CN106517357A - Preparation method of microwave assisted synthesized BaCo1-xFexO3-delta perovskite oxygen carrier - Google Patents
Preparation method of microwave assisted synthesized BaCo1-xFexO3-delta perovskite oxygen carrier Download PDFInfo
- Publication number
- CN106517357A CN106517357A CN201610841142.XA CN201610841142A CN106517357A CN 106517357 A CN106517357 A CN 106517357A CN 201610841142 A CN201610841142 A CN 201610841142A CN 106517357 A CN106517357 A CN 106517357A
- Authority
- CN
- China
- Prior art keywords
- perovskite
- oxygen carrier
- preparation
- microwave
- baco
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 58
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 239000001301 oxygen Substances 0.000 title claims abstract description 54
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims abstract description 48
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910001960 metal nitrate Inorganic materials 0.000 claims abstract description 15
- 239000011240 wet gel Substances 0.000 claims abstract description 12
- 239000002243 precursor Substances 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910002651 NO3 Inorganic materials 0.000 claims abstract description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 claims abstract description 6
- 238000003756 stirring Methods 0.000 claims abstract description 6
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 14
- 239000000243 solution Substances 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 11
- 238000007144 microwave assisted synthesis reaction Methods 0.000 claims description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 8
- 229910021645 metal ion Inorganic materials 0.000 claims description 7
- 229910002554 Fe(NO3)3·9H2O Inorganic materials 0.000 claims description 5
- 238000000227 grinding Methods 0.000 claims description 5
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 239000003643 water by type Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 16
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 238000003786 synthesis reaction Methods 0.000 abstract description 6
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000000499 gel Substances 0.000 abstract 2
- 150000002823 nitrates Chemical class 0.000 abstract 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 abstract 1
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 abstract 1
- 230000008569 process Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 241000282693 Cercopithecidae Species 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000003760 magnetic stirring Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 244000248349 Citrus limon Species 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/02—Preparation of oxygen
- C01B13/0203—Preparation of oxygen from inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/0018—Mixed oxides or hydroxides
- C01G49/0036—Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
- C01P2002/34—Three-dimensional structures perovskite-type (ABO3)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compounds Of Iron (AREA)
Abstract
The invention discloses a preparation method of a microwave assisted synthesized BaCo1-xFexO3-delta perovskite oxygen carrier, the method is as follows: Ba (NO3) 2, Co (NO3) 2.6H2O and Fe (NO3)3. 9H2O are dissolved in water and evenly mixed to obtain a metal nitrate salt water solution; then EDTA is dissolved in ammonia water for preparation into a precursor solution, the metal nitrate salt water solution and citric acid are added into the precursor solution, stirring is continued until the formation of a wet gel; then the wet gel is dried to form a dry gel, and the dry gel is heated by microwave to obtain the BaCo1-XFexO3-delta perovskite. The method can shorten the sample synthesis time, reduce the energy consumption and improve the energy utilization rate, and in addition, the oxygen production property of the microwave assisted synthesized BaCo1-xFexO3-delta perovskite oxygen carrier is higher than that of perovskite prepared by a traditional heating method.
Description
Technical field
The present invention relates to the Novel chain type oxygenerating technology in oxygen-enriched combusting, in particular to a kind of Microwave-assisted synthesis BaCo1- xFexO3-δThe preparation method of perovskite oxygen carrier.
Background technology
Oxygen-enriched combustion technology is a very effective reduction CO2The Technology Ways of discharge.This combustion system needs height
The oxygen of concentration, current Deep Cooling Method are the modes that unique commercial off-the-shelf can provide extensive oxygen, but its maximum shortcoming
It is that oxygen investment processed is big, high energy consumption.It is the new of a potential supply oxygen-enriched combusting based on the chain type oxygenerating technology of perovskite
Method for producing oxygen through.There is research to point out, the energy consumption of this brand-new oxygen technique is 70% of traditional Deep Cooling Method or so, and cost of investment is deep cooling
50% of method or so.Therefore exploitation reactivity is high, and the good perovskite oxygen carrier of oxygen desorption rate performance is this new oxygen skill processed
The key of art.It is closely related that the performance of perovskite oxygen carrier prepares synthetic method with which.
At present, the traditional preparation method for preparing perovskite oxygen carrier has coprecipitation, solid phase method, sol-gal process etc..
Wherein, the sample that prepared by solid reaction process and coprecipitation, its specific surface area are less, using less.And sol-gel process
The methods at present using most synthesis perovskite powders, but complex process, long preparation period, it is cumbersome, be suitable only for
A small amount of preparation of laboratory scope.
