[go: up one dir, main page]

CN107016406A - The pest and disease damage image generating method of network is resisted based on production - Google Patents

The pest and disease damage image generating method of network is resisted based on production Download PDF

Info

Publication number
CN107016406A
CN107016406A CN201710103547.8A CN201710103547A CN107016406A CN 107016406 A CN107016406 A CN 107016406A CN 201710103547 A CN201710103547 A CN 201710103547A CN 107016406 A CN107016406 A CN 107016406A
Authority
CN
China
Prior art keywords
network
training
images
diseases
generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710103547.8A
Other languages
Chinese (zh)
Inventor
张洁
王儒敬
宋良图
谢成军
余健
李�瑞
陈红波
陈天娇
许桃胜
宿宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201710103547.8A priority Critical patent/CN107016406A/en
Publication of CN107016406A publication Critical patent/CN107016406A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Image Analysis (AREA)

Abstract

本发明涉及基于生成式对抗网络的病虫害图像生成方法,与现有技术相比解决了病虫害图像采样图像少的缺陷。本发明包括以下步骤:对训练图像进行收集和预处理;基于深度卷积神经网络模型来构造判别网络和生成网络;对判别网络和生成网络进行训练;根据训练好的生成网络生成病虫害图像。本发明能够根据已有的少量病虫害图像生成大量的类似真实的病虫害图像,为病虫害图像识别提供了样本图像,解决了实际中田间病虫害图像比较少且获取成本高的难题。

The invention relates to a method for generating images of pests and diseases based on a generative confrontation network, which solves the defect of less sampling images of pests and diseases compared with the prior art. The invention includes the following steps: collecting and preprocessing the training images; constructing a discrimination network and a generation network based on a deep convolutional neural network model; training the discrimination network and the generation network; generating images of diseases and insect pests according to the trained generation network. The invention can generate a large number of similar real images of pests and diseases based on a small number of existing images of pests and diseases, provides sample images for image recognition of pests and diseases, and solves the problem of relatively few images of pests and diseases in the field and high acquisition cost.

Description

基于生成式对抗网络的病虫害图像生成方法Pest image generation method based on generative adversarial network

技术领域technical field

本发明涉及图像生成技术领域,具体来说是基于生成式对抗网络的病虫害图像生成方法。The invention relates to the technical field of image generation, in particular to a method for generating images of diseases and insect pests based on generative confrontation networks.

背景技术Background technique

病虫害是农作物生长中的大敌,在农作物整个生长期内都有发生,可造成农作物大量减产,通过软件技术对病虫害进行有效识别已经成为行业内的研究热点。而现行的基于图像识别的病虫害诊断方法,需要大量的病虫害图像样本作为原始数据的支持。但在实际应用中,现有的病虫害图像样本比较少,且田间病虫害图像的采集工作量比较困难、量也很大。Pests and diseases are the enemies of crops. They occur throughout the growth period of crops and can cause a large reduction in crop yield. Effective identification of pests and diseases through software technology has become a research hotspot in the industry. However, the current pest diagnosis method based on image recognition requires a large number of pest image samples as the support of raw data. However, in practical applications, there are relatively few samples of existing images of pests and diseases, and the workload of collecting images of field diseases and insect pests is relatively difficult and large.

因此,如何能够利用少量已有的病虫害图像实现病虫害图像的再生成已经成为急需解决的技术问题。Therefore, how to use a small number of existing pest images to realize the regeneration of pest images has become an urgent technical problem to be solved.

发明内容Contents of the invention

本发明的目的是为了解决现有技术中病虫害图像采样图像少的缺陷,提供一种基于生成式对抗网络的病虫害图像生成方法来解决上述问题。The purpose of the present invention is to solve the defect of few sampling images of pest images in the prior art, and provide a method for generating pest images based on generative confrontation network to solve the above problems.

为了实现上述目的,本发明的技术方案如下:In order to achieve the above object, the technical scheme of the present invention is as follows:

一种基于生成式对抗网络的病虫害图像生成方法,包括以下步骤:A method for generating images of pests and diseases based on a generative confrontation network, comprising the following steps:

对训练图像进行收集和预处理,收集若干幅图像作为训练图像,对所有训练图像进行大小归一化处理,将其处理为256×256像素,得到若干个训练样本;Collect and preprocess the training images, collect several images as training images, and normalize the size of all training images, process them into 256×256 pixels, and obtain several training samples;

基于深度卷积神经网络模型来构造判别网络和生成网络;Construct a discriminant network and a generative network based on a deep convolutional neural network model;

对判别网络和生成网络进行训练;Train the discriminative network and the generative network;

根据训练好的生成网络生成病虫害图像。Generate images of pests and diseases according to the trained generation network.

所述的基于深度卷积神经网络模型来构造判别网络和生成网络包括以下步骤:The described construction of discriminant network and generation network based on deep convolutional neural network model comprises the following steps:

使用深度卷积神经网络模型构造判别网络,设置深度卷积神经网络模型的网络层数为5层,其中前3层为卷积层,第4层为全连接层,最后一层为输出层,输出层的节点数为1,其输入为一幅图像,输入的图像大小为256*256;Use the deep convolutional neural network model to construct the discriminant network, set the number of network layers of the deep convolutional neural network model to 5 layers, of which the first 3 layers are convolutional layers, the fourth layer is a fully connected layer, and the last layer is an output layer. The number of nodes in the output layer is 1, its input is an image, and the size of the input image is 256*256;

使用深度卷积神经网络模型构造生成网络,设置深度卷积神经网络模型的网络层数为4层,其中前3层为反卷积层,最后一层为输出层,输出层的节点个数为256*256,其输入为随机噪声。Use the deep convolutional neural network model to construct the generative network, set the number of network layers of the deep convolutional neural network model to 4 layers, of which the first 3 layers are deconvolution layers, the last layer is the output layer, and the number of nodes in the output layer is 256*256, whose input is random noise.

所述的对判别网络和生成网络进行训练包括以下步骤:The described training of discriminative network and generation network comprises the following steps:

设定损失函数,其公式如下:Set the loss function, the formula is as follows:

其中,D(x)为判别网络在训练数据集上的输出,x~Pdata(x)为数据集的真实概率分布,D(G(z))为判别网络在生成网络生成的图片的输出,z~Pz(x)为生成网络模拟的训练数据集概率分布,z为随机向量,为使判别网络能够区分输入真实的数据,为使生成网络能够欺骗判别网络;Among them, D(x) is the output of the discriminant network on the training data set, x~P data (x) is the real probability distribution of the data set, and D(G(z)) is the output of the discriminant network on the image generated by the generating network , z~P z (x) is the probability distribution of the training data set generated by the network simulation, z is a random vector, In order to enable the discriminative network to distinguish the input real data, In order to enable the generation network to deceive the discriminative network;

训练判别网络时使用V(D,G)作为损失函数,在训练生成网络时使用作为损失函数;Use V(D,G) as the loss function when training the discriminative network, and use it when training the generative network as a loss function;

判别网络训练数据的生成,设训练的batch大小为50,则25个正样本由训练样本中随机选取,则25个负样本生成过程如下:The generation of discriminative network training data, assuming that the training batch size is 50, then 25 positive samples are randomly selected from the training samples, then the generation process of 25 negative samples is as follows:

