[go: up one dir, main page]

CN106997347A - Information recommendation method and server - Google Patents

Information recommendation method and server Download PDF

Info

Publication number
CN106997347A
CN106997347A CN201610043869.3A CN201610043869A CN106997347A CN 106997347 A CN106997347 A CN 106997347A CN 201610043869 A CN201610043869 A CN 201610043869A CN 106997347 A CN106997347 A CN 106997347A
Authority
CN
China
Prior art keywords
user
recommendation
data
user group
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610043869.3A
Other languages
Chinese (zh)
Inventor
郝红霞
谭卫国
汪芳山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN201610043869.3A priority Critical patent/CN106997347A/en
Publication of CN106997347A publication Critical patent/CN106997347A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9535Search customisation based on user profiles and personalisation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0251Targeted advertisements
    • G06Q30/0255Targeted advertisements based on user history

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Finance (AREA)
  • General Physics & Mathematics (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Engineering & Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Data Mining & Analysis (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

本发明实施例提供一种信息推荐方法及服务器。本发明的信息推荐方法可包括:对多个用户进行分组获得至少两个用户组;每个用户组包括至少一个用户;确定每个用户组对应的推荐策略;推荐策略包括每个用户组对应的推荐算法;根据每个用户组对应的推荐策略生成每个用户组的推荐信息;向至少一个用户对应的终端发送推荐信息。本发明实施例可提高信息推荐的准确度。

Embodiments of the present invention provide an information recommendation method and server. The information recommendation method of the present invention may include: grouping a plurality of users to obtain at least two user groups; each user group includes at least one user; determining a recommendation strategy corresponding to each user group; the recommendation strategy includes each user group corresponding A recommendation algorithm; generating recommendation information for each user group according to a recommendation strategy corresponding to each user group; sending the recommendation information to a terminal corresponding to at least one user. The embodiments of the present invention can improve the accuracy of information recommendation.

Description

信息推荐方法及服务器Information recommendation method and server

技术领域technical field

本发明实施例涉及通信技术,尤其涉及一种信息推荐方法及服务器。Embodiments of the present invention relate to communication technologies, and in particular to an information recommendation method and server.

背景技术Background technique

互联网技术的出现和普及,给用户带来了大量的信息,满足用户在信息时代对信息的需求,但随着网络的迅速发展而带来的信息大幅增长,使得用户在面对大量信息时无法从中找到对自己有用的部分信息,对信息的使用效率反而降低,从而产生信息超载(information overload)问题。信息推荐技术便是为解决该问题而产生的。The emergence and popularization of Internet technology has brought a large amount of information to users and met the needs of users for information in the information age. However, with the rapid development of the network, the information has increased significantly, making users unable to deal with a large amount of information. If you find some information that is useful to you, the efficiency of using the information will be reduced, resulting in the problem of information overload. Information recommendation technology is created to solve this problem.

常用的信息推荐技术,实际是针对大用户群体确定推荐算法,并根据该推荐算法为大用户群体确定推荐信息,继而向大用户群体发送该推荐信息。The commonly used information recommendation technology is actually to determine the recommendation algorithm for the large user group, and determine the recommended information for the large user group according to the recommendation algorithm, and then send the recommended information to the large user group.

由于该信息推荐技术中,根据该推荐算法为大用户群体确定相同的推荐信息,因而,该推荐信息无法体现用户个性,信息推荐的准确率较低。Because in this information recommendation technology, the same recommendation information is determined for a large user group according to the recommendation algorithm, the recommendation information cannot reflect the user's personality, and the accuracy of information recommendation is low.

发明内容Contents of the invention

本发明实施例提供一种信息推荐方法及服务器,以提高信息推荐的准确率度。Embodiments of the present invention provide an information recommendation method and server to improve the accuracy of information recommendation.

第一方面,提供一种信息推荐方法,包括:In the first aspect, an information recommendation method is provided, including:

对多个用户进行分组,获得至少两个用户组;其中,每个用户组包括至少一个用户;Grouping multiple users to obtain at least two user groups; wherein, each user group includes at least one user;

确定每个用户组对应的推荐策略;其中,推荐策略可包括每个用户组对应的推荐算法;Determine a recommendation strategy corresponding to each user group; wherein, the recommendation strategy may include a recommendation algorithm corresponding to each user group;

根据每个用户组对应的推荐策略生成每个用户组的推荐信息;Generate recommendation information for each user group according to the recommendation strategy corresponding to each user group;

向至少一个用户对应的终端发送推荐信息。Send recommendation information to a terminal corresponding to at least one user.

可选的,对多个用户进行分组,获得至少两个用户组,可包括:Optionally, multiple users are grouped to obtain at least two user groups, which may include:

根据该多个用户中每个用户的数据特征,对该多个用户进行分组,获得该至少两个用户组。According to the data feature of each of the multiple users, the multiple users are grouped to obtain the at least two user groups.

可选的,每个用户的数据特征包括:至少一种数据特征;Optionally, the data characteristics of each user include: at least one data characteristic;

根据多个用户中每个用户的数据特征,对多个用户进行分组,获得至少两个用户组,可包括:According to the data characteristics of each of the multiple users, group the multiple users to obtain at least two user groups, which may include:

根据每个用户的至少一种数据特征,按照预设的数据特征顺序,对多个用户进行分组,得到至少两个用户组。According to at least one data feature of each user, multiple users are grouped according to a preset sequence of data features to obtain at least two user groups.

本发明实施例提供的信息推荐算法,可根据用户的至少一种数据特征,按照预设的数据特征顺序对该多个用户进行分组,可使得用户的分组更精确,使得对每个用户组内的用户采用的推荐算法相同,提高信息推荐的准确度。The information recommendation algorithm provided by the embodiment of the present invention can group the multiple users according to the preset order of data characteristics according to at least one data characteristic of the users, which can make the grouping of users more accurate, so that each user group can The recommendation algorithm adopted by all users is the same, which improves the accuracy of information recommendation.

可选的,每个用户的数据特征包括以下至少一种:Optionally, the data characteristics of each user include at least one of the following:

每个用户的历史记录数据、每个用户的标签数据、每个用户的属性数据和每个用户的社交数据。Per-user history data, per-user tag data, per-user attribute data, and per-user social data.

其中,每个用户的历史记录数据包括:每个用户的所有历史记录数据和每个用户在预设时间段内的历史记录数据中的至少一种;每个用户的标签数据包括:每个用户的有效标签数量和每个用户的突出标签数量中的至少一种;每个用户的属性数据包括每个用户的性别、每个用户的年龄段、每个用户的身份中的至少一种;每个用户的社交数据包括每个用户的联系人数量、每个用户的紧密联系人数量、每个用户的主动联系次数中的至少一种;每个用户的紧密联系人为与每个用户的联系次数大于或等于预设次数阈值的联系人。Wherein, the historical record data of each user includes: at least one of all historical record data of each user and historical record data of each user within a preset time period; the tag data of each user includes: each user At least one of the number of effective tags and the number of prominent tags for each user; the attribute data of each user includes at least one of the gender of each user, the age group of each user, and the identity of each user; The social data of a user includes at least one of the number of contacts of each user, the number of close contacts of each user, and the number of active contacts of each user; the close contacts of each user are the number of contacts with each user Contacts greater than or equal to the preset threshold.

可选的,确定每个用户组对应的推荐策略,包括:Optionally, determine the recommendation strategy corresponding to each user group, including:

确定每个用户组的数据特征值所属的特征值范围;Determine the characteristic value range to which the data characteristic value of each user group belongs;

将特征值范围对应的推荐算法作为每个用户组对应的推荐算法。The recommendation algorithm corresponding to the feature value range is used as the recommendation algorithm corresponding to each user group.

可选的,在确定每个用户组的数据特征值所属的特征值范围之前,该方法还可包括:Optionally, before determining the characteristic value range to which the data characteristic value of each user group belongs, the method may further include:

确定每个用户组的数据特征值。Determine data feature values for each user group.

可选的,每个用户组的数据特征包括以下至少一种:每个用户组的历史记录数据、每个用户组的标签数据、每个用户组的属性数据和每个用户组的社交数据;每个用户组的数据特征值包括:每个用户组的每种数据特征对应的特征值。Optionally, the data characteristics of each user group include at least one of the following: historical record data of each user group, label data of each user group, attribute data of each user group, and social data of each user group; The data characteristic value of each user group includes: a characteristic value corresponding to each data characteristic of each user group.

可选的,将特征值范围对应的推荐算法作为每个用户组对应的推荐算法包括:Optionally, using the recommendation algorithm corresponding to the feature value range as the recommendation algorithm corresponding to each user group includes:

根据每个用户组的数据特征值所属的特征值范围,确定预设的推荐算法库中特征值范围对应的推荐算法,将确定的推荐算法作为每个用户组对应的推荐算法。According to the feature value range to which the data feature value of each user group belongs, the recommendation algorithm corresponding to the feature value range in the preset recommendation algorithm library is determined, and the determined recommendation algorithm is used as the recommendation algorithm corresponding to each user group.

可选的,若每个用户组对应的推荐算法包括多个推荐算法;推荐策略包括:每个用户组对应的N种融合推荐算法;其中,每种融合推荐算法包括多个推荐算法和多个推荐算法对应的一个融合方式;Optionally, if the recommendation algorithm corresponding to each user group includes multiple recommendation algorithms; the recommendation strategy includes: N fusion recommendation algorithms corresponding to each user group; wherein, each fusion recommendation algorithm includes multiple recommendation algorithms and multiple A fusion method corresponding to the recommendation algorithm;

确定每个用户组对应的推荐策略,可包括:Identify recommended strategies for each user group, which may include:

根据每个用户组对应的推荐算法,和,预设的融合方式库中每个融合方式对推荐算法的使用条件,从推荐算法库中确定符合每个用户组对应的推荐算法的使用条件的N个融合方式为多个推荐算法对应的N个融合方式;According to the recommendation algorithm corresponding to each user group, and, the usage conditions of each fusion method in the preset fusion method library for the recommendation algorithm, determine N from the recommendation algorithm library that meets the usage conditions of the recommendation algorithm corresponding to each user group The fusion methods are N fusion methods corresponding to multiple recommendation algorithms;

根据N个融合方式,分别对多个推荐算法进行融合,获得N种融合推荐算法。According to the N fusion methods, multiple recommendation algorithms are respectively fused to obtain N fusion recommendation algorithms.

可选的,根据每个用户组对应的推荐策略生成每个用户组的推荐信息,包括:Optionally, generate recommendation information for each user group according to the recommendation strategy corresponding to each user group, including:

确定每个用户组对应的每种融合推荐算法的推荐准确度;Determine the recommendation accuracy of each fusion recommendation algorithm corresponding to each user group;

从N个融合推荐算法中确定最高推荐准确度的融合推荐算法,作为每个用户组的最优融合推荐算法;Determine the fusion recommendation algorithm with the highest recommendation accuracy from N fusion recommendation algorithms as the optimal fusion recommendation algorithm for each user group;

根据每个用户组的最优融合推荐算法,生成每个用户组的推荐信息。According to the optimal fusion recommendation algorithm of each user group, the recommendation information of each user group is generated.

本发明实施例提供的信息推荐算法,通过确定每个用户组的最优融合推荐算法,继而根据该最优融合推荐算法生成该每个用户组的推荐信息,可使得每个用户组的信息推荐准确度最大化,保证信息推荐准确度。The information recommendation algorithm provided by the embodiment of the present invention, by determining the optimal fusion recommendation algorithm for each user group, and then generating the recommendation information for each user group according to the optimal fusion recommendation algorithm, can make the information recommendation for each user group Maximize the accuracy and ensure the accuracy of information recommendation.

第二方面,提供一种服务器,包括用于执行第一方面中的方法的模块。In a second aspect, a server is provided, including a module for executing the method in the first aspect.

第三方面,提供一种服务器,包括处理器,存储器,通信接口和总线,处理器与存储器、通信接口通过总线连接;存储器用于存储指令;处理器用于执行该指令;当处理器执行存储器存储的指令时,使得处理器执行第一方面所述的方法。In a third aspect, a server is provided, including a processor, a memory, a communication interface and a bus, and the processor is connected to the memory and the communication interface through the bus; the memory is used to store instructions; the processor is used to execute the instructions; when the processor executes the memory storage instructions, causing the processor to execute the method described in the first aspect.

第四方面,提供了一种计算机可读存储介质,其中存储有可执行的程序代码,该程序代码用以实现第一方面所述的方法。In a fourth aspect, a computer-readable storage medium is provided, in which executable program code is stored, and the program code is used to implement the method described in the first aspect.

本发明实施例提供的信息推荐方法及服务器,可通过对多个用户进行分组,获得至少两个用户组,确定该每个用户组对应的推荐策略,根据该每个用户组对应的推荐策略生成该每个用户组的推荐信息,并向该每个用户组中的至少一个用户对应的终端发送该推荐信息。由于该信息推荐方法可针对划分后的每个用户组确定推荐策略,继而确定该每个用户组的推荐信息,能够体现不同用户组间的用户个性,保证信息推荐的准确度。The information recommendation method and server provided by the embodiments of the present invention can obtain at least two user groups by grouping multiple users, determine the recommendation strategy corresponding to each user group, and generate the recommendation information of each user group, and send the recommendation information to a terminal corresponding to at least one user in each user group. Because the information recommendation method can determine the recommendation strategy for each divided user group, and then determine the recommendation information of each user group, it can reflect the user personality among different user groups and ensure the accuracy of information recommendation.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without any creative effort.

