[go: up one dir, main page]

CN106503687A - The monitor video system for identifying figures of fusion face multi-angle feature and its method - Google Patents

The monitor video system for identifying figures of fusion face multi-angle feature and its method Download PDF

Info

Publication number
CN106503687A
CN106503687A CN201610984667.9A CN201610984667A CN106503687A CN 106503687 A CN106503687 A CN 106503687A CN 201610984667 A CN201610984667 A CN 201610984667A CN 106503687 A CN106503687 A CN 106503687A
Authority
CN
China
Prior art keywords
face
identity
angle
face image
feature vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610984667.9A
Other languages
Chinese (zh)
Other versions
CN106503687B (en
Inventor
孙晓
吕曼
彭晓琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Xinfa Technology Co ltd
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201610984667.9A priority Critical patent/CN106503687B/en
Publication of CN106503687A publication Critical patent/CN106503687A/en
Application granted granted Critical
Publication of CN106503687B publication Critical patent/CN106503687B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/168Feature extraction; Face representation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/40Scenes; Scene-specific elements in video content
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/172Classification, e.g. identification

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Multimedia (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种融合人脸多角度特征的监控视频人物身份识别系统及其方法,包括目标检测模块、多角度人脸识别模块和身份匹配模块。目标检测模块用于将一段监控视频转换为包含人的关键帧集合,多角度人脸识别模块用于将包含人的关键帧集合转换为带有角度值标签的人脸图像序列,身份匹配模块用于完成带有角度值标签的人脸图像序列与身份库中图像序列的特征向量相似度匹配,并找到最接近的身份输出作为识别结果。本发明能综合监控视频中人脸多个角度的特征信息,从而提高在监控视频中人物姿态随意性较大的情况下,其身份识别的准确性。

The invention discloses a surveillance video person identity recognition system and a method thereof which integrate multi-angle features of faces, comprising a target detection module, a multi-angle face recognition module and an identity matching module. The target detection module is used to convert a surveillance video into a key frame set containing people, the multi-angle face recognition module is used to convert the key frame set containing people into a sequence of face images with angle value labels, and the identity matching module is used to To complete the similarity matching between the face image sequence with the angle value label and the feature vector of the image sequence in the identity database, and find the closest identity output as the recognition result. The invention can synthesize the feature information of multiple angles of the human face in the monitoring video, thereby improving the accuracy of identity recognition when the posture of the person in the monitoring video is relatively random.

Description

融合人脸多角度特征的监控视频人物身份识别系统及其方法Surveillance video person identification system and method based on fusion of multi-angle features of human face

技术领域technical field

本发明属于智能视频监控领域,涉及到模式识别、人工智能等技术,尤其涉及到一种融合多角度特征的监控视频人物身份识别系统及其方法。The invention belongs to the field of intelligent video monitoring, relates to technologies such as pattern recognition and artificial intelligence, and in particular relates to a monitoring video character identification system and method thereof which integrates multi-angle features.

背景技术Background technique

在现代社会,需要身份认证的场所越来越多,人脸识别是利用人类本身所拥有的生物特征进行身份认证的一种技术。随着视频监控、信息安全、访问控制等应用领域的发展需求,视频人脸识别系统在这些领域中都有着巨大的应用前景。In modern society, there are more and more places that require identity authentication. Face recognition is a technology that uses the biological characteristics of human beings for identity authentication. With the development needs of video surveillance, information security, access control and other application fields, video face recognition systems have great application prospects in these fields.

目前人脸识别主要应用于考勤、门禁身份验证等领域,还没有比较完备的人脸识别监控设备应用在监控场景中。主要源于视频序列中的人脸识别比静态图像中的人脸识别环境要复杂的多,比如视频监控摄像机离目标较远,使得采集质量好的人脸图像比较困难;同时用户姿态具有很大的随意性,且处于运动状态,侧脸和背对摄像机的概率大大增加;此外,监控场景通常会出现身体遮挡等,都给人脸检测和人脸比对识别带来相当大的困难。At present, face recognition is mainly used in fields such as attendance, access control and identity verification, and there is no relatively complete face recognition monitoring equipment used in monitoring scenarios. The main reason is that face recognition in video sequences is more complex than face recognition in static images. For example, video surveillance cameras are far away from the target, making it difficult to collect good-quality face images; In the state of motion, the probability of side faces and facing away from the camera is greatly increased; in addition, surveillance scenes usually have body occlusions, etc., which bring considerable difficulties to face detection and face comparison recognition.

这也就需要靠克服监控视频中人物出现正脸几率小、图片模糊、样本数少的问题,结合人脸各个角度的图像识别出人物的身份信息。传统的二维人脸识别技术是基于人脸关键特征提取对比完成识别的,目前主流的特征提取算法有表达图像纹理特征的LBP特征,表达人脸图像统计特征的特征脸方法(PCA),以及基于图像局部几何特征的提取方法。通常的特征提取方法是基于静态的正面的人脸图像,这种方法通常依赖于面部特征的精准检测,特征的完整性是算法成败的一个极为关键的因素,这样提取到的特征进行人脸匹配识别性能较好。其缺陷是受到外界干扰较多,一旦人脸发生旋转、遮挡或部分模糊,造成部分特征消失,导致人脸图像特征不完整时,这种算法就会失效,导致无法和库中人脸信息进行匹配。所以这种方法很难适应视频监控带来的,人脸图像质量低,多角度,距离远等复杂问题。This also requires overcoming the problems of low probability of people appearing in the surveillance video, fuzzy pictures, and small number of samples, and identifying the identity information of the person by combining images from various angles of the face. The traditional two-dimensional face recognition technology is based on the key feature extraction and comparison of the face to complete the recognition. The current mainstream feature extraction algorithms include the LBP feature to express the image texture features, the eigenface method (PCA) to express the statistical features of the face image, and An extraction method based on image local geometric features. The usual feature extraction method is based on static frontal face images. This method usually relies on the accurate detection of facial features. The integrity of the features is an extremely critical factor for the success of the algorithm. The extracted features are used for face matching. The recognition performance is better. Its defect is that it is subject to a lot of external interference. Once the face is rotated, occluded or partially blurred, causing some features to disappear and resulting in incomplete face image features, this algorithm will fail, resulting in the inability to communicate with the face information in the database. match. Therefore, this method is difficult to adapt to complex problems such as low-quality face images, multiple angles, and long distances brought about by video surveillance.

发明内容Contents of the invention

本发明克服了现有技术的不足之处,提出一种融合人脸多角度特征的监控视频人物身份识别系统及其方法,以期能综合监控视频中人脸多个角度的特征信息,从而提高在监控视频中人物姿态随意性较大的情况下,其身份识别的准确性。The present invention overcomes the deficiencies of the prior art, and proposes a monitoring video person identification system and method thereof that integrates the multi-angle features of the human face, in order to comprehensively monitor the feature information of multiple angles of the human face in the monitoring video, thereby improving the quality of life in the surveillance video. The accuracy of the identification of the person in the surveillance video is relatively random.

本发明为达到上述发明目的,采用如下技术方案:The present invention adopts following technical scheme in order to achieve the above-mentioned purpose of the invention:

本发明一种融合多角度特征的监控视频人物身份识别系统的特点是组成包括:目标检测模块、多角度人脸识别模块和身份匹配模块;The characteristics of a monitoring video person identification system integrating multi-angle features of the present invention are that it consists of: a target detection module, a multi-angle face recognition module and an identity matching module;

所述目标检测模块收集单帧的有人图片和无人图片,并对每幅图片进行尺寸归一化处理后赋予类别标签,从而得到由正样本和负样本构成的训练样本数据集;提取所述训练样本数据集中每个样本的SIFT特征,从而将每个样本转换为特征向量;再利用支持向量机SVM对所述特征向量进行训练,得到目标检测模型;The target detection module collects single-frame human pictures and unmanned pictures, and assigns category labels after performing size normalization processing on each picture, thereby obtaining a training sample data set composed of positive samples and negative samples; extracting the The SIFT feature of each sample in the training sample data set, thereby converting each sample into a feature vector; then using the support vector machine SVM to train the feature vector to obtain a target detection model;