Therefore, the method for developing more simple, efficient, cheap synthesis perovskite oxygen carrier is particularly important.
The content of the invention
The object of the invention provides a kind of Microwave-assisted synthesis BaCo1-xFexO3-δThe preparation method of perovskite oxygen carrier;Should
Compared with traditional heating, during heating using microwave, electric field energy is deep into inside material and directly acts on material molecule generation thermal effect method
Should, it is a kind of interior mode of heating.Therefore have fast firing rate, homogeneous heating, without thermograde, without hysteresis effect the features such as,
It is 10-100 times faster than conventional heating methods.
For solving above-mentioned purpose, a kind of Microwave-assisted synthesis BaCo that the present invention is provided1-xFexO3-δPerovskite oxygen carrier system
Preparation Method, comprises the following steps:
1) Ba (NO are weighed respectively according to 1: x: 1-x mol ratio3)2、Co(NO3)2·6H2O and Fe (NO3)3·9H2O, its
In, x is 0~1;
2) by Ba (NO3)2、Co(NO3)2·6H2O and Fe (NO3)3·9H2In O solution waters, it is well mixed, obtains metal nitre
Acid salt aqueous solution;
3) according to EDTA: citric acid: above-mentioned metal nitrate saline solution metal ion is 1:1~1.5:1 ratio
Example is weighed;
4) EDTA is dissolved in ammoniacal liquor, is configured to precursor solution, precursor solution pH is adjusted to into 8, in water bath with thermostatic control plus
Thermal agitation is to uniform;
5) add step 3 in precursor solution) in metal nitrate saline solution and citric acid, continue stirring until shape
Into wet gel;
6) wet gel is dried until forming xerogel;
7) xerogel is put into into aluminum oxide big crucible and is closed the lid, big crucible is put in household microwave oven, setting 500
The time of~800W power and 20~60min is heated;
8) sample is taken out, grinding after cooling obtains black powder sample, i.e. BaCo1-xFexO3-δPerovskite.
Yet further, the step 3) in, EDTA: citric acid: above-mentioned metal nitrate saline solution metal ion mole
Number is 1: 1.5: 1.
Yet further, the step 4) in, bath temperature is 70~90 DEG C.
Yet further, the step 6) in, baking temperature is 100~105 DEG C.
Yet further, the step 7) in, microwave power is 700W, time 30min.
The beneficial effects of the present invention is:
The present invention not only substantially reduces the time of synthetic sample, reduces energy consumption, improves energy utilization rate, additionally, adopting
The oxygen performance processed of the perovskite oxygen carrier of microblogging auxiliary synthesis is also higher than perovskite prepared by traditional heating mode.
Description of the drawings
Fig. 1 is BaCoxFe1-xO3-δ(x=0.5) X ray diffracting spectrum (XRD) of perovskite oxygen carrier;
Fig. 2 is BaCoxFe1-xO3-δ(x=0.5) transmission electron microscope figure (TEM) of perovskite oxygen carrier;
BaCos of the Fig. 3 for Microwave-assisted synthesis1-xFexO3-δ(x=0.2;0.5;0.8) perovskite oxygen carrier and traditional lemon
The oxygen release performance comparison figure of the oxygen carrier of acid-EDTA sol-gal processes synthesis.
Specific embodiment
In order to preferably explain the present invention, the main contents of the present invention are further elucidated below in conjunction with specific embodiment, but
Present disclosure is not limited solely to following examples.
1 BaCo of embodiment1-xFexO3-δ(x=0.2) preparation of perovskite oxygen carrier powder
To produce the BaCo of 0.1mol0.8Fe0.2O3-δAs a example by.Specific preparation process is as follows:
1) press 1:0.8:0.2 mol ratio weighs analytically pure Ba (NO respectively3)2 26.134g、Co(NO3)2·6H2O
23.282g、Fe(NO3)3·9H2O 8.08g.Appropriate deionized water is added to be made into metal nitrate saline solution;According to EDTA:
Citric acid:Metal ion total mole number is 1:1.5:1 ratio weighs citric acid 63.042g and EDTA 58.448g, by EDTA
Precursor solution is configured to appropriate ammoniacal liquor, the pH of solution is modulated into 8, and the heated at constant temperature in 70 DEG C of water-bath magnetic stirring apparatus
It is stirred until homogeneous;
2) metal nitrate and citric acid for taking is put into, continues stirring 4-5h until forming wet gel;Wet gel is put
Enter in drying box, be dried at 100-105 DEG C until forming xerogel;
3) xerogel is put into aluminum oxide monkey and is closed the lid and placed into aluminum oxide big crucible and close the lid, will be big
Crucible is put in household microwave oven, and the time for setting 700W power and 30min is heated;Finally sample is taken out, after cooling
Grinding obtains black powder sample.
