[go: up one dir, main page]

CN106684922B - A kind of wind turbine group control method and system - Google Patents

A kind of wind turbine group control method and system Download PDF

Info

Publication number
CN106684922B
CN106684922B CN201710174230.3A CN201710174230A CN106684922B CN 106684922 B CN106684922 B CN 106684922B CN 201710174230 A CN201710174230 A CN 201710174230A CN 106684922 B CN106684922 B CN 106684922B
Authority
CN
China
Prior art keywords
wind turbine
particle
formula
representing
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710174230.3A
Other languages
Chinese (zh)
Other versions
CN106684922A (en
Inventor
陈思哲
熊国专
章云
孟安波
张桂东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201710174230.3A priority Critical patent/CN106684922B/en
Publication of CN106684922A publication Critical patent/CN106684922A/en
Application granted granted Critical
Publication of CN106684922B publication Critical patent/CN106684922B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Abstract

本申请公开了一种风电机群控制方法及系统,该方法包括:预先创建并初始化与风电机群的规模相适应的粒子群,得到目标粒子群;利用罚函数确定公式,确定出每台风电机组的罚函数;利用适应度计算公式,计算每个粒子的适应度值;利用每个粒子的位置以及适应度值,对每个粒子的速度和位置进行迭代更新,得到全局最优粒子;根据全局最优粒子,对风电机群展开相应的控制,以控制每台风电机组的桨距角和变频交流母线的频率。本申请减少了风电机群控制过程中的风能损失量,并且能够避免风电机组的输出功率超出额定功率值,有利于风电系统的安全稳定运行。

The present application discloses a wind turbine swarm control method and system. The method includes: pre-creating and initializing a particle swarm suitable for the scale of the wind turbine swarm to obtain a target particle swarm; Penalty function; use the fitness calculation formula to calculate the fitness value of each particle; use the position and fitness value of each particle to iteratively update the speed and position of each particle to obtain the global optimal particle; The optimal particle is used to control the wind turbine group accordingly to control the pitch angle of each wind turbine and the frequency of the variable frequency AC bus. The present application reduces the amount of wind energy loss in the control process of the wind turbine group, and can prevent the output power of the wind turbine group from exceeding the rated power value, which is beneficial to the safe and stable operation of the wind power system.

Description

一种风电机群控制方法及系统A wind turbine group control method and system

技术领域technical field

本发明涉及风力发电技术领域,特别涉及一种风电机群控制方法及系统。The invention relates to the technical field of wind power generation, in particular to a method and system for controlling a wind turbine group.

背景技术Background technique

近海风电具有风速高、湍流强度小、风速风向稳定等优点,是风电行业发展的主要趋势。若采用风电机群集中控制取代单机分立控制,有利于降低故障率,从而减少海上维护工作、增加有效发电时间,同时可降低系统总成本。然而,当风电场内风速分布不均时,风电机群集中控制易导致较大风能损失,输出功率容易超出额定功率值,如何在风速分布不均的情况下,减少风电机群控制过程中的风能损失量并避免风电机组的输出功率超出额定功率值是目前还有待进一步解决的问题。Offshore wind power has the advantages of high wind speed, low turbulence intensity, and stable wind speed and direction. It is the main trend of the development of the wind power industry. If the control of the wind turbine cluster replaces the discrete control of the single machine, it is beneficial to reduce the failure rate, thereby reducing the offshore maintenance work, increasing the effective power generation time, and reducing the total cost of the system. However, when the wind speed distribution in the wind farm is uneven, the control in the wind turbine cluster will easily lead to a large wind energy loss, and the output power is likely to exceed the rated power value. It is a problem that needs to be further solved at present.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本发明的目的在于提供一种风电机群控制方法及系统,在风速分布不均的情况下,减少了风电机群控制过程中的风能损失量,并且能够避免风电机组的输出功率超出额定功率值。其具体方案如下:In view of this, the purpose of the present invention is to provide a wind turbine group control method and system, in the case of uneven distribution of wind speed, reducing the amount of wind energy loss during the control process of the wind turbine group, and can avoid the output power of the wind turbine group exceeding the rated value power value. Its specific plan is as follows:

一种风电机群控制方法,应用于风电机群,其中,所述风电机群中每台风电机组在功率控制过程中的转速均保持一致,所述方法包括:A method for controlling a wind turbine group, applied to a wind turbine group, wherein the rotational speed of each wind turbine group in the wind turbine group is consistent during a power control process, and the method includes:

预先创建并初始化与所述风电机群的规模相适应的粒子群,得到目标粒子群;其中,所述目标粒子群中的第i个粒子的位置的向量表达式为:A particle swarm suitable for the scale of the wind turbine swarm is pre-created and initialized to obtain a target particle swarm; wherein, the vector expression of the position of the i-th particle in the target particle swarm is:

式中,M表示所述风电机群中风电机组的数量,N表示所述目标粒子群中粒子的数量,βi,j表示第i个粒子中的第j台风电机组的桨距角,fi,bus表示第i个粒子中变频交流母线的频率;In the formula, M represents the number of wind turbines in the wind turbine group, N represents the number of particles in the target particle group, β i,j represents the pitch angle of the jth wind turbine in the ith particle, f i ,bus represents the frequency of the variable-frequency AC bus in the i-th particle;

利用罚函数确定公式,确定出每台风电机组的罚函数;其中,所述罚函数确定公式为:The penalty function determination formula is used to determine the penalty function of each wind turbine; wherein, the penalty function determination formula is:

式中,Pi,k表示第i个粒子中的第k台风电机组的输出功率,PN表示风电机组的额定功率值,PPENi,k表示第i个粒子中的第k台风电机组的罚函数;In the formula, P i,k represents the output power of the kth wind turbine in the ith particle, P N represents the rated power value of the wind turbine, and P PENi,k represents the kth wind turbine in the ith particle. penalty function;

利用适应度计算公式,计算每个粒子的适应度值;其中,所述适应度计算公式为:Use the fitness calculation formula to calculate the fitness value of each particle; wherein, the fitness calculation formula is:

式中,Pi表示所述目标粒子群中第i个粒子的适应度值,D表示预设的惩罚因子;In the formula, P i represents the fitness value of the ith particle in the target particle swarm, and D represents the preset penalty factor;

利用每个粒子的位置以及适应度值,对每个粒子的速度和位置进行迭代更新,得到全局最优粒子;其中,所述全局最优粒子的位置的向量表达式为:Using the position and fitness value of each particle, iteratively update the velocity and position of each particle to obtain the global optimal particle; wherein, the vector expression of the position of the global optimal particle is:

式中,βgj表示所述风电机群中第j台风电机组的最优桨距角,fgbus表示变频交流母线的最优频率;In the formula, β gj represents the optimal pitch angle of the jth wind turbine in the wind turbine group, and f gbus represents the optimal frequency of the variable frequency AC bus;

根据所述全局最优粒子,对所述风电机群展开相应的控制,以控制每台风电机组的桨距角和变频交流母线的频率。According to the global optimal particle, corresponding control is carried out on the wind turbine group to control the pitch angle of each wind turbine group and the frequency of the variable-frequency AC bus.