所述目标检测模块将监控视频转换成一系列的单帧图片,并作为测试集;利用所述目标检测模型识别所述测试集中每帧图片是否含有人,若含有人,则保留相应单帧图片,并作为关键帧,否则,丢弃相应单帧图片,从而得到关键帧集合;The target detection module converts the monitoring video into a series of single-frame pictures as a test set; utilizes the target detection model to identify whether each frame of pictures in the test set contains people, and if it contains people, then retains the corresponding single-frame pictures, And as a key frame, otherwise, discard the corresponding single frame picture, so as to obtain a key frame set;

所述多角度人脸识别模块以人脸的正面0°为起始采集点,顺时针每隔k度采集一幅人脸图像,其中,不采集90°和270°的人脸图像,每个身份共收集m=360/k-2幅不同角度的人脸图像,从而形成一个有人脸和无人脸构成的人脸图像序列,进而获得n个不同身份的人脸图像序列所构成的多角度人脸数据库;将每幅人脸图像根据角度值分类到各自的类别集合中,通过局部遮挡每幅人脸图像的左上、右上、左下、右下、中间五个部分扩充所述多角度人脸数据库,从而形成多角度人脸训练集;提取所述多角度人脸训练集中每幅人脸图像的SIFT特征,从而将每幅人脸图像转换为多角度特征向量;再利用支持向量机SVM对所述多角度特征向量进行训练,获取多角度人脸检测模型;The multi-angle face recognition module takes the front face of the face at 0° as the starting collection point, and collects a face image every k degrees clockwise, wherein, the face images of 90° and 270° are not collected, each The identity collects a total of m=360/k-2 face images from different angles, thus forming a face image sequence composed of a human face and a non-face, and then obtaining a multi-angle face image sequence composed of n different identities. Face database; each face image is classified into its own category set according to the angle value, and the multi-angle face is expanded by partially occluding the upper left, upper right, lower left, lower right, and middle parts of each face image database, thus forming a multi-angle face training set; extracting the SIFT feature of each face image in the multi-angle face training set, so that each face image is converted into a multi-angle feature vector; and then using the support vector machine SVM to The multi-angle feature vector is trained to obtain a multi-angle face detection model;

所述多角度人脸识别模块利用所述多角度人脸检测模型对所述关键帧集合进行检测,得到每个关键帧的人脸角度值,由所述人脸角度值判断每个关键帧是否含有人脸;若含有人脸,则保留相应关键帧,否则舍弃相应关键帧,从而将所述关键帧集合转换为带有角度值标签的人脸图像序列;The multi-angle face recognition module uses the multi-angle face detection model to detect the set of key frames to obtain the face angle value of each key frame, and judge whether each key frame is Contains a human face; if it contains a human face, then retain the corresponding key frame, otherwise discard the corresponding key frame, thereby converting the key frame set into a human face image sequence with an angle value label;

所述身份匹配模块使用所述多角度人脸数据库中有人脸的人脸图像序列构造身份库,将所述身份库作为神经网络的输入,并进行训练,从而得到用于身份识别的神经网络模型;再将所述带有角度值标签的人脸图像序列作为测试样本,并将所述测试样本输入所述用于身份识别的神经网络模型中,提取神经网络中间任意一层输出作为特征,从而将测试样本的转换为待识别的多维身份特征向量;The identity matching module constructs an identity library using the face image sequences of faces in the multi-angle face database, uses the identity library as the input of the neural network, and performs training to obtain a neural network model for identity recognition ; The face image sequence with the angle value label is used as a test sample again, and the test sample is input in the described neural network model for identity recognition, and any layer of output in the middle of the neural network is extracted as a feature, thereby Convert the test sample into a multi-dimensional identity feature vector to be identified;

所述身份匹配模块将所述多角度人脸数据库中n个不同身份的人脸图像序列分别输入所述用于身份识别的神经网络模型中,从而得到n个用于匹配的多维身份特征向量;再将待识别的多维身份特征向量分别与所述n个用于匹配的多维身份特征向量进行余弦距离相似度比较,并找到最大余弦值所对应的用于匹配的多维身份特征向量作为相应待识别的多维身份特征向量的身份匹配结果,以所述身份匹配结果所对应的身份标签作为相应待识别的多维身份特征向量的身份识别结果。The identity matching module inputs n face image sequences of different identities in the multi-angle face database into the neural network model for identity recognition, thereby obtaining n multidimensional identity feature vectors for matching; Then the multi-dimensional identity feature vector to be identified is compared with the n multi-dimensional identity feature vectors for matching by cosine distance similarity, and the multi-dimensional identity feature vector for matching corresponding to the maximum cosine value is found as the corresponding multi-dimensional identity feature vector to be identified The identity matching result of the multi-dimensional identity feature vector, the identity tag corresponding to the identity matching result is used as the identity recognition result of the multi-dimensional identity feature vector to be identified.

本发明一种融合多角度特征的监控视频人物身份识别方法的特点是按如下步骤进行:A kind of surveillance video character identification method of fusion multi-angle feature of the present invention is characterized in following steps:

步骤1、收集单帧的有人图片和无人图片,并对每幅图片进行尺寸归一化处理后赋予类别标签,从而得到由正样本和负样本构成的训练样本数据集;Step 1. Collect single-frame pictures of people and people, and assign category labels to each picture after normalizing the size, so as to obtain a training sample data set composed of positive samples and negative samples;

步骤2、提取所述训练样本数据集中每个样本的SIFT特征,从而将每个样本转换为特征向量;Step 2, extracting the SIFT feature of each sample in the training sample data set, thereby converting each sample into a feature vector;

步骤3、利用支持向量机SVM对所述特征向量进行训练,得到目标检测模型;Step 3, using a support vector machine (SVM) to train the feature vectors to obtain a target detection model;

步骤4、将监控视频转换成一系列的单帧图片,并作为测试集;Step 4, convert the monitoring video into a series of single-frame pictures, and use it as a test set;

步骤5、利用所述目标检测模型识别所述测试集中每帧图片是否含有人,若含有人,则保留相应单帧图片,并作为关键帧,否则,丢弃相应单帧图片,从而得到关键帧集合;Step 5. Use the target detection model to identify whether each frame of the test set contains a person, and if it contains a person, keep the corresponding single-frame picture and use it as a key frame; otherwise, discard the corresponding single-frame picture to obtain a key frame set ;

步骤6、以人脸的正面为起始0°采集点,顺时针每隔k度采集一幅人脸图像,其中,不采集90°和270°的人脸图像,每个身份共收集m=360/k-2幅不同角度的人脸图像,从而形成一个有人脸和无人脸构成的人脸图像序列,进而获得n个不同身份的人脸图像序列所构成的多角度人脸数据库;Step 6. Start with the front face of the face at 0°, and collect a face image every k degrees clockwise, where the 90° and 270° face images are not collected, and each identity collects a total of m= 360/k-2 face images from different angles to form a face image sequence composed of human faces and non-faces, and then obtain a multi-angle face database composed of n face image sequences with different identities;

步骤7、将每幅人脸图像根据角度值分类到对应的类别集合中,通过局部遮挡每幅人脸图像的左上、右上、左下、右下、中间五个部分扩充所述多角度人脸数据库,从而形成多角度人脸训练集;Step 7. Classify each face image into the corresponding category set according to the angle value, and expand the multi-angle face database by partially blocking the upper left, upper right, lower left, lower right, and middle parts of each face image , thus forming a multi-angle face training set;

步骤8、提取所述多角度人脸训练集中每幅人脸图像的SIFT特征,从而将每幅人脸图像转换为多角度特征向量;Step 8, extracting the SIFT feature of each face image in the multi-angle face training set, thereby converting each face image into a multi-angle feature vector;

步骤9、利用支持向量机SVM对所述多角度特征向量进行训练,获取多角度人脸检测模型;Step 9, using a support vector machine (SVM) to train the multi-angle feature vector to obtain a multi-angle face detection model;

步骤10、利用所述多角度人脸检测模型对所述关键帧集合进行检测,得到每个关键帧的人脸角度值;Step 10, using the multi-angle face detection model to detect the set of key frames to obtain the face angle value of each key frame;

步骤11、由所述人脸角度值判断每个关键帧是否含有人脸;若含有人脸,则保留相应关键帧,否则舍弃相应关键帧,从而将所述关键帧集合转换为带有角度值标签的人脸图像序列;Step 11, judging whether each key frame contains a human face by the angle value of the human face; if it contains a human face, then keep the corresponding key frame, otherwise discard the corresponding key frame, thereby converting the key frame set into one with an angle value Labeled face image sequence;