图1为本发明实施例提供的信息推荐方法适用的信息推荐系统的架构图;FIG. 1 is an architecture diagram of an information recommendation system applicable to an information recommendation method provided by an embodiment of the present invention;

图2为本发明实施例提供的服务器对应的计算机结构示意图;FIG. 2 is a schematic structural diagram of a computer corresponding to a server provided by an embodiment of the present invention;

图3为本发明实施例提供的一种信息推荐方法的流程图;FIG. 3 is a flowchart of an information recommendation method provided by an embodiment of the present invention;

图4为本发明实施例提供的另一种信息推荐方法的流程图;FIG. 4 is a flowchart of another information recommendation method provided by an embodiment of the present invention;

图5为本发明实施例提供的一个用户组、融合推荐策略、数据组与推荐信息的推荐准确度的对应关系图;Fig. 5 is a correspondence diagram of a user group, fusion recommendation strategy, data group and recommendation accuracy of recommendation information provided by an embodiment of the present invention;

图6为本发明实施例提供的服务器的结构示意图;FIG. 6 is a schematic structural diagram of a server provided by an embodiment of the present invention;

图7为本发明实施例提供的计算机可读存储介质的结构示意图。FIG. 7 is a schematic structural diagram of a computer-readable storage medium provided by an embodiment of the present invention.

具体实施方式detailed description

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

本发明各实施例提供的信息推荐方法可适用于互联网技术领域,如电子商务或社交软件等领域中的信息推荐系统。图1为本发明实施例提供的信息推荐方法适用的信息推荐系统的架构图。如图1所示,信息推荐系统中可包括服务器101和至少一个终端102。服务器101可以通过有线网络或无线网络与该至少一个终端102连接。该服务器101可以可执行本发明实施例提供的信息推荐方法为各终端102推荐对应的信息。服务器101可以为一个独立的服务器,也可以为若干服务器组成的服务器集群,或者是一个数据中心的服务器。该服务器101例如可以为信息推荐系统中业务服务器。终端102可以将服务器推荐的信息呈现给用户,终端101还可根据用户指令对该推荐信息进行对应操作,如响应或是不响应。该终端101例如可以为智能手机、平板计算机、电子阅读器、笔记本计算机或台式计算机等。The information recommendation method provided by each embodiment of the present invention is applicable to information recommendation systems in the field of Internet technology, such as e-commerce or social software. FIG. 1 is a structural diagram of an information recommendation system to which an information recommendation method provided by an embodiment of the present invention is applicable. As shown in FIG. 1 , the information recommendation system may include a server 101 and at least one terminal 102 . The server 101 may be connected to the at least one terminal 102 through a wired network or a wireless network. The server 101 may execute the information recommendation method provided by the embodiment of the present invention to recommend corresponding information for each terminal 102 . The server 101 may be an independent server, or a server cluster composed of several servers, or a server in a data center. The server 101 may be, for example, a service server in an information recommendation system. The terminal 102 can present the information recommended by the server to the user, and the terminal 101 can also perform corresponding operations on the recommended information according to user instructions, such as responding or not responding. The terminal 101 can be, for example, a smart phone, a tablet computer, an e-reader, a notebook computer or a desktop computer, and the like.

图2为本发明实施例提供的服务器对应的计算机结构示意图。如图2所示,服务器200可包括:处理器201、存储器202、网络接口203和通信总线204。处理器201、存储器202和网络接口203通过通信总线204进行连接通信。FIG. 2 is a schematic structural diagram of a computer corresponding to a server provided by an embodiment of the present invention. As shown in FIG. 2 , the server 200 may include: a processor 201 , a memory 202 , a network interface 203 and a communication bus 204 . The processor 201 , memory 202 and network interface 203 are connected and communicated through a communication bus 204 .

其中,处理器201,可以为中央处理器(Central Processing Unit,简称CPU)。处理器201还可以为其他通用处理器、数字信号处理器(Digital SignalProcessing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。Wherein, the processor 201 may be a central processing unit (Central Processing Unit, CPU for short). The processor 201 may also be other general-purpose processors, digital signal processors (Digital Signal Processing, DSP for short), application specific integrated circuits (Application Specific Integrated Circuit, ASIC for short), field-programmable gate arrays (Field-Programmable Gate Array, FPGA for short), ) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc. A general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.

存储器202,可以包括易失性存储器(volatile memory),例如随机存取存储器(Random-Access Memory,简称RAM);存储器202也可以包括非易失性存储器(Non-volatile memory),例如只读存储器(Read-Only Memory,简称ROM),快闪存储器(Flash Memory),硬盘(Hard Disk Drive,简称HDD)或固态硬盘(Solid-State Drive,简称SSD);存储器202还可以包括上述种类的存储器的组合。The memory 202 may include a volatile memory (volatile memory), such as a random access memory (Random-Access Memory, RAM for short); the memory 202 may also include a non-volatile memory (Non-volatile memory), such as a read-only memory (Read-Only Memory, be called for short ROM), flash memory (Flash Memory), hard disk (Hard Disk Drive, be called for short HDD) or solid state drive (Solid-State Drive, be called for short SSD); Memory 202 can also comprise the memory of above-mentioned kind combination.

网络接口203,可以为接口电路,用于收发信息,网络接口203接收外部设备发送的信息后,给处理器201处理;另外,网络接口203可以通过有线通信或无线通信与网络和其他设备通信。The network interface 203 can be an interface circuit for sending and receiving information. After the network interface 203 receives the information sent by the external device, it can be processed by the processor 201; in addition, the network interface 203 can communicate with the network and other devices through wired communication or wireless communication.

该图2的服务器200可以为上述图1中信息推荐系统中的服务器101。服务器200可通过处理器201确定推荐信息,通过网络接口203将推荐信息发送至用户对应的终端。The server 200 in FIG. 2 may be the server 101 in the above-mentioned information recommendation system in FIG. 1 . The server 200 may determine the recommendation information through the processor 201, and send the recommendation information to a terminal corresponding to the user through the network interface 203.

具体可以是,处理器201可以通过调用存储器202中存储的程序或指令,执行本发明各实施例提供的信息推荐方法,从而获得各用户组的推荐信息,并将该各用户组的推荐信息通过通信总线204传输至网络接口203。网络接口203可将该各用户组的推荐信息发送至该各用户组的用户对应的终端。Specifically, the processor 201 may execute the information recommendation method provided by each embodiment of the present invention by calling the program or instruction stored in the memory 202, thereby obtaining the recommendation information of each user group, and passing the recommendation information of each user group through The communication bus 204 transmits to the network interface 203 . The network interface 203 may send the recommendation information of each user group to terminals corresponding to the users of each user group.

图3为本发明实施例提供的一种信息推荐方法的流程图。该方法由如上所述的服务器200执行。如图3所示,该方法可包括:FIG. 3 is a flow chart of an information recommendation method provided by an embodiment of the present invention. The method is performed by the server 200 as described above. As shown in Figure 3, the method may include:

S301、对多个用户进行分组,获得至少两个用户组;其中,每个用户组包括至少一个用户。S301. Group a plurality of users to obtain at least two user groups; where each user group includes at least one user.

具体地,该多个用户可以为大用户群体中的多个用户。该大用户群体可以为未进行类型划分的用户群,该大用户群例如可以为用户个数大于1000的用户群。服务器可以是采用聚类算法(Clustering Algorithm),按照分组数目,根据该多个用户的数据对该多个用户进行分组。其中,同一用户组中用户数据的相似度在一个预设范围内。也就是说,同一用户组中用户的数据相似度较高,不同用户组的用户的数据相似度较低。该聚类算法例如可以为K-means聚类算法。该分组数目,即分组后的用户组个数,可以为预设的分组数目,也可以为服务器根据预设分组数目区间采用贝叶斯信息准则所确定的最优分组数目。Specifically, the multiple users may be multiple users in a large user group. The large user group may be a user group that has not been divided into types, and the large user group may be, for example, a user group with more than 1,000 users. The server may use a clustering algorithm (Clustering Algorithm) to group the multiple users according to the data of the multiple users according to the number of groups. Wherein, the similarity of user data in the same user group is within a preset range. That is to say, the data similarity of users in the same user group is high, and the data similarity of users of different user groups is low. The clustering algorithm may be, for example, a K-means clustering algorithm. The number of groups, that is, the number of user groups after grouping, may be a preset number of groups, or may be an optimal number of groups determined by the server using Bayesian information criterion according to the interval of the preset number of groups.

S302、确定该每个用户组对应的推荐策略,该推荐策略包括:该每个用户组对应的推荐算法。S302. Determine a recommendation strategy corresponding to each user group, where the recommendation strategy includes: a recommendation algorithm corresponding to each user group.

S303、根据该每个用户组对应的推荐策略生成该每个用户组的推荐信息。S303. Generate recommendation information for each user group according to the recommendation policy corresponding to each user group.

具体地,服务器可以是根据该每个用户组中用户的数据确定该每个用户组对应的推荐策略。同一用户组对应相同的推荐策略,不同用户组对应不同的推荐策略。该推荐策略用以生成推荐信息。Specifically, the server may determine the recommendation policy corresponding to each user group according to the data of the users in each user group. The same user group corresponds to the same recommendation strategy, and different user groups correspond to different recommendation strategies. The recommendation strategy is used to generate recommendation information.

其中,该每个用户组对应的推荐算法可以从预设的推荐算法库中选择的。该预设的推荐算法库可包括基于内容(Content-Based)的推荐算法、基于用户(User-Based)的协同过滤推荐算法、基于条目(Item-Based)的协同过滤推荐算法、基于标签的推荐算法、基于矩阵分解的协同过滤推荐算法、基于用户属性的推荐算法和基于社交的推荐算法等算法中至少一个推荐算法。Wherein, the recommendation algorithm corresponding to each user group may be selected from a preset recommendation algorithm library. The preset recommendation algorithm library can include content-based (Content-Based) recommendation algorithms, user-based (User-Based) collaborative filtering recommendation algorithms, item-based (Item-Based) collaborative filtering recommendation algorithms, tag-based recommendation algorithms At least one recommendation algorithm among algorithm, collaborative filtering recommendation algorithm based on matrix decomposition, recommendation algorithm based on user attributes, and recommendation algorithm based on social interaction.

举例来说,该基于内容的推荐算法,例如可以是根据用户在当前时间之前感兴趣的业务内容确定推荐信息。若该每个用户组对应的推荐策略包括:基于内容的推荐算法,则该每个用户组的推荐信息可包括:与该每个用户组中各用户在当前时间之前感兴趣的业务内容相似度较高的业务内容。该业务内容例如可以包括:用户通过文字、图片或视频形式表示的该用户所喜欢的业务条目(Item)。For example, the content-based recommendation algorithm may determine recommendation information according to the service content that the user is interested in before the current time. If the recommendation strategy corresponding to each user group includes: a content-based recommendation algorithm, then the recommendation information for each user group may include: similarity to the business content that each user in each user group is interested in before the current time Higher business content. The service content may include, for example: the user's favorite service item (Item) represented by the user in the form of text, picture or video.

该基于用户的协同过滤推荐算法,例如可以是根据多个用户在当前时间之前感兴趣的业务内容,确定该用户与其他用户的相似度,并将与该用户的相似度较高的其他用户感兴趣的业务内容确定为该用户的推荐信息。举例来说,若用户A感兴趣的业务内容包括物品A和物品C,用户B感兴趣的业务内容包括物品B,用户C感兴趣的业务内容包括物品A、物品C和物品D,则用户C与用户A的相似度较高,该用户A的推荐信息可包括该用户C感兴趣的业务内容,如物品D。若该每个用户组的推荐策略包括:基于用户的协同过滤推荐算法,则该每个用户组的推荐信息可包括与该每个用户组中各用户的相似度较高的其他用户感兴趣的业务内容。该业务内容例如可以包括:用户通过文字、图片或视频形式表示的该用户所喜欢的业务条目,该用户与其他用户的相似度可以为该用户与该其他用户的喜好相似度。The user-based collaborative filtering recommendation algorithm can, for example, determine the similarity between the user and other users according to the business content that multiple users are interested in before the current time, and determine the similarity between the user and other users with high similarity to the user. The business content of interest is determined as the recommendation information of the user. For example, if the business content that user A is interested in includes item A and item C, the business content that user B is interested in includes item B, and the business content that user C is interested in includes item A, item C, and item D, then user C The similarity with user A is high, and the recommendation information of user A may include service content, such as item D, that user C is interested in. If the recommendation strategy for each user group includes: a user-based collaborative filtering recommendation algorithm, then the recommendation information for each user group may include information that is of interest to other users with a higher similarity with each user in each user group business content. The service content may include, for example: the user's favorite service items represented by the user in the form of text, pictures or videos, and the similarity between the user and other users may be the similarity between the user and the other users' preferences.