Embodiment 2:BaCo1-xFexO3-δ(x=0.5) preparation of perovskite oxygen carrier powder
To produce the BaCo of 0.1mol0.5Fe0.5O3-δAs a example by.Specific preparation process is as follows:
1) press 1:0.5:0.5 mol ratio weighs analytically pure Ba (NO respectively3)2 26.134g、Co(NO3)2·6H2O
14.552g、Fe(NO3)3·9H2O 20.2g.Appropriate deionized water is added to be made into metal nitrate saline solution;According to EDTA:
Citric acid:Metal ion total mole number is 1:1.5:1 ratio weighs citric acid 63.042g and EDTA 58.448g, by EDTA
Precursor solution is configured to appropriate ammoniacal liquor, the pH of solution is modulated into 8, and the heated at constant temperature in 70 DEG C of water-bath magnetic stirring apparatus
It is stirred until homogeneous;
2) metal nitrate and citric acid for taking is put into, continues stirring 4-5h until forming wet gel;Wet gel is put
Enter in drying box, be dried at 100-105 DEG C until forming xerogel;
3) xerogel is put into aluminum oxide monkey and is closed the lid and placed into aluminum oxide big crucible and close the lid, will be big
Crucible is put in household microwave oven, and the time for setting 700W power and 30min is heated;Finally sample is taken out, after cooling
Grinding obtains black powder sample.
The BaCo for preparing0.5Fe0.5O3-δThe XRD of perovskite oxygen carrier powder is as shown in figure 1, crystal structure is calcium
Perovskite like structure, it is miscellaneous without other.Fig. 2 show BaCo0.5Fe0.5O3-δThe transmission electron microscope figure of perovskite oxygen carrier
(TEM) the oxygen carrier powder for, as can be seen from the figure preparing is in 40-50nm or so.
Embodiment 3:BaCo1-xFexO3-δ(x=0.8) preparation of perovskite oxygen carrier powder
To produce the BaCo of 0.1mol0.2Fe0.8O3-δAs a example by.Specific preparation process is as follows:
1) press 1:0.5:0.5 mol ratio weighs analytically pure Ba (NO respectively3)2 26.134g、Co(NO3)2·6H2O
5.821g、Fe(NO3)3·9H2O 32.32g.Appropriate deionized water is added to be made into metal nitrate saline solution;According to EDTA:
Citric acid:Metal ion total mole number is 1:1.5:1 ratio weighs citric acid 63.042g and EDTA 58.448g, by EDTA
Precursor solution is configured to appropriate ammoniacal liquor, the pH of solution is modulated into 8, and the heated at constant temperature in 70 DEG C of water-bath magnetic stirring apparatus
It is stirred until homogeneous;
2) metal nitrate and citric acid for taking is put into, continues stirring 4-5h until forming wet gel;Wet gel is put
Enter in drying box, be dried at 100-105 DEG C until forming xerogel;
3) xerogel is put into aluminum oxide monkey and is closed the lid and placed into aluminum oxide big crucible and close the lid, will be big
Crucible is put in household microwave oven, and the time for setting 700W power and 30min is heated;Finally sample is taken out, after cooling
Grinding obtains black powder sample.
Above-described embodiment 1~3 is prepared into BaCo1-xFexO3-δ(x=0.2;0.5;0.8) perovskite oxygen carrier and biography
The oxygen release performance of the oxygen carrier of system citrate-EDTA sol-gal process synthesis is contrasted
Perovskite oxygen carrier and CO2The chemical equation of reaction release oxygen is as follows:
Experimentation is as follows:
Take 1g samples and be filled in quartz ampoule central authorities, two ends are fixed with silica wool.Suction needed for temperature programming to adsorption process
850 DEG C of enclosure temperature, then passes to the Air absorption half an hour of 200ml/min, and adsorption process switches to 200ml/min's after terminating
CO2Start desorption process and reactor outlet O is monitored by analyzer2Changes of contents the situation of reaction and enters stroke to determine
Degree.After pending data record end, N2Previous pretreatment temperature is cooled under gas part, is passed through air and pretreatment time afterwards
Still with previous identical, so circulation.
