CN106991285A - A kind of short-term wind speed multistep forecasting method and device - Google Patents
A kind of short-term wind speed multistep forecasting method and device Download PDFInfo
- Publication number
- CN106991285A CN106991285A CN201710213732.2A CN201710213732A CN106991285A CN 106991285 A CN106991285 A CN 106991285A CN 201710213732 A CN201710213732 A CN 201710213732A CN 106991285 A CN106991285 A CN 106991285A
- Authority
- CN
- China
- Prior art keywords
- model
- prediction
- wind speed
- subsequence
- stationary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种短期风速多步预测方法及装置,包括:利用启发式分割算法将原始风速时间序列分割成多个平稳子序列;利用自适应可变模式分解技术将每个平稳子序列分解为一系列有限带宽的子模式;通过基于COOK距离的遗忘因子的鲁棒在线极限学习机,对每个子模式建立基本预测模型,采用带有自适应变异机制的纵横交叉优化算法对预测模型进行参数优化;利用在线集成学习方法和有序聚合技术,通过对多个基本预测模型加权聚合获取最终预测值;可见,通过基于COOK距离的遗忘因子的鲁棒在线极限学习机根据风速的变化更新模型,使用有序聚合进行在线集成学习技术OEOA对多个基本预测模型加权聚合获取最终预测值,使多步预测精度有较大的提高。
The invention discloses a short-term wind speed multi-step prediction method and device, comprising: using a heuristic segmentation algorithm to divide the original wind speed time series into a plurality of stable subsequences; using adaptive variable mode decomposition technology to decompose each stable subsequence It is a series of sub-patterns with limited bandwidth; through the robust online extreme learning machine based on the forgetting factor of COOK distance, a basic prediction model is established for each sub-pattern, and the parameters of the prediction model are adjusted by using a cross-cut optimization algorithm with an adaptive mutation mechanism Optimization; using the online ensemble learning method and ordered aggregation technology, the final prediction value is obtained by weighted aggregation of multiple basic prediction models; it can be seen that the model is updated according to the change of wind speed through the robust online extreme learning machine based on the forgetting factor of COOK distance, Using ordered aggregation for online integrated learning technology OEOA weighted aggregation of multiple basic prediction models to obtain the final prediction value, which greatly improves the accuracy of multi-step prediction.
Description
技术领域technical field
本发明涉及风速预测技术领域,更具体地说,涉及一种短期风速多步预测方法及装置。The present invention relates to the technical field of wind speed prediction, and more specifically, relates to a short-term wind speed multi-step prediction method and device.
背景技术Background technique
目前,短期风速预测对于风电场管理和电力系统运行具有重要的意义,但是风速的随机性、波动性和间歇性使风速预测的难度增加。近年来在风速预测领域提出的方法往往结构复杂且计算量大,且大部分研究都是离线模式,没法实时的追踪风速的变化。At present, short-term wind speed prediction is of great significance for wind farm management and power system operation, but the randomness, fluctuation and intermittency of wind speed make wind speed prediction more difficult. The methods proposed in the field of wind speed prediction in recent years are often complex in structure and computationally intensive, and most of the researches are in offline mode, which cannot track the change of wind speed in real time.
因此,如何实时追踪风速的变化,是本领域技术人员需要解决的问题。Therefore, how to track the change of wind speed in real time is a problem to be solved by those skilled in the art.
发明内容Contents of the invention
本发明的目的在于提供一种短期风速多步预测方法及装置,以实现实时追踪风速的变化,提高风速预测精度。The purpose of the present invention is to provide a short-term wind speed multi-step prediction method and device to realize real-time tracking of wind speed changes and improve wind speed prediction accuracy.
为实现上述目的,本发明实施例提供了如下技术方案:In order to achieve the above object, the embodiment of the present invention provides the following technical solutions:
一种短期风速多步预测方法,包括:A short-term wind speed multi-step forecasting method, comprising:
利用启发式分割算法BGA将原始风速时间序列分割成多个平稳子序列;Using the heuristic segmentation algorithm BGA to segment the original wind speed time series into multiple stationary subsequences;
利用自适应可变模式分解技术SAVMD将每个平稳子序列分解为一系列有限带宽的子模式;Use the adaptive variable mode decomposition technique SAVMD to decompose each stationary subsequence into a series of submodes with limited bandwidth;
通过基于COOK距离的遗忘因子的鲁棒在线极限学习机λCDFFOS-ORELM,对每个系列子模式建立基本预测模型,并采用带有自适应变异机制的纵横交叉优化算法CSO-SAM对预测模型进行参数优化;Through the robust online extreme learning machine λ CDFF OS-ORELM based on the forgetting factor of COOK distance, a basic prediction model is established for each series of sub-patterns, and the cross-cutting optimization algorithm CSO-SAM with an adaptive mutation mechanism is used to predict the model Carry out parameter optimization;
利用在线集成学习和有序聚合技术OEOA,通过对多个λCDFFOS-ORELM基本预测模型加权聚合获取最终预测值。Using online ensemble learning and ordered aggregation technology OEOA, the final prediction value is obtained by weighted aggregation of multiple λ CDFF OS-ORELM basic prediction models.
其中,所述利用启发式分割算法BGA将原始风速时间序列分割成多个平稳子序列,包括:Wherein, the original wind speed time series is divided into multiple stationary subsequences by using the heuristic segmentation algorithm BGA, including:
确定所述原始风速时间序列中除起点和终点之外其他目标点的左平均值和右平均值,根据每个目标点的左平均值和右平均值确定每个目标点的统计值;Determine the left average value and right average value of other target points in the original wind speed time series except the starting point and the end point, and determine the statistical value of each target point according to the left average value and right average value of each target point;
根据每个目标点的统计值计算每个目标点的统计显著性,将统计显著性大于预定阈值的目标点作为分割点,并利用所述分割点,对所述原始风速时间序列进行分割,形成多个平稳子序列。Calculate the statistical significance of each target point according to the statistical value of each target point, use the target point whose statistical significance is greater than a predetermined threshold as a segmentation point, and use the segmentation point to segment the original wind speed time series to form Multiple stationary subsequences.
其中,所述利用所述分割点,对所述原始风速时间序列进行分割之后,还包括:Wherein, after using the segmentation point to segment the original wind speed time series, it also includes:
判断分割后的左右两部分序列是否均大于最小分割长度;若否,则取消对所述原始风速时间序列的分割。Judging whether the divided left and right parts of the sequence are both greater than the minimum segmentation length; if not, cancel the segmentation of the original wind speed time series.
其中,所述利用自适应可变模式分解技术SAVMD将每个平稳子序列分解为一系列有限带宽的子模式,包括:Wherein, the adaptive variable mode decomposition technique SAVMD is used to decompose each stationary subsequence into a series of limited bandwidth submodes, including:
利用经验模态分解技术EMD确定对目标平稳子序列进行分解的模态数K,并通过可变模式分解技术VDM将所述目标平稳子序列分解为K个模态;Utilize the empirical mode decomposition technique EMD to determine the modal number K that decomposes the target stationary subsequence, and decompose the target stationary subsequence into K modes by the variable mode decomposition technique VDM;
通过消除趋势波动分析法DFA确定每个模态的波动参数,并根据每个模态的波动参数对所述目标平稳子序列进行去噪重构。The fluctuation parameters of each mode are determined by the detrending fluctuation analysis method DFA, and the target stationary subsequence is denoised and reconstructed according to the fluctuation parameters of each mode.
其中,所述通过基于COOK距离的遗忘因子的鲁棒在线极限学习机λCDFFOS-ORELM,对每个系列子模式建立基本预测模型,并采用带有自适应变异机制的纵横交叉优化算法CSO-SAM对预测模型进行参数优化,包括:Among them, through the robust online extreme learning machine λ CDFF OS-ORELM based on the forgetting factor of COOK distance, a basic prediction model is established for each series of sub-patterns, and a crossover optimization algorithm CSO- SAM optimizes the parameters of the prediction model, including:
利用初始训练数据集创建初始预测模型,通过10折交叉验证法确定始预测模型隐含层节点个数,并计算模型参数;所述模型参数包括隐含层输出矩阵及初始输出权值;Utilize the initial training data set to create an initial prediction model, determine the number of hidden layer nodes of the initial prediction model by a 10-fold cross-validation method, and calculate model parameters; the model parameters include a hidden layer output matrix and initial output weights;
计算COOK距离,根据所述COOK距离确定遗忘因子λ,通过所述遗忘因子λ更新模型参数,并通过带有自适应变异机制的纵横交叉优化算法CSO-SAM对模型参数进行优化,得到基本预测模型;所述基本预测模型包括与平稳子序列对应的多个预测模型。Calculate the COOK distance, determine the forgetting factor λ according to the COOK distance, update the model parameters through the forgetting factor λ, and optimize the model parameters through the crossover optimization algorithm CSO-SAM with an adaptive mutation mechanism to obtain the basic prediction model ; The basic forecasting model includes a plurality of forecasting models corresponding to the stationary subsequence.
