CN106603618A - Cloud platform-based application auto scaling method - Google Patents
Cloud platform-based application auto scaling method Download PDFInfo
- Publication number
- CN106603618A CN106603618A CN201610822500.2A CN201610822500A CN106603618A CN 106603618 A CN106603618 A CN 106603618A CN 201610822500 A CN201610822500 A CN 201610822500A CN 106603618 A CN106603618 A CN 106603618A
- Authority
- CN
- China
- Prior art keywords
- elastic scaling
- virtual machine
- cloud platform
- scaling
- elastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/02—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
- H04L67/1031—Controlling of the operation of servers by a load balancer, e.g. adding or removing servers that serve requests
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Information Transfer Between Computers (AREA)
Abstract
本发明公开一种基于云平台的应用弹性伸缩方法,涉及云计算领域,在云平台上已设置负载均衡的应用服务上,设置定时、周期、根据性能参数伸缩的弹性伸缩策略,通过该弹性伸缩策略动态添加、删除节点实现应用的弹性伸缩,提供自动调整客户计算资源的管理服务。本发明能够实现用户根据业务、性能需要自动调整其计算资源应用的目的,有效提高了计算资源的利用率,提高工作效率,确保机器稳定高效运行。
The invention discloses an application elastic scaling method based on a cloud platform, which relates to the field of cloud computing. On the cloud platform, an elastic scaling strategy with timing, periodicity, and scaling according to performance parameters is set on the application service that has been set with load balancing. Through the elastic scaling Policies dynamically add and delete nodes to implement elastic scaling of applications, and provide management services that automatically adjust customer computing resources. The invention can realize the user's purpose of automatically adjusting the application of computing resources according to business and performance requirements, effectively improves the utilization rate of computing resources, improves work efficiency, and ensures stable and efficient operation of machines.
Description
技术领域technical field
本发明涉及云计算领域,具体的说是一种基于云平台的应用弹性伸缩方法。The invention relates to the field of cloud computing, in particular to a cloud platform-based application elastic scaling method.
背景技术Background technique
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云计算是通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将与互联网更相似。这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统。Cloud computing is the growth, usage, and delivery model of Internet-based related services, usually involving the provision of dynamically scalable and often virtualized resources over the Internet. Cloud computing is to distribute computing on a large number of distributed computers instead of local computers or remote servers, and the operation of enterprise data centers will be more similar to the Internet. This enables enterprises to switch resources to required applications and access computers and storage systems as needed.
弹性伸缩(Auto Scaling),是根据用户的业务需求和策略,经济地自动调整其弹性计算资源的管理服务,能够在业务增长时自动增加虚拟机实例,保证业务的平稳健康运行;在业务下降时自动减少虚拟机实例,节省相应计算资源。Auto Scaling is a management service that economically and automatically adjusts its elastic computing resources according to the user's business needs and strategies. It can automatically increase virtual machine instances when the business grows to ensure the smooth and healthy operation of the business; when the business declines Automatically reduce virtual machine instances to save corresponding computing resources.
负载均衡(Load Balance),是由多台服务器以对称的方式组成一个服务器集合,每台服务器都具有等价的地位,都可以单独对外提供服务而无须其他服务器的辅助。通过某种负载分担技术,将外部发送来的请求均匀分配到对称结构中的某一台服务器上,而接收到请求的服务器独立地回应客户的请求。均衡负载能够平均分配客户请求到服务器列阵,籍此提供快速获取重要数据,解决大量并发访问服务问题。Load Balance (Load Balance) is a collection of servers composed of multiple servers in a symmetrical manner. Each server has an equivalent status and can provide external services independently without the assistance of other servers. Through a certain load sharing technology, the requests sent from the outside are evenly distributed to a certain server in the symmetrical structure, and the server that receives the request independently responds to the client's request. Load balancing can evenly distribute customer requests to the server array, thereby providing fast access to important data and solving the problem of a large number of concurrent access services.