生成25个随机向量;Generate 25 random vectors;

将25个随机向量作为生成网络的输入,得到25个伪造数据,并标定为判别网络的负样本;25 random vectors are used as the input of the generation network to obtain 25 forged data, which are calibrated as negative samples of the discriminant network;

生成网络训练数据的生成,设训练的batch大小为50,则50个正样本生成过程如下:Generate network training data generation, set the training batch size to 50, then the generation process of 50 positive samples is as follows:

生成50个随机向量;Generate 50 random vectors;

将50个随机向量作为生成网络的输入,得到50个伪造数据,并标定为生成网络的正样本;Take 50 random vectors as the input of the generator network, get 50 fake data, and mark it as a positive sample of the generator network;

训练网络,其具体步骤如下:To train the network, the specific steps are as follows:

设置超参数k,每训练完k次判别网络后再进行一次生成网络的训练;Set the hyperparameter k, and then perform the training of the generation network after each training of the discriminant network for k times;

判别网络进行训练,The discriminative network is trained,

选取m个噪声样本,先验概率分布为pg(z),标记为{z(1),...,z(m)};Select m noise samples, the prior probability distribution is p g (z), marked as {z (1) ,...,z (m) };

选取m个训练样本,概率分布为pdata(x),标记为{x(1),...,x(m)};Select m training samples, the probability distribution is p data (x), marked as {x (1) ,...,x (m) };

根据随机梯度下降法,修改判别网络的参数,其计算随机梯度公式如下:According to the stochastic gradient descent method, the parameters of the discriminant network are modified, and the formula for calculating the stochastic gradient is as follows:

生成网络进行训练,Generate a network for training,

选取m个噪声样本,先验概率分布为pg(z),标记为{z(1),...,z(m)},根据随机梯度下降法,修改生成网络的参数,其计算随机梯度公式如下:Select m noise samples, the prior probability distribution is p g (z), marked as {z (1) ,...,z (m) }, according to the stochastic gradient descent method, modify the parameters of the generation network, which calculates the random The gradient formula is as follows:

判别网络进行图片真实概率判断,当判别网络判定图片为训练图像的概率趋于0.5时,训练完成。The discriminant network judges the true probability of the picture. When the discriminant network judges that the probability of the picture being a training image tends to 0.5, the training is completed.

所述的根据训练好的生成网络生成病虫害图像包括以下步骤:The described generation of images of diseases and insect pests according to the trained generation network includes the following steps:

从训练样本中随机选取n个噪声样本,先验概率分布为pg(z),标记为{z(1),...,z(n)};Randomly select n noise samples from the training samples, the prior probability distribution is p g (z), marked as {z (1) ,...,z (n) };

分别将噪声样本输入训练好的生成网络,生成n个病虫害图像。Input the noise samples into the trained generation network respectively, and generate n images of diseases and insect pests.

有益效果Beneficial effect

本发明的基于生成式对抗网络的病虫害图像生成方法,与现有技术相比能够根据已有的少量病虫害图像生成大量的类似真实的病虫害图像,为病虫害图像识别提供了样本图像,解决了实际中田间病虫害图像比较少且获取成本高的难题。Compared with the prior art, the method for generating images of diseases and insect pests based on the generative confrontation network of the present invention can generate a large number of similar real images of diseases and insect pests based on a small number of existing images of diseases and insect pests, providing sample images for image recognition of diseases and insect pests, and solving the practical problems The problems of relatively few images of field diseases and insect pests and high acquisition costs.

附图说明Description of drawings

图1为本发明的方法顺序图。Fig. 1 is a method sequence diagram of the present invention.

具体实施方式detailed description

为使对本发明的结构特征及所达成的功效有更进一步的了解与认识,用以较佳的实施例及附图配合详细的说明,说明如下:In order to have a further understanding and understanding of the structural features of the present invention and the achieved effects, the preferred embodiments and accompanying drawings are used for a detailed description, as follows:

如图1所示,本发明所述的一种基于生成式对抗网络的病虫害图像生成方法,包括以下步骤:As shown in Figure 1, a method for generating images of diseases and insect pests based on generative confrontation network according to the present invention comprises the following steps:

第一步,对训练图像进行收集和预处理,收集若干幅图像作为训练图像,对所有训练图像进行大小归一化处理,将其处理为256×256像素,得到若干个训练样本。The first step is to collect and preprocess the training images, collect several images as training images, and normalize the size of all training images to 256×256 pixels to obtain several training samples.

第二步,基于深度卷积神经网络模型来构造判别网络和生成网络,深度卷积神经网络强调了模型结构的深度,突出了特征学习的重要性,能学习到图像的本质特征。病虫害图像受到农田背景、光照、遮挡等各种因素的影响,因此相对于一般图像来说比较复杂。因此,基于深度卷积神经网络模型来构造判别网络和生成网络在完成网络训练后可以生成更加逼真的病虫害图像。In the second step, the discriminant network and the generation network are constructed based on the deep convolutional neural network model. The deep convolutional neural network emphasizes the depth of the model structure, highlights the importance of feature learning, and can learn the essential features of the image. Pest images are affected by various factors such as farmland background, illumination, occlusion, etc., so they are more complicated than general images. Therefore, constructing a discriminant network and a generative network based on a deep convolutional neural network model can generate more realistic images of pests and diseases after completing network training.

其具体步骤如下:The specific steps are as follows:

(1)使用深度卷积神经网络模型构造判别网络。设置深度卷积神经网络模型的网络层数为5层,其中前3层为卷积层,第4层为全连接层,最后一层为输出层,输出层的节点数为1,其输入为一幅图像,输入的图像大小为256*256。(1) Construct a discriminative network using a deep convolutional neural network model. Set the number of network layers of the deep convolutional neural network model to 5 layers, of which the first 3 layers are convolutional layers, the fourth layer is a fully connected layer, the last layer is an output layer, the number of nodes in the output layer is 1, and its input is An image, the input image size is 256*256.

比较经典的深度卷积神经网络模型是LeNet-5,该模型应用于手写体字符识别效果比较好,它只有2个卷积层,而应用于比较复杂的病虫害图像时效果不好。通过实验发现,当卷积层增加一层即为3层时效果更佳。因此这里设置卷基层数为3,全连接层和输出层是必须存在的,因此此处设计一共5层。(在此层数表达按通常表达方式不包括输入层)The more classic deep convolutional neural network model is LeNet-5. This model has a better effect on handwritten character recognition. It has only two convolutional layers, but it does not work well when applied to more complex images of diseases and insect pests. Through experiments, it is found that the effect is better when the convolutional layer is increased to 3 layers. Therefore, the number of roll bases is set to 3 here, and the fully connected layer and output layer must exist, so a total of 5 layers are designed here. (The expression of the number of layers here does not include the input layer in the usual way of expression)

(2)使用深度卷积神经网络模型构造生成网络,设置深度卷积神经网络模型的网络层数为4层,其中前3层为反卷积层,最后一层为输出层,输出层的节点个数为256*256,其输入为随机噪声。随机噪声为成人为制造的干扰,一般的程序开发语言都会提供制造随机噪声的函数方法。(2) Use the deep convolutional neural network model to construct the generative network, set the network layer number of the deep convolutional neural network model to 4 layers, of which the first 3 layers are deconvolution layers, the last layer is the output layer, and the nodes of the output layer The number is 256*256, and its input is random noise. Random noise is an artificial disturbance, and general programming languages provide functions to create random noise.