其中,所述利用在线集成学习和有序聚合技术OEOA,通过对多个λCDFFOS-ORELM基本预测模型加权聚合获取最终预测值,包括:Wherein, the online integrated learning and ordered aggregation technology OEOA is used to obtain the final predicted value through weighted aggregation of multiple λ CDFF OS-ORELM basic prediction models, including:
对每个平稳子序列对应的多个预测模型进行均方根误差更新,并根据更新结果选择预定数量个模型作为最优模型集合;Update the root mean square error of multiple prediction models corresponding to each stationary subsequence, and select a predetermined number of models as the optimal model set according to the update results;
对所述最优模型集合中的每个预测模型分配权值,计算每个平稳子序列的预测值,并根据每个平稳子序列的预测值确定最终预测值。Assign weights to each prediction model in the optimal model set, calculate the prediction value of each stationary subsequence, and determine the final prediction value according to the prediction value of each stationary subsequence.
其中,所述根据每个平稳子序列的预测值确定最终预测值之后,包括:Wherein, after determining the final predicted value according to the predicted value of each stationary subsequence, it includes:
当获取到下一时刻的风速时间序列后,根据本时刻的真实值更新所述初始训练数据集,得到更新后的训练数据集;After obtaining the wind speed time series at the next moment, update the initial training data set according to the real value at this moment to obtain an updated training data set;
根据本时刻的真实值,计算所述最优模型集合中的每个预测模型的预测误差,若存在预测误差大于误差阈值的预测模型,则通过所述更新后的训练数据集建立训练模型,替换所述最优模型集合中预测误差大于所述误差阈值的预测模型。According to the real value at this moment, calculate the prediction error of each prediction model in the optimal model set, if there is a prediction model with a prediction error greater than the error threshold, then establish a training model through the updated training data set, replace A prediction model with a prediction error greater than the error threshold in the optimal model set.
一种短期风速多步预测装置,包括:A short-term wind speed multi-step forecasting device, comprising:
平稳子序列分割模块,用于利用启发式分割算法BGA将原始风速时间序列分割成多个平稳子序列;The smooth subsequence segmentation module is used for utilizing the heuristic segmentation algorithm BGA to divide the original wind speed time series into a plurality of stationary subsequences;
分解模块,用于利用自适应可变模式分解技术SAVMD将每个平稳子序列分解为一系列有限带宽的子模式;Decomposition module for decomposing each stationary subsequence into a series of limited-bandwidth sub-modes using the adaptive variable mode decomposition technique SAVMD;
预测模型建立模块,用于通过基于COOK距离的遗忘因子的鲁棒在线极限学习机λCDFFOS-ORELM,对每个系列子模式建立基本预测模型,并采用带有自适应变异机制的纵横交叉优化算法CSO-SAM对预测模型进行参数优化;Predictive model building module for building a basic predictive model for each series of sub-patterns by a robust online extreme learning machine λ CDFF OS-ORELM based on the COOK distance-based forgetting factor, and adopting cross-cutting optimization with an adaptive mutation mechanism The algorithm CSO-SAM optimizes the parameters of the prediction model;
预测模块,用于利用在线集成学习和有序聚合技术OEOA,通过对多个λCDFFOS-ORELM基本预测模型加权聚合获取最终预测值。The prediction module is used to obtain the final prediction value through weighted aggregation of multiple λ CDFF OS-ORELM basic prediction models by using online ensemble learning and ordered aggregation technology OEOA.
其中,所述平稳子序列分割模块,包括:Wherein, the stable subsequence segmentation module includes:
统计值确定单元,用于确定所述原始风速时间序列中除起点和终点之外其他目标点的左平均值和右平均值,根据每个目标点的左平均值和右平均值确定每个目标点的统计值;Statistical value determination unit, used to determine the left average value and right average value of other target points in the original wind speed time series except the starting point and the end point, and determine each target according to the left average value and right average value of each target point point statistics;
分割单元,用于根据每个目标点的统计值计算每个目标点的统计显著性,将统计显著性大于预定阈值的目标点作为分割点,并利用所述分割点,对所述原始风速时间序列进行分割,形成多个平稳子序列。The segmentation unit is used to calculate the statistical significance of each target point according to the statistical value of each target point, and use the target point whose statistical significance is greater than a predetermined threshold as a segmentation point, and use the segmentation point to calculate the original wind speed time The sequence is divided into multiple stationary subsequences.
其中,所述预测模型建立模块,包括:Wherein, the predictive model building module includes:
初始预测模型确定单元,用于利用初始训练数据集创建初始预测模型,通过10折交叉验证法确定始预测模型隐含层节点个数,并计算模型参数;所述模型参数包括隐含层输出矩阵及初始输出权值;The initial prediction model determination unit is used to create an initial prediction model by using the initial training data set, determine the number of hidden layer nodes of the initial prediction model by the 10-fold cross-validation method, and calculate the model parameters; the model parameters include the hidden layer output matrix and the initial output weight;
基本预测模型确定单元,用于计算COOK距离,根据所述COOK距离确定遗忘因子λ,通过所述遗忘因子λ更新模型参数,并通带有自适应变异机制的纵横交叉优化算法CSO-SAM对模型参数进行优化,得到基本预测模型;所述基本预测模型包括与平稳子序列对应的多个预测模型。The basic predictive model determination unit is used to calculate the COOK distance, determine the forgetting factor λ according to the COOK distance, update the model parameters through the forgetting factor λ, and use the crossover optimization algorithm CSO-SAM with an adaptive mutation mechanism to model the model The parameters are optimized to obtain a basic forecasting model; the basic forecasting model includes multiple forecasting models corresponding to the stationary subsequences.
通过以上方案可知,本发明实施例提供的一种短期风速多步预测方法,包括:利用启发式分割算法BGA将原始风速时间序列分割成多个平稳子序列;利用自适应可变模式分解技术SAVMD将每个平稳子序列分解为一系列有限带宽的子模式;通过基于COOK距离的遗忘因子的鲁棒在线极限学习机λCDFFOS-ORELM,对每个系列子模式建立基本预测模型,并采用带有自适应变异机制的纵横交叉优化算法CSO-SAM对预测模型进行参数优化;利用在线集成学习和有序聚合技术OEOA,通过对多个λCDFFOS-ORELM基本预测模型加权聚合获取最终预测值。It can be seen from the above scheme that a short-term wind speed multi-step forecasting method provided by the embodiment of the present invention includes: using the heuristic segmentation algorithm BGA to divide the original wind speed time series into multiple stationary subsequences; using the adaptive variable mode decomposition technology SAVMD Decompose each stationary subsequence into a series of limited-bandwidth subpatterns; through the robust online extreme learning machine λ CDFF OS-ORELM based on the forgetting factor of COOK distance, a basic prediction model is established for each series of subpatterns, and a band The crossover optimization algorithm CSO-SAM with an adaptive mutation mechanism optimizes the parameters of the prediction model; the final prediction value is obtained by weighted aggregation of multiple λ CDFF OS-ORELM basic prediction models by using online integrated learning and ordered aggregation technology OEOA.
可见,在本方案中,可通过基于COOK距离的遗忘因子的鲁棒在线极限学习机根据风速的变化来更新模型,并使用有序聚合进行在线集成学习技术OEOA,通过对多个λCDFFOS-ORELM加权聚合获取最终预测值,使多步预测精度有较大的提高;本发明还公开了一种短期风速多步预测装置,同样能实现上述技术效果。It can be seen that in this scheme, the robust online extreme learning machine based on the COOK distance forgetting factor can be used to update the model according to the change of wind speed, and the online ensemble learning technology OEOA is used for orderly aggregation, and multiple λ CDFF OS- The ORELM weighted aggregation obtains the final prediction value, which greatly improves the multi-step prediction accuracy; the invention also discloses a short-term wind speed multi-step prediction device, which can also achieve the above technical effects.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本发明实施例公开的一种短期风速多步预测方法流程示意图;Fig. 1 is a schematic flow chart of a short-term wind speed multi-step prediction method disclosed in an embodiment of the present invention;
图2为本发明实施例公开的去噪流程示意图;FIG. 2 is a schematic diagram of a denoising process disclosed in an embodiment of the present invention;
图3为本发明实施例公开的一种聚义的短期风速多步预测方法流程示意图;Fig. 3 is a schematic flow chart of a short-term wind speed multi-step forecasting method disclosed in an embodiment of the present invention;
图4为本发明实施例公开的一风速时间序列示意图;Fig. 4 is a schematic diagram of a wind speed time series disclosed by an embodiment of the present invention;
图5为本发明实施例公开的另一风速时间序列示意图;Fig. 5 is a schematic diagram of another wind speed time series disclosed by the embodiment of the present invention;
图6为本发明实施例公开的另一风速时间序列示意图;FIG. 6 is a schematic diagram of another wind speed time series disclosed in an embodiment of the present invention;
图7为本发明实施例公开的另一风速时间序列示意图;Fig. 7 is a schematic diagram of another wind speed time series disclosed by the embodiment of the present invention;
图8为本发明实施例公开的一预测结果示意图;FIG. 8 is a schematic diagram of a prediction result disclosed in an embodiment of the present invention;
图9为本发明实施例公开的另一预测结果示意图;Fig. 9 is a schematic diagram of another prediction result disclosed in the embodiment of the present invention;
图10为本发明实施例公开的另一预测结果示意图Figure 10 is a schematic diagram of another prediction result disclosed in the embodiment of the present invention
图11为本发明实施例公开的一种短期风速多步预测装置结构示意图。Fig. 11 is a schematic structural diagram of a short-term wind speed multi-step forecasting device disclosed in an embodiment of the present invention.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
本发明实施例公开了一种短期风速多步预测方法及装置,以实现实时追踪风速的变化,提高风速预测精度。The embodiment of the invention discloses a short-term wind speed multi-step prediction method and device, so as to realize real-time tracking of wind speed changes and improve wind speed prediction accuracy.