步骤12、使用所述多角度人脸数据库中的有人脸的人脸图像序列构造身份库,将所述身份库作为神经网络的输入,并进行训练,从而得到用于身份识别的神经网络模型;Step 12, using the human face image sequence in the multi-angle human face database to construct an identity library, using the identity library as the input of the neural network, and training, thereby obtaining a neural network model for identity recognition;

步骤13、将所述带有角度值标签的人脸图像序列作为测试样本,并将所述测试样本输入所述用于身份识别的神经网络模型中,提取神经网络中间任意一层输出作为特征,从而将测试样本的转换为待识别的多维身份特征向量;Step 13, using the face image sequence with the angle value label as a test sample, and inputting the test sample into the neural network model for identity recognition, extracting the output of any layer in the middle of the neural network as a feature, Thereby converting the test sample into a multi-dimensional identity feature vector to be identified;

步骤14、将所述身份库中n个不同身份的人脸图像序列分别输入所述用于身份识别的神经网络模型中,从而得到n个用于匹配的多维身份特征向量;Step 14, input the face image sequences of n different identities in the identity library into the neural network model for identity recognition respectively, so as to obtain n multidimensional identity feature vectors for matching;

步骤15、将待识别的多维身份特征向量分别与所述n个用于匹配的多维身份特征向量进行余弦距离相似度比较,并找到最大余弦值所对应的用于匹配的多维身份特征向量作为相应待识别的多维身份特征向量的身份匹配结果,以所述身份匹配结果所对应的身份标签作为相应待识别的多维身份特征向量的身份识别结果。Step 15: Comparing the multi-dimensional identity feature vector to be identified with the n multi-dimensional identity feature vectors for matching by cosine distance similarity, and finding the multi-dimensional identity feature vector for matching corresponding to the maximum cosine value as a corresponding For the identity matching result of the multi-dimensional identity feature vector to be identified, the identity tag corresponding to the identity matching result is used as the identity identification result of the corresponding multi-dimensional identity feature vector to be identified.

与现有技术相比,本发明的有益效果体现在:Compared with the prior art, the beneficial effects of the present invention are reflected in:

1.本发明提出一种适用于监控视频的,被采集对象人脸姿态随意性较大的人脸检测,并对其姿态角度值进行识别。使用卷积神经网络对采集周期内的一段不同角度人脸图像序列提取特征,克服了现有技术中采集单帧正面人脸图像提取特征进行识别的难度,实现了多个角度特征的融合,同时深度学习算法降低了特征维度,提高了在监控视频中人脸识别的准确性。能够实现危险人物的预警,保护人们的生命财产安全,对我国治安的协助维持有重要的作用。1. The present invention proposes a face detection that is suitable for monitoring video, and the face posture of the collected object is relatively random, and the posture angle value is recognized. The convolutional neural network is used to extract features from a sequence of face images from different angles within the acquisition cycle, which overcomes the difficulty of extracting features from a single frame of frontal face images in the prior art for recognition, and realizes the fusion of features from multiple angles. The deep learning algorithm reduces the feature dimension and improves the accuracy of face recognition in surveillance video. It can realize the early warning of dangerous people, protect people's life and property safety, and play an important role in assisting the maintenance of public security in our country.

2.本发明在目标检测模块以及多角度人脸识别模块中的图像特征提取阶段,都使用了检测图像局部特征的尺度不变特征变换(SIFT)算法,对监控视频单帧图片和关键帧集合进行特征提取。SIFT特征不只具有尺度不变性,即使改变旋转角度,图像亮度或者拍摄视觉,仍然能够取得好的检测效果。在监控视频中人的运动姿态随意性较大的情况下,可以学习到更多的图像不变性特征,提高了在复杂环境中目标识别的精确性。2. The present invention uses the scale-invariant feature transformation (SIFT) algorithm of detecting local features of images in the image feature extraction stage in the target detection module and the multi-angle face recognition module to monitor video single-frame pictures and key frame sets Perform feature extraction. The SIFT feature is not only scale invariant, it can still achieve good detection results even if the rotation angle, image brightness or shooting vision is changed. In the case that the movement posture of the person in the surveillance video is relatively random, more image invariant features can be learned, which improves the accuracy of target recognition in complex environments.

3.本发明在多角度人脸识别模块,对收集的多角度人脸数据库,采用局部遮挡的方法对数据集进行扩充。使训练样本包含大量的存在遮挡的样本,一方面可以改善样本的分布,解决了现有技术中人脸遮挡对人脸检测造成的局限性,另一方面也有效解决了样本数量少,分类器泛化能力弱的问题。此种数据增强了扩充数据库的方法,提高了算法精度和特征维度,进而可以提高识别的准确率。3. In the multi-angle face recognition module of the present invention, the collected multi-angle face database adopts a partial occlusion method to expand the data set. Making the training samples contain a large number of occluded samples can improve the distribution of samples on the one hand, and solve the limitations of face detection caused by face occlusion in the prior art. On the other hand, it also effectively solves the problem of small number of samples. The problem of weak generalization ability. This kind of data enhances the method of expanding the database, improves the accuracy of the algorithm and the feature dimension, and then can improve the accuracy of recognition.

4.本发明在身份匹配模块,使用身份库中的人脸图像序列训练卷积神经网络,构造的CNN模型视为一个特征提取器,用来学习一个不同角度人脸图像序列的身份特征,把一个人物人脸的正面特征,侧面特征融合起来,转换为一个高级的多维身份特征向量,提高了身份表达的精确度,将目标与库中的身份特征向量进行匹配,搜索到目标人物的身份信息,克服了用传统方法提取这些不同角度的图像特征再训练分类器进行匹配的复杂性。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,比起一般的机器学习算法,深度学习通过模仿人脑的机制解释数据,不仅能对特征值进行很好的优化降维处理,同时能够获得特征级别更好的身份特征值。4. In the identity matching module, the present invention uses the face image sequence in the identity library to train the convolutional neural network, and the CNN model of construction is regarded as a feature extractor, which is used to learn the identity feature of a different angle face image sequence. The frontal features and side features of a person's face are fused together and converted into an advanced multi-dimensional identity feature vector, which improves the accuracy of identity expression, matches the target with the identity feature vector in the library, and searches for the identity information of the target person , which overcomes the complexity of extracting these image features from different angles by traditional methods and then training classifiers for matching. Deep learning is a new field in machine learning research. Its motivation is to establish and simulate the neural network of human brain for analysis and learning. Compared with general machine learning algorithms, deep learning interprets data by imitating the mechanism of human brain. The eigenvalues are well optimized for dimensionality reduction, and at the same time, identity eigenvalues with better feature levels can be obtained.

附图说明Description of drawings

图1是本发明识别系统示意图。Fig. 1 is a schematic diagram of the identification system of the present invention.

具体实施方式detailed description

本实施例中,如图1所示,一种融合多角度特征的监控视频人物身份识别系统,组成包括:目标检测模块:用于将一段监控视频转换为包含人的关键帧集合;多角度人脸识别模块:用于将包含人的关键帧集合转换为带有角度值标签的人脸图像序列;身份匹配模块:用于完成带有角度值标签的人脸图像序列与身份库中图像序列的身份匹配。In this embodiment, as shown in Figure 1, a monitoring video person identification system that integrates multi-angle features is composed of: a target detection module: used to convert a piece of monitoring video into a key frame set containing people; multi-angle people Face recognition module: used to convert the key frame set containing people into a face image sequence with angle value labels; identity matching module: used to complete the face image sequence with angle value labels and the image sequence in the identity library identity match.