可选的,所述利用罚函数确定公式,确定出每台风电机组的罚函数的过程,包括:Optionally, the process of using the penalty function determination formula to determine the penalty function of each wind turbine includes:

利用输出功率计算公式,计算每台风电机组的输出功率;其中,所述输出功率计算公式为:Use the output power calculation formula to calculate the output power of each wind turbine; wherein, the output power calculation formula is:

式中,Pi,k表示第i个粒子中的第k台风电机组的输出功率,ρ表示空气密度,A表示风力机叶片扫掠面积,Ck(Vki,k,fi,bus)表示第k台风电机组的功率系数,Vk表示第k台风电机组的实时风速;In the formula, P i,k represents the output power of the k-th wind turbine in the i-th particle, ρ represents the air density, A represents the swept area of the wind turbine blade, C k (V ki,k ,f i ,bus ) represents the power coefficient of the kth wind turbine, and V k represents the real-time wind speed of the kth wind turbine;

利用每台风电机组的输出功率以及所述罚函数确定公式,确定出每台风电机组的罚函数。Using the output power of each wind turbine and the penalty function determination formula, the penalty function of each wind turbine is determined.

可选的,第k台风电机组的功率系数Ck(Vki,k,fi,bus)的计算公式为:Optionally, the calculation formula of the power coefficient C k (V ki,k ,f i,bus ) of the kth wind turbine is:

其中,指数S为:Among them, the index S is:

式中,Vk表示第k台风电机组的实时风速,R表示风电机组的叶片半径,np表示电机极对数,ng表示齿轮箱变比,K1至K6为预先基于风电机组翼型确定的系数。In the formula, V k represents the real-time wind speed of the kth wind turbine, R represents the blade radius of the wind turbine, n p represents the number of pole pairs of the motor, n g represents the gearbox ratio, and K 1 to K 6 are based on the wind turbine blades in advance. type-determined coefficients.

可选的,所述风电机群为采用可变频率变压器集中控制的变速风电机群,或采用高压直流输电变流器集中控制的变速风电机群,或采用分频交流输电变流器集中控制的变速风电机群。Optionally, the wind turbine group is a variable-speed wind turbine group that is centrally controlled by a variable frequency transformer, or a variable-speed wind turbine group that is centrally controlled by a high-voltage DC transmission converter, or a variable-speed wind turbine that is centrally controlled by a frequency-divided AC transmission converter. fleet.

可选的,所述利用每个粒子的位置以及适应度值,对每个粒子的速度和位置进行迭代更新,得到全局最优粒子的过程,包括:Optionally, the process of using the position and fitness value of each particle to iteratively update the speed and position of each particle to obtain the global optimal particle includes:

步骤A1:将每个粒子的初始位置确定为每个粒子的当前最优位置i=1,2,...,N,以及从当前所有粒子中筛选出适应度值最大的粒子,并将该粒子的位置确定为所述目标粒子群中的当前全局最优位置 Step A1: Determine the initial position of each particle as the current optimal position of each particle i=1,2,...,N, and screen out the particle with the largest fitness value from all the current particles, and determine the position of the particle as the current global optimal position in the target particle swarm

步骤A2:利用每个粒子的当前最优位置以及所述目标粒子群中的当前全局最优位置对每个粒子的速度和位置进行更新,得到本轮更新后每个粒子的新位置;Step A2: Utilize the current optimal position of each particle and the current global optimal position in the target particle swarm Update the speed and position of each particle to get the new position of each particle after this round of updates;

步骤A3:计算每个粒子的新位置所对应的适应度值,利用预设更新原则,对所有粒子的当前最优位置进行更新;其中,所述预设更新原则为:当任一粒子的新位置的适应度值大于该粒子的当前最优位置,则利用该粒子的新位置对该粒子的当前最优位置进行替换更新;Step A3: Calculate the fitness value corresponding to the new position of each particle, and use the preset update principle to update the current optimal positions of all particles; wherein, the preset update principle is: when the new If the fitness value of the position is greater than the current optimal position of the particle, use the new position of the particle to replace and update the current optimal position of the particle;

步骤A4:从当前所有粒子中筛选出适应度值最大的粒子,并判断该粒子的适应度值是否大于当前全局最优位置对应的适应度值,如果是,则利用该粒子的当前位置对所述目标粒子群中的当前全局最优位置进行替换更新;Step A4: Screen out the particle with the largest fitness value from all the current particles, and determine whether the fitness value of the particle is greater than the current global optimal position The corresponding fitness value, if so, use the current position of the particle to calculate the current global optimal position in the target particle swarm make a replacement update;

步骤A5:重新进入步骤A2,直到达到预设的迭代次数,并将迭代结束后得到的当前全局最优位置所对应的粒子确定为所述全局最优粒子。Step A5: Re-enter Step A2 until the preset number of iterations is reached, and use the current global optimal position obtained after the iteration The corresponding particle is determined as the global optimal particle.

可选的,所述对每个粒子的速度和位置进行更新,得到本轮更新后每个粒子的新位置的过程,包括:Optionally, the process of updating the speed and position of each particle to obtain the new position of each particle after the current round of updating includes:

利用迭代更新公式,对每个粒子的速度和位置进行更新,并且在利用所述迭代更新公式进行更新的过程中,若任意粒子的位置向量中存在任一向量元素的数值超出预设的元素数值约束范围,则利用该元素数值约束范围的边界值对该向量元素的数值进行替换更新,得到本轮更新后每个粒子的新位置;其中,所述迭代更新公式为:The iterative update formula is used to update the velocity and position of each particle, and in the process of updating by the iterative update formula, if the value of any vector element in the position vector of any particle exceeds the preset element value Constraint range, then use the boundary value of the element’s numerical constraint range to replace and update the value of the vector element to obtain the new position of each particle after the current round of update; wherein, the iterative update formula is:

式中,为惯性权重,c1和c2为学习因子,r1和r2为随机数。In the formula, are inertia weights, c 1 and c 2 are learning factors, and r 1 and r 2 are random numbers.