参见图1,本发明实施例提供的一种短期风速多步预测方法,包括:Referring to Fig. 1, a kind of short-term wind speed multi-step prediction method that the embodiment of the present invention provides, comprises:
S101、利用启发式分割算法BGA将原始风速时间序列分割成多个平稳子序列;S101. Using the heuristic segmentation algorithm BGA to segment the original wind speed time series into multiple stationary subsequences;
其中,所述利用启发式分割算法BGA将原始风速时间序列分割成多个平稳子序列,包括:Wherein, the original wind speed time series is divided into multiple stationary subsequences by using the heuristic segmentation algorithm BGA, including:
确定所述原始风速时间序列中除起点和终点之外其他目标点的左平均值和右平均值,根据每个目标点的左平均值和右平均值确定每个目标点的统计值;Determine the left average value and right average value of other target points in the original wind speed time series except the starting point and the end point, and determine the statistical value of each target point according to the left average value and right average value of each target point;
根据每个目标点的统计值计算每个目标点的统计显著性,将统计显著性大于预定阈值的目标点作为分割点,并利用所述分割点,对所述原始风速时间序列进行分割,形成多个平稳子序列。Calculate the statistical significance of each target point according to the statistical value of each target point, use the target point whose statistical significance is greater than a predetermined threshold as a segmentation point, and use the segmentation point to segment the original wind speed time series to form Multiple stationary subsequences.
其中,所述利用所述分割点,对所述原始风速时间序列进行分割之后,还包括:判断分割后的左右两部分序列是否均大于最小分割长度;若否,则取消对所述原始风速时间序列的分割。Wherein, after using the segmentation point to segment the original wind speed time series, it also includes: judging whether the divided left and right parts of the sequence are both greater than the minimum segmentation length; if not, canceling the time series of the original wind speed sequence segmentation.
具体的,在本实施例中利用BGA(Bernaola Galvan algorithm)算法将风速时间序列分割成若干平稳子序列的具体步骤为:Specifically, in this embodiment, the specific steps of using the BGA (Bernaola Galvan algorithm) algorithm to divide the wind speed time series into several stationary subsequences are:
11)对于一个含有N个点的风速时间序列XN={x1,...,xN},除起始点和终点两个点外,从左到右分别计算剩余点左边部分和右边部分的平均值ul和ur,用t检验的统计值ti来量化表示i点左右两部分均值的差异,计算如式(1):11) For a wind speed time series X N ={x 1 ,...,x N } containing N points, except for the start point and the end point, calculate the left part and right part of the remaining points from left to right The average value u l and u r of the t test is used to quantify the difference between the two parts of the mean value of the left and right parts of point i with the statistical value t i of the t test, calculated as formula (1):
ti=|(μl-μr)/sD|...................................................(1)t i =|(μ l -μ r )/s D |.......................... ................(1)
其中,合并方差sl和sr分别为计算点左边时间序列和右边时间序列的标准差,其中Nl和Nr是计算点左右两边的时间序列个数。Among them, the pooled variance s l and s r are the standard deviations of the time series on the left and right of the calculation point, respectively, where N l and N r are the number of time series on the left and right sides of the calculation point.
12)计算t中的最大值tmax的统计显著性P(tmax),如式(2)所示:12) Calculate the statistical significance P(t max ) of the maximum value t max in t, as shown in formula (2):
P(tmax)=Prob(t≤tmax)...........................................(2)P(t max )=Prob(t≤t max ).......................... ......(2)
其中,P(tmax)表示在随机过程中取到的t值小于tmax的概率。Among them, P(t max ) represents the probability that the t value obtained in the random process is less than t max .
13)如果这个显著性P(tmax)大于所选定的临界值,则于该点将风速时间序列切分为两段均值有明显差异的子序列,否则不分割;在本实施例中,P(tmax)可取95%。13) If the significance P(t max ) is greater than the selected critical value, then at this point the wind speed time series is divided into two subsequences with significant differences in mean values, otherwise no division; in this embodiment, P(t max ) can take 95%.
14)为确保统计的有效性,检查分割后形成的左右两部分子序列的长度是否小于最小分割长度(l0),若其长度小于l0,则不再对其进行分割,否则按照上述方法对P(τ)≥P0的子序列继续进行分割,P(τ)可以通过蒙特卡洛模拟获取。14) In order to ensure the validity of the statistics, check whether the length of the left and right subsequences formed after segmentation is less than the minimum segmentation length (l 0 ), if the length is less than l 0 , no longer segment it, otherwise follow the above method Continue to divide the subsequence of P(τ)≥P 0 , P(τ) can be obtained by Monte Carlo simulation.
分割完成后,非平稳的风速时间序列被切分成多个有着不同均值的平稳子序列,使得相邻部分的均值差实现最大化,各个子序列的平稳性保证了更高的预测的精度。After the segmentation is completed, the non-stationary wind speed time series is divided into multiple stationary subsequences with different mean values, so that the mean value difference of adjacent parts can be maximized, and the stationarity of each subsequence ensures higher prediction accuracy.
S102、利用自适应可变模式分解技术SAVMD将每个平稳子序列分解为一系列有限带宽的子模式;S102. Decompose each stationary subsequence into a series of bandwidth-limited subpatterns by using the adaptive variable pattern decomposition technique SAVMD;
其中,所述利用自适应可变模式分解技术SAVMD将每个平稳子序列分解为一系列有限带宽的子模式,包括:Wherein, the adaptive variable mode decomposition technique SAVMD is used to decompose each stationary subsequence into a series of limited bandwidth submodes, including:
利用经验模态分解技术EMD确定对目标平稳子序列进行分解的模态数K,并通过可变模式分解技术VDM将所述目标平稳子序列分解为K个模态;Utilize the empirical mode decomposition technique EMD to determine the modal number K that decomposes the target stationary subsequence, and decompose the target stationary subsequence into K modes by the variable mode decomposition technique VDM;
通过消除趋势波动分析法DFA确定每个模态的波动参数,并根据每个模态的波动参数对所述目标平稳子序列进行去噪重构。The fluctuation parameters of each mode are determined by the detrending fluctuation analysis method DFA, and the target stationary subsequence is denoised and reconstructed according to the fluctuation parameters of each mode.
具体的,在本实施例中,利用SAVMD(self-adaptive variational modedecomposition)技术将风速子序列分解为一系列有限带宽的子模式的具体步骤为:Specifically, in this embodiment, the specific steps of using SAVMD (self-adaptive variational modedecomposition) technology to decompose the wind speed subsequence into a series of submodes with limited bandwidth are:
21)利用经验模态分解(emperical mode decomposition,EMD)确定分解的模态数K,再通过VMD预设尺度对风速时间子序列信号x(t)进行分解,将子序列分解为K个中心频率为wk的子信号,由此得到K个模态函数uk,可变约束条件为:21) Use empirical mode decomposition (EMD) to determine the decomposed mode number K, and then decompose the wind speed time subsequence signal x(t) through VMD preset scale, and decompose the subsequence into K center frequencies is a sub-signal of w k , thus K modal functions u k are obtained, and the variable constraints are:
式中,{uk}={u1,u2,......,uk}为各模态函数;{wk}={w1,w2,......,wk}为各中心频率;为所有模态函数之和;δ为狄拉克分布,“*”表示卷积。In the formula, {u k }={u 1 ,u 2 ,...,u k } are the modal functions; {w k }={w 1 ,w 2 ,..., w k } is each center frequency; is the sum of all modal functions; δ is the Dirac distribution, and "*" means convolution.