目标检测模块包括训练有人图片目标检测模型和视频预处理两个阶段。训练有人图片目标检测模型首先收集单帧的有人图片和无人图片,并对每幅图片进行尺寸归一化处理后赋予类别标签,从而得到由正样本和负样本构成的训练样本数据集。正样本是数据集中的有人图片,类别标签设置为1,负样本是无人图片,标签为0,分别放置于一个文件夹中;提取训练样本数据集中每个样本的SIFT特征,每个样本都提取固定个数的特征点,从而将每个样本转换为特征向量;再利用支持向量机SVM对训练样本数据集的特征向量进行训练,得到有人图片目标检测模型,用于完成监控视频预处理;The target detection module includes two stages: training human image target detection model and video preprocessing. Training the human picture object detection model first collects single frame human pictures and unmanned pictures, and assigns category labels after normalizing the size of each picture, so as to obtain a training sample data set composed of positive samples and negative samples. The positive samples are pictures of people in the data set, the category label is set to 1, and the negative samples are pictures of no one with a label of 0, which are placed in a folder respectively; the SIFT features of each sample in the training sample data set are extracted, and each sample is Extract a fixed number of feature points to convert each sample into a feature vector; then use the support vector machine (SVM) to train the feature vectors of the training sample data set to obtain a human image target detection model, which is used to complete the surveillance video preprocessing;

目标检测模块中的视频预处理阶段首先利用FFmpeg软件包将监控视频转换成一系列的单帧图片,并作为测试集,每幅图片提取同样个数的SIFT特征;利用有人图片目标检测模型识别测试集中每帧图片是否含有人,SVM输出结果对应每张测试集片的识别标签,若类别为1,表示含有人,则保留相应单帧图片,裁剪其中含有人的部分,并作为关键帧,否则,丢弃相应单帧图片,从而得到关键帧集合;In the video preprocessing stage of the target detection module, the FFmpeg software package is used to convert the surveillance video into a series of single-frame pictures, and as a test set, each picture extracts the same number of SIFT features; Whether each frame contains people, the output result of SVM corresponds to the identification label of each test set piece, if the category is 1, it means that it contains people, then keep the corresponding single frame picture, cut out the part containing people, and use it as a key frame, otherwise, Discard the corresponding single-frame picture to obtain a set of key frames;

多角度人脸识别模块包括训练多角度人脸检测模型以及关键帧集合人脸角度识别两个阶段。训练多角度人脸检测模型首先构建多角度人脸数据库,以人脸的正面0°为起始采集点,顺时针每隔k度采集一幅人脸图像,其中,不采集90°和270°的人脸图像。本实施例中,取k=10,每个身份共收集m=360/k-2=34幅不同角度的人脸图像,从而形成一个有人脸和无人脸构成的人脸图像序列,其中有人脸的人脸图像序列包含[0°,80°]∪[280°,350°]范围内的m/2幅图像,无人脸的人脸图像序列包含[100°,260°]范围内的m/2幅图像,进而获得n个不同身份的人脸图像序列所构成的多角度人脸数据库;对每幅人脸图像根据角度值赋予类别标签,将每幅人脸图像根据角度值分类到对应的类别集合中。同时,为了扩充训练样本以及解决遮挡的人脸检测,可以应用一些数据增强方法,通过局部遮挡每幅人脸图像的左上、右上、左下、右下、中间五个部分扩充多角度人脸数据库,从而形成多角度人脸训练集;提取多角度人脸训练集中每幅人脸图像的SIFT特征,从而将每幅人脸图像转换为多角度特征向量;再利用支持向量机SVM对多角度特征向量进行训练,获取多角度人脸检测模型,该模型可以用来识别关键帧集合中人脸的角度;The multi-angle face recognition module includes two stages: training a multi-angle face detection model and key frame set face angle recognition. To train the multi-angle face detection model, first build a multi-angle face database, start with the frontal 0° of the face as the collection point, and collect a face image every k degrees clockwise, of which 90° and 270° are not collected face images. In this embodiment, k=10 is taken, and m=360/k-2=34 face images from different angles are collected for each identity, thereby forming a face image sequence composed of a human face and a non-face, in which there are human faces The face image sequence of the face contains m/2 images in the range of [0°,80°]∪[280°,350°], and the face image sequence of no face contains the range of [100°,260°] m/2 images, and then obtain a multi-angle face database composed of n face image sequences with different identities; assign a category label to each face image according to the angle value, and classify each face image according to the angle value in the corresponding category set. At the same time, in order to expand the training samples and solve the occluded face detection, some data enhancement methods can be applied to expand the multi-angle face database by partially occluding the upper left, upper right, lower left, lower right, and middle parts of each face image. Thus forming a multi-angle face training set; extracting the SIFT feature of each face image in the multi-angle face training set, thereby converting each face image into a multi-angle feature vector; and then using the support vector machine SVM to perform multi-angle feature vector Perform training to obtain a multi-angle face detection model, which can be used to identify the angle of the face in the key frame set;

多角度人脸识别模块的关键帧集合人脸角度识别阶段,先提取关键帧集合每幅图片的SIFT特征,将图片转换为向量,利用多角度人脸检测模型对关键帧集合进行检测,根据SVM输出结果,得到每个关键帧的人脸角度值;由人脸角度值判断每个关键帧是否含有人脸,若含有人脸,则保留相应关键帧,否则舍弃相应关键帧,对保留的关键帧检测并裁剪图像中的人脸部分,裁剪后的图像统一为固定大小。从而将关键帧集合转换为带有角度值标签的人脸图像序列;In the face angle recognition stage of the key frame set of the multi-angle face recognition module, first extract the SIFT feature of each picture in the key frame set, convert the picture into a vector, and use the multi-angle face detection model to detect the key frame set, according to SVM Output the result and get the face angle value of each key frame; judge whether each key frame contains a face by the face angle value, if it contains a face, then keep the corresponding key frame, otherwise discard the corresponding key frame, and the reserved key frame The frame detects and crops the face part in the image, and the cropped image is unified into a fixed size. Thereby converting the set of keyframes into a sequence of face images labeled with angle values;

身份匹配模块包括训练用于身份识别的神经网络模型,学习所有身份库和待识别的人脸图像序列的身份特征,以及身份相似度匹配三个阶段。使用多角度人脸数据库中的有人脸的人脸图像序列构造身份库,每个身份对应一个整实数的类别标签,身份库中每个人脸图像序列作为一个训练样本,图片按照角度顺序依次排列,每个样本转换为用像素表示的特征矩阵,作为卷积神经网络的输入,并进行训练,从而得到用于身份识别的神经网络模型;The identity matching module includes three stages: training a neural network model for identity recognition, learning identity features of all identity databases and face image sequences to be recognized, and identity similarity matching. Use the face image sequences in the multi-angle face database to construct the identity database. Each identity corresponds to an integer and real number category label. Each face image sequence in the identity database is used as a training sample. The pictures are arranged in order of angles. Each sample is converted into a feature matrix represented by pixels, which is used as the input of the convolutional neural network and trained to obtain a neural network model for identity recognition;

再将带有角度值标签的人脸图像序列作为测试样本,并将测试样本输入用于身份识别的神经网络模型,不使用该模型输出结果,而是将该神经网络模型用于特征提取,本实施例中,使用卷积神经网络倒数第一层全连接层的输出作为测试样本学习到的高级特征,从而将测试样本转换为一个待识别的多维身份特征向量。按照同样的方法将身份库中n个不同身份的人脸图像序列分别输入用于身份识别的神经网络模型中,提取相同中间层的结果作为特征,从而得到n个用于匹配的多维身份特征向量;Then, the face image sequence with the angle value label is used as a test sample, and the test sample is input into the neural network model for identity recognition. Instead of using the model to output the result, the neural network model is used for feature extraction. In the embodiment, the output of the penultimate fully connected layer of the convolutional neural network is used as the high-level feature learned by the test sample, so that the test sample is converted into a multi-dimensional identity feature vector to be recognized. According to the same method, the face image sequences of n different identities in the identity library are respectively input into the neural network model for identity recognition, and the results of the same intermediate layer are extracted as features, so as to obtain n multi-dimensional identity feature vectors for matching ;

身份相似度匹配阶段,将待识别的多维身份特征向量分别与n个用于匹配的多维身份特征向量进行余弦距离相似度比较,并找到最大余弦值所对应的用于匹配的多维身份特征向量作为相应待识别的多维身份特征向量的身份匹配结果,以身份匹配结果所对应的身份标签作为相应待识别的多维身份特征向量的身份识别结果。In the identity similarity matching stage, the multi-dimensional identity feature vector to be identified is compared with n multi-dimensional identity feature vectors for matching by cosine distance similarity, and the multi-dimensional identity feature vector for matching corresponding to the maximum cosine value is found as For the identity matching result corresponding to the multi-dimensional identity feature vector to be identified, the identity label corresponding to the identity matching result is used as the identity recognition result corresponding to the multi-dimensional identity feature vector to be identified.