本发明还相应公开了一种风电机群控制系统,应用于风电机群,其中,所述风电机群中每台风电机组在功率控制过程中的转速均保持一致,所述系统包括:The present invention also discloses a wind turbine group control system, which is applied to the wind turbine group, wherein the rotational speed of each wind turbine group in the wind turbine group is consistent during the power control process, and the system includes:

粒子群创建模块,用于预先创建并初始化与所述风电机群的规模相适应的粒子群,得到目标粒子群;其中,所述目标粒子群中的第i个粒子的位置的向量表达式为:The particle swarm creation module is used to pre-create and initialize a particle swarm suitable for the scale of the wind turbine swarm to obtain a target particle swarm; wherein, the vector expression of the position of the i-th particle in the target particle swarm is:

式中,M表示所述风电机群中风电机组的数量,N表示所述目标粒子群中粒子的数量,βi,j表示第i个粒子中的第j台风电机组的桨距角,fi,bus表示第i个粒子中变频交流母线的频率;In the formula, M represents the number of wind turbines in the wind turbine group, N represents the number of particles in the target particle group, β i,j represents the pitch angle of the jth wind turbine in the ith particle, f i ,bus represents the frequency of the variable-frequency AC bus in the i-th particle;

罚函数确定模块,用于利用罚函数确定公式,确定出每台风电机组的罚函数;其中,所述罚函数确定公式为:The penalty function determination module is used to determine the penalty function of each wind turbine by using the penalty function determination formula; wherein, the penalty function determination formula is:

式中,Pi,k表示第i个粒子中的第k台风电机组的输出功率,PN表示风电机组的额定功率值,PPENi,k表示第i个粒子中的第k台风电机组的罚函数;In the formula, P i,k represents the output power of the kth wind turbine in the ith particle, P N represents the rated power value of the wind turbine, and P PENi,k represents the kth wind turbine in the ith particle. penalty function;

适应度值计算模块,用于利用适应度计算公式,计算每个粒子的适应度值;其中,所述适应度计算公式为:The fitness value calculation module is used to calculate the fitness value of each particle by using the fitness calculation formula; wherein, the fitness calculation formula is:

式中,Pi表示所述目标粒子群中第i个粒子的适应度值,D表示预设的惩罚因子;In the formula, P i represents the fitness value of the ith particle in the target particle swarm, and D represents the preset penalty factor;

迭代更新模块,用于利用每个粒子的位置以及适应度值,对每个粒子的速度和位置进行迭代更新,得到全局最优粒子;其中,所述全局最优粒子的位置的向量表达式为:The iterative update module is used to iteratively update the speed and position of each particle by using the position and fitness value of each particle to obtain the global optimal particle; wherein, the vector expression of the position of the global optimal particle is: :

式中,βgj表示所述风电机群中第j台风电机组的最优桨距角,fgbus表示变频交流母线的最优频率;In the formula, β gj represents the optimal pitch angle of the jth wind turbine in the wind turbine group, and f gbus represents the optimal frequency of the variable frequency AC bus;

风电机群控制模块,用于根据所述全局最优粒子,对所述风电机群展开相应的控制,以控制每台风电机组的桨距角和变频交流母线的频率。The wind turbine group control module is configured to carry out corresponding control on the wind turbine group according to the global optimal particle, so as to control the pitch angle of each wind turbine group and the frequency of the variable-frequency AC bus.

可选的,所述罚函数确定模块,具体包括:Optionally, the penalty function determination module specifically includes:

输出功率计算子模块,用于利用输出功率计算公式,计算每台风电机组的输出功率;其中,所述输出功率计算公式为:The output power calculation sub-module is used to calculate the output power of each wind turbine by using the output power calculation formula; wherein, the output power calculation formula is:

式中,Pi,k表示第i个粒子中的第k台风电机组的输出功率,ρ表示空气密度,A表示风力机叶片扫掠面积,Ck(Vki,k,fi,bus)表示第k台风电机组的功率系数,Vk表示第k台风电机组的实时风速;In the formula, P i,k represents the output power of the k-th wind turbine in the i-th particle, ρ represents the air density, A represents the swept area of the wind turbine blade, C k (V ki,k ,f i ,bus ) represents the power coefficient of the kth wind turbine, and V k represents the real-time wind speed of the kth wind turbine;

罚函数确定子模块,用于利用每台风电机组的输出功率以及所述罚函数确定公式,确定出每台风电机组的罚函数。The penalty function determination submodule is used for determining the penalty function of each wind turbine by using the output power of each wind turbine and the penalty function determination formula.

可选的,所述输出功率计算子模块,包括:Optionally, the output power calculation submodule includes:

功率系数计算单元,用于利用功率系数计算公式,计算每台风电机组的功率系数;其中,所述功率系数计算公式为:The power coefficient calculation unit is used to calculate the power coefficient of each wind turbine by using the power coefficient calculation formula; wherein, the power coefficient calculation formula is:

其中,指数S为:Among them, the index S is:

式中,Vk表示第k台风电机组的实时风速,R表示风电机组的叶片半径,np表示电机极对数,ng表示齿轮箱变比,K1至K6为预先基于风电机组翼型确定的系数。In the formula, V k represents the real-time wind speed of the kth wind turbine, R represents the blade radius of the wind turbine, n p represents the number of pole pairs of the motor, n g represents the gearbox ratio, and K 1 to K 6 are based on the wind turbine blades in advance. type-determined coefficients.

可选的,所述风电机群为采用可变频率变压器集中控制的变速风电机群,或采用高压直流输电变流器集中控制的变速风电机群,或采用分频交流输电变流器集中控制的变速风电机群。Optionally, the wind turbine group is a variable-speed wind turbine group that is centrally controlled by a variable frequency transformer, or a variable-speed wind turbine group that is centrally controlled by a high-voltage DC transmission converter, or a variable-speed wind turbine that is centrally controlled by a frequency-divided AC transmission converter. fleet.

本发明中,风电机群控制方法,包括:预先创建并初始化与风电机群的规模相适应的粒子群,得到目标粒子群;利用上述罚函数确定公式,确定出每台风电机组的罚函数;利用上述适应度计算公式,计算每个粒子的适应度值;利用每个粒子的位置以及适应度值,对每个粒子的速度和位置进行迭代更新,得到全局最优粒子;根据全局最优粒子,对风电机群展开相应的控制。In the present invention, the wind turbine group control method includes: creating and initializing a particle group suitable for the scale of the wind turbine group in advance to obtain the target particle group; using the above penalty function determination formula to determine the penalty function of each wind turbine group; using the above The fitness calculation formula calculates the fitness value of each particle; uses the position and fitness value of each particle to iteratively update the speed and position of each particle to obtain the global optimal particle; The wind turbine group is controlled accordingly.