22)式子(3)中的最小化问题,求解拉格朗日算子如下式:22) For the minimization problem in formula (3), the Lagrangian operator is solved as follows:
式中,a是数据保真度的平衡参数,通过交替方向算子法(alternate directionmethod of multipliers,ADMN)求解上式,得到的各参数最优值的迭代格式如下:In the formula, a is the balance parameter of data fidelity, and the above formula is solved by the alternate direction method of multipliers (ADMN), and the iterative format of the optimal value of each parameter obtained is as follows:
其中是uk(t)的复频域形式,n是迭代次数,ifft(·)表示傅里叶逆变换,代表求解信号的实部。in is the complex frequency domain form of u k (t), n is the number of iterations, ifft(·) represents the inverse Fourier transform, Represents the real part of the solution signal.
23)通过消除趋势波动分析法(detrended fluctuation analysis,DFA)的波动参数hurt来检测含有噪声或者叠加有多项式趋势信号的风速时间子模式,hurt指数计算方法如下:23) By eliminating the fluctuation parameter h urt of the detrended fluctuation analysis (DFA) to detect the wind speed time sub-mode that contains noise or is superimposed with a polynomial trend signal, the h urt index is calculated as follows:
对于有N个点的风速时间序列{x(i),i=1,2,...,N},计算其累计离差:For a wind speed time series {x(i),i=1,2,...,N} with N points, calculate its cumulative dispersion:
对y(k)分别进行等长分割,以长度Nn=N/n将序列分割成n个不重叠的区间,在每个区间用l次多项式进行拟合,本文取l=2,即得到Separately divide y(k) into equal lengths, divide the sequence into n non-overlapping intervals with length N n =N/n, and use l-degree polynomial to fit each interval. In this paper, l=2, that is,
yn(k)=ank2+bnk+cn...................................(9)y n (k)=a n k 2 +b n k+c n .................. ..(9)
对n个等长度区间求均值并开方,计算得到DFA波动函数如下:Calculate the mean value and square root of n equal-length intervals, and calculate the DFA fluctuation function as follows:
对DFA波动函数和n取双对数,hurt即为双对数坐标(ln(n),ln(F(n)))中的散点图,用最小二乘法对数据点进行拟合,其中直线部分的斜率即hurt指数,可通过式(11)得到:Take the double logarithm for the DFA fluctuation function and n, h urt is the scatter plot in the double logarithmic coordinates (ln(n), ln(F(n))), and use the least square method to fit the data points, The slope of the straight line is the urt exponent, which can be obtained by formula (11):
ln(F(n))=hurtln(n)+c................................(11)ln(F(n))= hourt ln(n)+c...........................(11 )
定义斜率的临界值θ=hurt+0.25(本文取hurt=0.5),当hurt参数小于θ时,将此风速时间子序列内模函数定义为噪音信号,作为独立的输入;当hurt指数大于θ时,定义为纯净的风速子序列内模函数,对其进行重构处理:Define the critical value of the slope θ = h urt +0.25 (in this paper, h urt = 0.5), when the h urt parameter is less than θ, define the internal model function of the wind speed time subsequence as a noise signal as an independent input; when h urt When the exponent is greater than θ, it is defined as a pure wind speed subsequence internal model function, and it is reconstructed:
其中,hurtj代表第j个风速时间子序列内模函数的波动参数,其中1≤j≤k。Among them, h urtj represents the fluctuation parameter of the internal model function of the jth wind speed time subsequence, where 1≤j≤k.
综上所述SAVMD-DFA的实现过程即:首先利用EMD来确定VMD模态个数K,然后通过DFA计算每个模态的hurt指数来区分信号的随机成分,并对K个模态进行重构来最终确定模态的个数,其实现过程如图2所示。In summary, the implementation process of SAVMD-DFA is: firstly use EMD to determine the number K of VMD modes, then calculate the hurt index of each mode through DFA to distinguish the random components of the signal, and perform Refactoring to finally determine the number of modes, the implementation process is shown in Figure 2.
S103、通过基于COOK距离的遗忘因子的鲁棒在线极限学习机λCDFFOS-ORELM,对每个系列子模式建立基本预测模型,并采用带有自适应变异机制的纵横交叉优化算法CSO-SAM对预测模型进行参数优化;S103. Through the robust online extreme learning machine λ CDFF OS-ORELM based on the forgetting factor of COOK distance, establish a basic prediction model for each series of sub-patterns, and use the crossover optimization algorithm CSO-SAM with an adaptive mutation mechanism to Predictive model for parameter optimization;
其中,所述通过基于COOK距离的遗忘因子的鲁棒在线极限学习机λCDFFOS-ORELM,对每个系列子模式建立基本预测模型,并采用带有自适应变异机制的纵横交叉优化算法CSO-SAM对预测模型进行参数优化,包括:Among them, through the robust online extreme learning machine λ CDFF OS-ORELM based on the forgetting factor of COOK distance, a basic prediction model is established for each series of sub-patterns, and a crossover optimization algorithm CSO- SAM optimizes the parameters of the prediction model, including:
利用初始训练数据集创建初始预测模型,通过10折交叉验证法确定始预测模型隐含层节点个数,并计算模型参数;所述模型参数包括隐含层输出矩阵及初始输出权值;Utilize the initial training data set to create an initial prediction model, determine the number of hidden layer nodes of the initial prediction model by a 10-fold cross-validation method, and calculate model parameters; the model parameters include a hidden layer output matrix and initial output weights;
计算COOK距离,根据所述COOK距离确定遗忘因子λ,通过所述遗忘因子λ更新模型参数,并通过带有自适应变异机制的纵横交叉优化算法CSO-SAM对模型参数进行优化,得到基本预测模型;所述基本预测模型包括与平稳子序列对应的多个预测模型。Calculate the COOK distance, determine the forgetting factor λ according to the COOK distance, update the model parameters through the forgetting factor λ, and optimize the model parameters through the crossover optimization algorithm CSO-SAM with an adaptive mutation mechanism to obtain the basic prediction model ; The basic forecasting model includes a plurality of forecasting models corresponding to the stationary subsequence.
具体的,在本实施例中,采用λCDFFOS-ORELM(online sequential ORELM withforgetting factor based on Cook’s distance)对每个系列子模式建立基本预测模型,并采用CSO-SAM(crisscross optimization algorithm with Self-Adaptive Mutation)算法进行参数优化的具体步骤为:Specifically, in this embodiment, λ CDFF OS-ORELM (online sequential ORELM with forgetting factor based on Cook's distance) is used to establish a basic prediction model for each series of sub-patterns, and CSO-SAM (crisscross optimization algorithm with Self-Adaptive Mutation) algorithm for parameter optimization specific steps are:
31)初始化阶段。31) Initialization phase.
模型利用初始训练数据集来创建初始ORELM模型。模型隐含层节点个数Lopt通过10折交叉验证法(10-fold cross-validation)来确定,设置控制器k=0,根据计算初始隐含层输出矩阵H0 The model utilizes the initial training dataset to create the initial ORELM model. The number of hidden layer nodes L opt of the model is determined by 10-fold cross-validation method (10-fold cross-validation), setting the controller k=0, and calculating the initial hidden layer output matrix H 0
则初始输出权值为Then the initial output weight is
其中 in
32)在线序列学习阶段。当训练集D的第k+1个样本到来时,首先计算隐含层输出层矩阵32) Online sequence learning phase. When the k+1th sample of the training set D arrives, first calculate the hidden layer output layer matrix
利用递归最小二乘法来更新输出权值,即Use the recursive least squares method to update the output weights, namely
其中为预测误差,Γk+1为增益矩阵,通过公式(17)求得in is the prediction error, Γ k+1 is the gain matrix, obtained by formula (17)
33)计算新观察值的时变Cook距离33) Calculate the time-varying Cook distance for new observations
m是输出参数β的长度,是σ2一致估计,计算如下m is the length of the output parameter β, is the consistent estimator of σ2 , calculated as
其中,Mk是有效样本数量,给定M0=0。Where M k is the effective number of samples, given M 0 =0.
34)遗忘因子λk+1能够逐渐剔除旧的数据,保证利用最新的数据来建立模型,本文利用基于Cook距离的遗忘因子(λCDFF)来更新模型参数,当第k+1个样本到来时,求基于Cook距离的遗忘因子:34) The forgetting factor λ k+1 can gradually eliminate old data and ensure the use of the latest data to build models. In this paper, the forgetting factor based on Cook’s distance (λ CDFF ) is used to update the model parameters. When the k+1th sample arrives , find the forgetting factor based on Cook's distance:
Ck=νDk.....................................................(21)C k = νD k ................................................ ........(twenty one)
Sk=P(χν>Ck)(0<Sk<1)..................................(22)S k =P(χ ν >C k )(0<S k <1).......................... ...(twenty two)
λk+1=λmin+(1-λmin)Sk+1......................................(23)λ k+1 =λ min +(1-λ min )S k+1 .......................... ......(twenty three)
式中,λmin为遗忘因子的最小值,Sk+1为生存函数,其利用数理统计工具将Cook距离转化为遗忘因子,其中Ck服从自由度为ν的卡方分布:In the formula, λ min is the minimum value of the forgetting factor, S k+1 is the survival function, which uses mathematical statistics tools to convert the Cook distance into a forgetting factor, where C k obeys the chi-square distribution with ν as the degree of freedom:
35)以上基本预测模型的输入权值和隐含节点偏差需采用CSO-SAM算法来优化,具体步骤如下:35) The input weights and hidden node deviations of the above basic prediction models need to be optimized using the CSO-SAM algorithm. The specific steps are as follows:
假定父代粒子X(i)和X(j)在第d维进行横向交叉,计算公式如下:Assuming that the parent particles X(i) and X(j) cross horizontally in the d-th dimension, the calculation formula is as follows:
其中,r1和r2为均匀分布于[0,1]的随机数,c1和c2为均匀分布于[-1,1]的随机数,MShc(i,d)和MShc(j,d)是X(i,d)和X(j,d)交叉产生的子代。Among them, r 1 and r 2 are random numbers evenly distributed in [0,1], c 1 and c 2 are random numbers evenly distributed in [-1,1], MS hc (i,d) and MS hc ( j,d) is the offspring generated by the intersection of X(i,d) and X(j,d).