该基于条目的协同过滤推荐,例如可以是根据多个用户在当前时间之前感兴趣的业务内容,确定与用户感兴趣的业务内容的相似度较高的业务内容,并将该相似度较高的业务内容确定为该用户的推荐信息。举例来说,若用户A感兴趣的业务内容包括物品A,用户B感兴趣的业务内容包括物品A、物品B和物品C,用户C感兴趣的业务内容包括物品A和物品C,则与物品A的相似度较高的业务内容为物品C,该用户A的推荐信息可包括该物品C。若该每个用户组的推荐策略包括:基于条目的协同过滤推荐算法,则该每个用户组的推荐信息可包括:与该每个用户组中各用户感兴趣的业务内容相似度较高的其他业务内容。The item-based collaborative filtering recommendation can be, for example, according to the business content that multiple users are interested in before the current time, determine the business content with high similarity with the business content that the user is interested in, and use the high similarity The service content is determined as the user's recommended information. For example, if the business content that user A is interested in includes item A, the business content that user B is interested in includes item A, item B, and item C, and the business content that user C is interested in includes item A and item C, then the same as item The service content with a high similarity to A is item C, and the recommendation information of the user A may include the item C. If the recommendation strategy for each user group includes: an item-based collaborative filtering recommendation algorithm, then the recommendation information for each user group may include: information with a high similarity to the business content that each user in each user group is interested in Other business content.

该基于标签的推荐算法,例如可以是根据用户在当前时间之前感兴趣的业务内容,确定该用户感兴趣的业务内容标签,并将具有该业务内容标签的业务内容确定为该用户的推荐信息。该业务内容标签例如可以为文字表述性标签,如“浪漫”、“80年代”等等。若该每个用户组的推荐策略包括:基于标签的推荐算法,则该每个用户组的推荐信息可包括:具有该每个用户组中各用户的业务内容标签的业务内容。The label-based recommendation algorithm may, for example, determine the service content label that the user is interested in according to the service content that the user is interested in before the current time, and determine the service content with the service content label as the user's recommendation information. The service content tag may be, for example, a textual expression tag, such as "romantic", "80s" and so on. If the recommendation strategy for each user group includes: a tag-based recommendation algorithm, then the recommendation information for each user group may include: service content with a service content tag of each user in each user group.

该基于矩阵分解的推荐算法,例如可以是在上述基于用户或基于条目的协同过滤的推荐算法中加入矩阵分解技术,对该多个用户在当前时间之前感兴趣的业务内容组成的矩阵进行分解,获得用户信息和业务内容信息,继而根据用户信息和/或业务内容信息确定用户的的推荐信息,可解决数据稀疏性问题。The recommendation algorithm based on matrix decomposition may, for example, be to add matrix decomposition technology to the above-mentioned user-based or item-based collaborative filtering recommendation algorithm, and decompose the matrix composed of the business content that the multiple users are interested in before the current time, Obtaining user information and business content information, and then determining user recommendation information based on user information and/or business content information can solve the problem of data sparsity.

该基于用户属性的推荐算法,例如可以是将用户属性对应的所有用户感兴趣的业务内容确定为该用户的推荐信息。若该每个用户组的推荐策略包括:基于用户属性的推荐算法,则该每个用户组的推荐信息可包括:具有该每个用户组中各用户的属性对应的所有用户感兴趣的业务内容。The recommendation algorithm based on user attributes may, for example, determine all the service content that the user is interested in corresponding to the user attributes as the user's recommendation information. If the recommendation strategy for each user group includes: a recommendation algorithm based on user attributes, then the recommendation information for each user group may include: business content of interest to all users corresponding to the attributes of each user in each user group .

该基于社交的推荐算法,例如可以是根据该用户的社交情况,将该社交情况对应的所有用户感兴趣的业务内容确定为该用户的推荐信息。若该每个用户组的推荐策略包括:基于社交的推荐算法,则该每个用户组的推荐信息可包括:具有该每个用户组中各用户的社交情况对应的所有用户感兴趣的业务内容。The social-based recommendation algorithm may, for example, determine the service content of interest to all users corresponding to the social situation as the user's recommendation information according to the user's social situation. If the recommendation strategy for each user group includes: a social-based recommendation algorithm, then the recommendation information for each user group may include: business content of interest to all users corresponding to the social status of each user in each user group .

S304、向该至少一个用户对应的终端发送该推荐信息。S304. Send the recommendation information to a terminal corresponding to the at least one user.

具体地,服务器可以是通过网络接口将该推荐信息发送至该至少一个用户对应的终端。Specifically, the server may send the recommendation information to a terminal corresponding to the at least one user through a network interface.

本发明实施例提供的信息推荐方法,可通过对多个用户进行分组,获得至少两个用户组,确定该每个用户组对应的推荐策略,根据该每个用户组对应的推荐策略生成该每个用户组的推荐信息,并向该每个用户组中的至少一个用户对应的终端发送该推荐信息。由于该信息推荐方法可针对划分后的每个用户组确定推荐策略,继而确定该每个用户组的推荐信息,能够体现不同用户组间的用户个性,保证信息推荐的准确度。The information recommendation method provided by the embodiment of the present invention can obtain at least two user groups by grouping a plurality of users, determine the recommendation strategy corresponding to each user group, and generate each user group according to the recommendation strategy corresponding to each user group. recommend information for each user group, and send the recommend information to the terminal corresponding to at least one user in each user group. Because the information recommendation method can determine the recommendation strategy for each divided user group, and then determine the recommendation information of each user group, it can reflect the user personality among different user groups and ensure the accuracy of information recommendation.

可选的,如上实施例所述的S301中对多个用户进行分组获得至少两个用户组,可以包括:Optionally, grouping multiple users in S301 as described in the above embodiment to obtain at least two user groups may include:

根据该多个用户中每个用户的数据特征,对该多个用户进行分组,获得该至少两个用户组。According to the data feature of each of the multiple users, the multiple users are grouped to obtain the at least two user groups.

可选的,该每个用户的数据特征可包括:至少一种数据特征。Optionally, the data feature of each user may include: at least one data feature.

如上所述的步骤中根据该多个用户中每个用户的数据特征,对该多个用户进行分组,获得该至少两个用户组可以包括:In the steps described above, according to the data characteristics of each of the multiple users, the multiple users are grouped, and obtaining the at least two user groups may include:

根据该每个用户的该至少一种数据特征,按照预设的数据特征顺序,对该多个用户进行分组,得到该至少两个用户组。According to the at least one data feature of each user, the multiple users are grouped according to a preset sequence of data features to obtain the at least two user groups.

具体地,服务器可以是根据该每个用户的该至少一种数据特征,按照该预设的数据特征顺序,对该多个用户进行逐级分组,继而获得该至少两个用户组。其中,根据该至少一种数据特征对该多个用户进行分组可以是采用聚类算法进行;根据不同数据特征进行分组所采用的聚类群分算法可以相同,也可不同。Specifically, the server may, according to the at least one data feature of each user, group the multiple users level by level according to the preset sequence of data features, and then obtain the at least two user groups. Wherein, the grouping of the multiple users according to the at least one data feature may be performed by using a clustering algorithm; the clustering algorithms used for grouping according to different data features may be the same or different.

举例来说,若该每个用户的数据特征包括3种数据特征;预设的数据特征顺序可以为数据特征1、数据特征2和数据特征3。那么,服务器可以是根据该预设的数据特征顺序,首先根据数据特征1对该多个用户进行一级分组,继而根据该数据特征2对该一级分组后的用户组进行二级分组,并根据该数据特征3对该二级分组后的用户组进行三级分组,继而获得该至少两个用户组。For example, if the data features of each user include 3 data features; the preset sequence of data features may be data feature 1, data feature 2, and data feature 3. Then, the server may, according to the preset sequence of data characteristics, first classify the plurality of users according to data characteristic 1, and then perform secondary grouping on the first-level grouped user groups according to the data characteristic 2, and According to the data characteristic 3, the user group after the second-level grouping is grouped into a third-level group, and then the at least two user groups are obtained.

以下以服务器根据一种数据特征采样聚类算法进行一级分组为例进行说明。若该一种数据特征包括:多种统计数据,则该服务器可根据这6种统计数据,使用聚类算法如K-means算法进行分组,从而将该多个用户划分为多个用户组。具体地,该服务器根据这6种统计数据使用K-means算法进行分组,具体过程可如下所示:In the following, the server performs one-level grouping according to a data feature sampling clustering algorithm as an example for illustration. If the one data characteristic includes: various statistical data, the server may use a clustering algorithm such as the K-means algorithm to group the multiple users according to the six statistical data, thereby dividing the multiple users into multiple user groups. Specifically, the server uses the K-means algorithm to group according to the six statistical data, and the specific process can be as follows:

(1)随机选取K个用户的数据特征作为质心,K为预设的分组数目;(1) Randomly select the data features of K users as the centroid, and K is the preset number of groups;

(2)测量剩余的每个用户到每个质心的距离,并把该每个用户归到最近的质心对应的用户组;(2) Measure the distance from each remaining user to each centroid, and classify each user into the user group corresponding to the nearest centroid;

(3)重新计算已经得到的各个用户组的质心;(3) recalculate the centroid of each user group that has been obtained;

(4)迭代2~3步直至新的质心与原质心相等或小于预设阈值。(4) Iterate 2-3 steps until the new centroid is equal to the original centroid or less than the preset threshold.

可选的,该每个用户的数据特征可包括以下至少一种:该每个用户的历史记录数据、该每个用户的标签数据、该每个用户的属性数据和该每个用户的社交数据。Optionally, the data characteristics of each user may include at least one of the following: historical record data of each user, label data of each user, attribute data of each user, and social data of each user .

具体地,如上所述的步骤中根据该每个用户的该至少一种数据特征,按照预设的数据特征顺序,对该多个用户进行分组,得到该至少两个用户组可以包括:根据用户的所有历史记录数据,对多个用户进行一级聚类,对该一级聚类后的用户组根据用户的近期历史记录数据进行二级聚类,对该二级聚类后的用户组根据用户的标签数据进行三级聚类,对该三级聚类后的用户组根据用户的属性数据进行四级聚类,对该四级聚类后的用户组根据用户的社交数据进行最后一次的聚类,得到至少两个用户组。Specifically, according to the at least one data characteristic of each user in the above-mentioned steps, the multiple users are grouped according to the preset order of data characteristics, and the obtaining of the at least two user groups may include: according to the user All historical record data of multiple users are clustered at the first level, and the user groups after the first-level clustering are clustered at the second level based on the recent historical record data of the users. The user groups after the second-level clustering are clustered according to Three-level clustering is performed on the user's label data, four-level clustering is performed on the user group after the three-level clustering according to the user's attribute data, and the last clustering is performed on the user group after the four-level clustering based on the user's social data. Clustering to get at least two user groups.

其中,该每个用户的历史记录数据包括:该每个用户的所有历史记录数据和该每个用户在预设时间段内的历史记录数据中的至少一种。Wherein, the historical record data of each user includes: at least one of all historical record data of each user and historical record data of each user within a preset time period.

该每个用户的标签数据包括:该每个用户的有效兴趣标签数量和该每个用户的突出兴趣标签数量中的至少一种。The tag data of each user includes: at least one of the number of valid interest tags for each user and the number of prominent interest tags for each user.

该每个用户的属性数据包括该每个用户的性别、该每个用户的年龄段、该每个用户的身份中的至少一种。The attribute data of each user includes at least one of the gender of each user, the age group of each user, and the identity of each user.

该每个用户的社交数据包括该每个用户的联系人数量、该每个用户的紧密联系人数量、该每个用户的主动联系次数中的至少一种;该每个用户的紧密联系人为与该每个用户的联系次数大于或等于预设次数阈值的联系人。The social data of each user includes at least one of the number of contacts of each user, the number of close contacts of each user, and the number of active contacts of each user; the close contacts of each user are The contacts whose contact times of each user are greater than or equal to the preset times threshold.

具体地,该每个用户的所有历史记录数据例如可以为该每个用户从业务注册时间开始至当前时间的所有历史记录数据。该每个用户在预设时间段内的历史记录数据例如可以为该每个用户在距离当前时间最近的预设段内的历史记录数据,如该每个用户在距离当前时间最近的一周或是一个月内的历史记录数据。举例来说,若该信息推荐方法应用于电子商务领域的信息推荐系统中,则该每个用户的所有历史记录数据可包括:该每个用户的浏览历史记录数据、该每个用户的购买历史记录数据、该每个用户的收藏历史记录数据等至少一种。其中,该每个用户的浏览历史记录数据包括该每个用户的浏览物品的历史记录数据,或,该每个用户的浏览物品的条目的历史记录数据。该每个用户的购买历史记录数据包括:该每个用户所购买物品的历史记录数据,或,该每个用户所购买物品的条目的历史记录数据。该每个用户的收藏历史记录数据包括:该每个用户的收藏物品的历史记录数据,或,该每个用户的收藏物品的条目的历史记录数据。其中,该每个用户所浏览物品的历史记录数据,与,该每个用户所浏览物品的条目的历史记录数据,不同。该每个用户所收藏物品的历史记录数据,与,该每个用户所收藏物品的条目的历史记录数据,不同。该每个用户所购买物品的历史记录数据,与,该每个用户所购买物品的条目的历史记录数据,不同。以购买物品为例,如果一个用户多次购买同一个物品,则该用户的购买记录总数大于购买物品的条目数量。Specifically, all historical record data of each user may be, for example, all historical record data of each user from the service registration time to the current time. The historical record data of each user in the preset period of time may be, for example, the historical record data of each user in the preset period closest to the current time, such as the week or week closest to the current time for each user. Historical data for one month. For example, if the information recommendation method is applied to an information recommendation system in the field of e-commerce, then all historical record data of each user may include: browsing history record data of each user, purchase history of each user At least one of record data, each user's favorite history record data, and the like. Wherein, the browsing history data of each user includes historical record data of items browsed by each user, or historical record data of entries of items browsed by each user. The purchase history data of each user includes: historical record data of items purchased by each user, or historical record data of items purchased by each user. The collection history record data of each user includes: the history record data of each user's collection items, or the history record data of the entries of each user's collection items. Wherein, the historical record data of items browsed by each user is different from the historical record data of items browsed by each user. The historical record data of each user's favorite items is different from the historical record data of each user's favorite item entries. The historical record data of items purchased by each user is different from the historical record data of items purchased by each user. Taking the purchase of items as an example, if a user purchases the same item multiple times, the total number of purchase records of the user is greater than the number of items purchased.