可见,本发明通过利用带罚函数的粒子群优化算法,可以实现风电机群输出功率最大化,并且能够确保风电机组的输出功率不超过额定功率值,从而提高了风能利用率,减少了风电机群控制过程中的风能损失量,并且能够避免风电机组的输出功率超出额定功率值,有利于风电系统的安全稳定运行。It can be seen that the present invention can maximize the output power of the wind turbine group by using the particle swarm optimization algorithm with penalty function, and can ensure that the output power of the wind turbine group does not exceed the rated power value, thereby improving the utilization rate of wind energy and reducing the control of the wind turbine group. The amount of wind energy loss in the process can be avoided, and the output power of the wind turbine can be prevented from exceeding the rated power value, which is conducive to the safe and stable operation of the wind power system.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to illustrate the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that are used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only It is an embodiment of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to the provided drawings without creative efforts.

图1为本发明实施例公开的一种风电机群控制方法流程图;FIG. 1 is a flowchart of a method for controlling a wind turbine group disclosed in an embodiment of the present invention;

图2为本发明实施例公开的一种风电机群控制系统结构示意图。FIG. 2 is a schematic structural diagram of a wind turbine group control system disclosed in an embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

本发明实施例公开了一种风电机群控制方法,应用于风电机群,其中,风电机群中每台风电机组在功率控制过程中的转速均保持一致,参见图1所示,该方法包括:An embodiment of the present invention discloses a method for controlling a wind turbine group, which is applied to a wind turbine group, wherein the rotational speed of each wind turbine group in the wind turbine group is consistent during the power control process. Referring to FIG. 1 , the method includes:

步骤S11:预先创建并初始化与风电机群的规模相适应的粒子群,得到目标粒子群;其中,目标粒子群中的第i个粒子的位置的向量表达式为:Step S11: Pre-create and initialize a particle swarm suitable for the scale of the wind turbine swarm to obtain a target particle swarm; wherein, the vector expression of the position of the i-th particle in the target particle swarm is:

式中,M表示风电机群中风电机组的数量,N表示目标粒子群中粒子的数量,βi,j表示第i个粒子中的第j台风电机组的桨距角,fi,bus表示第i个粒子中变频交流母线的频率;In the formula, M represents the number of wind turbines in the wind turbine group, N represents the number of particles in the target particle group, β i,j represents the pitch angle of the jth wind turbine in the ith particle, and f i,bus represents the ith wind turbine. The frequency of the variable-frequency AC bus in i particles;

步骤S12:利用罚函数确定公式,确定出每台风电机组的罚函数;其中,罚函数确定公式为:Step S12: Determine the penalty function of each wind turbine by using the penalty function determination formula; wherein, the penalty function determination formula is:

式中,Pi,k表示第i个粒子中的第k台风电机组的输出功率,PN表示风电机组的额定功率值,PPENi,k表示第i个粒子中的第k台风电机组的罚函数;In the formula, P i,k represents the output power of the kth wind turbine in the ith particle, P N represents the rated power value of the wind turbine, and P PENi,k represents the kth wind turbine in the ith particle. penalty function;

步骤S13:利用适应度计算公式,计算每个粒子的适应度值;其中,适应度计算公式为:Step S13: Calculate the fitness value of each particle by using the fitness calculation formula; wherein, the fitness calculation formula is:

式中,Pi表示目标粒子群中第i个粒子的适应度值,D表示预设的惩罚因子;In the formula, P i represents the fitness value of the ith particle in the target particle swarm, and D represents the preset penalty factor;

步骤S14:利用每个粒子的位置以及适应度值,对每个粒子的速度和位置进行迭代更新,得到全局最优粒子;其中,全局最优粒子的位置的向量表达式为:Step S14: Using the position and fitness value of each particle, iteratively update the speed and position of each particle to obtain the global optimal particle; wherein, the vector expression of the position of the global optimal particle is:

式中,βgj表示风电机群中第j台风电机组的最优桨距角,fgbus表示变频交流母线的最优频率;In the formula, β gj represents the optimal pitch angle of the jth wind turbine in the wind turbine cluster, and f gbus represents the optimal frequency of the variable frequency AC bus;

步骤S15:根据全局最优粒子,对风电机群展开相应的控制。Step S15: According to the global optimal particle, corresponding control is carried out on the wind turbine group.

其中,上述步骤S15的具体过程可以包括:将fgbus赋给风电机群的频率调节器,以使频率调节器根据fgbus进行相应的频率调节,并且将βg1g2,…,βgM赋给相应风电机组的桨距角控制器,以使每个桨距角控制器根据各自获取到的最优桨距角进行相应的桨距角控制处理。The specific process of the above step S15 may include: assigning f gbus to the frequency regulator of the wind turbine group, so that the frequency regulator performs corresponding frequency adjustment according to f gbus , and assigning β g1 , β g2 , . . . , β gM to To the pitch angle controllers of the corresponding wind turbines, so that each pitch angle controller performs corresponding pitch angle control processing according to the optimal pitch angle obtained by each.

需要说明的是,本实施例中的风电机群可以为采用可变频率变压器集中控制的变速风电机群,或采用高压直流输电变流器集中控制的变速风电机群,或采用分频交流输电变流器集中控制的变速风电机群。本实施例中,风电机群中每台风电机组在功率控制过程中的转速均保持一致,在上述功率控制过程中,需要对风电机群中的所有风电机组进行统一控制,而不会对任意风电机组进行单独控制。It should be noted that the wind turbine group in this embodiment may be a variable-speed wind turbine group centrally controlled by a variable frequency transformer, or a variable-speed wind turbine group centrally controlled by a high-voltage DC transmission converter, or a frequency-divided AC transmission converter. Centrally controlled variable speed wind turbines. In this embodiment, the rotational speed of each wind turbine in the wind turbine group is consistent during the power control process. In the above power control process, it is necessary to perform unified control on all the wind turbines in the wind turbine group, and not for any wind turbine. for individual control.

可见,本发明实施例通过利用带罚函数的粒子群优化算法,可以实现风电机群输出功率最大化,并且能够确保风电机组的输出功率不超过额定功率值,从而提高了风能利用率,减少了风电机群控制过程中的风能损失量,并且有利于风电系统的安全稳定运行。It can be seen that by using the particle swarm optimization algorithm with penalty function in the embodiment of the present invention, the output power of the wind turbine group can be maximized, and the output power of the wind turbine group can be ensured not to exceed the rated power value, thereby improving the utilization rate of wind energy and reducing wind power. The amount of wind energy loss in the process of fleet control, and is conducive to the safe and stable operation of the wind power system.