36)将执行完横向交叉后更新的种群作为纵向交叉的父代种群,假定粒子X(i)在第d1和d2维进行纵向交叉,计算公式如下:36) Take the updated population after the horizontal crossover is performed as the parent population of the vertical crossover, assuming that the particle X(i) performs vertical crossover in the d 1 and d 2 dimensions, the calculation formula is as follows:
其中,r为均匀分布于[0,1]的随机数;D为粒子的维度总数;M是种群数量。将横向交叉与纵向交叉产生的中庸解与父代粒子进行竞争,得到最优的种群。Among them, r is a random number uniformly distributed in [0,1]; D is the total number of dimensions of particles; M is the population size. Compete the mean solution generated by horizontal crossover and vertical crossover with parent particles to get the optimal population.
37)通过种群适应度值中的变量σ2来自动调整pvc,其中σ2的表达式如下:37) Automatically adjust p vc through the variable σ 2 in the population fitness value, where the expression of σ 2 is as follows:
其中fi为粒子i的适应度值,favg为此时所有适应度的平均值,n为粒子个数;Among them, f i is the fitness value of particle i, f avg is the average value of all fitness at this time, and n is the number of particles;
38)最后,利用公式(27)可以得到纵向交叉概率pvc的线性表达式:38) Finally, the linear expression of the vertical intersection probability p vc can be obtained by using formula (27):
其中,pvcmax和pvcmin是纵向交叉概率pvc的最大值和最小值;Among them, p vcmax and p vcmin are the maximum and minimum values of the vertical intersection probability p vc ;
39)λCDFFOS-ORELM模型的训练误差将作为CSO-SAM算法的优化目标来确定ORELM最优的输入权值和偏差,即39) The training error of the λ CDFF OS-ORELM model will be used as the optimization goal of the CSO-SAM algorithm to determine the optimal input weight and bias of ORELM, namely
式中,和分别为第p个训练样本的实际值和预测值;N为训练样本个数。In the formula, with are the actual value and predicted value of the pth training sample, respectively; N is the number of training samples.
S104、利用在线集成学习和有序聚合技术OEOA,通过对多个λCDFFOS-ORELM基本预测模型加权聚合获取最终预测值。S104. Using the online ensemble learning and ordered aggregation technology OEOA, the final predicted value is obtained by weighted aggregation of multiple λ CDFF OS-ORELM basic prediction models.
其中,利用在线集成学习和有序聚合技术OEOA,通过对多个λCDFFOS-ORELM基本预测模型加权聚合获取最终预测值包括:Among them, using online ensemble learning and ordered aggregation technology OEOA, the final prediction value obtained by weighted aggregation of multiple λ CDFF OS-ORELM basic prediction models includes:
对每个平稳子序列对应的多个预测模型进行均方根误差更新,并根据更新结果选择预定数量个模型作为最优模型集合;Update the root mean square error of multiple prediction models corresponding to each stationary subsequence, and select a predetermined number of models as the optimal model set according to the update results;
对所述最优模型集合中的每个预测模型分配权值,计算每个平稳子序列的预测值,并根据每个平稳子序列的预测值确定最终预测值。Assign weights to each prediction model in the optimal model set, calculate the prediction value of each stationary subsequence, and determine the final prediction value according to the prediction value of each stationary subsequence.
其中,所述根据每个平稳子序列的预测值确定最终预测值之后,包括:Wherein, after determining the final predicted value according to the predicted value of each stationary subsequence, it includes:
当获取到下一时刻的风速时间序列后,根据本时刻的真实值更新所述初始训练数据集,得到更新后的训练数据集;After obtaining the wind speed time series at the next moment, update the initial training data set according to the real value at this moment to obtain an updated training data set;
根据本时刻的真实值,计算所述最优模型集合中的每个预测模型的预测误差,若存在预测误差大于误差阈值的预测模型,则通过所述更新后的训练数据集建立训练模型,替换所述最优模型集合中预测误差大于所述误差阈值的预测模型。According to the real value at this moment, calculate the prediction error of each prediction model in the optimal model set, if there is a prediction model with a prediction error greater than the error threshold, then establish a training model through the updated training data set, replace A prediction model with a prediction error greater than the error threshold in the optimal model set.
具体的,在本实施例中,利用λCDFFOS-ORELM基本预测模型和OEOA(onlineensemble using ordered aggregation)技术通过加权来得到风速点预测的具体步骤为:Specifically, in this embodiment, the specific steps for obtaining wind speed point prediction by weighting using the λ CDFF OS-ORELM basic prediction model and OEOA (onlineensemble using ordered aggregation) technology are as follows:
41)多模型在线选择,OEOA利用初始训练数据集D0建立Mmax个模型fm(m=1,…,Mmax),形成模型集合ε。对于每个模型,在集成学习的过程中,训练均方根误差利用公式(29)进行更新。41) Multi-model online selection, OEOA uses the initial training data set D 0 to establish M max models f m (m=1,...,M max ), forming a model set ε. For each model, the training root mean square error is updated using Equation (29) during ensemble learning.
其中,为第m个模型在t时刻训练均方根误差,lm为每个样本数据利用模型fm进行预测的过程中使用的次数。in, is the root mean square error of the mth model training at time t, and l m is the number of times used in the process of predicting each sample data using the model f m .
根据每个模型训练得到的均方误差进行升序排序,自适应选取ε的前B个模型作为最优的子集,预测第t(t=T0+1,…,T)个样本数据xt对应的风速预测值。当第t+1个新样本到来时,第t个样本的真实值加入到训练数据集中,并将旧的数据样本从训练数据集中删除,即Sort in ascending order according to the mean square error obtained from each model training, adaptively select the first B models of ε as the optimal subset, and predict the tth (t=T 0 +1,...,T) sample data x t Corresponding wind speed forecast value. When the t+1th new sample arrives, the true value of the tth sample is added to the training data set, and the old data sample removed from the training dataset, i.e.
42)模型集成学习,OEOA从模型集合ε选择最优的B个模型来进行集成学习来对新的样本进行预测。在集成学习过程中,需要对B个模型分配权值,模型权值通过均方误差来计算获得,其计算公式如(31)所示。42) Model ensemble learning, OEOA selects the best B models from the model set ε for ensemble learning to predict new samples. In the process of ensemble learning, it is necessary to assign weights to the B models, and the model weights are obtained by calculating the mean square error, and the calculation formula is shown in (31).
其中,为第m个模型在t-1时刻训练均方根误差,为B个最优模型训练均方根误差向量,median(Et-1)表示向量Et-1的中位数。in, For the m-th model training root mean square error at time t-1, The root mean square error vectors are trained for the B optimal models, and median(E t-1 ) represents the median of the vector E t-1 .
最终,新样本数据的预测值为Finally, the predicted value of the new sample data is
43)模型更新,在对t+1时刻的样本进行预测之前,首先利用t时刻样本数据的真实值来校验模型的预测误差,通过设置误差阈值α来判断是否对此时的模型集合ε进行更新。当满足43) Model update, before predicting the samples at time t+1, first use the real value of the sample data at time t to verify the prediction error of the model, and determine whether to perform the model set ε at this time by setting the error threshold α renew. when satisfied
时,根据公式(30)形成的新的训练集Dt来建立新的训练模型fnew,并用fnew来替换ε预测误差最大的模型。当公式(33)不满足时,保持模型集合ε不变。When , a new training model f new is established according to the new training set D t formed by formula (30), and f new is used to replace the model with the largest ε prediction error. When formula (33) is not satisfied, keep the model set ε unchanged.