该每个用户的有效兴趣标签数量可以为在预设有效期限内该每个用户的兴趣标签数量;该每个用户的突出兴趣标签数量可以为在该每个用户的有效兴趣标签内,标签权重大于预设权重值的标签数量。每个标签可具有一个标签权重,该标签权重可用于表示该每个标签对用户的重要性。该标签权重越大,则该每个标签对该用户的重要性越大。该每个标签的标签权重可根据时间的变化进行调整。例如,用户观看的某个影片的类型的标签是一个月前生成的,后来用户不看这个类型的影片了,这个权重应该被调低。The number of effective interest tags for each user can be the number of interest tags for each user within the preset validity period; the number of prominent interest tags for each user can be the tag weight of each user's effective interest tags The number of labels greater than the preset weight value. Each tag can have a tag weight, which can be used to indicate the importance of each tag to the user. The greater the weight of the label, the greater the importance of each label to the user. The label weight of each label can be adjusted according to the change of time. For example, if the type tag of a movie watched by the user was generated a month ago, and the user no longer watches this type of movie, the weight should be lowered.

该每个用户的性别可包括男或女。该每个用户的年龄段例如可包括:儿童、年轻人、中年人和老人中任一。该每个用户的身份可包括:学生、家庭主妇、上班族中任一。The gender of each user may include male or female. The age group of each user may include, for example: any one of children, young people, middle-aged people and old people. The identity of each user may include: any one of a student, a housewife, and an office worker.

该每个用户的联系人数量例如可以为该每个用户的通讯录或社交软件中的联系人总数量。该每个用户的紧密联系人为该每个用户的手机通讯录或社交软件中与该每个用户的联系次数大于或等于预设次数阈值的联系人。该每个用户的联系人数量、该每个用户的紧密联系人数量及该每个用户的主动联系次数可以为通过该每个用户的通信记录或社交记录中获得。The number of contacts of each user may be, for example, the total number of contacts in each user's address book or social software. The close contact of each user is a contact in each user's mobile phone address book or social software whose number of contacts with the user is greater than or equal to a preset number of times threshold. The number of contacts of each user, the number of close contacts of each user, and the number of active contacts of each user may be obtained from communication records or social records of each user.

图4为本发明实施例提供的另一种信息推荐方法的流程图。如图4所示,该方法在上述实施例所述的方法的基础上,其中S302中确定该每个用户组对应的推荐策略,可以包括:FIG. 4 is a flowchart of another information recommendation method provided by an embodiment of the present invention. As shown in FIG. 4, the method is based on the methods described in the above-mentioned embodiments, wherein determining the recommendation strategy corresponding to each user group in S302 may include:

S401、确定该每个用户组的数据特征值所属的特征值范围。S401. Determine the characteristic value range to which the data characteristic value of each user group belongs.

S402、将该特征值范围对应的推荐算法作为该每个用户组对应的推荐算法。S402. Use the recommendation algorithm corresponding to the feature value range as the recommendation algorithm corresponding to each user group.

具体地,若该每个用户组中每个用户的数据特征包括至少一种数据特征,则该每个用户组的数据特征值包括:至少一种数据特征对应的特征值。那么S401中可以是确定该至少一种数据特征中每种数据特征对应的数据特征值所属的特征值范围,该S402中可以是将该至少一种数据特征中各数据特征对应的数据特征值所属的特征值范围对应的推荐算法均作为该每个用户组对应的推荐算法。Specifically, if the data feature of each user in each user group includes at least one data feature, then the data feature value of each user group includes: a feature value corresponding to at least one data feature. Then in S401, it may be to determine the feature value range to which the data feature value corresponding to each data feature in the at least one data feature belongs, and in S402, it may be to determine the data feature value corresponding to each data feature in the at least one data feature. The recommendation algorithm corresponding to the range of eigenvalues is used as the recommendation algorithm corresponding to each user group.

可选的,在S401中确定该每个用户组的数据特征值所属的数据特征值范围之前,该方法还可包括:Optionally, before determining the data feature value range to which the data feature value of each user group belongs in S401, the method may further include:

S401a、确定该每个用户组的数据特征值。S401a. Determine the data characteristic value of each user group.

可选的,该每个用户组的数据特征包括以下至少一种:该每个用户组的历史记录数据、该每个用户组的标签数据、该每个用户组的属性数据和该每个用户组的社交数据;该每个用户组的数据特征值包括:该每个用户组的每种数据特征对应的特征值。Optionally, the data characteristics of each user group include at least one of the following: historical record data of each user group, label data of each user group, attribute data of each user group, and each user group The social data of the group; the data characteristic value of each user group includes: the characteristic value corresponding to each data characteristic of each user group.

具体地,若该每个用户组的数据特征包括以下至少一种:该每个用户组的历史记录数据、该每个用户组的标签数据和该每个用户组的社交数据,则该每个用户组的每种数据特征对应的特征值包括:该每个用户组中所有用户的该种数据特征的平均值;若该每个用户组的数据特征包括:该每个用户组的属性数据,则该每个用户组的每种数据特征对应的特征值包括:该每个用户组中所有用户的属性数据范围。Specifically, if the data features of each user group include at least one of the following: historical record data of each user group, label data of each user group, and social data of each user group, then each The characteristic value corresponding to each data feature of the user group includes: the average value of the data feature of all users in each user group; if the data feature of each user group includes: the attribute data of each user group, Then the characteristic value corresponding to each data characteristic of each user group includes: the attribute data range of all users in each user group.

举例来说,若该每个用户组的数据特征包括该每个用户组的历史记录数据,则该每个用户组的历史记录数据的特征值为该每个用户组中所有用户的历史记录数据的平均值。该每个用户组的历史记录数据包括:该每个用户组的所有历史数据和该每个用户组在预设时间段内所有历史记录数据中至少一种。该每个用户组的所有历史记录数据包括:该每个用户组的所有用户的浏览历史记录数据之和、该每个用户组的所有用户的购买历史记录数据之和、该每个用户组的所有用户的收藏历史记录数据之和等至少一种。For example, if the data feature of each user group includes the historical record data of each user group, then the feature value of the historical record data of each user group is the historical record data of all users in each user group average value. The historical record data of each user group includes: at least one of all historical record data of each user group and all historical record data of each user group within a preset time period. All historical record data of each user group include: the sum of browsing history record data of all users of each user group, the sum of purchase history record data of all users of each user group, and the sum of the purchase history record data of all users of each user group At least one type such as the sum of the collection history data of all users.

若该每个用户组的所有历史记录数据包括:该每个用户组的所有用户的浏览历史记录数据之和L、该每个用户组的所有用户的购买历史记录数据之和G,以及该每个用户组的所有用户的收藏历史记录数据K,若该每个用户组中的用户个数为N,那么该每个用户组的所有历史记录数据的特征值可以根据如下公式(1)获得。If all the historical data of each user group include: the sum L of browsing history data of all users of each user group, the sum G of purchase history data of all users of each user group, and the sum G of all users of each user group If the number of users in each user group is N, the feature values of all historical record data of each user group can be obtained according to the following formula (1).

(L+G+K)/N 公式(1)(L+G+K)/N formula (1)

该每个用户组在预设时间段内历史记录数据包括:该每个用户组的所有用户在该预设时间段内的浏览历史记录数据之和L’、该每个用户组的所有用户在该预设时间段内的购买历史记录数据之和G’,以及该每个用户组的所有用户在该预设时间段内的收藏历史记录数据K’,若该每个用户组中的用户个数为N,那么该每个用户组的在该预设时间段内的历史记录数据的特征值可以根据如下公式(2)获得。The historical record data of each user group within the preset time period includes: the sum L' of browsing history record data of all users of each user group within the preset time period, all users of each user group in The sum G' of purchase history data in the preset time period, and the collection history data K' of all users in each user group in the preset time period, if each user in each user group The number is N, then the feature value of the historical record data of each user group within the preset time period can be obtained according to the following formula (2).

(L’+G’+K’)/N 公式(2)(L’+G’+K’)/N formula (2)

该实施例中以该每个用户组的数据特征包括该每个用户组的历史记录数据为例进行说明,该每个用户组的标签数据的特征值及社交数据的特征值的确定方法与如上所述的确定该每个用户组的历史记录数据的特征值的过程类似,在此不再赘述。In this embodiment, the data characteristics of each user group include the historical record data of each user group as an example. The method for determining the feature value of the label data and the feature value of the social data of each user group is the same as above. The process of determining the characteristic value of the historical record data of each user group is similar and will not be repeated here.

举例来说,若该每个用户组的所有历史记录数据对应的特征值V1可以为该每个用户组的所有用户的所有历史记录数据的平均值。该每个用户组的近期历史记录数据对应的特征值V2可以为该每个用户组的所有用户的近期历史记录数据的平均值。该每个用户组的条目数据对应的特征值V3可以为该每个用户组的所有条目数据的平均值。该每个用户组的有效标签数据对应的特征值V4可以为该每个用户组的所有用户的有效标签数据的平均值。该每个用户组的突出标签数据对应的特征值V5可以为该每个用户组的所有用户的突出标签数据的平均值。该每个用户组的用户属性数据对应的特征值V6可以通过该每个用户组的所有用户的是否有用户属性数据表示。该每个用户组的联系人数量对应的特征值V7可以为该每个用户组的所有用户的联系人数量的平均值。该每个用户组的紧密联系人数量对应的特征值V8可以为该每个用户组的所有用户的紧密联系人数量的平均值。For example, if the feature value V1 corresponding to all historical record data of each user group may be an average value of all historical record data of all users in each user group. The feature value V2 corresponding to the recent historical record data of each user group may be an average value of the recent historical record data of all users in each user group. The feature value V3 corresponding to the entry data of each user group may be an average value of all the entry data of each user group. The feature value V4 corresponding to the valid tag data of each user group may be an average value of the valid tag data of all users in each user group. The feature value V5 corresponding to the prominent tag data of each user group may be an average value of the prominent tag data of all users in each user group. The feature value V6 corresponding to the user attribute data of each user group may be represented by whether all users of each user group have user attribute data. The characteristic value V7 corresponding to the number of contacts of each user group may be an average value of the number of contacts of all users in each user group. The feature value V8 corresponding to the number of close contacts of each user group may be an average value of the number of close contacts of all users in each user group.

如上所述的S401中确定该每个用户组的数据特征值所属的特征值范围可以是将该每个用户组的数据特征值与对应的特征值阈值进行比较,继而确定该每个用户组的数据特征值所属的特征值范围。该401例如可以是根据如下表1确定该每个用户组的数据特征值所属的特征值范围。The determination of the characteristic value range to which the data characteristic value of each user group belongs in S401 as described above may be to compare the data characteristic value of each user group with the corresponding characteristic value threshold, and then determine the characteristic value range of each user group. The eigenvalue range to which the data eigenvalues belong. The 401 may be, for example, determining the characteristic value range to which the data characteristic value of each user group belongs according to Table 1 below.

表1Table 1

可选的,如上所述的S402中将该特征值范围对应的推荐算法作为该每个用户组对应的推荐算法可以包括:Optionally, as the recommendation algorithm corresponding to the feature value range in S402 described above as the recommendation algorithm corresponding to each user group may include:

根据该每个用户组的数据特征值所属的特征值范围,确定预设的推荐算法库中该特征值范围对应的推荐算法,将该确定的推荐算法作为该每个用户组对应的推荐算法。According to the feature value range to which the data feature value of each user group belongs, the recommendation algorithm corresponding to the feature value range in the preset recommendation algorithm library is determined, and the determined recommendation algorithm is used as the recommendation algorithm corresponding to each user group.

具体地,该步骤中可以是根据该每个用户组的数据特征值所属的特征值范围,及该预设的推荐算法库中各算法对于数据特征的使用条件,确定该数据特征值对应的特征值范围不适用的推荐算法,继而将该预设推荐算法库中该不适用的推荐算法外的其他推荐算法确定为该特征值范围对应的推荐算法。Specifically, in this step, the feature value corresponding to the data feature value may be determined according to the feature value range to which the data feature value of each user group belongs, and the usage conditions of each algorithm in the preset recommendation algorithm library for the data feature value range is not applicable, and then other recommendation algorithms other than the inapplicable recommendation algorithm in the preset recommendation algorithm library are determined as the recommendation algorithm corresponding to the characteristic value range.