本发明实施例公开了一种具体的风电机群控制方法,包括以下步骤:The embodiment of the present invention discloses a specific wind turbine group control method, which includes the following steps:

步骤S21:预先创建并初始化与风电机群的规模相适应的粒子群,得到目标粒子群;其中,目标粒子群中的第i个粒子的位置的向量表达式为:Step S21: Pre-create and initialize a particle swarm suitable for the scale of the wind turbine swarm to obtain a target particle swarm; wherein, the vector expression of the position of the i-th particle in the target particle swarm is:

式中,M表示风电机群中风电机组的数量,N表示目标粒子群中粒子的数量,βi,j表示第i个粒子中的第j台风电机组的桨距角,fi,bus表示第i个粒子中变频交流母线的频率。In the formula, M represents the number of wind turbines in the wind turbine group, N represents the number of particles in the target particle group, β i,j represents the pitch angle of the jth wind turbine in the ith particle, and f i,bus represents the ith wind turbine. The frequency of the variable frequency AC bus in i particles.

步骤S22:利用输出功率计算公式,计算每台风电机组的输出功率;其中,输出功率计算公式为:Step S22: Calculate the output power of each wind turbine by using the output power calculation formula; wherein, the output power calculation formula is:

式中,Pi,k表示第i个粒子中的第k台风电机组的输出功率,ρ表示空气密度,A表示风力机叶片扫掠面积,Ck(Vki,k,fi,bus)表示第k台风电机组的功率系数,Vk表示第k台风电机组的实时风速。In the formula, P i,k represents the output power of the k-th wind turbine in the i-th particle, ρ represents the air density, A represents the swept area of the wind turbine blade, C k (V ki,k ,f i ,bus ) represents the power coefficient of the kth wind turbine, and V k represents the real-time wind speed of the kth wind turbine.

本实施例中,第k台风电机组的功率系数Ck(Vki,k,fi,bus)的计算公式为:In this embodiment, the calculation formula of the power coefficient C k (V ki,k ,fi ,bus ) of the kth wind turbine is:

其中,指数S为:Among them, the index S is:

式中,Vk表示第k台风电机组的实时风速,R表示风电机组的叶片半径,np表示电机极对数,ng表示齿轮箱变比,K1至K6为预先基于风电机组翼型确定的系数。In the formula, V k represents the real-time wind speed of the kth wind turbine, R represents the blade radius of the wind turbine, n p represents the number of pole pairs of the motor, n g represents the gearbox ratio, and K 1 to K 6 are based on the wind turbine blades in advance. type-determined coefficients.

步骤S23:利用每台风电机组的输出功率以及罚函数确定公式,确定出每台风电机组的罚函数。其中,罚函数确定公式为:Step S23: Determine the penalty function of each wind turbine by using the output power of each wind turbine and the penalty function determination formula. Among them, the penalty function determination formula is:

式中,Pi,k表示第i个粒子中的第k台风电机组的输出功率,PN表示风电机组的额定功率值,PPENi,k表示第i个粒子中的第k台风电机组的罚函数。In the formula, P i,k represents the output power of the kth wind turbine in the ith particle, P N represents the rated power value of the wind turbine, and P PENi,k represents the kth wind turbine in the ith particle. penalty function.

步骤S24:将每个粒子的初始位置确定为每个粒子的当前最优位置i=1,2,...,N,以及从当前所有粒子中筛选出适应度值最大的粒子,并将该粒子的位置确定为目标粒子群中的当前全局最优位置 Step S24: Determine the initial position of each particle as the current optimal position of each particle i=1,2,...,N, and screen out the particle with the largest fitness value from all the current particles, and determine the position of the particle as the current global optimal position in the target particle swarm

步骤S25:利用每个粒子的当前最优位置以及目标粒子群中的当前全局最优位置对每个粒子的速度和位置进行更新,得到本轮更新后每个粒子的新位置。Step S25: Use the current optimal position of each particle and the current global optimal position in the target particle swarm Update the speed and position of each particle to get the new position of each particle after this round of updates.

具体的,上述对每个粒子的速度和位置进行更新,得到本轮更新后每个粒子的新位置的过程,可以包括:Specifically, the above process of updating the speed and position of each particle to obtain the new position of each particle after the current round of updates may include:

利用迭代更新公式,对每个粒子的速度和位置进行更新,并且在利用迭代更新公式进行更新的过程中,若任意粒子的位置向量中存在任一向量元素的数值超出预设的元素数值约束范围,则利用该元素数值约束范围的边界值对该向量元素的数值进行替换更新,得到本轮更新后每个粒子的新位置;其中,迭代更新公式为:Use the iterative update formula to update the speed and position of each particle, and in the process of using the iterative update formula to update, if the value of any vector element in the position vector of any particle exceeds the preset element value constraint range , then the value of the vector element is replaced and updated by the boundary value of the numerical constraint range of the element, and the new position of each particle after the current round of update is obtained; wherein, the iterative update formula is:

式中,为惯性权重,c1和c2为学习因子,r1和r2为随机数。In the formula, are inertia weights, c 1 and c 2 are learning factors, and r 1 and r 2 are random numbers.

步骤S26:计算每个粒子的新位置所对应的适应度值,利用预设更新原则,对所有粒子的当前最优位置进行更新;其中,预设更新原则为:当任一粒子的新位置的适应度值大于该粒子的当前最优位置,则利用该粒子的新位置对该粒子的当前最优位置进行替换更新。Step S26: Calculate the fitness value corresponding to the new position of each particle, and use the preset update principle to update the current optimal positions of all particles; wherein, the preset update principle is: when the new position of any particle is If the fitness value is greater than the current optimal position of the particle, the current optimal position of the particle is replaced and updated with the new position of the particle.

步骤S27:从当前所有粒子中筛选出适应度值最大的粒子,并判断该粒子的适应度值是否大于当前全局最优位置对应的适应度值,如果是,则利用该粒子的当前位置对目标粒子群中的当前全局最优位置进行替换更新。Step S27: Screen out the particle with the largest fitness value from all the current particles, and determine whether the fitness value of the particle is greater than the current global optimal position The corresponding fitness value, if so, use the current position of the particle to calculate the current global optimal position in the target particle swarm Do a replacement update.

步骤S28:重新进入步骤S25,直到达到预设的迭代次数,并将迭代结束后得到的当前全局最优位置所对应的粒子确定为全局最优粒子。Step S28: Re-enter step S25 until the preset number of iterations is reached, and use the current global optimal position obtained after the iteration ends. The corresponding particle is determined as the global optimal particle.

步骤S29:根据全局最优粒子,对风电机群展开相应的控制。Step S29: According to the global optimal particle, corresponding control is carried out on the wind turbine group.

