prediction method and system
CN105894138A (en) Optimum weighted composite prediction method for shipment amount of manufacturing industry
Khadr et al. Data-driven stochastic modeling for multi-purpose reservoir simulation
CN111325384B (en) NDVI prediction method combining statistical characteristics and convolutional neural network model
CN110110784B (en) Transformer fault identification method based on transformer related operation data

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171222