该预设的推荐算法库可包括基于内容的推荐算法、基于用户的协同过滤推荐算法、基于条目的协同过滤推荐、基于标签的推荐算法、基于矩阵分解的协同过滤推荐算法、基于用户属性的推荐算法和基于社交的推荐算法等算法中至少一个推荐算法。该基于内容的推荐算法的使用条件可以包括:每个用户组的每个用户的数据特征具有历史记录数据。该基于用户的协同过滤推荐算法和该基于条目的协同过滤推荐可包括:每个用户组的每个用户的数据特征具有历史记录数据,且,该每个用户组的历史记录数据的特征值大于或等于预设的历史记录数据特征值。该基于标签的推荐算法的使用条件包括:每个用户组的每个用户的数据特征具有标签数据。该基于矩阵分解的协同过滤推荐算法的使用条件包括:每个用户组的每个用户的数据特征具有历史记录数据。该基于用户属性的推荐算法的使用条件包括:该每个用户组的每个用户的数据特征具有属性数据。该基于社交的推荐算法的使用条件包括:该每个用户组的每个用户的数据特征具有社交数据,且,该每个用户组的社交数据的特征值大于或等于预设的社交数据特征值。The preset recommendation algorithm library can include content-based recommendation algorithm, user-based collaborative filtering recommendation algorithm, item-based collaborative filtering recommendation, tag-based recommendation algorithm, matrix decomposition-based collaborative filtering recommendation algorithm, user attribute-based recommendation At least one recommendation algorithm among algorithms such as algorithm and social-based recommendation algorithm. The conditions for using the content-based recommendation algorithm may include: the data feature of each user of each user group has historical record data. The user-based collaborative filtering recommendation algorithm and the item-based collaborative filtering recommendation may include: the data feature of each user of each user group has historical record data, and the feature value of the historical record data of each user group is greater than Or equal to the preset characteristic value of historical record data. The conditions for using the tag-based recommendation algorithm include: the data feature of each user in each user group has tag data. The conditions for using the collaborative filtering recommendation algorithm based on matrix decomposition include: the data feature of each user of each user group has historical record data. The conditions for using the recommendation algorithm based on user attributes include: the data feature of each user of each user group has attribute data. The usage conditions of the social-based recommendation algorithm include: the data feature of each user of each user group has social data, and the feature value of the social data of each user group is greater than or equal to the preset social data feature value .

可选的,如上所述步骤根据该每个用户组的数据特征值所属的特征值范围,确定预设的推荐算法库中该特征值范围对应的推荐算法,将该确定的推荐算法作为该每个用户组对应的推荐算法可以包括:Optionally, in the above steps, according to the feature value range to which the data feature value of each user group belongs, determine the recommendation algorithm corresponding to the feature value range in the preset recommendation algorithm library, and use the determined recommendation algorithm as the feature value range for each user group. The recommendation algorithm corresponding to each user group may include:

根据该每个用户组的数据特征值所属的特征值范围确定该每个用户组的类型;根据该每个用户组的类型对应的推荐算法确定该每个用户组对应的推荐算法。The type of each user group is determined according to the feature value range to which the data feature value of each user group belongs; the recommendation algorithm corresponding to each user group is determined according to the recommendation algorithm corresponding to the type of each user group.

其中,确定该每个用户组的类型可以:根据该每个用户组的数据特征值所属的特征值范围以及如上表1确定该每个用户组的类型;确定该每个用户组对应的推荐算法可以是:根据该每个用户组的类型,以及,推荐算法库中各推荐算法对用户组类型的使用条件,确定该每个用户组的类型对应的推荐算法。Wherein, determining the type of each user group may: determine the type of each user group according to the feature value range to which the data feature value of each user group belongs and Table 1 above; determine the recommendation algorithm corresponding to each user group It may be: according to the type of each user group and the usage conditions of each recommendation algorithm in the recommendation algorithm database for the type of user group, determine the recommendation algorithm corresponding to the type of each user group.

其中,该推荐算法库中各推荐算法对用户组类型使用条件例如可以为如下表2所示。Wherein, the usage conditions of each recommendation algorithm in the recommendation algorithm library for the type of user group may be, for example, as shown in Table 2 below.

表2Table 2

该表2中“X”可用于表示当前用户组类型不适用于对应推荐算法。"X" in Table 2 may be used to indicate that the current user group type is not suitable for the corresponding recommendation algorithm.

可选的,若该每个用户组对应的推荐算法包括多个推荐算法;该推荐策略包括:该每个用户组对应的N种融合推荐算法;其中,每种融合推荐算法包括该多个推荐算法和该多个推荐算法对应的一个融合方式。Optionally, if the recommendation algorithm corresponding to each user group includes multiple recommendation algorithms; the recommendation strategy includes: N kinds of fusion recommendation algorithms corresponding to each user group; wherein, each fusion recommendation algorithm includes the multiple recommendation algorithms A fusion method corresponding to the algorithm and the multiple recommendation algorithms.

可选的,如上所述的S302中确定该每个用户组对应的推荐策略,还可以包括:Optionally, determining the recommendation strategy corresponding to each user group in S302 as described above may also include:

S403、根据该每个用户组对应的推荐算法,和,预设的融合方式库中每个融合方式对推荐算法的使用条件,从该推荐算法库中确定符合该每个用户组对应的推荐算法的使用条件的N个融合方式为该多个推荐算法对应的N个融合方式。S403. According to the recommendation algorithm corresponding to each user group, and, the use conditions of each fusion method for the recommendation algorithm in the preset fusion method library, determine the recommendation algorithm corresponding to each user group from the recommendation algorithm library The N fusion ways of the usage conditions are the N fusion ways corresponding to the plurality of recommendation algorithms.

具体地,该预设的融合方式库可包括:加权型融合方式、交叉型融合方式、分级型融合方式及瀑布型融合方式中至少一个融合方式。Specifically, the preset fusion method library may include: at least one fusion method among a weighted fusion method, a crossover fusion method, a hierarchical fusion method, and a waterfall fusion method.

其中,该加权型融合方式,可以是通过对根据不同推荐算法所确定的推荐信息的评分进行加权,并将该加权后的推荐信息进行排序,确定该加权后的推荐信息的优先级,继而根据加权后的推荐信息的优先级,确定发送至每个用户组对应的推荐信息。其中,该加权采用的权重可以根据每个用户组中每个用户对于推荐信息的反馈信息进行动态调整。Wherein, the weighted fusion method may be by weighting the scores of the recommendation information determined according to different recommendation algorithms, sorting the weighted recommendation information, determining the priority of the weighted recommendation information, and then according to The priority of the weighted recommendation information determines the corresponding recommendation information sent to each user group. Wherein, the weight used in the weighting can be dynamically adjusted according to the feedback information of each user in each user group on the recommendation information.

该交叉型融合方式,可以是对根据不同推荐算法所确定的推荐信息按照预设的比例,确定为每个用户组对应的推荐信息。The cross fusion method may be to determine the recommendation information corresponding to each user group according to a preset ratio for the recommendation information determined according to different recommendation algorithms.

该分级型融合方式,可以是根据每个用户组中每个用户对于推荐信息的反馈信息,确定对根据不同推荐算法所确定的推荐信息的优先级,继而根据推荐信息优先级,将最高优先级对应的至少一个推荐信息确定为该每个用户组对应的推荐信息。This hierarchical fusion method can determine the priority of the recommended information determined according to different recommendation algorithms according to the feedback information of each user in each user group for the recommended information, and then according to the priority of the recommended information, the highest priority The corresponding at least one recommendation information is determined as the recommendation information corresponding to each user group.

该瀑布型融合方式,例如可以是将一个推荐算法确定的推荐信息作为另一个推荐算法的输入信息,继而确定该每个用户组对应的推荐信息。The waterfall fusion method may, for example, use the recommendation information determined by one recommendation algorithm as the input information of another recommendation algorithm, and then determine the recommendation information corresponding to each user group.

其中,该加权融合方式对于推荐算法的使用条件可包括:根据推荐算法确定的推荐信息需包括预测评分信息。若一个推荐算法确定的推荐信息不包括预测评分信息,则该一个推荐算法不适用于与其他推荐算法采用该加权型融合方式。Wherein, the conditions for using the recommendation algorithm in the weighted fusion method may include: the recommendation information determined according to the recommendation algorithm needs to include prediction score information. If the recommendation information determined by a recommendation algorithm does not include predictive score information, the recommendation algorithm is not suitable for adopting the weighted fusion method with other recommendation algorithms.

该交叉型融合方式对于推荐算法的使用条件可包括:根据推荐算法确定的推荐信息的长度需大于待生成的该每个用户组对应的推荐信息的长度。The conditions for using the recommendation algorithm in the cross-type fusion method may include: the length of the recommendation information determined according to the recommendation algorithm must be greater than the length of the recommendation information corresponding to each user group to be generated.

该分级型融合方式对于推荐算法的使用条件可包括:根据推荐算法确定的推荐信息的长度需小于待生成的该每个用户组对应的推荐信息的长度。The conditions for using the recommendation algorithm in the hierarchical fusion method may include: the length of the recommendation information determined according to the recommendation algorithm must be smaller than the length of the recommendation information corresponding to each user group to be generated.

该瀑布型融合方式对于推荐算法的使用条件可包括:根据推荐算法确定的推荐信息的长度需大于待生成的该每个用户组对应的推荐信息的长度。The conditions for using the recommendation algorithm in the waterfall fusion method may include: the length of the recommendation information determined according to the recommendation algorithm must be greater than the length of the recommendation information corresponding to each user group to be generated.

S404、根据该N个融合方式,分别对该多个推荐算法进行融合,获得该N种融合推荐算法。S404. According to the N fusion methods, respectively fuse the multiple recommendation algorithms to obtain the N fusion recommendation algorithms.

可选的,如上所述的S303中根据该每个用户组对应的推荐策略生成该每个用户组的推荐信息,可以包括:Optionally, generating the recommendation information for each user group according to the recommendation strategy corresponding to each user group in S303 above may include:

S405、确定该每个用户组对应的每种融合推荐算法的推荐准确度。S405. Determine the recommendation accuracy of each fusion recommendation algorithm corresponding to each user group.

S406、从该N个融合推荐算法中确定最高推荐准确度的融合推荐算法,作为该每个用户组的最优融合推荐算法。S406. Determine the fusion recommendation algorithm with the highest recommendation accuracy from the N fusion recommendation algorithms as the optimal fusion recommendation algorithm for each user group.

S407、根据该每个用户组的最优融合推荐算法,生成该每个用户组的推荐信息。S407. Generate recommendation information for each user group according to the optimal fusion recommendation algorithm for each user group.

可选的,如上述S405中确定该每个用户组对应的每种融合推荐算法的推荐准确度,可以包括:Optionally, determining the recommendation accuracy of each fusion recommendation algorithm corresponding to each user group in S405 above may include:

针对该每个用户组对应的N种融合推荐算法中的一种,根据该每个用户组的N组数据中的一组数据,生成该种融合推荐算法对应的推荐信息,该N组数据中不同组的数据对应的用户数相同;For one of the N fusion recommendation algorithms corresponding to each user group, according to a set of data in the N sets of data of each user group, the recommendation information corresponding to the fusion recommendation algorithm is generated. Among the N sets of data Different groups of data correspond to the same number of users;

根据该一组数据对应的用户对该推荐信息的反馈信息,确定该每个用户组对应的该种融合推荐算法的推荐准确度。According to the user's feedback information on the recommendation information corresponding to the group of data, the recommendation accuracy of the fusion recommendation algorithm corresponding to each user group is determined.

具体地,该N组数据可以是从该每个用户组的所有用户数据中随机选择的数据。该不同组的数据中同一种数据特征的差值在预设范围内。也就是说,该不同组的数据的数据特征相似,对应的用户数相同,因而,该N组数据可称为N组均等数据。Specifically, the N groups of data may be data randomly selected from all user data of each user group. The difference of the same data feature in the different groups of data is within a preset range. That is to say, the data characteristics of the different groups of data are similar, and the corresponding number of users is the same. Therefore, the N groups of data may be called N groups of equal data.

举例来说,图5为本发明实施例提供的一个用户组、融合推荐策略、数据组与推荐信息的推荐准确度的对应关系图。如图5所示,若一个用户组对应的推荐策略包括:融合推荐算法1、融合推荐算法2、融合推荐算法3、融合推荐算法4和融合推荐算法5。该一个用户组包括5组数据,即数据组1、数据组2、数据组3、数据组4及数据组5。根据该一个用户组的数据组1,采用融合推荐算法1可获得该融合推荐算法1对应的推荐信息;根据该数据组2采用融合推荐算法2可获得该融合推荐算法2对应的推荐信息;根据该数据组3采用融合推荐算法3可获得该融合推荐算法3对应的推荐信息;根据该数据组4采用融合推荐算法4可获得该融合推荐算法4对应的推荐信息;根据该数据组5采用融合推荐算法5可获得该融合推荐算法5对应的推荐信息。若该融合推荐算法1对应的推荐信息的推荐准确度为0.8,该融合推荐算法2对应的推荐信息的推荐准确度为0.3,该融合推荐算法3对应的推荐信息的推荐准确度为0.4,该融合推荐算法4对应的推荐信息的推荐准确度为0.9,该融合推荐算法5对应的推荐信息的推荐准确度为0.5,因而,该一个用户组的最高推荐准确度为0.9,则该融合推荐算法4可以为该一个用户组的最优融合推荐算法。For example, FIG. 5 is a diagram of a correspondence relationship between a user group, a fusion recommendation strategy, a data group, and recommendation accuracy of recommendation information provided by an embodiment of the present invention. As shown in FIG. 5 , if the recommendation strategy corresponding to a user group includes: fusion recommendation algorithm 1 , fusion recommendation algorithm 2 , fusion recommendation algorithm 3 , fusion recommendation algorithm 4 and fusion recommendation algorithm 5 . The one user group includes 5 sets of data, that is, data set 1 , data set 2 , data set 3 , data set 4 and data set 5 . According to the data group 1 of this user group, the recommendation information corresponding to the fusion recommendation algorithm 1 can be obtained by adopting the fusion recommendation algorithm 1; the recommendation information corresponding to the fusion recommendation algorithm 2 can be obtained by using the fusion recommendation algorithm 2 according to the data group 2; The data group 3 adopts the fusion recommendation algorithm 3 to obtain the recommendation information corresponding to the fusion recommendation algorithm 3; according to the data group 4, adopts the fusion recommendation algorithm 4 to obtain the recommendation information corresponding to the fusion recommendation algorithm 4; according to the data group 5, adopts fusion The recommendation algorithm 5 can obtain the recommendation information corresponding to the fusion recommendation algorithm 5 . If the recommendation accuracy of the recommendation information corresponding to the fusion recommendation algorithm 1 is 0.8, the recommendation accuracy of the recommendation information corresponding to the fusion recommendation algorithm 2 is 0.3, and the recommendation accuracy of the recommendation information corresponding to the fusion recommendation algorithm 3 is 0.4, the The recommendation accuracy of the recommendation information corresponding to the fusion recommendation algorithm 4 is 0.9, and the recommendation accuracy of the recommendation information corresponding to the fusion recommendation algorithm 5 is 0.5. Therefore, the highest recommendation accuracy of this user group is 0.9, then the fusion recommendation algorithm 4. An algorithm may be recommended for the optimal fusion of the one user group.