相应的,本发明实施例还公开了一种风电机群控制系统,应用于风电机群,其中,风电机群中每台风电机组在功率控制过程中的转速均保持一致,参见图2所示,该系统包括:Correspondingly, the embodiment of the present invention also discloses a wind turbine group control system, which is applied to a wind turbine group, wherein the rotational speed of each wind turbine group in the wind turbine group is consistent during the power control process. Referring to FIG. 2 , the system include:

粒子群创建模块11,用于预先创建并初始化与风电机群的规模相适应的粒子群,得到目标粒子群;其中,目标粒子群中的第i个粒子的位置的向量表达式为:The particle swarm creation module 11 is used to pre-create and initialize a particle swarm suitable for the scale of the wind turbine swarm to obtain a target particle swarm; wherein, the vector expression of the position of the i-th particle in the target particle swarm is:

式中,M表示风电机群中风电机组的数量,N表示目标粒子群中粒子的数量,βi,j表示第i个粒子中的第j台风电机组的桨距角,fi,bus表示第i个粒子中变频交流母线的频率;In the formula, M represents the number of wind turbines in the wind turbine group, N represents the number of particles in the target particle group, β i,j represents the pitch angle of the jth wind turbine in the ith particle, and f i,bus represents the ith wind turbine. The frequency of the variable-frequency AC bus in i particles;

罚函数确定模块12,用于利用罚函数确定公式,确定出每台风电机组的罚函数;其中,罚函数确定公式为:The penalty function determination module 12 is used to determine the penalty function of each wind turbine by using the penalty function determination formula; wherein, the penalty function determination formula is:

式中,Pi,k表示第i个粒子中的第k台风电机组的输出功率,PN表示风电机组的额定功率值,PPENi,k表示第i个粒子中的第k台风电机组的罚函数;In the formula, P i,k represents the output power of the kth wind turbine in the ith particle, P N represents the rated power value of the wind turbine, and P PENi,k represents the kth wind turbine in the ith particle. penalty function;

适应度值计算模块13,用于利用适应度计算公式,计算每个粒子的适应度值;其中,适应度计算公式为:The fitness value calculation module 13 is used to calculate the fitness value of each particle by using the fitness calculation formula; wherein, the fitness calculation formula is:

式中,Pi表示目标粒子群中第i个粒子的适应度值,D表示预设的惩罚因子;In the formula, P i represents the fitness value of the ith particle in the target particle swarm, and D represents the preset penalty factor;

迭代更新模块14,用于利用每个粒子的位置以及适应度值,对每个粒子的速度和位置进行迭代更新,得到全局最优粒子;其中,全局最优粒子的位置的向量表达式为:The iterative update module 14 is used to iteratively update the speed and position of each particle by using the position and fitness value of each particle to obtain the global optimal particle; wherein, the vector expression of the position of the global optimal particle is:

式中,βgj表示风电机群中第j台风电机组的最优桨距角,fgbus表示变频交流母线的最优频率;In the formula, β gj represents the optimal pitch angle of the jth wind turbine in the wind turbine cluster, and f gbus represents the optimal frequency of the variable frequency AC bus;

风电机群控制模块15,用于根据全局最优粒子,对风电机群展开相应的控制。The wind turbine group control module 15 is configured to carry out corresponding control on the wind turbine group according to the global optimal particle.

本实施例中,上述罚函数确定模块,具体可以包括输出功率计算子模块和罚函数确定子模块;其中,In this embodiment, the aforementioned penalty function determination module may specifically include an output power calculation submodule and a penalty function determination submodule; wherein,

输出功率计算子模块,用于利用输出功率计算公式,计算每台风电机组的输出功率;其中,输出功率计算公式为:The output power calculation sub-module is used to calculate the output power of each wind turbine by using the output power calculation formula; wherein, the output power calculation formula is:

式中,Pi,k表示第i个粒子中的第k台风电机组的输出功率,ρ表示空气密度,A表示风力机叶片扫掠面积,Ck(Vki,k,fi,bus)表示第k台风电机组的功率系数,Vk表示第k台风电机组的实时风速;In the formula, P i,k represents the output power of the k-th wind turbine in the i-th particle, ρ represents the air density, A represents the swept area of the wind turbine blade, C k (V ki,k ,f i ,bus ) represents the power coefficient of the kth wind turbine, and V k represents the real-time wind speed of the kth wind turbine;

罚函数确定子模块,用于利用每台风电机组的输出功率以及罚函数确定公式,确定出每台风电机组的罚函数。The penalty function determination sub-module is used to determine the penalty function of each wind turbine by using the output power of each wind turbine and the penalty function determination formula.

可以理解的是,上述输出功率计算子模块,需要包括:It can be understood that the above-mentioned output power calculation sub-module needs to include:

功率系数计算单元,用于利用功率系数计算公式,计算每台风电机组的功率系数;其中,功率系数计算公式为:The power coefficient calculation unit is used to calculate the power coefficient of each wind turbine by using the power coefficient calculation formula; wherein, the power coefficient calculation formula is:

其中,指数S为:Among them, the index S is:

式中,Vk表示第k台风电机组的实时风速,R表示风电机组的叶片半径,np表示电机极对数,ng表示齿轮箱变比,K1至K6为预先基于风电机组翼型确定的系数。In the formula, V k represents the real-time wind speed of the kth wind turbine, R represents the blade radius of the wind turbine, n p represents the number of pole pairs of the motor, n g represents the gearbox ratio, and K 1 to K 6 are based on the wind turbine blades in advance. type-determined coefficients.

需要说明的是,本实施例中的风电机群具体可以为采用可变频率变压器集中控制的变速风电机群,或采用高压直流输电变流器集中控制的变速风电机群,或采用分频交流输电变流器集中控制的变速风电机群。It should be noted that, the wind turbine group in this embodiment may specifically be a variable-speed wind turbine group that is centrally controlled by a variable frequency transformer, or a variable-speed wind turbine group that is centrally controlled by a high-voltage DC transmission converter, or a frequency-divided AC power transmission converter. The variable speed wind turbine group controlled by the centralized controller.

关于上述各个模块更加详细的工作过程可以参考前述实施例中公开的相应内容,在此不再进行赘述。For more detailed working processes of the above-mentioned modules, reference may be made to the corresponding contents disclosed in the foregoing embodiments, which will not be repeated here.