According to the oxygen release amount such as formula (1) of the sample of the oxygen concentration change calculations unit mass of exit gas:
Wherein ∑ CO2Represent the summation of the oxygen concentration that flue gas analyzer is measured;F represents the flow (ml/min) of exit gas,
Here ignore import and export gas loss, it is believed that Fout=FCO2;mO2The molecular weight of oxygen molecule is represented, m is that the perovskite of reaction is carried
The quality of oxysome.Integrated according to gained concentration distribution, unit mass sample oxygen release amount can be tried to achieve for MO2。
As described in Figure 3, the oxygen carrier that the perovskite oxygen carrier oxygen release performance of embodiment 1~3 is prepared better than conventional method, and
And the perovskite oxygen carrier oxygen release performance of the preparation of embodiment 2 is best.
Other unspecified parts are prior art.Although above-described embodiment is made that to the present invention retouching in detail
State, but it be only a part of embodiment of the invention, rather than whole embodiments, people can with according to the present embodiment without
Other embodiment is obtained under the premise of creativeness, and these embodiments belong to the scope of the present invention.
Claims (5)
1. a kind of Microwave-assisted synthesis BaCo1-xFexO3-δThe preparation method of perovskite oxygen carrier, it is characterised in that:Including following step
Suddenly:
1) Ba (NO are weighed respectively according to 1: x: 1-x mol ratio3)2、Co(NO3)2·6H2O and Fe (NO3)3·9H2O, wherein, x
For 0~1;
2) by Ba (NO3)2、Co(NO3)2·6H2O and Fe (NO3)3·9H2In O solution waters, it is well mixed, obtains metal nitrate
The aqueous solution;
3) according to EDTA: citric acid: above-mentioned metal nitrate saline solution metal ion claims for 1: 1~1.5: 1 ratio
Amount;
4) EDTA is dissolved in ammoniacal liquor, is configured to precursor solution, precursor solution pH is adjusted to into 8, stirred in water bath with thermostatic control heating
Mix to uniform;
5) in precursor solution add step 3) in metal nitrate saline solution and citric acid, continue stirring until formed it is wet
Gel;
6) wet gel is dried until forming xerogel;
7) xerogel is put into into aluminum oxide big crucible and is closed the lid, big crucible is put in household microwave oven, setting 500~
The time of 800W power and 20~60min is heated;
8) sample is taken out, grinding after cooling obtains black powder sample, i.e. BaCo1-xFexO3-δPerovskite.
2. Microwave-assisted synthesis BaCo according to claim 11-xFexO3-δThe preparation method of perovskite oxygen carrier, its feature exist
In:The step 3) in, EDTA: citric acid: above-mentioned metal nitrate saline solution metal ion is 1: 1.5: 1.
3. Microwave-assisted synthesis BaCo according to claim 1 or claim 21-xFexO3-δThe preparation method of perovskite oxygen carrier, which is special
Levy and be:The step 4) in, bath temperature is 70~90 DEG C.
4. Microwave-assisted synthesis BaCo according to claim 1 or claim 21-xFexO3-δThe preparation method of perovskite oxygen carrier, which is special
Levy and be:The step 6) in, baking temperature is 100~105 DEG C.
5. Microwave-assisted synthesis BaCo according to claim 1 or claim 21-xFexO3-δThe preparation method of perovskite oxygen carrier, which is special
Levy and be:The step 7) in, microwave power is 700W, time 30min.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610841142.XA CN106517357B (en) | 2016-09-22 | 2016-09-22 | Microwave-assisted synthesis BaCo1-xFexO3-δThe preparation method of perovskite oxygen carrier |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610841142.XA CN106517357B (en) | 2016-09-22 | 2016-09-22 | Microwave-assisted synthesis BaCo1-xFexO3-δThe preparation method of perovskite oxygen carrier |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106517357A true CN106517357A (en) | 2017-03-22 |
| CN106517357B CN106517357B (en) | 2018-04-24 |
Family
ID=58344329
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610841142.XA Expired - Fee Related CN106517357B (en) | 2016-09-22 | 2016-09-22 | Microwave-assisted synthesis BaCo1-xFexO3-δThe preparation method of perovskite oxygen carrier |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106517357B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112456972A (en) * | 2020-12-21 | 2021-03-09 | 辽宁石油化工大学 | BaCoxFe1-xO3-δSynthesis and preparation method of cubic perovskite oxygen-permeable membrane material |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6333000B1 (en) * | 1984-11-02 | 2001-12-25 | The Boeing Company | Process for making LaMnO3-coated ceramics |