本实施例中,一种融合多角度特征的监控视频人物身份识别方法,包括如下步骤:In this embodiment, a surveillance video person identification method that combines multi-angle features includes the following steps:

步骤1、收集单帧的有人图片和无人图片,构建有人图片和无人图片样本数据库,并对每幅图片进行尺寸归一化处理后赋予类别标签。本实施例中,正样本是数据集中的有人图片,截取其中128*128像素范围大小的人体部分,所有正样本标记为1;负样本是从不包含人体的图片中随机截取,尺寸大小同样为128*128,所有的负样本标签为0,正负样本各自放在一个文件夹中,从而得到由正样本和负样本构成的训练样本数据集;Step 1. Collect a single frame of pictures of people and pictures of people without people, build a sample database of pictures of people and people without people, and assign a category label after normalizing the size of each picture. In this embodiment, positive samples are pictures of people in the data set, and human body parts with a size of 128*128 pixels are intercepted, and all positive samples are marked as 1; negative samples are randomly intercepted from pictures that do not contain human bodies, and the size is also 128*128, all negative samples are labeled as 0, and the positive and negative samples are placed in a folder respectively, so as to obtain a training sample data set composed of positive samples and negative samples;

步骤2、提取训练样本数据集中每个样本的SIFT特征,每一个SIFT关键点描述子是一个4*4*8=128维的向量。提取特征之后,每个样本转换为一个n*128维的特征矩阵,其中n为提取到的特征点的数。本实例中,规定每个样本提取100个特征点,将每个特征点的特征向量依次连接,从而将每个样本转换为一个100*128维的特征向量;Step 2. Extract the SIFT features of each sample in the training sample data set, and each SIFT key point descriptor is a 4*4*8=128-dimensional vector. After feature extraction, each sample is converted into an n*128-dimensional feature matrix, where n is the number of feature points extracted. In this example, it is stipulated that each sample extracts 100 feature points, and the feature vectors of each feature point are sequentially connected, so that each sample is converted into a 100*128-dimensional feature vector;

步骤3、利用支持向量机SVM对训练样本数据集的特征向量进行训练,得到有人图片目标检测模型,用于检测单帧图片中是否存在人。将正负样本的SIFT特征向量,以及样本对应的标签,按照libsvm要求的格式排列好(Label 1:value 2:value…)。用svmscale对样本进行缩放,把数据正则化到[-1,1]范围内。使用grid.py交叉验证选择最佳参数c与g,接着svmtrain使用获取的最佳参数c与g、线性分类器、RBF核函数对整个训练数据集的特征向量进行训练,获得支持向量机模型参数,训练完之后,结果保存为.model模型文件,便得到了一个分类器,也就是有人图片目标检测模型。Step 3. Use the support vector machine (SVM) to train the feature vectors of the training sample data set to obtain a human picture object detection model, which is used to detect whether there is a person in a single frame picture. Arrange the SIFT feature vectors of the positive and negative samples and the labels corresponding to the samples according to the format required by libsvm (Label 1:value 2:value...). Use svmscale to scale the sample and normalize the data to the [-1,1] range. Use grid.py cross-validation to select the best parameters c and g, and then svmtrain uses the obtained best parameters c and g, linear classifier, and RBF kernel function to train the feature vectors of the entire training data set to obtain support vector machine model parameters , after training, the result is saved as a .model model file, and a classifier is obtained, which is a human image target detection model.

步骤4、对监控视频预处理,利用ffmeg软件包将一段待识别的监控视频转换成一系列的单帧图片,并作为测试集,测试集图像大小同样为128*128。提取每幅图片的SIFT特征,将每张测试集图片转换为一个100*128维的特征向量;Step 4, preprocessing the surveillance video, using the ffmeg software package to convert a surveillance video to be recognized into a series of single-frame pictures, and use it as a test set, the size of the test set images is also 128*128. Extract the SIFT feature of each picture, and convert each test set picture into a 100*128-dimensional feature vector;

步骤5、利用有人图片目标检测模型识别测试集中每帧图片是否含有人。载入训练好的模型文件,调用libsvm中的svmpredict函数对测试数据图片进行识别,生成一个.predict文件,对应得到每张测试图片的类别标签(1或0),即识别每帧图片中是否含有人。对于一个测试实例x,按照如下函数进行分类,其中(xi,yi)为训练样本,yi∈{1,0},Step 5. Using the human picture object detection model to identify whether each frame of the test set contains a person. Load the trained model file, call the svmpredict function in libsvm to identify the test data picture, generate a .predict file, and get the category label (1 or 0) of each test picture correspondingly, that is, identify whether each frame picture contains people. For a test instance x, classify according to the following function, where ( xi , y i ) is the training sample, y i ∈ {1,0},

若SVM输出结果为1,表示含有人,则保留相应单帧图片,并去除图像的周边信息,截取其中的人体部分,图片尺寸归一化为64*64大小,作为关键帧,否则,丢弃相应单帧图片,从而得到关键帧集合;If the SVM output result is 1, indicating that there are people, then keep the corresponding single frame picture, remove the surrounding information of the image, intercept the human body part, normalize the picture size to 64*64 size, and use it as a key frame, otherwise, discard the corresponding A single frame picture, so as to get a set of key frames;

步骤6、构建多角度人脸数据库,数据库中包含有人脸和无人脸,以人脸的正面0°为起始采集点,顺时针每隔k度均匀采集一幅人脸图像,每张图像截取其中64*64像素大小的人脸部分。本实施例中,取k=10,从正面的0度旋转一周到360度,每隔10度均匀采集一幅图像,其中,不采集90°和270°的人脸图像,每个身份共收集m=360/k-2=34幅不同角度的人脸图像,从而形成有人脸和无人脸构成的人脸图像序列,其中有人脸的人脸图像序列包含[0°,80°]∪[280°,350°]范围内的17幅图像,无人脸的人脸图像序列包含[100°,260°]范围内的17幅图像,进而获得n个不同身份的人脸图像序列所构成的多角度人脸数据库。Step 6. Build a multi-angle face database. The database contains human faces and no faces. The frontal 0° of the face is used as the starting collection point, and a face image is evenly collected every k degrees clockwise. Each image Capture the face part with a size of 64*64 pixels. In this embodiment, take k=10, rotate from 0 degrees to 360 degrees from the front, and collect an image evenly every 10 degrees. Among them, the face images of 90° and 270° are not collected, and each identity collects a total of m=360/k-2=34 face images from different angles, thus forming a face image sequence composed of a human face and a non-face, wherein the human face image sequence with a human face contains [0°,80°]∪[ 17 images in the range of 280°, 350°], and the face image sequence without a face contains 17 images in the range of [100°, 260°], and then obtain the face image sequence composed of n different identities Multi-angle face database.

步骤7、对收集到的多角度人脸数据库中的每幅人脸图像根据角度值赋予类别标签,例如,人脸角度为0°的图像赋予标签0,人脸角度为280°的图像赋予标签28,以此类推。将每幅人脸图像根据角度值放置到各自的类别集合中,一共34个类别文件夹。在人脸检测中,一幅待检测的图像可能会存在被其他人或物遮挡的人脸,或者戴眼镜口罩遮挡的人脸等情况。若训练样本均采用多角度无遮挡人脸,当测试样本中人脸有部分被遮挡时,很容易被筛选为非人脸而产生漏检。同时,由于收集的多角度人脸数据库样本数量少,可以采用数据增强方法扩充数据库,提高算法精度和特征维度。所以,通过局部遮挡每幅人脸图像的左上、右上、左下、右下、中间五个部分扩充多角度人脸数据库,遮挡窗口的大小为4*4,每张完整人脸对应五张遮挡人脸,对每张遮挡人脸赋予同样的类别标签,从而形成多角度人脸训练集;Step 7. Assign a category label to each face image in the collected multi-angle face database according to the angle value, for example, the image with a face angle of 0° is assigned a label 0, and the image with a face angle of 280° is assigned a label 28, and so on. Put each face image into its own category collection according to the angle value, a total of 34 category folders. In face detection, an image to be detected may have a face blocked by other people or objects, or a face covered by glasses and masks. If the training samples all use multi-angle unoccluded faces, when the faces in the test samples are partially occluded, it is easy to be screened as non-human faces and cause missed detection. At the same time, due to the small number of samples collected in the multi-angle face database, data enhancement methods can be used to expand the database and improve the algorithm accuracy and feature dimension. Therefore, the multi-angle face database is expanded by partially occluding the upper left, upper right, lower left, lower right, and middle parts of each face image. The size of the occlusion window is 4*4, and each complete face corresponds to five occluded persons. Face, assign the same category label to each occluded face, thus forming a multi-angle face training set;