可见,本发明实施例通过利用带罚函数的粒子群优化算法,可以实现风电机群输出功率最大化,并且能够确保风电机组的输出功率不超过额定功率值,从而提高了风能利用率,减少了风电机群控制过程中的风能损失量,并且能够避免风电机组的输出功率超出额定功率值,有利于风电系统的安全稳定运行。It can be seen that by using the particle swarm optimization algorithm with penalty function in the embodiment of the present invention, the output power of the wind turbine group can be maximized, and the output power of the wind turbine group can be ensured not to exceed the rated power value, thereby improving the utilization rate of wind energy and reducing wind power. The amount of wind energy loss during the control of the fleet, and can prevent the output power of the wind turbine from exceeding the rated power value, which is conducive to the safe and stable operation of the wind power system.

最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。Finally, it should also be noted that in this document, relational terms such as first and second are used only to distinguish one entity or operation from another, and do not necessarily require or imply these entities or that there is any such actual relationship or sequence between operations. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.

以上对本发明所提供的一种风电机群控制方法及系统进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The method and system for controlling a wind turbine group provided by the present invention have been described in detail above. The principles and implementations of the present invention are described with specific examples in this paper. The descriptions of the above embodiments are only used to help understand the present invention. method and its core idea; at the same time, for those skilled in the art, according to the idea of the present invention, there will be changes in the specific implementation and application scope. Invention limitations.

Claims (10)

1. A method for controlling a wind turbine group is characterized by being applied to the wind turbine group, wherein the rotating speed of each wind turbine group in the wind turbine group is kept consistent in the power control process, and the method comprises the following steps:
a particle swarm which is suitable for the scale of the wind turbine group is created and initialized in advance to obtain a target particle swarm; wherein a vector expression of a position of an ith particle in the target particle population is:
wherein M represents the number of wind generating sets in the wind turbine group, N represents the number of particles in the target particle group, βi,jRepresenting the pitch angle, f, of the jth wind turbine generator in the ith particlei,busRepresenting the frequency of a variable frequency alternating current bus in the ith particle;
determining a penalty function of each wind turbine generator by using a penalty function determination formula; wherein the penalty function determination formula is:
in the formula, Pi,kRepresents the output power, P, of the kth wind turbine generator in the ith particleNRepresenting rated power value, P, of wind turbinePENi,kA penalty function representing the kth wind turbine in the ith particle;
calculating the fitness value of each particle by using a fitness calculation formula; wherein the fitness calculation formula is as follows:
in the formula, PiRepresenting the fitness value of the ith particle in the target particle swarm, wherein D represents a preset penalty factor;
iteratively updating the speed and the position of each particle by using the position and the fitness value of each particle to obtain a global optimal particle; wherein the vector expression of the position of the globally optimal particle is:
in the formula, βgjRepresenting an optimal pitch angle, f, of a jth wind turbine group in said wind turbine groupgbusRepresenting the optimal frequency of the variable frequency alternating current bus;
and performing corresponding control on the wind turbine groups according to the global optimal particles so as to control the pitch angle of each wind turbine group and the frequency of the variable-frequency alternating-current bus.
2. The wind farm control method according to claim 1, wherein the process of determining the penalty function for each wind turbine using the penalty function determination formula comprises:
calculating the output power of each wind turbine generator by using an output power calculation formula; wherein, the output power calculation formula is as follows:
in the formula, Pi,kRepresenting the output power of the kth wind turbine generator set in the ith particle, rho representing the air density, A representing the swept area of the wind turbine blade, Ck(Vki,k,fi,bus) Represents the power coefficient, V, of the kth wind turbinekRepresenting the real-time wind speed of the kth wind power generation unit;
and determining the penalty function of each wind turbine generator by using the output power of each wind turbine generator and the penalty function determination formula.
3. The wind farm control method according to claim 2, wherein the power coefficient C of the kth wind farmk(Vki,k,fi,bus) The calculation formula of (2) is as follows:
wherein the index S is:
in the formula, VkRepresenting the real-time wind speed of the kth wind turbine, R representing the blade radius of the wind turbine, npRepresenting the number of pole pairs, n, of the motorgRepresenting gear box ratio, K1To K6Coefficients are determined in advance based on the wind turbine airfoil.
4. The wind turbine generator set control method according to claim 1, wherein the wind turbine generator set is a variable speed wind turbine generator set centrally controlled by a variable frequency transformer, or a variable speed wind turbine generator set centrally controlled by a high voltage direct current transmission converter, or a variable speed wind turbine generator set centrally controlled by a frequency division alternating current transmission converter.
5. The wind farm control method according to any one of claims 1 to 4, wherein the process of iteratively updating the speed and the position of each particle by using the position and the fitness value of each particle to obtain a globally optimal particle comprises:
step A1: determining an initial position of each particle as a current optimal position of each particlei 1, 2.. N, and screening out the particle with the largest fitness value from all current particles, and determining the position of the particle as the current global optimal position in the target particle swarm
Step A2: using the current optimal position of each particleAnd a current global optimal position in the target particle swarmFor each oneUpdating the speed and the position of the particles to obtain a new position of each particle after the current round of updating;
step A3: calculating the fitness value corresponding to the new position of each particle, and updating the current optimal positions of all the particles by using a preset updating principle; wherein, the preset updating principle is as follows: when the fitness value of the new position of any particle is larger than the fitness value of the current optimal position of the particle, replacing and updating the current optimal position of the particle by using the new position of the particle;
step A4: screening out the particles with the largest fitness value from all the current particles, and judging whether the fitness value of the particle is larger than the current global optimal position or notCorresponding fitness value, if yes, the current position of the particle is utilized to carry out the current global optimal position in the target particle swarmCarrying out replacement updating;
step A5: re-entering the step A2 until reaching the preset iteration number, and obtaining the current global optimal position after the iteration is finishedThe corresponding particle is determined as the global optimal particle.
6. The wind farm control method according to claim 5, wherein the process of updating the speed and the position of each particle to obtain the new position of each particle after the current round of updating comprises:
updating the speed and the position of each particle by using an iterative updating formula, and in the updating process by using the iterative updating formula, if the value of any vector element in the position vector of any particle exceeds a preset element value constraint range, replacing and updating the value of the vector element by using the boundary value of the element value constraint range to obtain the new position of each particle after the current round of updating; wherein the iterative update formula is:
in the formula,is an inertial weight, c1And c2Is a learning factor, r1And r2Is a random number.
7. The utility model provides a wind turbine group control system which characterized in that is applied to the wind turbine group, wherein, every wind turbine group in the wind turbine group all keeps unanimous at the rotational speed of power control in-process, the system includes:
the particle swarm creating module is used for creating and initializing a particle swarm which is adaptive to the scale of the wind turbine group in advance to obtain a target particle swarm; wherein a vector expression of a position of an ith particle in the target particle population is:
wherein M represents the number of wind generating sets in the wind turbine group, N represents the number of particles in the target particle group, βi,jRepresenting the pitch angle, f, of the jth wind turbine generator in the ith particlei,busRepresenting the frequency of a variable frequency alternating current bus in the ith particle;
the penalty function determining module is used for determining a penalty function of each wind turbine generator by using a penalty function determining formula; wherein the penalty function determination formula is:
in the formula, Pi,kRepresents the output power, P, of the kth wind turbine generator in the ith particleNRepresenting rated power value, P, of wind turbinePENi,kA penalty function representing the kth wind turbine in the ith particle;
the fitness value calculation module is used for calculating the fitness value of each particle by using a fitness calculation formula; wherein the fitness calculation formula is as follows:
in the formula, PiRepresenting the fitness value of the ith particle in the target particle swarm, wherein D represents a preset penalty factor;
the iterative update module is used for carrying out iterative update on the speed and the position of each particle by utilizing the position and the fitness value of each particle to obtain a global optimal particle; wherein the vector expression of the position of the globally optimal particle is:
in the formula, βgjRepresenting an optimal pitch angle, f, of a jth wind turbine group in said wind turbine groupgbusRepresenting the optimal frequency of the variable frequency alternating current bus;
and the wind turbine generator group control module is used for correspondingly controlling the wind turbine generator group according to the global optimal particles so as to control the pitch angle of each wind turbine generator and the frequency of the variable-frequency alternating-current bus.
8. The wind farm control system according to claim 7, wherein the penalty function determining module specifically comprises:
the output power calculation submodule is used for calculating the output power of each wind turbine generator by using an output power calculation formula; wherein, the output power calculation formula is as follows:
in the formula, Pi,kRepresenting the output power of the kth wind turbine generator set in the ith particle, rho representing the air density, A representing the swept area of the wind turbine blade, Ck(Vki,k,fi,bus) Represents the power coefficient, V, of the kth wind turbinekRepresenting the real-time wind speed of the kth wind power generation unit;
and the penalty function determining submodule is used for determining the penalty function of each wind turbine generator by utilizing the output power of each wind turbine generator and the penalty function determining formula.
9. The wind farm control system according to claim 8, wherein the output power calculation sub-module comprises:
the power coefficient calculation unit is used for calculating the power coefficient of each wind turbine generator by using a power coefficient calculation formula; wherein, the power coefficient calculation formula is as follows:
wherein the index S is:
in the formula, VkRepresenting the real-time wind speed of the kth wind turbine, R representing the blade radius of the wind turbine, npRepresenting the number of pole pairs, n, of the motorgRepresenting gear box ratio, K1To K6Coefficients are determined in advance based on the wind turbine airfoil.
10. The wind turbine generator set control system according to claim 7, wherein the wind turbine generator set is a variable speed wind turbine generator set centrally controlled by a variable frequency transformer, or a variable speed wind turbine generator set centrally controlled by a high voltage direct current transmission converter, or a variable speed wind turbine generator set centrally controlled by a frequency division alternating current transmission converter.
CN201710174230.3A 2017-03-22 2017-03-22 A kind of wind turbine group control method and system Expired - Fee Related CN106684922B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710174230.3A CN106684922B (en) 2017-03-22 2017-03-22 A kind of wind turbine group control method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710174230.3A CN106684922B (en) 2017-03-22 2017-03-22 A kind of wind turbine group control method and system