可选的,该方法还可包括:Optionally, the method may also include:

若最高推荐准确度小于预设准确度阈值的用户组的比例大于或等于预设阈值,对该多个用户进行重新分组;该最高推荐准确度小于预设准确度阈值的用户组的比例,可以为该最高推荐准确度小于预设准确度阈值的用户组的个数与该至少两个用户组的个数的比值;If the proportion of the user group whose highest recommendation accuracy is less than the preset accuracy threshold is greater than or equal to the preset threshold, the multiple users are regrouped; the proportion of the user group whose highest recommendation accuracy is less than the preset accuracy threshold can be is the ratio of the number of user groups whose highest recommendation accuracy is less than the preset accuracy threshold to the number of the at least two user groups;

确定该重新分组后的每个用户组的对应的推荐策略;Determine the corresponding recommendation strategy for each user group after the regrouping;

根据该重新分组后的每个用户组对应的推荐策略生成该重新分组后的每个用户组的推荐信息;generating recommendation information for each of the regrouped user groups according to the recommendation strategy corresponding to each of the regrouped user groups;

向该重新分组后的每个用户组中的用户对应的终端发送推荐信息。The recommendation information is sent to the terminals corresponding to the users in each of the regrouped user groups.

可选的,其中,确定该重新分组后的每个用户组的对应的推荐策略,可以包括:Optionally, determining the corresponding recommendation strategy for each user group after the regrouping may include:

确定该重新分组后的每个用户组的数据特征值,是否在,原分组后的用户组的数据特征值所在的特征值范围内;Determine whether the data characteristic value of each user group after the regrouping is within the characteristic value range where the data characteristic value of the original grouped user group is located;

判断该原分组后的用户组的最高推荐准确度,是否大于或等于该预设准确度阈值;Determine whether the highest recommendation accuracy of the user group after the original grouping is greater than or equal to the preset accuracy threshold;

若该重新分组后的每个用户组的数据特征值在该原分组后的用户组的数据特征值所在的特征值范围内,且,该原分组后的用户组的最高推荐准确度大于或等于该预设准确度阈值,则将该原分组后的用户组对应的推荐策略作为该重新分组后的每个用户组对应的推荐策略。If the data characteristic value of each user group after the regrouping is within the characteristic value range of the data characteristic value of the original grouped user group, and the highest recommendation accuracy of the original grouped user group is greater than or equal to For the preset accuracy threshold, the recommendation strategy corresponding to the original grouped user group is used as the recommendation strategy corresponding to each user group after the regrouping.

本发明实施例通过提供多种用户分组的实现方案、确定每个用户组对应的推荐策略的实现方案等可更好地保证用户分组更精确,推荐策略的确定更准确,更好地保证该信息推荐算法获得推荐信息的准确度。The embodiment of the present invention can better ensure more accurate user grouping, more accurate determination of recommendation strategies, and better guarantee of information The recommendation algorithm obtains the accuracy of recommended information.

本发明实施例提供的信息推荐方法,通过具体的实例对上述实施例所述的方法进行说明,有益效果与上述实施例类似,在此不再赘述。The information recommendation method provided by the embodiment of the present invention uses specific examples to illustrate the method described in the above embodiment, and its beneficial effect is similar to that of the above embodiment, so it will not be repeated here.

本发明实施例还提供一种服务器。图6为本发明实施例提供的服务器的结构示意图。如图6所示,该服务器600可包括:分组模块601、确定模块602、生成模块603和发送模块604。The embodiment of the present invention also provides a server. FIG. 6 is a schematic structural diagram of a server provided by an embodiment of the present invention. As shown in FIG. 6 , the server 600 may include: a grouping module 601 , a determining module 602 , a generating module 603 and a sending module 604 .

其中,该分组模块601、确定模块602、生成模块603可通过如上图2所述服务器中的处理器201实现,处理器201可通过调用存储器202中存储的对应程序或执行,实现该分组模块601、确定模块602、生成模块603各模块的功能。发送模块604可通过如上图2所示的服务器中的网络接口203实现。Wherein, the grouping module 601, the determining module 602, and the generating module 603 can be implemented by the processor 201 in the server as described in FIG. , the function of each module of the determination module 602 and the generation module 603 . The sending module 604 can be realized through the network interface 203 in the server as shown in FIG. 2 above.

其中,分组模块601,用于对多个用户进行分组,获得至少两个用户组;其中,每个用户组包括至少一个用户。Wherein, the grouping module 601 is configured to group multiple users to obtain at least two user groups; wherein, each user group includes at least one user.

确定模块602,用于确定该每个用户组对应的推荐策略;该推荐策略包括该每个用户组对应的推荐算法。The determining module 602 is configured to determine a recommendation strategy corresponding to each user group; the recommendation strategy includes a recommendation algorithm corresponding to each user group.

生成模块603,用于根据该每个用户组对应的推荐策略生成该每个用户组的推荐信息。A generating module 603, configured to generate recommendation information for each user group according to a recommendation strategy corresponding to each user group.

发送模块604,用于向该至少一个用户对应的终端发送该推荐信息。A sending module 604, configured to send the recommendation information to a terminal corresponding to the at least one user.

可选的,分组模块601,用于根据该多个用户中每个用户的数据特征,对该多个用户进行分组,获得该至少两个用户组。Optionally, the grouping module 601 is configured to group the multiple users according to the data characteristics of each user in the multiple users to obtain the at least two user groups.

可选的,该每个用户的数据特征包括:至少一个数据特。Optionally, the data feature of each user includes: at least one data feature.

分组模块601,用于根据该每个用户的该至少一种数据特征,按照预设的数据特征顺序,对该多个用户进行分组,得到该至少两个用户组。The grouping module 601 is configured to group the multiple users according to the at least one data characteristic of each user according to a preset sequence of data characteristics to obtain the at least two user groups.

可选的,该每个用户的数据特征包括以下至少一种:Optionally, the data characteristics of each user include at least one of the following:

该每个用户的历史记录数据、该每个用户的标签数据、该每个用户的属性数据和该每个用户的社交数据。The historical record data of each user, the tag data of each user, the attribute data of each user and the social data of each user.

其中,该每个用户的历史记录数据包括:该每个用户的所有历史记录数据和该每个用户在预设时间段内的历史记录数据中的至少一种;该每个用户的标签数据包括该每个用户的有效标签数量和该每个用户的突出标签数量中的至少一种。该每个用户的属性数据包括该每个用户的性别、该每个用户的年龄段、该每个用户的身份中的至少一种。该每个用户的社交数据包括该每个用户的联系人数量、该每个用户的紧密联系人数量、该每个用户的主动联系次数中的至少一种。该每个用户的紧密联系人为与该每个用户的联系次数大于或等于预设次数阈值的联系人。Wherein, the historical record data of each user includes: at least one of all historical record data of each user and historical record data of each user within a preset time period; the label data of each user includes At least one of the number of valid tags for each user and the number of outstanding tags for each user. The attribute data of each user includes at least one of the gender of each user, the age group of each user, and the identity of each user. The social data of each user includes at least one of the number of contacts of each user, the number of close contacts of each user, and the number of active contacts of each user. The close contacts of each user are contacts whose contact times with each user are greater than or equal to a preset times threshold.

可选的,确定模块602,确定该每个用户组的数据特征值所属的特征值范围,将该特征值范围对应的推荐算法作为该每个用户组对应的推荐算法。Optionally, the determining module 602 determines the characteristic value range to which the data characteristic value of each user group belongs, and uses the recommendation algorithm corresponding to the characteristic value range as the recommendation algorithm corresponding to each user group.

可选的,确定模块602,还用于确定该每个用户组的数据特征值。Optionally, the determining module 602 is also configured to determine the data characteristic value of each user group.

可选的,该每个用户组的数据特征包括以下至少一种:该每个用户组的历史记录数据、该每个用户组的标签数据、该每个用户组的属性数据和该每个用户组的社交数据;该每个用户组的数据特征值包括:该每个用户组的每种数据特征对应的特征值。Optionally, the data characteristics of each user group include at least one of the following: historical record data of each user group, label data of each user group, attribute data of each user group, and each user group The social data of the group; the data characteristic value of each user group includes: the characteristic value corresponding to each data characteristic of each user group.

可选的,确定模块602,还用于根据该每个用户组的数据特征值所属的特征值范围,确定预设的推荐算法库中该特征值范围对应的推荐算法,将该确定的推荐算法作为该每个用户组对应的推荐算法。Optionally, the determination module 602 is further configured to determine the recommendation algorithm corresponding to the feature value range in the preset recommendation algorithm library according to the feature value range to which the data feature value of each user group belongs, and use the determined recommendation algorithm As the recommendation algorithm corresponding to each user group.

可选的,若该每个用户组对应的推荐算法包括多个推荐算法;该推荐策略包括:该每个用户组对应的N种融合推荐算法;其中,每种融合推荐算法包括该多个推荐算法和该多个推荐算法对应的一个融合方式。Optionally, if the recommendation algorithm corresponding to each user group includes multiple recommendation algorithms; the recommendation strategy includes: N kinds of fusion recommendation algorithms corresponding to each user group; wherein, each fusion recommendation algorithm includes the multiple recommendation algorithms A fusion method corresponding to the algorithm and the multiple recommendation algorithms.

确定模块602,还用于根据该每个用户组对应的推荐算法,和,预设的融合方式库中每个融合方式对推荐算法的使用条件,从该推荐算法库中确定符合该每个用户组对应的推荐算法的使用条件的N个融合方式为该多个推荐算法对应的N个融合方式;根据该N个融合方式,分别对该多个推荐算法进行融合,获得该N种融合推荐算法。The determining module 602 is further configured to determine from the recommendation algorithm library that each user group is compatible with the recommendation algorithm according to the recommendation algorithm corresponding to each user group, and the usage conditions of each fusion method in the preset fusion method library for the recommendation algorithm. The N fusion methods of the use conditions of the recommendation algorithm corresponding to the group are the N fusion methods corresponding to the multiple recommendation algorithms; according to the N fusion methods, the multiple recommendation algorithms are respectively fused to obtain the N fusion recommendation algorithms .

可选的,确定模块602,还用于确定该每个用户组对应的每种融合推荐算法的推荐准确度;从该N个融合推荐算法中确定最高推荐准确度的融合推荐算法,作为该每个用户组的最优融合推荐算法;Optionally, the determination module 602 is also used to determine the recommendation accuracy of each fusion recommendation algorithm corresponding to each user group; determine the fusion recommendation algorithm with the highest recommendation accuracy from the N fusion recommendation algorithms as the fusion recommendation algorithm for each user group. An optimal fusion recommendation algorithm for a user group;

生成模块603,还用于根据该每个用户组的最优融合推荐算法,生成该每个用户组的推荐信息。The generation module 603 is further configured to generate recommendation information for each user group according to the optimal fusion recommendation algorithm for each user group.

本发明实施例提供的服务器,可用于执行上述实施例所述的信息推荐方法,有益效果与上述实施例类似,在此不再赘述。The server provided by the embodiment of the present invention can be used to implement the information recommendation method described in the above embodiment, and the beneficial effect is similar to that of the above embodiment, so it will not be repeated here.

本发明实施例还提供一种计算机可读存储介质。图7为本发明实施例提供的计算机可读存储介质的结构示意图。The embodiment of the present invention also provides a computer-readable storage medium. FIG. 7 is a schematic structural diagram of a computer-readable storage medium provided by an embodiment of the present invention.

如图7所示,该计算机可读存储介质700可存储有可执行的程序代码701。该程序代码701用以实现上述权利要求1-10中如上实施例一或二中任一所述的信息推荐方法。As shown in FIG. 7 , the computer-readable storage medium 700 can store executable program code 701 . The program code 701 is used to implement the information recommendation method described in any one of the first and second embodiments in the above claims 1-10.

本发明实施例提供的计算机可读存储介质,可存储的程序代码可用于实现上述实施例所述的信息推荐方法,有益效果与上述实施例类似,在此不再赘述。The computer-readable storage medium provided by the embodiments of the present invention can store program codes that can be used to implement the information recommendation method described in the above-mentioned embodiments, and the beneficial effects are similar to those of the above-mentioned embodiments, so details are not repeated here.