步骤8、提取多角度人脸训练集中每幅人脸图像的SIFT特征,在本实施例中,设定每幅图像提取100个特征点,每个特征点向量依次连接,从而将每幅人脸图像转换为多角度特征向量,每个多角度特征向量的维度是100*128;Step 8, extract the SIFT features of each face image in the multi-angle face training set. In this embodiment, set each image to extract 100 feature points, and each feature point vector is connected in turn, so that each face The image is converted into a multi-angle feature vector, and the dimension of each multi-angle feature vector is 100*128;

步骤9、利用支持向量机SVM对整个多角度人脸训练集中的多角度特征向量进行训练,获取多角度人脸检测模型。对于n分类问题,svm有两种多类划分的方法,一种是“一对一”方式,这种方法把其中的任意两类构造一个分类器,共有n(n-1)/2个分类器;另一种是“一对多”方式,这种方法把其中某一类的n个训练样本视为一类,所有其他类别视为另一类,因此共有n个分类器。本实施例中,使用的是“一对一”方法,因此n=34个类别的样本,共需要训练561个二类分类器,在对测试样本进行分类时,每个分类器都对其类别进行判断,并采取投票形式,最后得票最多的类别即为该测试样本的类别。训练结束后得到的多角度人脸检测模型,可以用于检测关键帧集合中人脸的角度,从而也可以判断图像中是否存在人脸。Step 9, using the support vector machine (SVM) to train the multi-angle feature vectors in the entire multi-angle face training set to obtain a multi-angle face detection model. For n classification problems, svm has two multi-class division methods, one is "one-to-one" method, this method constructs a classifier for any two classes, and there are n(n-1)/2 classes in total. The other is the "one-to-many" method, which treats n training samples of a certain class as one class, and all other classes as another class, so there are n classifiers in total. In this embodiment, the "one-to-one" method is used, so samples of n=34 categories need to train 561 two-class classifiers in total. Make judgments and take the form of voting, and the category with the most votes in the end is the category of the test sample. The multi-angle face detection model obtained after the training can be used to detect the angle of the face in the key frame set, so as to determine whether there is a face in the image.

步骤10、利用多角度人脸检测模型对关键帧集合进行检测,得到每个关键帧的人脸角度值。首先提取关键帧集合中每幅图片的SIFT特征,将每张测试集图片转换为一个100*128维的特征向量,再依次经过训练得到的561个二类分类器,若由分类函数得到测试用例x属于i类,则i类投票加1;属于j类,j类加1。累计各类的得分选择得分最高者所对应类别作为测试图片x的类别。类别为10,则表示测试图片x的人脸角度值为10°,同理,即得到关键帧集合的人脸角度值。Step 10, using the multi-angle face detection model to detect the key frame set, and obtain the face angle value of each key frame. First extract the SIFT feature of each picture in the key frame set, convert each test set picture into a 100*128-dimensional feature vector, and then train 561 second-class classifiers in turn, if the test case is obtained by the classification function If x belongs to class i, the vote of class i will be increased by 1; if it belongs to class j, the vote of class j will be increased by 1. Accumulate the scores of each category and select the category corresponding to the one with the highest score as the category of the test picture x. If the category is 10, it means that the face angle value of the test picture x is 10°. Similarly, the face angle value of the key frame set is obtained.

步骤11、由人脸角度值判断每个关键帧是否含有人脸;若含有人脸,则保留相应关键帧,否则舍弃相应关键帧。若svm输出人脸角度类别结果为[0,8]∪[28,35],则表示有人脸,输出结果为[10,34]则表示无人脸。对保留的有人脸关键帧,去除图像的周边信息,使用opencv中的Haar分类器检测人脸,裁剪图像只保留其中的人脸部分,大小统一为64*64像素。从而将关键帧集合转换为带有角度值标签的人脸图像序列;Step 11. Determine whether each key frame contains a human face according to the face angle value; if it contains a human face, keep the corresponding key frame, otherwise discard the corresponding key frame. If the svm output face angle category result is [0,8]∪[28,35], it means there is a face, and the output result is [10,34], it means no face. For the reserved face key frame, remove the surrounding information of the image, use the Haar classifier in opencv to detect the face, and only keep the face part of the cropped image, and the size is unified to 64*64 pixels. Thereby converting the set of keyframes into a sequence of face images labeled with angle values;

步骤12、使用多角度人脸数据库中的有人人脸图像序列构造身份库,将身份库作为神经网络的输入,并进行训练,从而得到用于身份识别的神经网络模型。身份库使用多角度人脸数据库中每个身份的17张有人人脸图像序列,剔除其中的17张无人人脸图像序列,共构造含有n个身份的身份库。每个图像序列作为一个训练样本,代表一个身份类别,按照从0到n赋予身份标签。将身份库中的样本按照8:2的比例划分训练集和验证集,使用基于theano的keras库训练卷积神经网络,包含三层卷积层,两层池化层,两层全连接层和一层softmax层。将每张人脸图像各点的像素值作为输入数据,每张图像是64*64维的向量,将每个身份的有人人脸图像序列按照(0,…,8,28,…,35)的人脸角度顺序依次排列,即每个训练样本转换为一个17*64*64的特征矩阵,作为卷积神经网络的输入。训练过程包括前向训练和后向训练。前向训练过程为自下而上的非监督学习,即从底层开始,一层一层的往顶层训练,训练过程中,训练学习得到第n-1层参数后,将n-1层的输出作为第n层的输入,训练第n层,由此分别得到各层的参数;后向训练过程为自上而下的监督学习,即训练误差自顶向下传输,对参数进行微调。训练完成后,得到一个model.pkl模型文件。Step 12. Construct an identity library using human face image sequences in the multi-angle face database, use the identity library as the input of the neural network, and perform training to obtain a neural network model for identity recognition. The identity database uses 17 human face image sequences of each identity in the multi-angle face database, and removes 17 unidentified human face image sequences to construct an identity database containing n identities. Each image sequence is used as a training sample, representing an identity category, and assigning identity labels from 0 to n. Divide the samples in the identity library into the training set and the verification set according to the ratio of 8:2, and use the theano-based keras library to train the convolutional neural network, including three convolutional layers, two pooling layers, two fully connected layers and A softmax layer. Take the pixel values of each point of each face image as input data, each image is a 64*64-dimensional vector, and the human face image sequence of each identity is according to (0,...,8,28,...,35) The face angles of are arranged in sequence, that is, each training sample is converted into a 17*64*64 feature matrix, which is used as the input of the convolutional neural network. The training process includes forward training and backward training. The forward training process is bottom-up unsupervised learning, that is, starting from the bottom layer and training to the top layer layer by layer. During the training process, after training and learning to obtain the parameters of the n-1th layer, the output of the n-1 layer As the input of the nth layer, the nth layer is trained to obtain the parameters of each layer respectively; the backward training process is a top-down supervised learning, that is, the training error is transmitted from top to bottom, and the parameters are fine-tuned. After the training is completed, a model.pkl model file is obtained.

步骤13、将带有角度值标签的人脸图像序列作为测试样本,同样按照(0,…,8,28,…,35)的人脸角度顺序依次排列,如果某一人脸角度值不存在对应的图像,那么将该图像用维度为64*64的零矩阵表示,将测试样本转换为一个用像素值大小表示的特征矩阵。将测试样本输入用于身份识别的神经网络模型中,提取卷积神经网络倒数第一层全连接层的输出,作为测试样本学习到的高级特征。该输出结果是一个k维的特征向量,其中k的大小是由全连接层的结点个数决定的,此特征向量融合了人脸多个角度的图像特征,可以用来唯一的表征一个身份。从而将复杂的测试样本转换为一个待识别的k维身份特征向量。Step 13, use the face image sequence with angle value label as the test sample, also arrange in sequence according to the face angle sequence of (0, ..., 8, 28, ..., 35), if there is no corresponding face angle value , then the image is represented by a zero matrix with a dimension of 64*64, and the test sample is converted into a feature matrix represented by the size of pixel values. The test sample is input into the neural network model for identity recognition, and the output of the penultimate fully connected layer of the convolutional neural network is extracted as the advanced feature learned by the test sample. The output result is a k-dimensional feature vector, where the size of k is determined by the number of nodes in the fully connected layer. This feature vector combines image features from multiple angles of the face and can be used to uniquely represent an identity. . Thus, the complex test sample is converted into a k-dimensional identity feature vector to be recognized.

