CN106897505B - 一种考虑时-空相关性的结构监测数据异常识别方法 - Google Patents
一种考虑时-空相关性的结构监测数据异常识别方法 Download PDFInfo
- Publication number
- CN106897505B CN106897505B CN201710070354.7A CN201710070354A CN106897505B CN 106897505 B CN106897505 B CN 106897505B CN 201710070354 A CN201710070354 A CN 201710070354A CN 106897505 B CN106897505 B CN 106897505B
- Authority
- CN
- China
- Prior art keywords
- monitoring data
- correlation
- statistics
- data
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
- G05B23/024—Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35017—Finite elements analysis, finite elements method FEM
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2135—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Algebra (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Geometry (AREA)
- Computer Hardware Design (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Automation & Control Theory (AREA)
- Computational Linguistics (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
本发明属于土木工程结构健康监测领域,提出了一种考虑时‑空相关性的结构监测数据异常识别方法。首先,对监测数据定义当前和过去观测向量,并对它们进行预白化;其次,对白化后的当前和过去观测向量建立统计相关模型,以同时考虑监测数据中的时‑空相关性;接着,将模型划分为系统相关和系统无关两部分,并定义两个相应的统计量;最后,确定统计量的控制限,当统计量超过其控制限时可判断监测数据中存在异常。
Description
技术领域
本发明属于土木工程结构健康监测领域,提出了一种考虑时-空相关性的结构监测数据异常识别方法。
背景技术
土木工程结构在长期荷载、环境侵蚀和疲劳效应等因素的共同作用下,其服役性能的退化不可避免。深入分析结构监测数据,可以及时发现结构的异常状态并提供准确的安全预警,对确保土木工程结构的安全运营具有重要的现实意义。目前,结构监测数据的异常识别主要通过统计方法实现,一般分为两大类:1)单变量控制图,如休哈特控制图、累积和控制图等,该类方法对每个测点的监测数据分别建立控制图,以识别监测数据中的异常;2)多变量统计分析,如主成分分析、独立分量分析等,该类方法利用多测点监测数据之间的相关性建立统计模型,并定义相应的统计量以识别监测数据中的异常。
由于结构变形的连续性,结构相邻测点的响应数据之间也具有一定的相关性(即互相关性或空间相关性)。实际工程应用中,能够考虑这种相关性的多变量统计分析方法更具优越性。此外,该类方法仅需定义1~2个统计量,即可判别监测数据中是否存在异常,这对包含众多传感器的结构健康监测系统而言,非常便捷。除了互相关性外,结构响应数据中也存在自相关性(即时间相关性)。若能在统计建模过程中同时考虑自相关性和互相关性(即时-空相关性),则可提升多变量统计分析方法的异常识别能力,使其在工程应用中更具实用价值。
发明内容
本发明旨在提出一种同时考虑时-空相关性的统计建模方法,并在此基础上定义统计量以识别结构监测数据中的异常。其技术方案是:首先,对监测数据定义当前和过去观测向量,并对它们进行预白化;其次,对白化后的当前和过去观测向量建立统计相关模型,以同时考虑监测数据中的时-空相关性;接着,将模型划分为系统相关和系统无关两部分,并定义两个相应的统计量;最后,确定统计量的控制限,当统计量超过其控制限时可判断监测数据中存在异常。
一种考虑时-空相关性的结构监测数据异常识别方法,步骤如下:
步骤一:监测数据预处理
(1)对正常监测数据定义当前和过去观测向量:
yc(t)=y(t)
yp(t)=[yT(t-1),yT(t-2),...,yT(t-l)]T
(2)对当前观测向量yc(t)和过去观测向量yp(t)进行预白化:
步骤二:时-空相关性建模
(5)上述统计相关模型的解可通过如下奇异值分解求得:
式中:Q=ΦTRp;
步骤三:定义统计量
(7)由于仅有m个非零相关系数,则可将变量z(t)划分为两部分:
zs(t)=Qsyp(t)
zn(t)=Qnyp(t)
式中:zs(t)和zn(t)分别表示z(t)的系统相关部分和系统无关部分;Qs和Qn分别为Q的前m行和后m(l-1)行;
(8)为了识别监测数据中的异常,可对zs(t)和zn(t)定义两个统计量:
步骤四:确定控制限
本发明的有益效果:在统计建模过程中考虑了结构监测数据具有时-空相关性这一特征,基于此定义的统计量可有效识别监测数据中的异常。
附图说明
图1是结构监测数据的时-空相关性建模示意图。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