不同于判别网络的是,生成网络模型没有卷积层和全连接层,只有反卷积层和输出层。Unlike the discriminative network, the generative network model does not have a convolutional layer and a fully connected layer, only a deconvolutional layer and an output layer.

第三步,对判别网络和生成网络进行训练。其具体步骤如下:The third step is to train the discriminative network and the generative network. The specific steps are as follows:

(1)设定损失函数,其公式如下:(1) Set the loss function, the formula is as follows:

其中,D(x)为判别网络在训练数据集上的输出,x~Pdata(x)为数据集的真实概率分布,D(G(z))为判别网络在生成网络生成的图片的输出,z~Pz(x)为生成网络模拟的训练数据集概率分布,z为随机向量,为使判别网络能够区分输入真实的数据,为使生成网络能够欺骗判别网络。Among them, D(x) is the output of the discriminant network on the training data set, x~P data (x) is the real probability distribution of the data set, and D(G(z)) is the output of the discriminant network on the image generated by the generating network , z~P z (x) is the probability distribution of the training data set generated by the network simulation, z is a random vector, In order to enable the discriminative network to distinguish the input real data, In order to enable the generative network to fool the discriminative network.

训练判别网络时使用V(D,G)作为损失函数,在训练生成网络时使用作为损失函数。Use V(D,G) as the loss function when training the discriminative network, and use it when training the generative network as a loss function.

(2)判别网络训练数据的生成,设训练的batch大小为50,则25个正样本由训练样本中随机选取,则25个负样本生成过程如下:(2) The generation of the discriminative network training data, assuming that the training batch size is 50, then 25 positive samples are randomly selected from the training samples, then the generation process of 25 negative samples is as follows:

A、生成25个随机向量;A. Generate 25 random vectors;

B、将25个随机向量作为生成网络的输入,得到25个伪造数据,并标定为判别网络的负样本。B. Take 25 random vectors as the input of the generator network, get 25 forged data, and mark it as the negative sample of the discriminant network.

(3)生成网络训练数据的生成,设训练的batch大小为50,则50个正样本生成过程如下:(3) Generate the generation of network training data, assuming that the training batch size is 50, then the generation process of 50 positive samples is as follows:

A、生成50个随机向量;A. Generate 50 random vectors;

B、将50个随机向量作为生成网络的输入,得到50个伪造数据,并标定为生成网络的正样本。B. Take 50 random vectors as the input of the generating network, get 50 fake data, and mark them as positive samples of the generating network.

(4)训练网络,其具体步骤如下:(4) training network, its specific steps are as follows:

A、设置超参数k,每训练完k次判别网络后再进行一次生成网络的训练。即进行k次判别网络后再进行一次生成网络的训练,判别网络的训练方法如判别网络进行训练步骤所述,生成网络的训练方法如生成网络进行训练步骤所述。A. Set the hyperparameter k, and perform the training of the generation network after every k times of discriminant network training. That is, the training of the generation network is carried out after k times of discriminant network, the training method of the discriminant network is as described in the step of training the discriminative network, and the training method of the generative network is as described in the step of training the generative network.

B、判别网络进行训练。B. The discriminative network is trained.

选取m个噪声样本,先验概率分布为pg(z),标记为{z(1),...,z(m)};Select m noise samples, the prior probability distribution is p g (z), marked as {z (1) ,...,z (m) };

选取m个训练样本,概率分布为pdata(x),标记为{x(1),...,x(m)};Select m training samples, the probability distribution is p data (x), marked as {x (1) ,...,x (m) };

根据随机梯度下降法,修改判别网络的参数,其计算随机梯度公式如下:According to the stochastic gradient descent method, the parameters of the discriminant network are modified, and the formula for calculating the stochastic gradient is as follows:

表示梯度,θ表示网络参数,θd表示判别网络的参数。 Represents the gradient, θ represents the network parameters, and θ d represents the parameters of the discriminant network.

C、生成网络进行训练,C. Generate a network for training,

选取m个噪声样本,先验概率分布为pg(z),标记为{z(1),...,z(m)},根据随机梯度下降法,修改生成网络的参数,其计算随机梯度公式如下:Select m noise samples, the prior probability distribution is p g (z), marked as {z (1) ,...,z (m) }, according to the stochastic gradient descent method, modify the parameters of the generation network, which calculates the random The gradient formula is as follows:

表示梯度,θ表示网络参数,θg表示生成网络的参数。 Represents the gradient, θ represents the network parameters, and θ g represents the parameters of the generated network.

D、判别网络进行图片真实概率判断,当判别网络判定图片为训练图像的概率趋于0.5时,训练完成。D. The discriminant network judges the true probability of the picture. When the discriminant network judges that the probability that the picture is a training image tends to 0.5, the training is completed.

第四步,根据训练好的生成网络生成病虫害图像,通过生成网络输入噪声,输出图片。其具体步骤如下:The fourth step is to generate images of diseases and insect pests according to the trained generation network, input noise through the generation network, and output pictures. The specific steps are as follows:

(1)从训练样本中随机选取n个噪声样本,先验概率分布为pg(z),标记为{z(1),...,z(n)}。(1) Randomly select n noise samples from the training samples, the prior probability distribution is p g (z), marked as {z (1) ,...,z (n) }.

(2)分别将噪声样本输入训练好的生成网络,生成n个病虫害图像。(2) Input the noise samples into the trained generation network to generate n pest images.

以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。The basic principles, main features and advantages of the present invention have been shown and described above. Those skilled in the art should understand that the present invention is not limited by the above-mentioned embodiments. What are described in the above-mentioned embodiments and the description are only the principles of the present invention. Variations and improvements, which fall within the scope of the claimed invention. The scope of protection required by the present invention is defined by the appended claims and their equivalents.

Claims (4)