| CN101559982A (en) * | 2009-05-27 | 2009-10-21 | 南京工业大学 | A microwave-assisted sol-gel self-combustion method for one-step synthesis of hexagonal barium ferrite nanocrystals |
| CN103374430A (en) * | 2012-04-12 | 2013-10-30 | 中国石油化工股份有限公司 | High-stability oxygen carrier, preparation method and applications |
| CN103372436A (en) * | 2012-04-12 | 2013-10-30 | 中国石油化工股份有限公司 | Oxygen carrier, preparation method and applications |
-
2016
- 2016-09-22 CN CN201610841142.XA patent/CN106517357B/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6333000B1 (en) * | 1984-11-02 | 2001-12-25 | The Boeing Company | Process for making LaMnO3-coated ceramics |
| CN101559982A (en) * | 2009-05-27 | 2009-10-21 | 南京工业大学 | A microwave-assisted sol-gel self-combustion method for one-step synthesis of hexagonal barium ferrite nanocrystals |
| CN103374430A (en) * | 2012-04-12 | 2013-10-30 | 中国石油化工股份有限公司 | High-stability oxygen carrier, preparation method and applications |
| CN103372436A (en) * | 2012-04-12 | 2013-10-30 | 中国石油化工股份有限公司 | Oxygen carrier, preparation method and applications |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112456972A (en) * | 2020-12-21 | 2021-03-09 | 辽宁石油化工大学 | BaCoxFe1-xO3-δSynthesis and preparation method of cubic perovskite oxygen-permeable membrane material |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106517357B (en) | 2018-04-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Christensen et al. | Deuteration of crystalline hydroxides. Hydrogen bonds of g-AlOO (H, D) and g-FeOO (H, D) | |
| CN108772093A (en) | A kind of high visible-light activity graphite phase carbon nitride nanometer sheet and preparation method thereof | |
| CN111569879B (en) | A method for preparing silicate/carbon composite material by using attapulgite and its application | |
| CN111908922A (en) | Low-temperature synthesized rare earth hafnate high-entropy ceramic powder and preparation method thereof | |
| CN111905718A (en) | Method for preparing perovskite type methane combustion catalyst with assistance of plasma | |
| CN102069006B (en) | Photocatalytic metal-molecular sieve composite catalyst and preparation method thereof | |
| CN116832813A (en) | Preparation and application method of bimetallic MOFs carbonized material Fe/Co-CNs | |
| CN114700081B (en) | Preparation and application of a perovskite metal cerium salt with properties regulated by transition metal ions | |
| CN111450814A (en) | Method for preparing zinc silicate catalyst by using natural attapulgite and application thereof | |
| CN106517357B (en) | Microwave-assisted synthesis BaCo1-xFexO3-δThe preparation method of perovskite oxygen carrier | |
| CN107416909A (en) | A kind of preparation method of iron-based oxide silica aerogel | |
| CN103086706A (en) | Preparation method for Zr-Mn-Co multi-doped barium ferrite wave-absorbing material | |
| CN106268897B (en) | A kind of preparation method of the optical absorption edge substantially decrystallized graphite state carbonitride of red shift | |
| CN103466712A (en) | Technology for preparing high-purity manganous-manganic oxide with manganous sulfate solution | |
| CN118425246B (en) | A CeO2/Ti3C2Tx composite material and its preparation method and application | |
| CN106477619B (en) | A kind of method for preparing photochemical catalyst copper oxide | |
| CN111437809A (en) | Preparation method and application of rare earth element doped bismuth silicate photocatalyst | |
| Sawaguri et al. | Thermochemical two-step CO2 splitting using La0. 7Sr0. 3Mn0. 9Cr0. 1O3 of perovskite oxide for solar fuel production | |
| CN103774236B (en) | A kind of hidden potassium and manganese type K2-xcoynizmn8-y-zo16nano wire and preparation method thereof | |
| CN116273038A (en) | Preparation method of iron titanate/tungsten trioxide composite material | |
| CN108126713B (en) | Photocatalyst based on extremely narrow-band semiconductor as solid conductive channel, preparation method and application thereof | |
| CN108686644B (en) | Scale-like Bi-based visible-light-driven photocatalyst, preparation method and application thereof | |
| CN107384384A (en) | A kind of preparation method of the blue green light carbon quantum dot with pH responses | |
| CN111569891A (en) | A kind of medium temperature methane partial oxidation catalyst and its preparation method and application | |
| CN104477994A (en) | Preparation method of sodium tantalum oxide |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180424 Termination date: 20200922 |