选取一座两跨公路桥模型,其长度为5.5m、宽度为1.8m。对其建立有限元模型以模拟结构响应,采集16个测点的响应作为监测数据。共生成两个数据集:训练数据集和测试数据集;其中,训练数据集为正常监测数据集,测试数据集中的一部分用于模拟异常监测数据;两个数据集均持续80s,采样频率为256Hz。本发明的关键在于结构监测数据的时-空相关性建模(见图1),具体实施方式如下:
Claims (1)
1.一种考虑时-空相关性的结构监测数据异常识别方法,其特征在于:
选取一座两跨公路桥模型,已知其长度、宽度;对其建立有限元模型以模拟结构响应,采集测点的响应作为监测数据;共生成两个数据集:训练数据集和测试数据集;其中,训练数据集为正常监测数据集,测试数据集中的一部分用于模拟异常监测数据;具体方法步骤如下:
步骤一:监测数据预处理
(1)对正常监测数据定义当前和过去观测向量:
yc(t)=y(t)
yp(t)=[yT(t-1),yT(t-2),...,yT(t-l)]T
(2)对当前观测向量yc(t)和过去观测向量yp(t)进行预白化:
步骤二:时-空相关性建模
(5)上述统计相关模型的解通过如下奇异值分解求得:
式中:Q=ΦTRp;
步骤三:定义统计量
(7)由于仅有m个非零相关系数,则将变量z(t)划分为两部分:
zs(t)=Qsyp(t)
zn(t)=Qnyp(t)
式中:zs(t)和zn(t)分别表示z(t)的系统相关部分和系统无关部分;Qs和Qn分别为Q的前m行和后m(l-1)行;
(8)为了识别监测数据中的异常,对zs(t)和zn(t)定义两个统计量:
步骤四:确定控制限
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710070354.7A CN106897505B (zh) | 2017-02-13 | 2017-02-13 | 一种考虑时-空相关性的结构监测数据异常识别方法 |
| US16/090,744 US10943174B2 (en) | 2017-02-13 | 2018-02-12 | Anomaly identification method for structural monitoring data considering spatial-temporal correlation |
| PCT/CN2018/076574 WO2018145662A1 (zh) | 2017-02-13 | 2018-02-12 | 一种考虑时-空相关性的结构监测数据异常识别方法 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710070354.7A CN106897505B (zh) | 2017-02-13 | 2017-02-13 | 一种考虑时-空相关性的结构监测数据异常识别方法 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106897505A CN106897505A (zh) | 2017-06-27 |
| CN106897505B true CN106897505B (zh) | 2020-10-13 |
Family
ID=59198025
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710070354.7A Expired - Fee Related CN106897505B (zh) | 2017-02-13 | 2017-02-13 | 一种考虑时-空相关性的结构监测数据异常识别方法 |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US10943174B2 (zh) |
| CN (1) | CN106897505B (zh) |
| WO (1) | WO2018145662A1 (zh) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106897505B (zh) * | 2017-02-13 | 2020-10-13 | 大连理工大学 | 一种考虑时-空相关性的结构监测数据异常识别方法 |
| CN111008238B (zh) * | 2019-11-15 | 2023-10-10 | 武汉楚誉科技股份有限公司 | 基于关联演化大数据的关键模式自动定位与预警方法 |
| CN114638039B (zh) * | 2022-03-24 | 2024-05-03 | 沈阳大学 | 一种基于低秩矩阵恢复的结构健康监测特征数据解释方法 |
| CN116484213A (zh) * | 2022-12-13 | 2023-07-25 | 山东省交通规划设计院集团有限公司 | 基于投影重构与深度学习的公路结构健康预测方法及系统 |
| CN116698323B (zh) * | 2023-08-07 | 2023-10-13 | 四川华腾公路试验检测有限责任公司 | 一种基于pca和扩展卡尔曼滤波的桥梁健康监测方法及系统 |
| CN117171604B (zh) * | 2023-11-03 | 2024-01-19 | 城资泰诺(山东)新材料科技有限公司 | 基于传感器的保温板生产线异常监测系统 |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7016825B1 (en) * | 2000-10-26 | 2006-03-21 | Vextec Corporation | Method and apparatus for predicting the failure of a component |
| US20080188972A1 (en) * | 2006-10-11 | 2008-08-07 | Fisher-Rosemount Systems, Inc. | Method and System for Detecting Faults in a Process Plant |