1.一种基于生成式对抗网络的病虫害图像生成方法,其特征在于,包括以下步骤:1. A method for generating images of diseases and insect pests based on generative confrontation network, characterized in that, comprising the following steps: 11)对训练图像进行收集和预处理,收集若干幅图像作为训练图像,对所有训练图像进行大小归一化处理,将其处理为256×256像素,得到若干个训练样本;11) Collect and preprocess the training images, collect several images as training images, and normalize the size of all training images, process them into 256×256 pixels, and obtain several training samples; 12)基于深度卷积神经网络模型来构造判别网络和生成网络;12) Construct a discriminant network and a generated network based on a deep convolutional neural network model; 13)对判别网络和生成网络进行训练;13) Train the discrimination network and the generation network; 14)根据训练好的生成网络生成病虫害图像。14) Generate images of diseases and insect pests according to the trained generation network. 2.根据权利要求1所述的基于生成式对抗网络的病虫害图像生成方法,其特征在于,所述的基于深度卷积神经网络模型来构造判别网络和生成网络包括以下步骤:2. the method for generating images of diseases and insect pests based on generative confrontation network according to claim 1, is characterized in that, constructing discriminant network and generating network based on deep convolutional neural network model comprises the following steps: 21)使用深度卷积神经网络模型构造判别网络,设置深度卷积神经网络模型的网络层数为5层,其中前3层为卷积层,第4层为全连接层,最后一层为输出层,输出层的节点数为1,其输入为一幅图像,输入的图像大小为256*256;21) Use a deep convolutional neural network model to construct a discriminant network, set the number of network layers of the deep convolutional neural network model to 5 layers, of which the first 3 layers are convolutional layers, the fourth layer is a fully connected layer, and the last layer is output layer, the number of nodes in the output layer is 1, its input is an image, and the size of the input image is 256*256; 22)使用深度卷积神经网络模型构造生成网络,设置深度卷积神经网络模型的网络层数为4层,其中前3层为反卷积层,最后一层为输出层,输出层的节点个数为256*256,其输入为随机噪声。22) Use a deep convolutional neural network model to construct a generative network, set the number of network layers of the deep convolutional neural network model to 4 layers, of which the first 3 layers are deconvolution layers, the last layer is the output layer, and the number of nodes in the output layer is The number is 256*256, and its input is random noise. 3.根据权利要求1所述的基于生成式对抗网络的病虫害图像生成方法,其特征在于,所述的对判别网络和生成网络进行训练包括以下步骤:3. the method for generating images of diseases and insect pests based on generative confrontation network according to claim 1, characterized in that, the described training of discriminant network and generation network comprises the following steps: 31)设定损失函数,其公式如下:31) Set the loss function, the formula is as follows: 其中,D(x)为判别网络在训练数据集上的输出,x~Pdata(x)为数据集的真实概率分布,D(G(z))为判别网络在生成网络生成的图片的输出,z~Pz(x)为生成网络模拟的训练数据集概率分布,z为随机向量,为使判别网络能够区分输入真实的数据,为使生成网络能够欺骗判别网络;Among them, D(x) is the output of the discriminant network on the training data set, x~P data (x) is the real probability distribution of the data set, and D(G(z)) is the output of the discriminant network on the image generated by the generating network , z~P z (x) is the probability distribution of the training data set generated by the network simulation, z is a random vector, In order to enable the discriminative network to distinguish the input real data, In order to enable the generation network to deceive the discriminative network; 训练判别网络时使用V(D,G)作为损失函数,在训练生成网络时使用作为损失函数;Use V(D,G) as the loss function when training the discriminative network, and use it when training the generative network as a loss function; 32)判别网络训练数据的生成,设训练的batch大小为50,则25个正样本由训练样本中随机选取,则25个负样本生成过程如下:32) Discriminate the generation of network training data, assuming that the training batch size is 50, then 25 positive samples are randomly selected from the training samples, then the generation process of 25 negative samples is as follows: 321)生成25个随机向量;321) generate 25 random vectors; 322)将25个随机向量作为生成网络的输入,得到25个伪造数据,并标定为判别网络的负样本;322) 25 random vectors are used as the input of the generation network to obtain 25 forged data, and are marked as negative samples of the discriminant network; 33)生成网络训练数据的生成,设训练的batch大小为50,则50个正样本生成过程如下:33) Generate the generation of network training data, assuming that the training batch size is 50, then the generation process of 50 positive samples is as follows: 331)生成50个随机向量;331) generate 50 random vectors; 332)将50个随机向量作为生成网络的输入,得到50个伪造数据,并标定为生成网络的正样本;332) 50 random vectors are used as the input of the generating network, and 50 forged data are obtained, and marked as positive samples of the generating network; 34)训练网络,其具体步骤如下:34) training network, its specific steps are as follows: 341)设置超参数k,每训练完k次判别网络后再进行一次生成网络的训练;341) Set the hyperparameter k, and then perform the training of the generation network after every k times of discriminant network training; 342)判别网络进行训练,342) discriminant network for training, 选取m个噪声样本,先验概率分布为pg(z),标记为{z(1),...,z(m)};Select m noise samples, the prior probability distribution is p g (z), marked as {z (1) ,...,z (m) }; 选取m个训练样本,概率分布为pdata(x),标记为{x(1),...,x(m)};Select m training samples, the probability distribution is p data (x), marked as {x (1) ,...,x (m) }; 根据随机梯度下降法,修改判别网络的参数,其计算随机梯度公式如下:According to the stochastic gradient descent method, the parameters of the discriminant network are modified, and the formula for calculating the stochastic gradient is as follows: 343)生成网络进行训练,343) generating a network for training, 选取m个噪声样本,先验概率分布为pg(z),标记为{z(1),...,z(m)},根据随机梯度下降法,修改生成网络的参数,其计算随机梯度公式如下:Select m noise samples, the prior probability distribution is p g (z), marked as {z (1) ,...,z (m) }, according to the stochastic gradient descent method, modify the parameters of the generation network, which calculates the random The gradient formula is as follows: 344)判别网络进行图片真实概率判断,当判别网络判定图片为训练图像的概率趋于0.5时,训练完成。344) The discriminant network judges the true probability of the picture, and when the discriminant network judges that the probability that the picture is a training image tends to 0.5, the training is completed. 4.根据权利要求1所述的基于生成式对抗网络的病虫害图像生成方法,其特征在于,所述的根据训练好的生成网络生成病虫害图像包括以下步骤:4. the method for generating images of diseases and insect pests based on generative confrontation network according to claim 1, characterized in that, generating the images of diseases and insect pests according to the trained generation network comprises the following steps: 41)从训练样本中随机选取n个噪声样本,先验概率分布为pg(z),标记为{z(1),...,z(n)};41) Randomly select n noise samples from the training samples, the prior probability distribution is p g (z), marked as {z (1) ,...,z (n) }; 42)分别将噪声样本输入训练好的生成网络,生成n个病虫害图像。42) Input the noise samples into the trained generation network respectively, and generate n images of diseases and insect pests.
CN201710103547.8A 2017-02-24 2017-02-24 The pest and disease damage image generating method of network is resisted based on production Pending CN107016406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710103547.8A CN107016406A (en) 2017-02-24 2017-02-24 The pest and disease damage image generating method of network is resisted based on production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710103547.8A CN107016406A (en) 2017-02-24 2017-02-24 The pest and disease damage image generating method of network is resisted based on production

Publications (1)

Publication Number Publication Date
CN107016406A true CN107016406A (en) 2017-08-04

Family

ID=59440544

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710103547.8A Pending CN107016406A (en) 2017-02-24 2017-02-24 The pest and disease damage image generating method of network is resisted based on production

Country Status (1)

Country Link
CN (1) CN107016406A (en)