可见,在本方案考虑到原始风速时间序列的非平稳性,利用BGA将原始风速分割为若干平稳风速子序列,每个子序列采用SAVMD进行信号分解和重构,形成一系列频率相近的子模式,再对每个子模式采用λCDFFOS-ORELM-OEOA进行建模预测,模型参数通过CSO-SAM进行动态调整,以此得到短时风速多步预测模型。本预测方法与其他预测方法相比,本文方法在不同信号分解技术(SAVMD和EEMD(ensemble empirical mode decomposition))下都表现出很好的预测性能,具体表现如下:It can be seen that in this scheme, considering the non-stationarity of the original wind speed time series, the original wind speed is divided into several stationary wind speed sub-sequences by using BGA, and each sub-sequence is decomposed and reconstructed by SAVMD to form a series of sub-patterns with similar frequencies. Then use λ CDFF OS-ORELM-OEOA to model and predict each sub-mode, and model parameters are dynamically adjusted through CSO-SAM to obtain a short-term wind speed multi-step prediction model. Compared with other prediction methods, this prediction method shows good prediction performance under different signal decomposition techniques (SAVMD and EEMD (ensemble empirical mode decomposition)), the specific performance is as follows:
1)利用SAVMD技术对原始风速时间子序列进行分解,与VMD技术相比,SAVMD能够自适应确定子信号的个数;1) Using SAVMD technology to decompose the original wind speed time subsequence, compared with VMD technology, SAVMD can adaptively determine the number of sub-signals;
2)CSO-SAM具有很强的搜索能力,能够确定模型最优参数,以此来提高预测精度;2) CSO-SAM has a strong search ability and can determine the optimal parameters of the model to improve the prediction accuracy;
3)在线集成学习预测模型利用基于Cook距离的遗忘因子实时跟踪风速变化来调整模型参数;并且利用OEOA技术来选择最优子模型,通过加权聚合来获得最终的预测值,进一步提高风速预测精度。3) The online ensemble learning prediction model uses the forgetting factor based on Cook distance to track wind speed changes in real time to adjust model parameters; and uses OEOA technology to select the optimal sub-model, and obtains the final prediction value through weighted aggregation to further improve the wind speed prediction accuracy.
具体的,参见图3,图3为本实施例提供的一种基于在线鲁棒极限学习机自适应集成学习的短期风速多步预测方法实现流程图;为了对本方案进行详细的描述,提供一应用本方案的具体实施例:Specifically, refer to Fig. 3. Fig. 3 is a flow chart of realizing a short-term wind speed multi-step prediction method based on online robust extreme learning machine adaptive integrated learning provided by this embodiment; in order to describe this scheme in detail, an application is provided The concrete embodiment of this scheme:
选取NREL提供的某风电场2004年的实测风速时间序列作为研究对象,为了减少季节对风速预测的影响,选取四、七、十和一月份作为每个季节的典型月份,分别建立不同的预测模型。风速数据的采样频率10min,四个月份的样本点个数分别为4320,4464,4464和4464,其风速时间序列如图4-7所示,在实例分析中,分别进行短期风速单步、三步和五步预测。利用BGA将原始的风速时间序列分割成多个子序列,其均值和方差如表1所示。The measured wind speed time series of a wind farm in 2004 provided by NREL is selected as the research object. In order to reduce the influence of seasons on wind speed prediction, April, July, October and January are selected as the typical months of each season, and different prediction models are established respectively. . The sampling frequency of wind speed data is 10 minutes, and the number of sample points in four months is 4320, 4464, 4464 and 4464 respectively. The time series of wind speed is shown in Figure 4-7. One-step and five-step forecasts. Using BGA to divide the original wind speed time series into multiple subsequences, the mean and variance are shown in Table 1.
表1 2004年春季风速时间序列的分割结果Table 1 Segmentation results of spring wind speed time series in 2004
将每个风速子系列的后100个点作为验证集,其余部分作为训练集对风速模型进行训练。将此预测模型的预测结果与λCDFFOS-ORELM-OEOA预测模型、λCDFFOS-ORELM预测模型、BPNN、offline-ELM、offline-ORELM以及持久模型(persistence model,PM)的预测结果进行比较,同时分别建立基于SAVMD和EEMD的上述预测模型,并将预测结果进行比较。The last 100 points of each wind speed subseries are used as the validation set, and the rest are used as the training set to train the wind speed model. Compare the prediction results of this prediction model with the prediction results of λ CDFF OS-ORELM-OEOA prediction model, λ CDFF OS-ORELM prediction model, BPNN, offline-ELM, offline-ORELM and persistence model (persistence model, PM), At the same time, the above prediction models based on SAVMD and EEMD were established respectively, and the prediction results were compared.
为了定性地评价预测模型的性能,引入平均绝对误差(mean absolute error,MAE),平均绝对百分比误差(mean absolute percentage error,MAPE)和均方根误差(rootmean-squared error,RMSE)作为预测模型的性能评价指标:In order to qualitatively evaluate the performance of the prediction model, the mean absolute error (mean absolute error, MAE), mean absolute percentage error (mean absolute percentage error, MAPE) and root mean square error (root mean-squared error, RMSE) are introduced as the prediction model. Performance evaluation indicators:
上述式子中,和分别为第t个样本点的风速实际值和预测值;N为测试样本的个数。In the above formula, with are the actual and predicted values of wind speed at the tth sample point, respectively; N is the number of test samples.
以2004年4月份的风速时间序列为例,利用BGA将原始风速分割成9个子序列,各子序列风速的均值和方差见表1。选取第5个子序列(S5)进行分析,将前551个样本点作为训练数据集,后100个点作为验证样本集。Taking the wind speed time series in April 2004 as an example, the original wind speed is divided into nine subsequences by using BGA. The mean and variance of each subsequence wind speed are shown in Table 1. The fifth subsequence (S5) is selected for analysis, the first 551 sample points are used as the training data set, and the last 100 points are used as the verification sample set.
λCDFFOS-ORELM-OEOA模型参数设置如下:初始训练集个数T0=20;误差阈值ρ=0.04;遗忘因子最小值λmin=0.6;Mmin=10;Mmax=15。The parameters of the λ CDFF OS-ORELM-OEOA model are set as follows: the number of initial training sets T 0 =20; the error threshold ρ=0.04; the minimum value of the forgetting factor λ min =0.6; M min =10; M max =15.
CSO-SAM参数设置如下:种群个数为20;最大迭代次数为100;根据经验值,纵向交叉概率的最大值和最小值分别取Pvmax=0.8和Pvmin=0.2。The parameters of CSO-SAM are set as follows: the number of populations is 20; the maximum number of iterations is 100; according to empirical values, the maximum and minimum values of the vertical crossover probability are P vmax = 0.8 and P vmin = 0.2, respectively.
SAVMD将S5原始子风速时间序列分解为5个子信号,EEMD则把S5分解为8个子信号,按照上述的预测方法对每个子信号单独建立预测模型,最后对每个子信号的预测值求和,得到最终的风速预测值。S5没有经过信号分解后得出的多步误差评价指标如表2所示,经过SAVMD和EEMD分解后的多步模型误差评价指标分别如表3和4所示。SAVMD decomposes the original sub-wind speed time series of S5 into 5 sub-signals, and EEMD decomposes S5 into 8 sub-signals, establishes a prediction model for each sub-signal separately according to the above prediction method, and finally sums the predicted values of each sub-signal to obtain The final wind speed forecast. Table 2 shows the multi-step error evaluation indexes of S5 without signal decomposition, and the multi-step model error evaluation indexes after SAVMD and EEMD decomposition are shown in Tables 3 and 4, respectively.
表2未经信号分解风速预测结果Table 2 Prediction results of wind speed without signal decomposition
表3基于SAVMD技术的风速预测结果Table 3 Wind speed prediction results based on SAVMD technology
表4基于EEMD技术的风速预测结果Table 4 Wind speed prediction results based on EEMD technology
对比表2-表4可知:Comparing Table 2-Table 4, we can see that:
(1)风速时间序列经过SAVMD和EEMD技术处理后,各种预测模型的预测精度有大幅度的提高。以本文方法为例,采用信号分解技术后,单步预测EMAPE分别提高了17.07%和9.76%;(1) After the wind speed time series is processed by SAVMD and EEMD technology, the prediction accuracy of various prediction models has been greatly improved. Taking the method in this paper as an example, after using the signal decomposition technology, the single-step prediction E MAPE has increased by 17.07% and 9.76% respectively;
(2)在所有预测模型中,本文提出模型的多步预测性能优于其他模型,其中PM模型的预测性能最差。(2) Among all the forecasting models, the multi-step forecasting performance of the model proposed in this paper is better than other models, among which the PM model has the worst forecasting performance.
由以上数据进一步分析可知:Further analysis from the above data shows that:
(1)CSO-SAM对ORELM模型参数有较强的寻优能力;(1) CSO-SAM has a strong ability to optimize the parameters of the ORELM model;
(2)本文的在线预测模型与传统离线模型比较而言,在线模型可以实时改变参数来适应风速的变化,保证预测模型具有较强的鲁棒性;(2) Compared with the traditional offline model, the online prediction model in this paper can change the parameters in real time to adapt to the change of wind speed, so as to ensure the strong robustness of the prediction model;
(3)基于Cook距离的遗忘因子(λCDFF)在整个在线预测过程中,削弱旧数据样本的影响,利用新的数据样本来更新模型参数,提高预测模型的精度。(3) The forgetting factor (λ CDFF ) based on Cook's distance weakens the influence of old data samples during the entire online prediction process, and uses new data samples to update model parameters to improve the accuracy of the prediction model.