步骤14、将身份库库中n个不同身份的人脸图像序列分别输入用于身份识别的神经网络模型中,每个人脸图像序列按照(0,…,8,28,…,35)的人脸角度顺序依次排列作为一个样本,转换为特征矩阵,同样提取卷积神经网络倒数第一层全连接层的输出作为结果,从而学习得到n个用于匹配的k维身份特征向量;Step 14, input the face image sequences of n different identities in the identity database into the neural network model for identity recognition respectively, each face image sequence according to (0, ..., 8, 28, ..., 35) people The face angles are arranged in order as a sample, converted into a feature matrix, and the output of the first fully connected layer of the penultimate layer of the convolutional neural network is also extracted as a result, so as to learn n k-dimensional identity feature vectors for matching;

步骤15、为了将待识别的身份特征向量与身份库中的身份进行匹配,将待识别的k维身份特征向量分别与n个用于匹配的k维身份特征向量进行余弦距离相似度比较,即可以用两向量夹角的余弦值作为衡量相似度大小的度量。例如,待识别的m维身份特征向量表示为某个用于匹配的m维身份特征向量表示为两向量夹角的余弦值为:得到的值越大,代表两向量越相似。因此,可以找到最大余弦值所对应的用于匹配的多维身份特征向量作为相应待识别的多维身份特征向量的身份匹配结果。以该身份匹配结果所对应的身份标签作为相应待识别的多维身份特征向量的身份识别结果。如果待识别的身份特征向量没有在身份库中找到匹配成功的身份,则将该人脸图像序列作为新用户,把样本图像信息录入到身份库中,完善身份库的同时,提高系统身份匹配的效率。Step 15. In order to match the identity feature vector to be identified with the identity in the identity database, the k-dimensional identity feature vector to be identified is compared with n k-dimensional identity feature vectors for matching by cosine distance similarity, namely The cosine of the angle between two vectors can be used as a measure of similarity. For example, the m-dimensional identity feature vector to be identified is expressed as An m-dimensional identity feature vector for matching is expressed as The cosine of the angle between two vectors is: The larger the value obtained, the more similar the two vectors are. Therefore, the matching multi-dimensional identity feature vector corresponding to the maximum cosine value can be found as the identity matching result of the corresponding multi-dimensional identity feature vector to be identified. The identity tag corresponding to the identity matching result is used as the identity recognition result of the corresponding multi-dimensional identity feature vector to be recognized. If the identity feature vector to be identified does not find a successful identity matching in the identity database, the face image sequence will be used as a new user, and the sample image information will be entered into the identity database to improve the identity database and improve the identity matching of the system. efficiency.

Claims (2)