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107563389A (en) * 2017-09-11 2018-01-09 合肥工业大学 A kind of corps diseases recognition methods based on deep learning
CN107563355A (en) * 2017-09-28 2018-01-09 哈尔滨工程大学 Hyperspectral abnormity detection method based on generation confrontation network
CN107563995A (en) * 2017-08-14 2018-01-09 华南理工大学 A kind of confrontation network method of more arbiter error-duration models
CN107563510A (en) * 2017-08-14 2018-01-09 华南理工大学 A kind of WGAN model methods based on depth convolutional neural networks
CN107590532A (en) * 2017-08-14 2018-01-16 华南理工大学 A kind of hyper parameter dynamic adjusting method based on WGAN
CN107609481A (en) * 2017-08-14 2018-01-19 百度在线网络技术(北京)有限公司 The method, apparatus and computer-readable storage medium of training data are generated for recognition of face
CN107730458A (en) * 2017-09-05 2018-02-23 北京飞搜科技有限公司 A kind of fuzzy facial reconstruction method and system based on production confrontation network
CN107767384A (en) * 2017-11-03 2018-03-06 电子科技大学 A kind of image, semantic dividing method based on dual training
CN107844770A (en) * 2017-11-03 2018-03-27 东北大学 A kind of electric melting magnesium furnace unusual service condition automatic recognition system based on video
CN107862377A (en) * 2017-11-14 2018-03-30 华南理工大学 A kind of packet convolution method that confrontation network model is generated based on text image
CN107862270A (en) * 2017-10-31 2018-03-30 深圳云天励飞技术有限公司 Face classification device training method, method for detecting human face and device, electronic equipment
CN107886169A (en) * 2017-11-14 2018-04-06 华南理工大学 A kind of multiple dimensioned convolution kernel method that confrontation network model is generated based on text image
CN107943784A (en) * 2017-11-02 2018-04-20 南华大学 Relation extraction method based on generation confrontation network
CN107944358A (en) * 2017-11-14 2018-04-20 华南理工大学 A kind of human face generating method based on depth convolution confrontation network model
CN107945133A (en) * 2017-11-30 2018-04-20 北京小米移动软件有限公司 Image processing method and device
CN107944546A (en) * 2017-11-14 2018-04-20 华南理工大学 It is a kind of based on be originally generated confrontation network model residual error network method
CN108009628A (en) * 2017-10-30 2018-05-08 杭州电子科技大学 A kind of method for detecting abnormality based on generation confrontation network
CN108021931A (en) * 2017-11-20 2018-05-11 阿里巴巴集团控股有限公司 A kind of data sample label processing method and device
CN108021979A (en) * 2017-11-14 2018-05-11 华南理工大学 It is a kind of based on be originally generated confrontation network model feature recalibration convolution method
CN108038821A (en) * 2017-11-20 2018-05-15 河海大学 A kind of image Style Transfer method based on production confrontation network
CN108053454A (en) * 2017-12-04 2018-05-18 华中科技大学 A kind of graph structure data creation method that confrontation network is generated based on depth convolution
CN108090521A (en) * 2018-01-12 2018-05-29 广州视声智能科技有限公司 A kind of image interfusion method and arbiter of production confrontation network model
CN108197700A (en) * 2018-01-12 2018-06-22 广州视声智能科技有限公司 A kind of production confrontation network modeling method and device
CN108205659A (en) * 2017-11-30 2018-06-26 深圳市深网视界科技有限公司 Face occluder removes and its method, equipment and the medium of model construction
CN108229130A (en) * 2018-01-30 2018-06-29 中国银联股份有限公司 A kind of verification method and device
CN108305239A (en) * 2018-03-06 2018-07-20 陕西师范大学 A kind of restorative procedure for the Bridge Crack image fighting network based on production
CN108399625A (en) * 2018-02-28 2018-08-14 电子科技大学 A kind of SAR image orientation generation method generating confrontation network based on depth convolution
CN108460760A (en) * 2018-03-06 2018-08-28 陕西师范大学 A kind of Bridge Crack image discriminating restorative procedure fighting network based on production
CN108470196A (en) * 2018-02-01 2018-08-31 华南理工大学 A method of handwritten numeral is generated based on depth convolution confrontation network model
CN108491874A (en) * 2018-03-19 2018-09-04 天津大学 A kind of image list sorting technique for fighting network based on production
CN108573222A (en) * 2018-03-28 2018-09-25 中山大学 Pedestrian Image Occlusion Detection Method Based on Recurrent Adversarial Generative Network
CN108596017A (en) * 2018-03-06 2018-09-28 深圳市农博创新科技有限公司 A kind of method and device based on picture recognition diseases of garden stuff
CN108765319A (en) * 2018-05-09 2018-11-06 大连理工大学 A kind of image de-noising method based on generation confrontation network
CN108764054A (en) * 2018-04-27 2018-11-06 厦门大学 The method that machine person writing's calligraphy of network is fought based on production
CN108830209A (en) * 2018-06-08 2018-11-16 西安电子科技大学 Based on the remote sensing images method for extracting roads for generating confrontation network
CN108875511A (en) * 2017-12-01 2018-11-23 北京迈格威科技有限公司 Method, apparatus, system and the computer storage medium that image generates
CN108897769A (en) * 2018-05-29 2018-11-27 武汉大学 Network implementations text classification data set extension method is fought based on production
CN109063756A (en) * 2018-07-20 2018-12-21 天津师范大学 A kind of cloud atlas classification method based on multi-modal production confrontation network
CN109190665A (en) * 2018-07-30 2019-01-11 国网上海市电力公司 A kind of general image classification method and device based on semi-supervised generation confrontation network
CN109190504A (en) * 2018-08-10 2019-01-11 百度在线网络技术(北京)有限公司 Processing method, device and the readable storage medium storing program for executing of automobile image data
CN109214386A (en) * 2018-09-14 2019-01-15 北京京东金融科技控股有限公司 Method and apparatus for generating image recognition model
CN109388565A (en) * 2018-09-27 2019-02-26 西安电子科技大学 Software system performance optimization method based on production confrontation network
CN109460708A (en) * 2018-10-09 2019-03-12 东南大学 A kind of Forest fire image sample generating method based on generation confrontation network
CN109493308A (en) * 2018-11-14 2019-03-19 吉林大学 The medical image synthesis and classification method for generating confrontation network are differentiated based on condition more
CN109492582A (en) * 2018-11-09 2019-03-19 杭州安恒信息技术股份有限公司 A kind of image recognition attack method based on algorithm confrontation sexual assault
CN109508647A (en) * 2018-10-22 2019-03-22 北京理工大学 A kind of spectra database extended method based on generation confrontation network
CN109685068A (en) * 2018-12-27 2019-04-26 上海七牛信息技术有限公司 A kind of image processing method and system based on generation confrontation neural network
CN109800811A (en) * 2019-01-24 2019-05-24 吉林大学 A kind of small sample image-recognizing method based on deep learning
CN109800730A (en) * 2019-01-30 2019-05-24 北京字节跳动网络技术有限公司 The method and apparatus for generating model for generating head portrait
CN109816032A (en) * 2019-01-30 2019-05-28 中科人工智能创新技术研究院(青岛)有限公司 Zero sample classification method and apparatus of unbiased mapping based on production confrontation network
CN109816614A (en) * 2019-02-28 2019-05-28 乐山知行智能科技有限公司 Synthetic method, device and the storage medium of image
CN109840908A (en) * 2019-01-31 2019-06-04 浙江工业大学 A kind of metal shaft defect image generation method generating network based on confrontation
CN109840561A (en) * 2019-01-25 2019-06-04 湘潭大学 A kind of rubbish image automatic generation method can be used for garbage classification
CN109871888A (en) * 2019-01-30 2019-06-11 中国地质大学(武汉) A method and system for image generation based on capsule network
CN109903242A (en) * 2019-02-01 2019-06-18 深兰科技(上海)有限公司 A kind of image generating method and device
WO2019127231A1 (en) * 2017-12-28 2019-07-04 Intel Corporation Training data generators and methods for machine learning
CN109978985A (en) * 2017-12-28 2019-07-05 同方威视科技江苏有限公司 Data processing method and device, storage medium, electronic equipment
CN110070124A (en) * 2019-04-15 2019-07-30 广州小鹏汽车科技有限公司 A kind of image amplification method and system based on production confrontation network
CN110163829A (en) * 2019-04-19 2019-08-23 北京沃东天骏信息技术有限公司 Image generating method, device and computer readable storage medium
CN110189351A (en) * 2019-04-16 2019-08-30 浙江大学城市学院 A scratch image data augmentation method based on generative adversarial network
CN110197514A (en) * 2019-06-13 2019-09-03 南京农业大学 A kind of mushroom phenotype image generating method based on production confrontation network
CN110351536A (en) * 2019-08-20 2019-10-18 深圳江行联加智能科技有限公司 A kind of substation abnormality detection system, method and device
CN110456355A (en) * 2019-08-19 2019-11-15 河南大学 A radar echo extrapolation method based on long short-term memory and generative adversarial network
CN110458185A (en) * 2019-06-26 2019-11-15 平安科技(深圳)有限公司 Image-recognizing method and device, storage medium, computer equipment
CN110472528A (en) * 2019-07-29 2019-11-19 江苏必得科技股份有限公司 A kind of metro environment target training set creation method and system
CN110619347A (en) * 2019-07-31 2019-12-27 广东工业大学 Image generation method based on machine learning and method thereof
CN110675353A (en) * 2019-08-31 2020-01-10 电子科技大学 Selective segmentation image synthesis method based on conditional generation countermeasure network
CN110969606A (en) * 2019-11-29 2020-04-07 华中科技大学 A kind of texture surface defect detection method and system
CN111242216A (en) * 2020-01-13 2020-06-05 北京工业大学 Image generation method based on conditional generative adversarial convolutional neural network
CN111753919A (en) * 2020-06-30 2020-10-09 江南大学 A plagiarism detection method for image design works based on adversarial network
US10891524B2 (en) 2017-07-06 2021-01-12 Nokia Technologies Oy Method and an apparatus for evaluating generative machine learning model
CN113627576A (en) * 2021-10-08 2021-11-09 平安科技(深圳)有限公司 Code scanning information detection method, device, equipment and storage medium
CN114022368A (en) * 2021-10-08 2022-02-08 郑州大学 Pavement disease data enhancement method based on generative adversarial network
CN114445785A (en) * 2022-04-11 2022-05-06 广东省农业科学院植物保护研究所 Internet of things-based litchi insect pest monitoring and early warning method and system and storage medium
CN115758561A (en) * 2022-10-26 2023-03-07 中国航空工业集团公司西安航空计算技术研究所 A method for generating aircraft flight simulation parameter data
US11599751B2 (en) 2017-12-28 2023-03-07 Intel Corporation Methods and apparatus to simulate sensor data