同理,表1中经BGA切割后形成的其他子序列均可采用上述方法进行预测,其预测结果如图8-10所示。由图8-10的误差评价指标可知,经BGA算法分割后的子序列预测精度比完整的序列更高,即表明数据预处理时利用BGA的有效性。将本文的λCDFFOS-ORELM-OEOA模型应用在2004年的4个季节,得到的模型单步误差评价指标如表5所示。Similarly, other subsequences formed after BGA cutting in Table 1 can be predicted by the above method, and the prediction results are shown in Figures 8-10. From the error evaluation indicators in Figure 8-10, it can be seen that the prediction accuracy of the subsequence segmented by the BGA algorithm is higher than that of the complete sequence, which indicates the effectiveness of using BGA in data preprocessing. Applying the λ CDFF OS-ORELM-OEOA model in this paper to the four seasons in 2004, the single-step error evaluation indicators of the model are shown in Table 5.
表5本文方法得到的不同季节预测结果Table 5 The prediction results of different seasons obtained by the method in this paper
由表5可知,每个季节的单步误差评价指标值相差不大,春季的预测性能较其它季节略差,说明本文的模型是能够反应季节变化引起的风速变化,反映了风速预测的季节特性。It can be seen from Table 5 that the single-step error evaluation index values in each season are not much different, and the prediction performance in spring is slightly worse than that in other seasons, indicating that the model in this paper can reflect the wind speed change caused by seasonal changes and reflects the seasonal characteristics of wind speed prediction .
下面对本发明实施例提供的短期风速多步预测装置进行介绍,下文描述的短期风速多步预测装置与上文描述的短期风速多步预测方法可以相互参照。The short-term wind speed multi-step forecasting device provided by the embodiment of the present invention is introduced below. The short-term wind speed multi-step forecasting device described below and the short-term wind speed multi-step forecasting method described above can be referred to each other.
参见图11,本发明实施例提供的一种短期风速多步预测装置,包括:Referring to Figure 11, a short-term wind speed multi-step forecasting device provided by an embodiment of the present invention includes:
平稳子序列分割模块100,用于利用启发式分割算法BGA将原始风速时间序列分割成多个平稳子序列;Stationary subsequence segmentation module 100, for utilizing the heuristic segmentation algorithm BGA to divide the original wind speed time series into a plurality of stationary subsequences;
分解模块200,用于利用自适应可变模式分解技术SAVMD将每个平稳子序列分解为一系列有限带宽的子模式;The decomposition module 200 is used to decompose each stationary subsequence into a series of limited-bandwidth sub-patterns by using the adaptive variable mode decomposition technique SAVMD;
预测模型建立模块300,用于通过基于COOK距离的遗忘因子的鲁棒在线极限学习机λCDFFOS-ORELM,对每个系列子模式建立基本预测模型,并采用带有自适应变异机制的纵横交叉优化算法CSO-SAM对预测模型进行参数优化;The prediction model building module 300 is used to establish a basic prediction model for each series of sub-patterns through the robust online extreme learning machine λ CDFF OS-ORELM based on the forgetting factor of COOK distance, and adopts a crossover with an adaptive mutation mechanism The optimization algorithm CSO-SAM optimizes the parameters of the prediction model;
预测模块400,用于利用在线集成学习和有序聚合技术OEOA,通过对多个λCDFFOS-ORELM基本预测模型加权聚合获取最终预测值。The prediction module 400 is configured to use the online ensemble learning and ordered aggregation technology OEOA to obtain the final prediction value through weighted aggregation of multiple λ CDFF OS-ORELM basic prediction models.
基于上述实施例,所述平稳子序列分割模块100,包括:Based on the foregoing embodiments, the stable subsequence segmentation module 100 includes:
统计值确定单元,用于确定所述原始风速时间序列中除起点和终点之外其他目标点的左平均值和右平均值,根据每个目标点的左平均值和右平均值确定每个目标点的统计值;Statistical value determination unit, used to determine the left average value and right average value of other target points in the original wind speed time series except the starting point and the end point, and determine each target according to the left average value and right average value of each target point point statistics;
分割单元,用于根据每个目标点的统计值计算每个目标点的统计显著性,将统计显著性大于预定阈值的目标点作为分割点,并利用所述分割点,对所述原始风速时间序列进行分割,形成多个平稳子序列。The segmentation unit is used to calculate the statistical significance of each target point according to the statistical value of each target point, and use the target point whose statistical significance is greater than a predetermined threshold as a segmentation point, and use the segmentation point to calculate the original wind speed time The sequence is divided into multiple stationary subsequences.
其中,平稳子序列分割模块100还包括:Wherein, the stable subsequence segmentation module 100 also includes:
判断模块,用于判断分割后的左右两部分序列是否均大于最小分割长度;A judging module, configured to judge whether the divided left and right sequences are both greater than the minimum segmentation length;
所述分割单元,用于在分割后的左右两部分序列均大于最小分割长度时,对原始风速时间序列进行分割;否则,取消对所述原始风速时间序列的分割。The segmentation unit is configured to segment the original wind speed time series when both the divided left and right part sequences are greater than the minimum segmentation length; otherwise, cancel the division of the original wind speed time series.
基于上述实施例,所述分解模块200包括:Based on the foregoing embodiments, the decomposition module 200 includes:
模态分解模块,用于利用经验模态分解技术EMD确定对目标平稳子序列进行分解的模态数K,并通过可变模式分解技术VDM将所述目标平稳子序列分解为K个模态;The mode decomposition module is used to determine the modal number K for decomposing the target stationary subsequence by using the empirical mode decomposition technique EMD, and decompose the target stationary subsequence into K modes by the variable mode decomposition technique VDM;
去噪重构模块,用于通过消除趋势波动分析法DFA确定每个模态的波动参数,并根据每个模态的波动参数对所述目标平稳子序列进行去噪重构。The denoising and reconstruction module is used to determine the fluctuation parameters of each mode by DFA, and perform denoising and reconstruction on the target stationary subsequence according to the fluctuation parameters of each mode.
基于上述实施例,所述预测模型建立模块300,包括:Based on the foregoing embodiments, the prediction model building module 300 includes:
初始预测模型确定单元,用于利用初始训练数据集创建初始预测模型,通过10折交叉验证法确定始预测模型隐含层节点个数,并计算模型参数;所述模型参数包括隐含层输出矩阵及初始输出权值;The initial prediction model determination unit is used to create an initial prediction model by using the initial training data set, determine the number of hidden layer nodes of the initial prediction model by the 10-fold cross-validation method, and calculate the model parameters; the model parameters include the hidden layer output matrix and the initial output weight;
基本预测模型确定单元,用于计算COOK距离,根据所述COOK距离确定遗忘因子λ,通过所述遗忘因子λ更新模型参数,并通过带有自适应变异机制的纵横交叉优化算法CSO-SAM对模型参数进行优化,得到基本预测模型;所述基本预测模型包括与平稳子序列对应的多个预测模型。The basic prediction model determination unit is used to calculate the COOK distance, determine the forgetting factor λ according to the COOK distance, update the model parameters through the forgetting factor λ, and use the crossover optimization algorithm CSO-SAM with an adaptive mutation mechanism to update the model The parameters are optimized to obtain a basic forecasting model; the basic forecasting model includes multiple forecasting models corresponding to the stationary subsequences.
基于上述实施例,预测模块400包括:Based on the foregoing embodiments, the prediction module 400 includes:
最优模型集合确定模块,用于对每个平稳子序列对应的多个预测模型进行均方根误差更新,并根据更新结果选择预定数量个模型作为最优模型集合;The optimal model set determination module is used to update the root mean square error of multiple prediction models corresponding to each stationary subsequence, and select a predetermined number of models as the optimal model set according to the update results;
最终预测值确定模块,用于对所述最优模型集合中的每个预测模型分配权值,计算每个平稳子序列的预测值,并根据每个平稳子序列的预测值确定最终预测值。The final predictive value determination module is configured to assign weights to each predictive model in the optimal model set, calculate the predictive value of each stationary subsequence, and determine the final predictive value according to the predictive value of each stationary subsequence.