本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。Those of ordinary skill in the art can understand that all or part of the steps for implementing the above method embodiments can be completed by program instructions and related hardware. The aforementioned program can be stored in a computer-readable storage medium. When the program is executed, it executes the steps including the above-mentioned method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.

Claims (21)

1.一种信息推荐方法,其特征在于,包括:1. An information recommendation method, characterized in that, comprising: 对多个用户进行分组,获得至少两个用户组;其中,每个用户组包括至少一个用户;Grouping multiple users to obtain at least two user groups; wherein, each user group includes at least one user; 确定所述每个用户组对应的推荐策略;所述推荐策略包括:所述每个用户组对应的推荐算法;Determining a recommendation strategy corresponding to each user group; the recommendation strategy includes: a recommendation algorithm corresponding to each user group; 根据所述每个用户组对应的推荐策略生成所述每个用户组的推荐信息;generating recommendation information for each user group according to a recommendation strategy corresponding to each user group; 向所述至少一个用户对应的终端发送所述推荐信息。Sending the recommendation information to a terminal corresponding to the at least one user. 2.根据权利要求1所述的方法,其特征在于,所述对多个用户进行分组,获得至少两个用户组,包括:2. The method according to claim 1, wherein said grouping a plurality of users to obtain at least two user groups comprises: 根据所述多个用户中每个用户的数据特征,对所述多个用户进行分组,获得所述至少两个用户组。The multiple users are grouped according to the data characteristics of each of the multiple users to obtain the at least two user groups. 3.根据权利要求2所述的方法,其特征在于,所述每个用户的数据特征包括:至少一种数据特征;3. The method according to claim 2, wherein the data characteristics of each user comprise: at least one data characteristic; 所述根据所述多个用户中每个用户的数据特征,对所述多个用户进行分组,获得所述至少两个用户组,包括:The step of grouping the multiple users according to the data characteristics of each of the multiple users to obtain the at least two user groups includes: 根据所述每个用户的所述至少一种数据特征,按照预设的数据特征顺序,对所述多个用户进行分组,得到所述至少两个用户组。According to the at least one data feature of each user, the multiple users are grouped according to a preset sequence of data features to obtain the at least two user groups. 4.根据权利要求2或3所述的方法,其特征在于,所述每个用户的数据特征包括以下至少一种:4. The method according to claim 2 or 3, wherein the data characteristics of each user include at least one of the following: 所述每个用户的历史记录数据、所述每个用户的标签数据、所述每个用户的属性数据和所述每个用户的社交数据;The historical record data of each user, the tag data of each user, the attribute data of each user and the social data of each user; 其中,所述每个用户的历史记录数据包括:所述每个用户的所有历史记录数据和所述每个用户在预设时间段内的历史记录数据中的至少一种;Wherein, the historical record data of each user includes: at least one of all historical record data of each user and historical record data of each user within a preset time period; 所述每个用户的标签数据包括:所述每个用户的有效标签数量和所述每个用户的突出标签数量中的至少一种;The tag data of each user includes: at least one of the number of valid tags for each user and the number of prominent tags for each user; 所述每个用户的属性数据包括所述每个用户的性别、所述每个用户的年龄段、所述每个用户的身份中的至少一种;The attribute data of each user includes at least one of the gender of each user, the age group of each user, and the identity of each user; 所述每个用户的社交数据包括所述每个用户的联系人数量、所述每个用户的紧密联系人数量、所述每个用户的主动联系次数中的至少一种;所述每个用户的紧密联系人为与所述每个用户的联系次数大于或等于预设次数阈值的联系人。The social data of each user includes at least one of the number of contacts of each user, the number of close contacts of each user, and the number of active contacts of each user; The close contact is a contact whose number of contacts with each user is greater than or equal to a preset number of times threshold. 5.根据权利要求1-4中任一项所述的方法,其特征在于,所述确定所述每个用户组对应的推荐策略,包括:5. The method according to any one of claims 1-4, wherein the determining the recommendation strategy corresponding to each user group comprises: 确定所述每个用户组的数据特征值所属的特征值范围;determining the characteristic value range to which the data characteristic value of each user group belongs; 将所述特征值范围对应的推荐算法作为所述每个用户组对应的推荐算法。The recommendation algorithm corresponding to the feature value range is used as the recommendation algorithm corresponding to each user group. 6.根据权利要求5所述的方法,其特征在于,所述确定所述每个用户组的数据特征值所属的特征值范围之前,所述方法还包括:6. The method according to claim 5, wherein before the determination of the characteristic value range to which the data characteristic value of each user group belongs, the method further comprises: 确定所述每个用户组的数据特征值。Determine the data characteristic value of each user group. 7.根据权利要求6所述的方法,其特征在于,所述每个用户组的数据特征包括以下至少一种:所述每个用户组的历史记录数据、所述每个用户组的标签数据、所述每个用户组的属性数据和所述每个用户组的社交数据;所述每个用户组的数据特征值包括:所述每个用户组的每种数据特征对应的特征值。7. The method according to claim 6, wherein the data characteristics of each user group include at least one of the following: historical record data of each user group, label data of each user group , the attribute data of each user group and the social data of each user group; the data characteristic value of each user group includes: a characteristic value corresponding to each data characteristic of each user group. 8.根据权利要求6或7所述的方法,其特征在于,所述将所述特征值范围对应的推荐算法作为所述每个用户组对应的推荐算法包括:8. The method according to claim 6 or 7, wherein said using the recommendation algorithm corresponding to the feature value range as the recommendation algorithm corresponding to each user group comprises: 根据所述每个用户组的数据特征值所属的特征值范围,确定预设的推荐算法库中所述特征值范围对应的推荐算法,将所述确定的推荐算法作为所述每个用户组对应的推荐算法。According to the feature value range to which the data feature value of each user group belongs, determine the recommendation algorithm corresponding to the feature value range in the preset recommendation algorithm library, and use the determined recommendation algorithm as the corresponding to each user group recommendation algorithm. 9.根据权利要求1-8中任一项所述的方法,其特征在于,若所述每个用户组对应的推荐算法包括多个推荐算法;所述推荐策略包括:所述每个用户组对应的N种融合推荐算法;其中,每种融合推荐算法包括所述多个推荐算法和所述多个推荐算法对应的一个融合方式;9. The method according to any one of claims 1-8, wherein if the recommendation algorithm corresponding to each user group includes multiple recommendation algorithms; the recommendation strategy includes: each user group N kinds of corresponding fusion recommendation algorithms; wherein, each fusion recommendation algorithm includes the plurality of recommendation algorithms and a fusion method corresponding to the plurality of recommendation algorithms; 所述确定所述每个用户组对应的推荐策略,包括:The determining the recommendation strategy corresponding to each user group includes: 根据所述每个用户组对应的推荐算法,和,预设的融合方式库中每个融合方式对推荐算法的使用条件,从所述融合方式库中确定符合所述每个用户组对应的推荐算法的使用条件的N个融合方式为所述多个推荐算法对应的N个融合方式;According to the recommendation algorithm corresponding to each user group, and, the use conditions of each fusion method in the preset fusion method library for the recommendation algorithm, determine from the fusion method library that meets the recommendation corresponding to each user group The N fusion modes of the usage conditions of the algorithm are the N fusion modes corresponding to the plurality of recommendation algorithms; 根据所述N个融合方式,分别对所述多个推荐算法进行融合,获得所述N种融合推荐算法。According to the N fusion methods, the plurality of recommendation algorithms are respectively fused to obtain the N fusion recommendation algorithms. 10.根据权利要求9所述的方法,其特征在于,所述根据所述每个用户组对应的推荐策略生成所述每个用户组的推荐信息,包括:10. The method according to claim 9, wherein the generating the recommendation information of each user group according to the recommendation strategy corresponding to each user group comprises: 确定所述每个用户组对应的每种融合推荐算法的推荐准确度;Determining the recommendation accuracy of each fusion recommendation algorithm corresponding to each user group; 从所述N个融合推荐算法中确定最高推荐准确度的融合推荐算法,作为所述每个用户组的最优融合推荐算法;Determine the fusion recommendation algorithm with the highest recommendation accuracy from the N fusion recommendation algorithms as the optimal fusion recommendation algorithm for each user group; 根据所述每个用户组的最优融合推荐算法,生成所述每个用户组的推荐信息。Generate recommendation information for each user group according to the optimal fusion recommendation algorithm for each user group. 11.一种服务器,其特征在于,包括:11. A server, characterized in that, comprising: 分组模块,用于对多个用户进行分组,获得至少两个用户组;其中,每个用户组包括至少一个用户;A grouping module, configured to group multiple users to obtain at least two user groups; wherein, each user group includes at least one user; 确定模块,用于确定所述每个用户组对应的推荐策略;所述推荐策略包括:所述每个用户组对应的推荐算法;A determining module, configured to determine a recommendation strategy corresponding to each user group; the recommendation strategy includes: a recommendation algorithm corresponding to each user group; 生成模块,用于根据所述每个用户组对应的推荐策略生成所述每个用户组的推荐信息;A generation module, configured to generate recommendation information for each user group according to a recommendation strategy corresponding to each user group; 发送模块,用于向所述至少一个用户对应的终端发送所述推荐信息。A sending module, configured to send the recommendation information to a terminal corresponding to the at least one user. 12.根据权利要求11所述的服务器,其特征在于,12. The server according to claim 11, wherein: 所述分组模块,用于根据所述多个用户中每个用户的数据特征,对所述多个用户进行分组,获得所述至少两个用户组。The grouping module is configured to group the multiple users according to the data characteristics of each of the multiple users to obtain the at least two user groups. 13.根据权利要求12所述的服务器,其特征在于,所述每个用户的数据特征包括:至少一种数据特征;13. The server according to claim 12, wherein the data characteristics of each user comprise: at least one data characteristic; 所述分组模块,用于根据所述每个用户的所述至少一种数据特征,按照预设的数据特征顺序,对所述多个用户进行分组,得到所述至少两个用户组。The grouping module is configured to group the multiple users according to the at least one data characteristic of each user according to a preset sequence of data characteristics to obtain the at least two user groups. 14.根据权利要求12或13所述的服务器,其特征在于,所述每个用户的数据特征包括以下至少一种:14. The server according to claim 12 or 13, wherein the data characteristics of each user include at least one of the following: 所述每个用户的历史记录数据、所述每个用户的标签数据、所述每个用户的属性数据和所述每个用户的社交数据;The historical record data of each user, the tag data of each user, the attribute data of each user and the social data of each user; 其中,所述每个用户的历史记录数据包括:所述每个用户的所有历史记录数据和所述每个用户在预设时间段内的历史记录数据中的至少一种;Wherein, the historical record data of each user includes: at least one of all historical record data of each user and historical record data of each user within a preset time period; 所述每个用户的标签数据包括:所述每个用户的有效标签数量和所述每个用户的突出标签数量中的至少一种;The tag data of each user includes: at least one of the number of valid tags for each user and the number of prominent tags for each user; 所述每个用户的属性数据包括所述每个用户的性别、所述每个用户的年龄段、所述每个用户的身份中的至少一种;The attribute data of each user includes at least one of the gender of each user, the age group of each user, and the identity of each user; 所述每个用户的社交数据包括所述每个用户的联系人数量、所述每个用户的紧密联系人数量、所述每个用户的主动联系次数中的至少一种;所述每个用户的紧密联系人为与所述每个用户的联系次数大于或等于预设次数阈值的联系人。The social data of each user includes at least one of the number of contacts of each user, the number of close contacts of each user, and the number of active contacts of each user; The close contact is a contact whose number of contacts with each user is greater than or equal to a preset number of times threshold. 15.根据权利要求11-14中任一项所述的服务器,其特征在于,15. The server according to any one of claims 11-14, characterized in that, 所述确定模块,确定所述每个用户组的数据特征值所属的特征值范围,将所述特征值范围对应的推荐算法作为所述每个用户组对应的推荐算法。The determining module is configured to determine the feature value range to which the data feature value of each user group belongs, and use the recommendation algorithm corresponding to the feature value range as the recommendation algorithm corresponding to each user group. 16.根据权利要求15所述的服务器,其特征在于,16. The server according to claim 15, wherein: 所述确定模块,还用于确定所述每个用户组的数据特征值。The determining module is further configured to determine the data characteristic value of each user group. 17.根据权利要求16所述的服务器,其特征在于,所述每个用户组的数据特征包括以下至少一种:所述每个用户组的历史记录数据、所述每个用户组的标签数据、所述每个用户组的属性数据和所述每个用户组的社交数据;所述每个用户组的数据特征值包括:所述每个用户组的每种数据特征对应的特征值。17. The server according to claim 16, wherein the data characteristics of each user group include at least one of the following: historical record data of each user group, label data of each user group , the attribute data of each user group and the social data of each user group; the data characteristic value of each user group includes: a characteristic value corresponding to each data characteristic of each user group. 18.根据权利要求16或17所述的服务器,其特征在于,18. The server according to claim 16 or 17, wherein: 所述确定模块,还用于根据所述每个用户组的数据特征值所属的特征值范围,确定预设的推荐算法库中所述特征值范围对应的推荐算法,将所述确定的推荐算法作为所述每个用户组对应的推荐算法。The determination module is further configured to determine the recommendation algorithm corresponding to the range of feature values in the preset recommendation algorithm library according to the feature value range to which the feature value of the data of each user group belongs, and use the determined recommendation algorithm As the recommendation algorithm corresponding to each user group. 19.根据权利要求11-18中任一项所述的服务器,其特征在于,若所述每个用户组对应的推荐算法包括多个推荐算法;所述推荐策略包括:所述每个用户组对应的N种融合推荐算法;其中,每种融合推荐算法包括所述多个推荐算法和所述多个推荐算法对应的一个融合方式;19. The server according to any one of claims 11-18, wherein if the recommendation algorithm corresponding to each user group includes multiple recommendation algorithms; the recommendation strategy includes: each user group N kinds of corresponding fusion recommendation algorithms; wherein, each fusion recommendation algorithm includes the plurality of recommendation algorithms and a fusion method corresponding to the plurality of recommendation algorithms; 所述确定模块,还用于根据所述每个用户组对应的推荐算法,和,预设的融合方式库中每个融合方式对推荐算法的使用条件,从所述推荐算法库中确定符合所述每个用户组对应的推荐算法的使用条件的N个融合方式为所述多个推荐算法对应的N个融合方式;根据所述N个融合方式,分别对所述多个推荐算法进行融合,获得所述N种融合推荐算法。The determination module is further configured to determine from the recommendation algorithm library that meets the recommended algorithm according to the recommendation algorithm corresponding to each user group, and the usage conditions of each fusion method in the preset fusion method library for the recommendation algorithm. The N fusion methods of the use conditions of the recommendation algorithm corresponding to each user group are the N fusion methods corresponding to the multiple recommendation algorithms; according to the N fusion methods, the multiple recommendation algorithms are respectively fused, The N fusion recommendation algorithms are obtained. 20.根据权利要求19所述的服务器,其特征在于,20. The server according to claim 19, wherein: 所述确定模块,还用于确定所述每个用户组对应的每种融合推荐算法的推荐准确度;从所述N个融合推荐算法中确定最高推荐准确度的融合推荐算法,作为所述每个用户组的最优融合推荐算法;The determination module is also used to determine the recommendation accuracy of each fusion recommendation algorithm corresponding to each user group; determine the fusion recommendation algorithm with the highest recommendation accuracy from the N fusion recommendation algorithms as the An optimal fusion recommendation algorithm for a user group; 所述生成模块,还用于根据所述每个用户组的最优融合推荐算法,生成所述每个用户组的推荐信息。The generation module is further configured to generate recommendation information for each user group according to the optimal fusion recommendation algorithm for each user group. 21.一种服务器,其特征在于,包括处理器、存储器、通信接口和总线;其中,所述处理器与所述存储器、所述通信接口通过所述总线连接;21. A server, characterized by comprising a processor, a memory, a communication interface, and a bus; wherein, the processor is connected to the memory and the communication interface through the bus; 所述存储器用于存储指令;The memory is used to store instructions; 所述处理器用于执行指令,当所述处理器执行所述存储器存储的指令时,使得所述处理器执行上述权利要求1-10中任一项所述的信息推荐方法。The processor is configured to execute instructions, and when the processor executes the instructions stored in the memory, the processor is made to execute the information recommendation method described in any one of claims 1-10 above.
CN201610043869.3A 2016-01-22 2016-01-22 Information recommendation method and server Pending CN106997347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610043869.3A CN106997347A (en) 2016-01-22 2016-01-22 Information recommendation method and server