发明内容Contents of the invention
本发明针对目前技术发展的需求和不足之处,提供一种基于云平台的应用弹性伸缩方法。Aiming at the needs and shortcomings of the current technological development, the present invention provides a cloud platform-based application elastic scaling method.
本发明所述一种基于云平台的应用弹性伸缩方法,解决上述技术问题采用的技术方案如下:所述一种基于云平台的应用弹性伸缩方法,在云平台上已设置负载均衡的应用服务上,设置定时、周期、根据性能参数伸缩的弹性伸缩策略,通过该弹性伸缩策略动态添加、删除节点实现应用的弹性伸缩,提供自动调整客户计算资源的管理服务。According to the cloud platform-based application elastic scaling method of the present invention, the technical solution adopted to solve the above technical problems is as follows: the cloud platform-based application elastic scaling method is set on the cloud platform on the application service with load balancing , set the timing, period, and elastic scaling policy based on performance parameters, dynamically add and delete nodes through the elastic scaling policy to achieve elastic scaling of applications, and provide management services that automatically adjust customer computing resources.
优选的,所述弹性伸缩策略主要包括扩容、减容两种操作。所述扩容操作主要包括:启动、唤醒、创建虚拟机,或开启、扩容指定虚拟机或指定虚拟机的节点。所述减容操作主要包括:关闭、休眠、销毁虚拟机,或关闭、减容指定虚拟机或指定虚拟机的节点。Preferably, the elastic scaling strategy mainly includes two operations of capacity expansion and capacity reduction. The expansion operation mainly includes: starting, waking up, and creating a virtual machine, or opening and expanding a specified virtual machine or a node of a specified virtual machine. The capacity reduction operation mainly includes: shutting down, hibernating, and destroying the virtual machine, or shutting down or reducing the capacity of a specified virtual machine or a node of a specified virtual machine.
优选的,从指定虚拟机增容或减容时,进行设置指定虚拟机的IP、ssh用户密码、应用软件、软件安装/停止脚本。Preferably, when increasing or reducing capacity from the specified virtual machine, the IP, ssh user password, application software, and software installation/stop script of the specified virtual machine are set.
优选的,所述弹性伸缩策略与负载均衡配合使用,伸缩完成后能够动态到负载均衡节点添加、删除,即新增、删除负载均衡节点进行web服务的弹性伸缩。Preferably, the elastic scaling strategy is used in conjunction with load balancing. After the scaling is completed, the load balancing node can be dynamically added or deleted, that is, the load balancing node can be added or deleted to perform elastic scaling of web services.
本发明所述一种基于云平台的应用弹性伸缩方法与现有技术相比具有的有益效果是:本发明在云平台上、已设置负载均衡的应用服务中,进行设置定时、周期、根据性能参数伸缩的弹性伸缩策略,通过动态添加、删除节点实现应用的弹性伸缩,提供自动调整客户计算资源的管理服务,从而实现用户根据业务、性能需要自动调整其计算资源应用的目的;能够有效提高计算资源的利用率,提高工作效率,确保机器稳定高效运行,具有较好的使用推广价值。Compared with the prior art, the cloud platform-based application elastic scaling method of the present invention has the beneficial effect that: the present invention sets the timing, period, and performance-based The elastic scaling strategy of parameter scaling realizes the elastic scaling of applications by dynamically adding and deleting nodes, and provides management services for automatically adjusting customer computing resources, so as to realize the purpose of users automatically adjusting their computing resource applications according to business and performance needs; it can effectively improve computing power. The utilization rate of resources, improve work efficiency, ensure the stable and efficient operation of the machine, and have good use and promotion value.
附图说明Description of drawings
附图1为所述弹性伸缩策略的设置示意图;Accompanying drawing 1 is a schematic diagram of setting the elastic scaling strategy;
附图2为所述应用弹性伸缩方法的示意图。Accompanying drawing 2 is a schematic diagram of the method of applying elastic stretching.