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103886096A (en) * 2014-04-03 2014-06-25 江苏物联网研究发展中心 Remote insect pest identification method based on pictures
CN104361363A (en) * 2014-11-25 2015-02-18 中国科学院自动化研究所 Deep deconvolution feature learning network, generating method thereof and image classifying method
CN106127702A (en) * 2016-06-17 2016-11-16 兰州理工大学 An Image Dehazing Algorithm Based on Deep Learning
CN106296692A (en) * 2016-08-11 2017-01-04 深圳市未来媒体技术研究院 Image significance detection method based on antagonism network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103886096A (en) * 2014-04-03 2014-06-25 江苏物联网研究发展中心 Remote insect pest identification method based on pictures
CN104361363A (en) * 2014-11-25 2015-02-18 中国科学院自动化研究所 Deep deconvolution feature learning network, generating method thereof and image classifying method
CN106127702A (en) * 2016-06-17 2016-11-16 兰州理工大学 An Image Dehazing Algorithm Based on Deep Learning
CN106296692A (en) * 2016-08-11 2017-01-04 深圳市未来媒体技术研究院 Image significance detection method based on antagonism network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALEC RADFORD ET AL: "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", 《HTTPS://ARXIV.ORG/ABS/1511.06434》 *
IAN J.GOODFELLOW ET AL: "Generative Adversarial Nets", 《28TH CONFERENCE ON NEURAL INFORMATION PROCESSING SYSTEMS》 *