| US8374854B2 (en) | 2008-03-28 | 2013-02-12 | Southern Methodist University | Spatio-temporal speech enhancement technique based on generalized eigenvalue decomposition |
| CN101403923A (zh) * | 2008-10-31 | 2009-04-08 | 浙江大学 | 基于非高斯成分提取和支持向量描述的过程监控方法 |
| CN102928514B (zh) * | 2012-10-14 | 2014-12-24 | 浙江农林大学 | 一种基于频率特征的木材应力波无损检测方法 |
| CN103942533A (zh) * | 2014-03-24 | 2014-07-23 | 河海大学常州校区 | 一种基于视频监控系统的城市交通违规行为检测方法 |
| TWI519987B (zh) * | 2014-11-14 | 2016-02-01 | 財團法人工業技術研究院 | 結構拓樸最佳化設計方法 |
| CN104655425B (zh) * | 2015-03-06 | 2017-05-03 | 重庆大学 | 基于稀疏表示和大间隔分布学习的轴承故障分类诊断方法 |
| CN106897505B (zh) | 2017-02-13 | 2020-10-13 | 大连理工大学 | 一种考虑时-空相关性的结构监测数据异常识别方法 |
-
2017
- 2017-02-13 CN CN201710070354.7A patent/CN106897505B/zh not_active Expired - Fee Related
-
2018
- 2018-02-12 WO PCT/CN2018/076574 patent/WO2018145662A1/zh not_active Ceased
- 2018-02-12 US US16/090,744 patent/US10943174B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| WO2018145662A1 (zh) | 2018-08-16 |
| CN106897505A (zh) | 2017-06-27 |
| US10943174B2 (en) | 2021-03-09 |
| US20190122131A1 (en) | 2019-04-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106897509B (zh) | 一种动态非高斯结构监测数据异常识别方法 | |
| CN106897505B (zh) | 一种考虑时-空相关性的结构监测数据异常识别方法 | |
| CN111737909B (zh) | 基于时空图卷积网络的结构健康监测数据异常识别方法 | |
| CN108052770B (zh) | 一种考虑时变效应的大跨桥梁主梁性能预警方法 | |
| CN103970092B (zh) | 一种基于自适应fcm的多阶段发酵过程故障监测方法 | |
| CN107357275A (zh) | 非高斯工业过程故障检测方法及系统 | |
| CN109212631B (zh) | 一种考虑通道相关的卫星观测资料三维变分同化方法 | |
| CN116597350B (zh) | 基于BiLSTM预测偏离度的浮选过程故障早期预警方法 | |
| KR20170053692A (ko) | 커널 회귀 모델의 앙상블을 위한 장치 및 방법 | |
| CN114091600A (zh) | 一种数据驱动的卫星关联故障传播路径辨识方法及系统 | |
| CN108009566B (zh) | 一种时空窗口下的改进型pca损伤检测方法 | |
| CN104880217A (zh) | 一种基于测量值关联度的故障传感器信息重构方法 | |
| CN105674943A (zh) | 一种通用的多点非线性整体变形预测方法 | |
| CN113159088A (zh) | 一种基于多特征融合和宽度学习的故障监测与诊断方法 | |
| CN106407555A (zh) | 基于加速因子不变原则的加速退化数据分析方法 | |
| CN116505972B (zh) | 一种线缆信号传输的智能检测方法及系统 | |
| CN118861950B (zh) | 变压器多参数融合状态评估方法、装置、设备及介质 | |
| CN118504990A (zh) | 基于态势感知的电网风险评估方法及系统 | |
| CN116698323B (zh) | 一种基于pca和扩展卡尔曼滤波的桥梁健康监测方法及系统 | |
| WO2024215277A1 (en) | A deep learning based anomaly detection system for vibration-based structural health monitoring | |
| CN116821828A (zh) | 一种基于工业数据的多维时序预测方法 | |
| CN110954841A (zh) | 一种基于锂电池小波去噪的在线监测方法 | |
| CN120038598B (zh) | 一种金属切削刀具磨损监测方法及系统 | |
| CN120524402B (zh) | 一种桥梁健康监测异常数据重构方法、系统、设备和产品 | |
| CN120822048B (zh) | 用于水库大坝的渗压监测数据处理方法及系统 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201013 Termination date: 20220213 |