具体实施方式detailed description
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,对本发明所述一种基于云平台的应用弹性伸缩方法进一步详细说明。In order to make the purpose, technical solution and advantages of the present invention clearer, the method for elastic scaling of applications based on the cloud platform in the present invention will be further described in detail in conjunction with specific embodiments.
本发明所述基于云平台的应用弹性伸缩方法,在云平台上、已设置负载均衡的应用服务中,可以定时、周期或根据应用负载(CPU利用率、内存利用率等)数据设置弹性伸缩策略,通过动态添加、删除节点实现应用的弹性伸缩,使得用户能够根据业务、性能需要自动调整其计算资源应用。本方法的基础是应用已经设置负载均衡策略,可以设置定时、周期、根据性能参数伸缩的弹性伸缩策略,为客户提供自动调整客户计算资源的管理服务。According to the cloud platform-based application elastic scaling method of the present invention, on the cloud platform, in the application service with load balancing set, the elastic scaling strategy can be set regularly, periodically or according to the application load (CPU utilization rate, memory utilization rate, etc.) data , by dynamically adding and deleting nodes to achieve elastic scaling of applications, enabling users to automatically adjust their computing resource applications according to business and performance needs. The basis of this method is to apply a load balancing strategy that has been set, and can set timing, periodicity, and elastic scaling strategies that scale according to performance parameters to provide customers with management services that automatically adjust customer computing resources.
实施例:Example:
本实施例一种基于云平台的应用弹性伸缩方法,在云平台上已设置负载均衡的应用服务上,设置定时、周期、根据性能参数伸缩的弹性伸缩策略,通过该弹性伸缩策略动态添加、删除节点实现应用的弹性伸缩,提供自动调整客户计算资源的管理服务。This embodiment is an application elastic scaling method based on the cloud platform. On the application service that has been set up for load balancing on the cloud platform, an elastic scaling policy with timing, periodicity, and scaling according to performance parameters is set, and dynamically added and deleted through the elastic scaling policy. Nodes implement elastic scaling of applications and provide management services that automatically adjust customer computing resources.
附图1为所述弹性伸缩策略的设置示意图,如附图1所示,在云平台上已设置负载均衡的应用服务上,进行设置所述弹性伸缩策略的过程如下:首先通过客户输入阀值信息、增容/减容、指定主机IP、ssh用户名/密码等信息,然后,系统认证客户输入的策略信息,若认证通过,则设置存储数据库,若认证失败则返回报错。Accompanying drawing 1 is a schematic diagram of setting the elastic scaling strategy, as shown in Figure 1, the process of setting the elastic scaling strategy is as follows on the application service with load balancing set on the cloud platform: first, the threshold value is input by the customer Information, capacity increase/decrease, specified host IP, ssh user name/password and other information, and then, the system authenticates the policy information entered by the customer, if the authentication is passed, the storage database is set, and if the authentication fails, an error is returned.
本实施例所述应用伸缩方法,所述弹性伸缩策略主要包括扩容、减容两种操作。所述扩容操作主要包括:启动、唤醒、创建虚拟机,或开启、扩容指定虚拟机或指定虚拟机的节点。所述减容操作主要包括:关闭、休眠、销毁虚拟机,或关闭、减容指定虚拟机或指定虚拟机的节点。并且,从指定虚拟机增容或减容时,必须设置指定虚拟机的IP、ssh用户密码、应用软件、软件安装/停止脚本。进行扩容或减容操作时均设置有阀值,所述阀值包括:内存利用率、cpu利用率、磁盘读写速率、流入流出速率、连接数,这些项数值可组合使用,且只要任何一条超过阀值即可触发执行。通过该弹性伸缩策略,进行设置信息存储数据库。所述弹性伸缩策略与负载均衡配合使用,能够新增、删除负载均衡节点,实现web服务的弹性伸缩。在设置该弹性伸缩策略时,选择负载均衡节点,在应用弹性伸缩完成后,应用能够自动添加到负载均衡节点、或从负载均衡节点删除。In the application scaling method described in this embodiment, the elastic scaling strategy mainly includes two operations of capacity expansion and capacity reduction. The expansion operation mainly includes: starting, waking up, and creating a virtual machine, or opening and expanding a specified virtual machine or a node of a specified virtual machine. The capacity reduction operation mainly includes: shutting down, hibernating, and destroying the virtual machine, or shutting down or reducing the capacity of a specified virtual machine or a node of a specified virtual machine. Moreover, when increasing or reducing capacity from a specified virtual machine, the IP address, ssh user password, application software, and software installation/stop script of the specified virtual machine must be set. Thresholds are set when expanding or reducing capacity. The thresholds include: memory utilization, cpu utilization, disk read/write rate, inflow and outflow rate, and number of connections. The values of these items can be used in combination, and as long as any one Execution is triggered when the threshold is exceeded. Through the elastic scaling policy, set the information storage database. The elastic scaling strategy is used in conjunction with load balancing, and load balancing nodes can be added and deleted to realize elastic scaling of web services. When setting the auto-scaling policy, select the load-balancing node. After the application auto-scaling is completed, the application can be automatically added to or deleted from the load-balancing node.