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10891524B2 (en) 2017-07-06 2021-01-12 Nokia Technologies Oy Method and an apparatus for evaluating generative machine learning model
CN107563995A (en) * 2017-08-14 2018-01-09 华南理工大学 A kind of confrontation network method of more arbiter error-duration models
CN107563510A (en) * 2017-08-14 2018-01-09 华南理工大学 A kind of WGAN model methods based on depth convolutional neural networks
CN107590532A (en) * 2017-08-14 2018-01-16 华南理工大学 A kind of hyper parameter dynamic adjusting method based on WGAN
CN107609481A (en) * 2017-08-14 2018-01-19 百度在线网络技术(北京)有限公司 The method, apparatus and computer-readable storage medium of training data are generated for recognition of face
CN107590532B (en) * 2017-08-14 2020-09-22 华南理工大学 WGAN-based hyper-parameter dynamic adjustment method
CN107609481B (en) * 2017-08-14 2020-11-20 百度在线网络技术(北京)有限公司 Method, apparatus and computer storage medium for generating training data for face recognition
CN107730458A (en) * 2017-09-05 2018-02-23 北京飞搜科技有限公司 A kind of fuzzy facial reconstruction method and system based on production confrontation network
CN107563389A (en) * 2017-09-11 2018-01-09 合肥工业大学 A kind of corps diseases recognition methods based on deep learning
CN107563355A (en) * 2017-09-28 2018-01-09 哈尔滨工程大学 Hyperspectral abnormity detection method based on generation confrontation network
CN107563355B (en) * 2017-09-28 2021-04-02 哈尔滨工程大学 A Generative Adversarial Network-Based Hyperspectral Anomaly Detection Method
CN108009628A (en) * 2017-10-30 2018-05-08 杭州电子科技大学 A kind of method for detecting abnormality based on generation confrontation network
CN107862270A (en) * 2017-10-31 2018-03-30 深圳云天励飞技术有限公司 Face classification device training method, method for detecting human face and device, electronic equipment
CN107943784A (en) * 2017-11-02 2018-04-20 南华大学 Relation extraction method based on generation confrontation network
CN107943784B (en) * 2017-11-02 2020-12-29 南华大学 Generative Adversarial Network-Based Relation Extraction Method
CN107767384B (en) * 2017-11-03 2021-12-03 电子科技大学 Image semantic segmentation method based on countermeasure training
CN107844770A (en) * 2017-11-03 2018-03-27 东北大学 A kind of electric melting magnesium furnace unusual service condition automatic recognition system based on video
CN107767384A (en) * 2017-11-03 2018-03-06 电子科技大学 A kind of image, semantic dividing method based on dual training
CN107944358A (en) * 2017-11-14 2018-04-20 华南理工大学 A kind of human face generating method based on depth convolution confrontation network model
CN107944546A (en) * 2017-11-14 2018-04-20 华南理工大学 It is a kind of based on be originally generated confrontation network model residual error network method
CN107886169A (en) * 2017-11-14 2018-04-06 华南理工大学 A kind of multiple dimensioned convolution kernel method that confrontation network model is generated based on text image
CN108021979A (en) * 2017-11-14 2018-05-11 华南理工大学 It is a kind of based on be originally generated confrontation network model feature recalibration convolution method
CN107862377A (en) * 2017-11-14 2018-03-30 华南理工大学 A kind of packet convolution method that confrontation network model is generated based on text image
TWI694341B (en) * 2017-11-20 2020-05-21 香港商阿里巴巴集團服務有限公司 Data sample label processing method, device and computer equipment
CN108038821A (en) * 2017-11-20 2018-05-15 河海大学 A kind of image Style Transfer method based on production confrontation network
US11741392B2 (en) 2017-11-20 2023-08-29 Advanced New Technologies Co., Ltd. Data sample label processing method and apparatus
CN108021931A (en) * 2017-11-20 2018-05-11 阿里巴巴集团控股有限公司 A kind of data sample label processing method and device
WO2019095782A1 (en) * 2017-11-20 2019-05-23 阿里巴巴集团控股有限公司 Data sample label processing method and apparatus
CN107945133A (en) * 2017-11-30 2018-04-20 北京小米移动软件有限公司 Image processing method and device
CN107945133B (en) * 2017-11-30 2022-08-05 北京小米移动软件有限公司 Image processing method and device
CN108205659A (en) * 2017-11-30 2018-06-26 深圳市深网视界科技有限公司 Face occluder removes and its method, equipment and the medium of model construction
CN108875511A (en) * 2017-12-01 2018-11-23 北京迈格威科技有限公司 Method, apparatus, system and the computer storage medium that image generates
CN108875511B (en) * 2017-12-01 2022-06-21 北京迈格威科技有限公司 Image generation method, device, system and computer storage medium
CN108053454B (en) * 2017-12-04 2020-05-19 华中科技大学 A method for generating graph-structured data based on deep convolutional generative adversarial networks
CN108053454A (en) * 2017-12-04 2018-05-18 华中科技大学 A kind of graph structure data creation method that confrontation network is generated based on depth convolution
US11599751B2 (en) 2017-12-28 2023-03-07 Intel Corporation Methods and apparatus to simulate sensor data
WO2019127231A1 (en) * 2017-12-28 2019-07-04 Intel Corporation Training data generators and methods for machine learning
CN109978985B (en) * 2017-12-28 2023-11-07 同方威视科技江苏有限公司 Data processing method and device, storage medium and electronic equipment
CN109978985A (en) * 2017-12-28 2019-07-05 同方威视科技江苏有限公司 Data processing method and device, storage medium, electronic equipment
CN108197700A (en) * 2018-01-12 2018-06-22 广州视声智能科技有限公司 A kind of production confrontation network modeling method and device
CN108090521A (en) * 2018-01-12 2018-05-29 广州视声智能科技有限公司 A kind of image interfusion method and arbiter of production confrontation network model
CN108090521B (en) * 2018-01-12 2022-04-08 广州视声智能科技股份有限公司 Image fusion method and discriminator of generative confrontation network model
CN108229130A (en) * 2018-01-30 2018-06-29 中国银联股份有限公司 A kind of verification method and device
CN108229130B (en) * 2018-01-30 2021-04-16 中国银联股份有限公司 A verification method and device
CN108470196A (en) * 2018-02-01 2018-08-31 华南理工大学 A method of handwritten numeral is generated based on depth convolution confrontation network model
CN108399625A (en) * 2018-02-28 2018-08-14 电子科技大学 A kind of SAR image orientation generation method generating confrontation network based on depth convolution
CN108399625B (en) * 2018-02-28 2020-06-30 电子科技大学 A SAR Image Orientation Generation Method Based on Deep Convolutional Generative Adversarial Networks
CN108305239B (en) * 2018-03-06 2020-08-11 陕西师范大学 Bridge crack image repairing method based on generation type countermeasure network
CN108460760A (en) * 2018-03-06 2018-08-28 陕西师范大学 A kind of Bridge Crack image discriminating restorative procedure fighting network based on production
CN108305239A (en) * 2018-03-06 2018-07-20 陕西师范大学 A kind of restorative procedure for the Bridge Crack image fighting network based on production
CN108460760B (en) * 2018-03-06 2020-08-25 陕西师范大学 A method for discriminative repair of bridge crack images based on generative adversarial network
CN108596017A (en) * 2018-03-06 2018-09-28 深圳市农博创新科技有限公司 A kind of method and device based on picture recognition diseases of garden stuff
CN108491874A (en) * 2018-03-19 2018-09-04 天津大学 A kind of image list sorting technique for fighting network based on production
CN108491874B (en) * 2018-03-19 2021-10-12 天津大学 Image list classification method based on generation type countermeasure network
CN108573222B (en) * 2018-03-28 2020-07-14 中山大学 Pedestrian image occlusion detection method based on cyclic confrontation generation network
CN108573222A (en) * 2018-03-28 2018-09-25 中山大学 Pedestrian Image Occlusion Detection Method Based on Recurrent Adversarial Generative Network
CN108764054A (en) * 2018-04-27 2018-11-06 厦门大学 The method that machine person writing's calligraphy of network is fought based on production
CN108764054B (en) * 2018-04-27 2021-04-13 厦门大学 Robot calligraphy writing method based on generative confrontation network
CN108765319B (en) * 2018-05-09 2020-08-14 大连理工大学 Image denoising method based on generation countermeasure network
CN108765319A (en) * 2018-05-09 2018-11-06 大连理工大学 A kind of image de-noising method based on generation confrontation network
CN108897769A (en) * 2018-05-29 2018-11-27 武汉大学 Network implementations text classification data set extension method is fought based on production
CN108830209B (en) * 2018-06-08 2021-12-17 西安电子科技大学 Remote sensing image road extraction method based on generation countermeasure network
CN108830209A (en) * 2018-06-08 2018-11-16 西安电子科技大学 Based on the remote sensing images method for extracting roads for generating confrontation network
CN109063756A (en) * 2018-07-20 2018-12-21 天津师范大学 A kind of cloud atlas classification method based on multi-modal production confrontation network
CN109190665B (en) * 2018-07-30 2023-07-04 国网上海市电力公司 Universal image classification method and device based on semi-supervised generation countermeasure network
CN109190665A (en) * 2018-07-30 2019-01-11 国网上海市电力公司 A kind of general image classification method and device based on semi-supervised generation confrontation network
US11449707B2 (en) 2018-08-10 2022-09-20 Baidu Online Network Technology (Beijing) Co., Ltd. Method for processing automobile image data, apparatus, and readable storage medium
CN109190504A (en) * 2018-08-10 2019-01-11 百度在线网络技术(北京)有限公司 Processing method, device and the readable storage medium storing program for executing of automobile image data
CN109214386A (en) * 2018-09-14 2019-01-15 北京京东金融科技控股有限公司 Method and apparatus for generating image recognition model
CN109388565A (en) * 2018-09-27 2019-02-26 西安电子科技大学 Software system performance optimization method based on production confrontation network
CN109388565B (en) * 2018-09-27 2021-08-06 西安电子科技大学 Performance optimization method of software system based on generative adversarial network
CN109460708A (en) * 2018-10-09 2019-03-12 东南大学 A kind of Forest fire image sample generating method based on generation confrontation network
CN109508647A (en) * 2018-10-22 2019-03-22 北京理工大学 A kind of spectra database extended method based on generation confrontation network
CN109492582A (en) * 2018-11-09 2019-03-19 杭州安恒信息技术股份有限公司 A kind of image recognition attack method based on algorithm confrontation sexual assault
CN109492582B (en) * 2018-11-09 2022-02-11 杭州安恒信息技术股份有限公司 Image recognition attack method based on algorithm adversarial attack
CN109493308A (en) * 2018-11-14 2019-03-19 吉林大学 The medical image synthesis and classification method for generating confrontation network are differentiated based on condition more
CN109685068A (en) * 2018-12-27 2019-04-26 上海七牛信息技术有限公司 A kind of image processing method and system based on generation confrontation neural network
CN109685068B (en) * 2018-12-27 2021-02-26 上海七牛信息技术有限公司 Image processing method and system based on generation of antagonistic neural network
CN109800811A (en) * 2019-01-24 2019-05-24 吉林大学 A kind of small sample image-recognizing method based on deep learning
CN109840561A (en) * 2019-01-25 2019-06-04 湘潭大学 A kind of rubbish image automatic generation method can be used for garbage classification
CN109816032B (en) * 2019-01-30 2020-09-11 中科人工智能创新技术研究院(青岛)有限公司 Unbiased mapping zero sample classification method and device based on generative countermeasure network
CN109800730A (en) * 2019-01-30 2019-05-24 北京字节跳动网络技术有限公司 The method and apparatus for generating model for generating head portrait
CN109816032A (en) * 2019-01-30 2019-05-28 中科人工智能创新技术研究院(青岛)有限公司 Zero sample classification method and apparatus of unbiased mapping based on production confrontation network
CN109871888A (en) * 2019-01-30 2019-06-11 中国地质大学(武汉) A method and system for image generation based on capsule network
CN109840908A (en) * 2019-01-31 2019-06-04 浙江工业大学 A kind of metal shaft defect image generation method generating network based on confrontation
CN109903242A (en) * 2019-02-01 2019-06-18 深兰科技(上海)有限公司 A kind of image generating method and device
CN109816614A (en) * 2019-02-28 2019-05-28 乐山知行智能科技有限公司 Synthetic method, device and the storage medium of image
CN110070124A (en) * 2019-04-15 2019-07-30 广州小鹏汽车科技有限公司 A kind of image amplification method and system based on production confrontation network
CN110189351A (en) * 2019-04-16 2019-08-30 浙江大学城市学院 A scratch image data augmentation method based on generative adversarial network
CN110163829A (en) * 2019-04-19 2019-08-23 北京沃东天骏信息技术有限公司 Image generating method, device and computer readable storage medium
CN110197514A (en) * 2019-06-13 2019-09-03 南京农业大学 A kind of mushroom phenotype image generating method based on production confrontation network
CN110458185A (en) * 2019-06-26 2019-11-15 平安科技(深圳)有限公司 Image-recognizing method and device, storage medium, computer equipment
CN110472528A (en) * 2019-07-29 2019-11-19 江苏必得科技股份有限公司 A kind of metro environment target training set creation method and system
CN110619347A (en) * 2019-07-31 2019-12-27 广东工业大学 Image generation method based on machine learning and method thereof
CN110456355A (en) * 2019-08-19 2019-11-15 河南大学 A radar echo extrapolation method based on long short-term memory and generative adversarial network
CN110456355B (en) * 2019-08-19 2021-12-24 河南大学 Radar echo extrapolation method based on long-time and short-time memory and generation countermeasure network
CN110351536A (en) * 2019-08-20 2019-10-18 深圳江行联加智能科技有限公司 A kind of substation abnormality detection system, method and device
CN110675353A (en) * 2019-08-31 2020-01-10 电子科技大学 Selective segmentation image synthesis method based on conditional generation countermeasure network
CN110969606B (en) * 2019-11-29 2023-08-08 华中科技大学 Texture surface defect detection method and system
CN110969606A (en) * 2019-11-29 2020-04-07 华中科技大学 A kind of texture surface defect detection method and system
CN111242216A (en) * 2020-01-13 2020-06-05 北京工业大学 Image generation method based on conditional generative adversarial convolutional neural network
CN111753919A (en) * 2020-06-30 2020-10-09 江南大学 A plagiarism detection method for image design works based on adversarial network
CN113627576A (en) * 2021-10-08 2021-11-09 平安科技(深圳)有限公司 Code scanning information detection method, device, equipment and storage medium
CN114022368A (en) * 2021-10-08 2022-02-08 郑州大学 Pavement disease data enhancement method based on generative adversarial network
CN113627576B (en) * 2021-10-08 2022-01-18 平安科技(深圳)有限公司 Code scanning information detection method, device, equipment and storage medium
CN114445785A (en) * 2022-04-11 2022-05-06 广东省农业科学院植物保护研究所 Internet of things-based litchi insect pest monitoring and early warning method and system and storage medium
CN115758561A (en) * 2022-10-26 2023-03-07 中国航空工业集团公司西安航空计算技术研究所 A method for generating aircraft flight simulation parameter data