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610043869.3A CN106997347A (en) 2016-01-22 2016-01-22 Information recommendation method and server

Publications (1)

Publication Number Publication Date
CN106997347A true CN106997347A (en) 2017-08-01

Family

ID=59428235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610043869.3A Pending CN106997347A (en) 2016-01-22 2016-01-22 Information recommendation method and server

Country Status (1)

Country Link
CN (1) CN106997347A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107609198A (en) * 2017-10-20 2018-01-19 咪咕互动娱乐有限公司 One kind recommends method, apparatus and computer-readable recording medium
CN107730271A (en) * 2017-09-20 2018-02-23 北京奇艺世纪科技有限公司 Similar users based on virtual interacting object determine method, apparatus and electronic equipment
CN108334568A (en) * 2018-01-16 2018-07-27 平安好房(上海)电子商务有限公司 Source of houses method for pushing, device, equipment and computer readable storage medium
CN108537568A (en) * 2018-03-07 2018-09-14 阿里巴巴集团控股有限公司 An information recommendation method and device
CN108665323A (en) * 2018-05-20 2018-10-16 北京工业大学 A kind of integrated approach for finance product commending system
CN108764958A (en) * 2018-04-11 2018-11-06 口碑(上海)信息技术有限公司 Recommendation method and device based on user characteristics label
CN108984588A (en) * 2018-05-28 2018-12-11 国政通科技股份有限公司 A kind of data processing method and device
CN109739972A (en) * 2018-12-27 2019-05-10 上海连尚网络科技有限公司 Novel recommendation method and device
CN110084705A (en) * 2019-03-19 2019-08-02 阿里巴巴集团控股有限公司 A kind of item recommendation method and device, a kind of electronic equipment and storage medium
CN110442796A (en) * 2019-08-14 2019-11-12 北京思维造物信息科技股份有限公司 A kind of Generalization bounds divide bucket method, device and equipment
CN110489640A (en) * 2019-07-16 2019-11-22 北京速途网络科技股份有限公司 Content recommendation method and system
CN110874737A (en) * 2018-09-03 2020-03-10 北京京东金融科技控股有限公司 Payment mode recommendation method and device, electronic equipment and storage medium
CN111556368A (en) * 2020-04-01 2020-08-18 深圳市酷开网络科技有限公司 Application method and system of AB test in OTT TV and storage medium
CN112581161A (en) * 2020-12-04 2021-03-30 上海明略人工智能(集团)有限公司 Object selection method and device, storage medium and electronic equipment
CN113886701A (en) * 2021-10-13 2022-01-04 万达信息股份有限公司 An Intelligent Recommendation Method for Urban Services Based on Hybrid Algorithm
CN111552883B (en) * 2020-05-13 2023-12-12 咪咕文化科技有限公司 Content recommendation method and computer-readable storage medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020062528A (en) * 2001-01-22 2002-07-26 김택진 Method for managing members on internet and apparatus thereof
EP2199963A1 (en) * 2008-12-19 2010-06-23 Xerox Corporation System and method for recommending educational resources
CN102254272A (en) * 2011-06-12 2011-11-23 辜进荣 Network interaction platform capable of performing classification according to user characteristics
CN102323928A (en) * 2011-08-22 2012-01-18 苏州阔地网络科技有限公司 Automatic component recommending method and device
CN103870512A (en) * 2012-12-18 2014-06-18 腾讯科技(深圳)有限公司 Method and device for generating user interest label
CN103885987A (en) * 2012-12-21 2014-06-25 中国移动通信集团公司 Music recommendation method and system
CN104601438A (en) * 2014-04-28 2015-05-06 腾讯科技(深圳)有限公司 Friend recommendation method and device
CN104869048A (en) * 2014-02-24 2015-08-26 腾讯科技(北京)有限公司 Grouping processing method, device and system of MicroBlog data
CN105100269A (en) * 2015-08-27 2015-11-25 努比亚技术有限公司 Mobile terminal and content recommending method based on different users

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020062528A (en) * 2001-01-22 2002-07-26 김택진 Method for managing members on internet and apparatus thereof
EP2199963A1 (en) * 2008-12-19 2010-06-23 Xerox Corporation System and method for recommending educational resources
CN102254272A (en) * 2011-06-12 2011-11-23 辜进荣 Network interaction platform capable of performing classification according to user characteristics
CN102323928A (en) * 2011-08-22 2012-01-18 苏州阔地网络科技有限公司 Automatic component recommending method and device
CN103870512A (en) * 2012-12-18 2014-06-18 腾讯科技(深圳)有限公司 Method and device for generating user interest label
CN103885987A (en) * 2012-12-21 2014-06-25 中国移动通信集团公司 Music recommendation method and system
CN104869048A (en) * 2014-02-24 2015-08-26 腾讯科技(北京)有限公司 Grouping processing method, device and system of MicroBlog data
CN104601438A (en) * 2014-04-28 2015-05-06 腾讯科技(深圳)有限公司 Friend recommendation method and device
CN105100269A (en) * 2015-08-27 2015-11-25 努比亚技术有限公司 Mobile terminal and content recommending method based on different users

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROBIN BURKE: "Hybrid Recommender Systems:Survey and Experiments", 《USER MODELING AND USER-ADAPTED INTERACTION》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107730271B (en) * 2017-09-20 2021-09-17 北京奇艺世纪科技有限公司 Similar user determination method and device based on virtual interaction object and electronic equipment
CN107730271A (en) * 2017-09-20 2018-02-23 北京奇艺世纪科技有限公司 Similar users based on virtual interacting object determine method, apparatus and electronic equipment
CN107609198B (en) * 2017-10-20 2020-06-12 咪咕互动娱乐有限公司 Recommendation method and device and computer readable storage medium
CN107609198A (en) * 2017-10-20 2018-01-19 咪咕互动娱乐有限公司 One kind recommends method, apparatus and computer-readable recording medium
CN108334568A (en) * 2018-01-16 2018-07-27 平安好房(上海)电子商务有限公司 Source of houses method for pushing, device, equipment and computer readable storage medium
CN108334568B (en) * 2018-01-16 2020-08-21 平安好房(上海)电子商务有限公司 Real estate push method, device, device and computer-readable storage medium
CN114202370A (en) * 2018-03-07 2022-03-18 创新先进技术有限公司 Method and device for recommending information
CN108537568B (en) * 2018-03-07 2021-12-21 创新先进技术有限公司 Information recommendation method and device
CN108537568A (en) * 2018-03-07 2018-09-14 阿里巴巴集团控股有限公司 An information recommendation method and device
CN108764958A (en) * 2018-04-11 2018-11-06 口碑(上海)信息技术有限公司 Recommendation method and device based on user characteristics label
CN108665323A (en) * 2018-05-20 2018-10-16 北京工业大学 A kind of integrated approach for finance product commending system
CN108984588A (en) * 2018-05-28 2018-12-11 国政通科技股份有限公司 A kind of data processing method and device
CN110874737A (en) * 2018-09-03 2020-03-10 北京京东金融科技控股有限公司 Payment mode recommendation method and device, electronic equipment and storage medium
CN109739972A (en) * 2018-12-27 2019-05-10 上海连尚网络科技有限公司 Novel recommendation method and device
CN110084705A (en) * 2019-03-19 2019-08-02 阿里巴巴集团控股有限公司 A kind of item recommendation method and device, a kind of electronic equipment and storage medium
CN110489640A (en) * 2019-07-16 2019-11-22 北京速途网络科技股份有限公司 Content recommendation method and system
CN110442796A (en) * 2019-08-14 2019-11-12 北京思维造物信息科技股份有限公司 A kind of Generalization bounds divide bucket method, device and equipment
CN111556368A (en) * 2020-04-01 2020-08-18 深圳市酷开网络科技有限公司 Application method and system of AB test in OTT TV and storage medium
CN111552883B (en) * 2020-05-13 2023-12-12 咪咕文化科技有限公司 Content recommendation method and computer-readable storage medium
CN112581161A (en) * 2020-12-04 2021-03-30 上海明略人工智能(集团)有限公司 Object selection method and device, storage medium and electronic equipment
CN112581161B (en) * 2020-12-04 2024-01-19 上海明略人工智能(集团)有限公司 Object selection method and device, storage medium and electronic equipment
CN113886701A (en) * 2021-10-13 2022-01-04 万达信息股份有限公司 An Intelligent Recommendation Method for Urban Services Based on Hybrid Algorithm

Similar Documents

Publication Publication Date Title
CN106997347A (en) Information recommendation method and server
US11797634B2 (en) System and method for providing a content item based on computer vision processing of images
US9336282B2 (en) Systems and methods for identifying and analyzing internet users
CN109903086B (en) Similar crowd expansion method and device and electronic equipment
WO2019205795A1 (en) Interest recommendation method, computer device, and storage medium
CN105205081B (en) Item recommendation method and device
US8359280B2 (en) Diversifying recommendation results through explanation
CN107306355B (en) A content recommendation method and server
CN104281890A (en) Method and system for predicting fashion products in e-commerce system
CN115293919A (en) Graph neural network prediction method and system for out-of-distribution generalization of social network
CN110287373A (en) Collaborative filtering movie recommendation method and system based on rating prediction and user characteristics
CN111930859A (en) Node processing method, device and equipment based on heterogeneous graph neural network
CN114065016A (en) A recommended method, apparatus, device and computer-readable storage medium
WO2023087914A1 (en) Method and apparatus for selecting recommended content, and device, storage medium and program product
CN105357583B (en) A kind of method and apparatus finding smart television user interest preference
Yu et al. Neural personalized ranking via Poisson factor model for item recommendation
US20240193219A1 (en) Generating high visibility social annotations
CN110020205B (en) Method and system for screening data information
CN105208033B (en) A kind of colony's auxiliary based on intelligent terminal scene recommends method and system
US11042553B2 (en) Facilitating content entity annotation while satisfying joint performance conditions
Wang et al. Group recommender systems based on members’ preference for trusted social networks
CN116484089A (en) Information recommendation method and device, electronic equipment and storage medium
WO2024021738A1 (en) Data network graph embedding method and apparatus, computer device, and storage medium
CN116204665A (en) Method, device, electronic device and storage medium for recommending multimedia materials
CN114329093A (en) Data processing method, device and equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170801

RJ01 Rejection of invention patent application after publication