Publications (2)

Publication Number Publication Date
CN106684922A CN106684922A (en) 2017-05-17
CN106684922B true CN106684922B (en) 2019-03-15

Family

ID=58826240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710174230.3A Expired - Fee Related CN106684922B (en) 2017-03-22 2017-03-22 A kind of wind turbine group control method and system

Country Status (1)

Country Link
CN (1) CN106684922B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105631152A (en) * 2016-01-07 2016-06-01 广东工业大学 PSO (Particle Swarm Optimization)-based wind energy capturing method of VSVF (Variable-speed Variable-frequency) wind power system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030791B2 (en) * 2008-07-31 2011-10-04 Rockwell Automation Technologies, Inc. Current source converter-based wind energy system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105631152A (en) * 2016-01-07 2016-06-01 广东工业大学 PSO (Particle Swarm Optimization)-based wind energy capturing method of VSVF (Variable-speed Variable-frequency) wind power system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一种求解约束优化问题的改进粒子群算法及其应用;廖猜猜,等;《工程热物理学报》;20100131;第31卷(第1期);32-35

Also Published As

Publication number Publication date
CN106684922A (en) 2017-05-17

Similar Documents

Publication Publication Date Title
CN105179164B (en) Wind-energy changing system sliding-mode control and device based on T-S fuzzy models
CN109642536B (en) Control or processing system and method
CN108167120B (en) A joint control method of variable pitch and variable torque for variable speed wind turbines
CN113883008B (en) Fan fuzzy self-adaptive variable pitch control method capable of inhibiting multiple disturbance factors
CN109296500B (en) A method for maximum wind energy capture based on robust control theory
CN104595106A (en) Wind power generation variable pitch control method based on reinforcement learning compensation
CN116753116A (en) Yaw wake flow control method and device for fans in wind farm
CN104500336B (en) A kind of Wind turbines invariable power generalized forecast control method based on Hammerstein Wiener models
Zamzoum et al. Active and reactive power control of wind turbine based on doubly fed induction generator using adaptive sliding mode approach
CN109782583A (en) A kind of wind power plant PI attitude conirol method and apparatus
Bakir et al. Experimental evaluation of water cycle technique for control parameters optimization of double-fed induction generator-based wind turbine
CN117353631A (en) Wind power generation and photovoltaic power generation complementary power supply control method, device, equipment and storage medium
CN106786784B (en) Method and system for power control of a wind turbine group
CN103746628B (en) Method for controlling rotor-side converter of doubly fed induction generator (DFIG)
Guo et al. Optimal decreased torque gain control for maximizing wind energy extraction under varying wind speed
CN116845886B (en) Multi-port autonomous photovoltaic system network construction control method based on model prediction
CN102661243B (en) Forecast correction pitch variation control method for doubly-fed induction wind power generator set
CN108717266B (en) Neural self-adaptive tracking control method for wind field fan power based on disturbance observer
CN112636366B (en) Wind power plant dynamic frequency control method based on control process data fitting
CN105221336A (en) Based on the Wind turbines independent pitch control method of robust control
CN117028141A (en) A method for coordinated and optimized pitch control of wind turbines
CN106684922B (en) A kind of wind turbine group control method and system
CN117189472A (en) An independent pitch control method
Ghefiri et al. Firefly algorithm based-pitch angle control of a tidal stream generator for power limitation mode
Yao et al. RBF neural network based self-tuning PID pitch control strategy for wind power generation system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190315

CF01 Termination of patent right due to non-payment of annual fee