Similar Documents

Publication Publication Date Title
CN107016406A (en) The pest and disease damage image generating method of network is resisted based on production
CN111738908B (en) Scene conversion method and system for generating countermeasure network by combining instance segmentation and circulation
CN108961272B (en) Method for generating skin disease image based on deep convolution countermeasure generation network
Fu et al. Fast crowd density estimation with convolutional neural networks
CN110135386B (en) Human body action recognition method and system based on deep learning
Adedoja et al. Intelligent Mobile Plant Disease Diagnostic System Using NASNet-Mobile Deep Learning.
CN109255364A (en) A kind of scene recognition method generating confrontation network based on depth convolution
CN114463675B (en) Underwater fish group activity intensity identification method and device
CN108596069A (en) Neonatal pain expression recognition method and system based on depth 3D residual error networks
CN109344759A (en) A Relative Recognition Method Based on Angle Loss Neural Network
CN108520206A (en) A kind of fungi microscopic image identification method based on full convolutional neural networks
CN104217214A (en) Configurable convolutional neural network based red green blue-distance (RGB-D) figure behavior identification method
CN108875624A (en) Method for detecting human face based on the multiple dimensioned dense Connection Neural Network of cascade
CN113869098B (en) Plant disease identification method, device, electronic device and storage medium
CN112861718A (en) Lightweight feature fusion crowd counting method and system
CN104091181A (en) Injurious insect image automatic recognition method and system based on deep restricted Boltzmann machine
CN111353583B (en) Deep learning network based on group convolution characteristic topological space and training method thereof
CN106204597B (en) A kind of video object dividing method based on from the step Weakly supervised study of formula
CN113378706B (en) Drawing system for assisting children in observing plants and learning biological diversity
CN117437691A (en) Real-time multi-person abnormal behavior identification method and system based on lightweight network
CN104077580A (en) Pest image automatic recognition method based on high-reliability network
CN112131403A (en) Knowledge graph representation learning method in dynamic environment
CN109325513A (en) An image classification network training method based on massive single-class single image
CN108564166A (en) Based on the semi-supervised feature learning method of the convolutional neural networks with symmetrical parallel link
CN110516599A (en) Group Behavior Recognition Model and Its Training Method Based on Progressive Relational Learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170804

RJ01 Rejection of invention patent application after publication