附图2为所述应用弹性伸缩方法的示意图,如附图2所示,本实施例所述应用伸缩方法的具体实现过程如下:首先调用系统程序,(利用系统的实时监控模块)对弹性伸缩策略发起监控,实时监控弹性伸缩策略,定时检测判断是否达到预设阀值;当弹性伸缩策略到达阀值时,系统根据客户设置的规则,进一步判断需要增容还是减容操作,若是进行增容操作,则进行创建、启动、唤醒虚拟机,或增容到指定虚拟机,即对指定虚拟机通过编辑的脚本进行软件自动部署,然后添加负载均衡节点;若是进行减容操作,则进行关闭、休眠、销毁虚拟机,或从指定虚拟机减容,即对指定虚拟机通过编辑的脚本进行软件进程关闭,然后从负载均衡节点删除。通过上述过程,可以实现计算资源的自动弹性伸缩。同时,在该弹性伸缩策略执行时,系统调用任务处理模块,保证后台可以查看任务的执行、执行结果等。Accompanying drawing 2 is a schematic diagram of the application elastic scaling method, as shown in Figure 2, the specific implementation process of the application elastic scaling method described in this embodiment is as follows: first call the system program, (using the real-time monitoring module of the system) The policy initiates monitoring, monitors the elastic scaling policy in real time, and regularly checks to determine whether the preset threshold is reached; when the elastic scaling policy reaches the threshold, the system further judges whether to increase or decrease the capacity according to the rules set by the customer. To operate, create, start, wake up the virtual machine, or increase the capacity to the specified virtual machine, that is, automatically deploy the software to the specified virtual machine through the edited script, and then add a load balancing node; if the capacity reduction operation is performed, shut down, Hibernate, destroy the virtual machine, or reduce the capacity of the specified virtual machine, that is, shut down the software process of the specified virtual machine through the edited script, and then delete it from the load balancing node. Through the above process, automatic elastic scaling of computing resources can be realized. At the same time, when the elastic scaling policy is executed, the system calls the task processing module to ensure that the background can view the execution and execution results of the task.