其中,预测模块400包括:Wherein, the prediction module 400 includes:
更新模块,用于当获取到下一时刻的风速时间序列后,根据本时刻的真实值更新所述初始训练数据集,得到更新后的训练数据集;The update module is used to update the initial training data set according to the real value at this moment after obtaining the wind speed time series at the next moment, so as to obtain the updated training data set;
最优模型更新模块,用于根据本时刻的真实值,计算所述最优模型集合中的每个预测模型的预测误差,若存在预测误差大于误差阈值的预测模型,则通过所述更新后的训练数据集建立训练模型,替换所述最优模型集合中预测误差大于所述误差阈值的预测模型。The optimal model update module is used to calculate the prediction error of each prediction model in the optimal model set according to the real value at this moment. If there is a prediction model with a prediction error greater than the error threshold, the updated A training model is established in the training data set, and a prediction model whose prediction error is greater than the error threshold in the optimal model set is replaced.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710213732.2A CN106991285A (en) | 2017-04-01 | 2017-04-01 | A kind of short-term wind speed multistep forecasting method and device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710213732.2A CN106991285A (en) | 2017-04-01 | 2017-04-01 | A kind of short-term wind speed multistep forecasting method and device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN106991285A true CN106991285A (en) | 2017-07-28 |
Family
ID=59414716
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710213732.2A Pending CN106991285A (en) | 2017-04-01 | 2017-04-01 | A kind of short-term wind speed multistep forecasting method and device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106991285A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109146063A (en) * | 2018-08-27 | 2019-01-04 | 广东工业大学 | A kind of more segmentation short-term load forecasting methods based on vital point segmentation |
| CN110275809A (en) * | 2018-03-15 | 2019-09-24 | 腾讯科技(深圳)有限公司 | A kind of data fluctuations recognition methods, device and storage medium |
| CN110334839A (en) * | 2019-04-15 | 2019-10-15 | 北京航空航天大学 | Flight delay prediction method, device, equipment and storage medium |
| CN110685857A (en) * | 2019-10-16 | 2020-01-14 | 湘潭大学 | Mountain wind turbine generator behavior prediction model based on ensemble learning |
| CN110969312A (en) * | 2019-12-23 | 2020-04-07 | 长江水利委员会水文局 | Short-term runoff prediction coupling method based on variational modal decomposition and extreme learning machine |
| CN110988905A (en) * | 2019-11-29 | 2020-04-10 | 中国华能集团清洁能源技术研究院有限公司 | Automatic adjusting method for laser radar wind measurement distance door |
| CN112749792A (en) * | 2021-02-02 | 2021-05-04 | 南京信息工程大学 | Wind speed prediction method based on BP algorithm |
| CN114169252A (en) * | 2021-12-27 | 2022-03-11 | 广东工业大学 | Short-term region wind power prediction method for dynamically selecting representative wind power plant |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050222770A1 (en) * | 2004-03-31 | 2005-10-06 | Meteorlogix, Llc | Method of forecasting precipitation for specific geographic locations |
| CN103400210A (en) * | 2013-08-13 | 2013-11-20 | 广西电网公司电力科学研究院 | Short-term wind-speed combination forecasting method |
| CN105978037A (en) * | 2016-08-03 | 2016-09-28 | 河海大学 | Optimal power flow calculation method for multi-period electricity-gas interconnection system based on wind speed prediction |
| CN106126906A (en) * | 2016-06-22 | 2016-11-16 | 重庆科技学院 | Short-term wind speed forecasting method based on C C Yu ELM |
-
2017
- 2017-04-01 CN CN201710213732.2A patent/CN106991285A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050222770A1 (en) * | 2004-03-31 | 2005-10-06 | Meteorlogix, Llc | Method of forecasting precipitation for specific geographic locations |
| CN103400210A (en) * | 2013-08-13 | 2013-11-20 | 广西电网公司电力科学研究院 | Short-term wind-speed combination forecasting method |
| CN106126906A (en) * | 2016-06-22 | 2016-11-16 | 重庆科技学院 | Short-term wind speed forecasting method based on C C Yu ELM |
| CN105978037A (en) * | 2016-08-03 | 2016-09-28 | 河海大学 | Optimal power flow calculation method for multi-period electricity-gas interconnection system based on wind speed prediction |
Non-Patent Citations (3)
| Title |
|---|
| PEDRO BERNAOLA-GALVÁN 等: "Scale Invariance in the Nonstationarity of Human Heart Rate", 《PHYSICAL REVIEW LETTERS》 * |
| SYMONE G 等: "An Adaptive Ensemble of On-line Extreme Learning Machines with Variable Forgetting Factor for Dynamic System Prediction", 《NEUROCOMPUTING》 * |
| XIANGANG PENG 等: "A novel probabilistic wind speed forecasting based on combination of the adaptive ensemble of on-line sequential ORELM (Outlier Robust Extreme Learning Machine) and TVMCF (time-varying mixture copula function)", 《ENERGY CONVERSION AND MANAGEMENT》 * |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110275809A (en) * | 2018-03-15 | 2019-09-24 | 腾讯科技(深圳)有限公司 | A kind of data fluctuations recognition methods, device and storage medium |
| CN110275809B (en) * | 2018-03-15 | 2022-07-08 | 腾讯科技(深圳)有限公司 | Data fluctuation identification method and device and storage medium |
| CN109146063A (en) * | 2018-08-27 | 2019-01-04 | 广东工业大学 | A kind of more segmentation short-term load forecasting methods based on vital point segmentation |
| CN110334839A (en) * | 2019-04-15 | 2019-10-15 | 北京航空航天大学 | Flight delay prediction method, device, equipment and storage medium |
| US11501648B2 (en) | 2019-04-15 | 2022-11-15 | Beihang University | Method and apparatus for predicting flight delay, device and storage medium |
| CN110685857A (en) * | 2019-10-16 | 2020-01-14 | 湘潭大学 | Mountain wind turbine generator behavior prediction model based on ensemble learning |
| CN110988905A (en) * | 2019-11-29 | 2020-04-10 | 中国华能集团清洁能源技术研究院有限公司 | Automatic adjusting method for laser radar wind measurement distance door |
| CN110969312A (en) * | 2019-12-23 | 2020-04-07 | 长江水利委员会水文局 | Short-term runoff prediction coupling method based on variational modal decomposition and extreme learning machine |
| CN112749792A (en) * | 2021-02-02 | 2021-05-04 | 南京信息工程大学 | Wind speed prediction method based on BP algorithm |
| CN112749792B (en) * | 2021-02-02 | 2023-07-07 | 南京信息工程大学 | BP algorithm-based wind speed prediction method |
| CN114169252A (en) * | 2021-12-27 | 2022-03-11 | 广东工业大学 | Short-term region wind power prediction method for dynamically selecting representative wind power plant |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106991285A (en) | A kind of short-term wind speed multistep forecasting method and device | |
| CN110309603B (en) | Short-term wind speed prediction method and system based on wind speed characteristics | |
| Jiang et al. | Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption | |
| Wei et al. | Daily natural gas consumption forecasting via the application of a novel hybrid model | |
| Zhao et al. | Enhancing robustness of monthly streamflow forecasting model using gated recurrent unit based on improved grey wolf optimizer | |
| CN110543929B (en) | Wind speed interval prediction method and system based on Lorenz system | |
| CN110515364B (en) | Cutter wear state detection method based on variational modal decomposition and LS-SVM | |
| CN103778482B (en) | Aquaculture dissolved oxygen short term prediction method based on multiscale analysis | |
| CN110363360A (en) | A kind of short-term wind power prediction method, device and equipment | |
| CN112884236B (en) | A short-term load forecasting method and system based on VDM decomposition and LSTM improvement | |
| Xing et al. | Seasonal and trend forecasting of tourist arrivals: An adaptive multiscale ensemble learning approach | |
| CN106296434B (en) | A Grain Yield Prediction Method Based on PSO-LSSVM Algorithm | |
| CN111932039A (en) | Train arrival late prediction method and device, electronic equipment and storage medium | |
| CN113887717B (en) | Method for predicting neural network training duration based on deep learning | |
| CN111105321A (en) | A Power Load Forecasting Method Based on EEMD Secondary Decomposition | |
| CN105844353A (en) | Aquatic product price prediction method and device | |
| CN115166811A (en) | A Rapid Construction Method of Neutron Spectrum in Simulated Work Site | |
| CN111612262A (en) | A Probabilistic Prediction Method of Wind Power Power Based on Quantile Regression | |
| CN110717264A (en) | Improved Strength Pareto Evolutionary Algorithm for Multi-objective Optimal Design of Product Shape | |
| CN119577556B (en) | Power grid fault online identification system and method based on big data | |
| CN116822743A (en) | Wind power prediction method based on two-stage decomposition reconstruction and error correction | |
| CN110647353B (en) | Unsupervised software complexity evaluation method | |
| CN116523615A (en) | Bank abnormal account detection method, device, system and medium | |
| CN119670941A (en) | A method, device, equipment and storage medium for predicting ice coverage of transmission lines | |
| Syaharuddin et al. | Best Architecture Recommendations of ANN Backpropagation Based on Combination of Learning Rate, Momentum, and Number of Hidden Layers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170728 |
|
| WD01 | Invention patent application deemed withdrawn after publication |