上述具体实施方式仅是本发明的具体个案,本发明的专利保护范围包括但不限于上述具体实施方式,任何符合本发明的权利要求书的且任何所属技术领域的普通技术人员对其所做的适当变化或替换,皆应落入本发明的专利保护范围。The above-mentioned specific embodiments are only specific cases of the present invention, and the scope of patent protection of the present invention includes but is not limited to the above-mentioned specific embodiments, any claims that meet the claims of the present invention and any ordinary skilled person in the technical field. Appropriate changes or substitutions should fall within the scope of patent protection of the present invention.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610822500.2A CN106603618A (en) | 2016-09-14 | 2016-09-14 | Cloud platform-based application auto scaling method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610822500.2A CN106603618A (en) | 2016-09-14 | 2016-09-14 | Cloud platform-based application auto scaling method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN106603618A true CN106603618A (en) | 2017-04-26 |
Family
ID=58555800
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610822500.2A Pending CN106603618A (en) | 2016-09-14 | 2016-09-14 | Cloud platform-based application auto scaling method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106603618A (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107562502A (en) * | 2017-09-06 | 2018-01-09 | 郑州云海信息技术有限公司 | A kind of creation method of elastic telescopic device and elastic telescopic strategy |
| CN108965485A (en) * | 2018-09-30 | 2018-12-07 | 北京金山云网络技术有限公司 | Management method, device and the cloud platform of container resource |
| CN109032764A (en) * | 2018-08-16 | 2018-12-18 | 郑州云海信息技术有限公司 | A kind of virtual machine elastic telescopic method and system based on OpenStack |
| CN109240822A (en) * | 2018-08-07 | 2019-01-18 | 东软集团股份有限公司 | The method, apparatus and storage medium and electronic equipment of application program elastic telescopic |
| CN109445911A (en) * | 2018-11-06 | 2019-03-08 | 北京金山云网络技术有限公司 | Method of adjustment, device, cloud platform and the server of CVM example |
| CN109471720A (en) * | 2018-10-19 | 2019-03-15 | 曙光信息产业(北京)有限公司 | Online operational system |
| CN109766174A (en) * | 2018-12-24 | 2019-05-17 | 杭州数梦工场科技有限公司 | Resource regulating method, resource scheduling device and computer readable storage medium |
| CN110175068A (en) * | 2019-04-16 | 2019-08-27 | 平安科技(深圳)有限公司 | Host number elastic telescopic method, apparatus and computer equipment in distributed system |
| CN110245013A (en) * | 2018-03-09 | 2019-09-17 | 北京京东尚科信息技术有限公司 | Internet of Things managing computing resources method and apparatus |
| CN110427250A (en) * | 2019-07-30 | 2019-11-08 | 无锡华云数据技术服务有限公司 | Create cloud host instances, the method, apparatus of elastic telescopic group, equipment and medium |
| CN112994949A (en) * | 2021-04-02 | 2021-06-18 | 软通动力信息技术(集团)股份有限公司 | Private network connection method, device, equipment and storage medium |
| CN113127187A (en) * | 2019-12-31 | 2021-07-16 | 北京百度网讯科技有限公司 | Method and apparatus for cluster scale-up |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130145367A1 (en) * | 2011-09-27 | 2013-06-06 | Pneuron Corp. | Virtual machine (vm) realm integration and management |
| CN104243537A (en) * | 2013-06-24 | 2014-12-24 | 中国银联股份有限公司 | Automatic scaling method and system in a cloud computing environment |
-
2016
- 2016-09-14 CN CN201610822500.2A patent/CN106603618A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130145367A1 (en) * | 2011-09-27 | 2013-06-06 | Pneuron Corp. | Virtual machine (vm) realm integration and management |
| CN104243537A (en) * | 2013-06-24 | 2014-12-24 | 中国银联股份有限公司 | Automatic scaling method and system in a cloud computing environment |
Non-Patent Citations (1)
| Title |
|---|
| 朱志祥: "基于云计算的弹性负载均衡方案", 《西安邮电大学学报》 * |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107562502A (en) * | 2017-09-06 | 2018-01-09 | 郑州云海信息技术有限公司 | A kind of creation method of elastic telescopic device and elastic telescopic strategy |
| CN110245013B (en) * | 2018-03-09 | 2023-11-07 | 北京京东尚科信息技术有限公司 | Internet of Things computing resource management method and device |
| CN110245013A (en) * | 2018-03-09 | 2019-09-17 | 北京京东尚科信息技术有限公司 | Internet of Things managing computing resources method and apparatus |
| CN109240822A (en) * | 2018-08-07 | 2019-01-18 | 东软集团股份有限公司 | The method, apparatus and storage medium and electronic equipment of application program elastic telescopic |
| CN109032764A (en) * | 2018-08-16 | 2018-12-18 | 郑州云海信息技术有限公司 | A kind of virtual machine elastic telescopic method and system based on OpenStack |
| CN108965485B (en) * | 2018-09-30 | 2021-10-15 | 北京金山云网络技术有限公司 | Container resource management method, device and cloud platform |
| CN108965485A (en) * | 2018-09-30 | 2018-12-07 | 北京金山云网络技术有限公司 | Management method, device and the cloud platform of container resource |
| CN109471720A (en) * | 2018-10-19 | 2019-03-15 | 曙光信息产业(北京)有限公司 | Online operational system |
| CN109445911A (en) * | 2018-11-06 | 2019-03-08 | 北京金山云网络技术有限公司 | Method of adjustment, device, cloud platform and the server of CVM example |
| CN109766174A (en) * | 2018-12-24 | 2019-05-17 | 杭州数梦工场科技有限公司 | Resource regulating method, resource scheduling device and computer readable storage medium |
| CN110175068A (en) * | 2019-04-16 | 2019-08-27 | 平安科技(深圳)有限公司 | Host number elastic telescopic method, apparatus and computer equipment in distributed system |
| CN110427250A (en) * | 2019-07-30 | 2019-11-08 | 无锡华云数据技术服务有限公司 | Create cloud host instances, the method, apparatus of elastic telescopic group, equipment and medium |
| CN113127187A (en) * | 2019-12-31 | 2021-07-16 | 北京百度网讯科技有限公司 | Method and apparatus for cluster scale-up |
| CN112994949A (en) * | 2021-04-02 | 2021-06-18 | 软通动力信息技术(集团)股份有限公司 | Private network connection method, device, equipment and storage medium |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106603618A (en) | Cloud platform-based application auto scaling method | |
| US10460362B2 (en) | Adaptive power management of a cluster of host computers using predicted data | |
| Sharkh et al. | Resource allocation in a network-based cloud computing environment: design challenges | |
| Zhou et al. | Virtual machine placement algorithm for both energy‐awareness and SLA violation reduction in cloud data centers | |
| CN110677305B (en) | Automatic scaling method and system in cloud computing environment | |
| Li et al. | Thunderbolt:{Throughput-Optimized},{Quality-of-Service-Aware} power capping at scale | |
| Yang et al. | A method for managing green power of a virtual machine cluster in cloud | |
| CN109614227B (en) | Task resource allocation method, apparatus, electronic device, and computer-readable medium | |
| CN111367693B (en) | Method, system, device and medium for scheduling plug-in tasks based on message queue | |
| WO2018121334A1 (en) | Web application service providing method, apparatus, electronic device and system | |
| Atiewi et al. | Impact of virtualization on cloud computing energy consumption: Empirical study | |
| Sammy et al. | Energy efficient security preserving vm live migration in data centers for cloud computing | |
| Sanjeevi et al. | NUTS scheduling approach for cloud data centers to optimize energy consumption | |
| CN111427668A (en) | Virtual resource automatic management method in cloud computing environment | |
| CN101883145B (en) | For the method and system of management of telephone call | |
| US20090327775A1 (en) | User imposed power constraints on web server based on user preferences | |
| Belgaum et al. | Load balancing with preemptive and non-preemptive task scheduling in cloud computing | |
| Yang et al. | Green power management with dynamic resource allocation for cloud virtual machines | |
| Horri et al. | A novel cost based model for energy consumption in cloud computing | |
| CN110308991A (en) | A random task-based data center energy-saving optimization method and system | |
| CN107872480B (en) | Big data cluster data balancing method and device | |
| Ghoreyshi | Energy-efficient resource management of cloud datacenters under fault tolerance constraints | |
| CN105094947B (en) | The quota management method and system of a kind of virtual computing resource | |
| Shrivastava et al. | An energy efficient VM allocation using best fit decreasing minimum migration in cloud environment | |
| CN106774813A (en) | A kind of dynamic power management system and method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170426 |