1.一种融合多角度特征的监控视频人物身份识别系统,其特征是组成包括:目标检测模块、多角度人脸识别模块和身份匹配模块;1. A monitoring video person identification system that integrates multi-angle features is characterized in that it consists of: a target detection module, a multi-angle face recognition module and an identity matching module; 所述目标检测模块收集单帧的有人图片和无人图片,并对每幅图片进行尺寸归一化处理后赋予类别标签,从而得到由正样本和负样本构成的训练样本数据集;提取所述训练样本数据集中每个样本的SIFT特征,从而将每个样本转换为特征向量;再利用支持向量机SVM对所述特征向量进行训练,得到目标检测模型;The target detection module collects single-frame human pictures and unmanned pictures, and assigns category labels after performing size normalization processing on each picture, thereby obtaining a training sample data set composed of positive samples and negative samples; extracting the The SIFT feature of each sample in the training sample data set, thereby converting each sample into a feature vector; then using the support vector machine SVM to train the feature vector to obtain a target detection model; 所述目标检测模块将监控视频转换成一系列的单帧图片,并作为测试集;利用所述目标检测模型识别所述测试集中每帧图片是否含有人,若含有人,则保留相应单帧图片,并作为关键帧,否则,丢弃相应单帧图片,从而得到关键帧集合;The target detection module converts the monitoring video into a series of single-frame pictures as a test set; utilizes the target detection model to identify whether each frame of pictures in the test set contains people, and if it contains people, then retains the corresponding single-frame pictures, And as a key frame, otherwise, discard the corresponding single frame picture, so as to obtain a key frame set; 所述多角度人脸识别模块以人脸的正面0°为起始采集点,顺时针每隔k度采集一幅人脸图像,其中,不采集90°和270°的人脸图像,每个身份共收集m=360/k-2幅不同角度的人脸图像,从而形成一个有人脸和无人脸构成的人脸图像序列,进而获得n个不同身份的人脸图像序列所构成的多角度人脸数据库;将每幅人脸图像根据角度值分类到各自的类别集合中,通过局部遮挡每幅人脸图像的左上、右上、左下、右下、中间五个部分扩充所述多角度人脸数据库,从而形成多角度人脸训练集;提取所述多角度人脸训练集中每幅人脸图像的SIFT特征,从而将每幅人脸图像转换为多角度特征向量;再利用支持向量机SVM对所述多角度特征向量进行训练,获取多角度人脸检测模型;The multi-angle face recognition module takes the front face of the face at 0° as the starting collection point, and collects a face image every k degrees clockwise, wherein, the face images of 90° and 270° are not collected, each The identity collects a total of m=360/k-2 face images from different angles, thus forming a face image sequence composed of a human face and a non-face, and then obtaining a multi-angle face image sequence composed of n different identities. Face database; each face image is classified into its own category set according to the angle value, and the multi-angle face is expanded by partially occluding the upper left, upper right, lower left, lower right, and middle parts of each face image database, thus forming a multi-angle face training set; extracting the SIFT feature of each face image in the multi-angle face training set, so that each face image is converted into a multi-angle feature vector; and then using the support vector machine SVM to The multi-angle feature vector is trained to obtain a multi-angle face detection model; 所述多角度人脸识别模块利用所述多角度人脸检测模型对所述关键帧集合进行检测,得到每个关键帧的人脸角度值,由所述人脸角度值判断每个关键帧是否含有人脸;若含有人脸,则保留相应关键帧,否则舍弃相应关键帧,从而将所述关键帧集合转换为带有角度值标签的人脸图像序列;The multi-angle face recognition module uses the multi-angle face detection model to detect the set of key frames to obtain the face angle value of each key frame, and judge whether each key frame is Contains a human face; if it contains a human face, then retain the corresponding key frame, otherwise discard the corresponding key frame, thereby converting the key frame set into a human face image sequence with an angle value label; 所述身份匹配模块使用所述多角度人脸数据库中有人脸的人脸图像序列构造身份库,将所述身份库作为神经网络的输入,并进行训练,从而得到用于身份识别的神经网络模型;再将所述带有角度值标签的人脸图像序列作为测试样本,并将所述测试样本输入所述用于身份识别的神经网络模型中,提取神经网络中间任意一层输出作为特征,从而将测试样本的转换为待识别的多维身份特征向量;The identity matching module constructs an identity library using the face image sequences of faces in the multi-angle face database, uses the identity library as the input of the neural network, and performs training to obtain a neural network model for identity recognition ; The face image sequence with the angle value label is used as a test sample again, and the test sample is input in the described neural network model for identity recognition, and any layer of output in the middle of the neural network is extracted as a feature, thereby Convert the test sample into a multi-dimensional identity feature vector to be identified; 所述身份匹配模块将所述多角度人脸数据库中n个不同身份的人脸图像序列分别输入所述用于身份识别的神经网络模型中,从而得到n个用于匹配的多维身份特征向量;再将待识别的多维身份特征向量分别与所述n个用于匹配的多维身份特征向量进行余弦距离相似度比较,并找到最大余弦值所对应的用于匹配的多维身份特征向量作为相应待识别的多维身份特征向量的身份匹配结果,以所述身份匹配结果所对应的身份标签作为相应待识别的多维身份特征向量的身份识别结果。The identity matching module inputs n face image sequences of different identities in the multi-angle face database into the neural network model for identity recognition, thereby obtaining n multidimensional identity feature vectors for matching; Then the multi-dimensional identity feature vector to be identified is compared with the n multi-dimensional identity feature vectors for matching by cosine distance similarity, and the multi-dimensional identity feature vector for matching corresponding to the maximum cosine value is found as the corresponding multi-dimensional identity feature vector to be identified The identity matching result of the multi-dimensional identity feature vector, the identity tag corresponding to the identity matching result is used as the identity recognition result of the multi-dimensional identity feature vector to be identified. 2.一种融合多角度特征的监控视频人物身份识别方法,其特征是按如下步骤进行:2. A monitoring video person identification method that merges multi-angle features, is characterized in that it is carried out as follows: 步骤1、收集单帧的有人图片和无人图片,并对每幅图片进行尺寸归一化处理后赋予类别标签,从而得到由正样本和负样本构成的训练样本数据集;Step 1. Collect single-frame pictures of people and people, and assign category labels to each picture after normalizing the size, so as to obtain a training sample data set composed of positive samples and negative samples; 步骤2、提取所述训练样本数据集中每个样本的SIFT特征,从而将每个样本转换为特征向量;Step 2, extracting the SIFT feature of each sample in the training sample data set, thereby converting each sample into a feature vector; 步骤3、利用支持向量机SVM对所述特征向量进行训练,得到目标检测模型;Step 3, using a support vector machine (SVM) to train the feature vectors to obtain a target detection model; 步骤4、将监控视频转换成一系列的单帧图片,并作为测试集;Step 4, convert the monitoring video into a series of single-frame pictures, and use it as a test set; 步骤5、利用所述目标检测模型识别所述测试集中每帧图片是否含有人,若含有人,则保留相应单帧图片,并作为关键帧,否则,丢弃相应单帧图片,从而得到关键帧集合;Step 5. Use the target detection model to identify whether each frame of the test set contains a person, and if it contains a person, keep the corresponding single-frame picture and use it as a key frame; otherwise, discard the corresponding single-frame picture to obtain a key frame set ; 步骤6、以人脸的正面为起始0°采集点,顺时针每隔k度采集一幅人脸图像,其中,不采集90°和270°的人脸图像,每个身份共收集m=360/k-2幅不同角度的人脸图像,从而形成一个有人脸和无人脸构成的人脸图像序列,进而获得n个不同身份的人脸图像序列所构成的多角度人脸数据库;Step 6. Start with the front face of the face at 0°, and collect a face image every k degrees clockwise, where the 90° and 270° face images are not collected, and each identity collects a total of m= 360/k-2 face images from different angles to form a face image sequence composed of human faces and non-faces, and then obtain a multi-angle face database composed of n face image sequences with different identities; 步骤7、将每幅人脸图像根据角度值分类到对应的类别集合中,通过局部遮挡每幅人脸图像的左上、右上、左下、右下、中间五个部分扩充所述多角度人脸数据库,从而形成多角度人脸训练集;Step 7. Classify each face image into the corresponding category set according to the angle value, and expand the multi-angle face database by partially blocking the upper left, upper right, lower left, lower right, and middle parts of each face image , thus forming a multi-angle face training set; 步骤8、提取所述多角度人脸训练集中每幅人脸图像的SIFT特征,从而将每幅人脸图像转换为多角度特征向量;Step 8, extracting the SIFT feature of each face image in the multi-angle face training set, thereby converting each face image into a multi-angle feature vector; 步骤9、利用支持向量机SVM对所述多角度特征向量进行训练,获取多角度人脸检测模型;Step 9, using a support vector machine (SVM) to train the multi-angle feature vector to obtain a multi-angle face detection model; 步骤10、利用所述多角度人脸检测模型对所述关键帧集合进行检测,得到每个关键帧的人脸角度值;Step 10, using the multi-angle face detection model to detect the set of key frames to obtain the face angle value of each key frame; 步骤11、由所述人脸角度值判断每个关键帧是否含有人脸;若含有人脸,则保留相应关键帧,否则舍弃相应关键帧,从而将所述关键帧集合转换为带有角度值标签的人脸图像序列;Step 11, judging whether each key frame contains a human face by the angle value of the human face; if it contains a human face, then keep the corresponding key frame, otherwise discard the corresponding key frame, thereby converting the key frame set into one with an angle value Labeled face image sequence; 步骤12、使用所述多角度人脸数据库中的有人脸的人脸图像序列构造身份库,将所述身份库作为神经网络的输入,并进行训练,从而得到用于身份识别的神经网络模型;Step 12, using the human face image sequence in the multi-angle human face database to construct an identity library, using the identity library as the input of the neural network, and training, thereby obtaining a neural network model for identity recognition; 步骤13、将所述带有角度值标签的人脸图像序列作为测试样本,并将所述测试样本输入所述用于身份识别的神经网络模型中,提取神经网络中间任意一层输出作为特征,从而将测试样本的转换为待识别的多维身份特征向量;Step 13, using the face image sequence with the angle value label as a test sample, and inputting the test sample into the neural network model for identity recognition, extracting the output of any layer in the middle of the neural network as a feature, Thereby converting the test sample into a multi-dimensional identity feature vector to be identified; 步骤14、将所述身份库中n个不同身份的人脸图像序列分别输入所述用于身份识别的神经网络模型中,从而得到n个用于匹配的多维身份特征向量;Step 14, input the face image sequences of n different identities in the identity library into the neural network model for identity recognition respectively, so as to obtain n multidimensional identity feature vectors for matching; 步骤15、将待识别的多维身份特征向量分别与所述n个用于匹配的多维身份特征向量进行余弦距离相似度比较,并找到最大余弦值所对应的用于匹配的多维身份特征向量作为相应待识别的多维身份特征向量的身份匹配结果,以所述身份匹配结果所对应的身份标签作为相应待识别的多维身份特征向量的身份识别结果。Step 15: Comparing the multi-dimensional identity feature vector to be identified with the n multi-dimensional identity feature vectors for matching by cosine distance similarity, and finding the multi-dimensional identity feature vector for matching corresponding to the maximum cosine value as a corresponding For the identity matching result of the multi-dimensional identity feature vector to be identified, the identity tag corresponding to the identity matching result is used as the identity identification result of the corresponding multi-dimensional identity feature vector to be identified.
CN201610984667.9A 2016-11-09 2016-11-09 Surveillance video person identification system and method based on multi-angle features of face Active CN106503687B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610984667.9A CN106503687B (en) 2016-11-09 2016-11-09 Surveillance video person identification system and method based on multi-angle features of face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610984667.9A CN106503687B (en) 2016-11-09 2016-11-09 Surveillance video person identification system and method based on multi-angle features of face

Publications (2)

Publication Number Publication Date
CN106503687A true CN106503687A (en) 2017-03-15
CN106503687B CN106503687B (en) 2019-04-05

Family

ID=58323481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610984667.9A Active CN106503687B (en) 2016-11-09 2016-11-09 Surveillance video person identification system and method based on multi-angle features of face

Country Status (1)

Country Link
CN (1) CN106503687B (en)

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107145908A (en) * 2017-05-08 2017-09-08 江南大学 A small target detection method based on R-FCN
CN107301406A (en) * 2017-07-13 2017-10-27 珠海多智科技有限公司 Fast face angle recognition method based on deep learning
CN107506702A (en) * 2017-08-08 2017-12-22 江西高创保安服务技术有限公司 Human face recognition model training and test system and method based on multi-angle
CN107563337A (en) * 2017-09-12 2018-01-09 广东欧珀移动通信有限公司 Face recognition method and related products
CN107590474A (en) * 2017-09-21 2018-01-16 广东欧珀移动通信有限公司 Solve lock control method and Related product
CN107704812A (en) * 2017-09-18 2018-02-16 维沃移动通信有限公司 A face recognition method and mobile terminal
CN107862270A (en) * 2017-10-31 2018-03-30 深圳云天励飞技术有限公司 Face classification device training method, method for detecting human face and device, electronic equipment
CN108038176A (en) * 2017-12-07 2018-05-15 浙江大华技术股份有限公司 A kind of method for building up, device, electronic equipment and the medium in passerby storehouse
CN108062542A (en) * 2018-01-12 2018-05-22 杭州智诺科技股份有限公司 The detection method for the face being blocked
CN108073859A (en) * 2016-11-16 2018-05-25 天津市远卓自动化设备制造有限公司 The monitoring device and method of a kind of specific region
CN108108662A (en) * 2017-11-24 2018-06-01 深圳市华尊科技股份有限公司 Deep neural network identification model and recognition methods
CN108304800A (en) * 2018-01-30 2018-07-20 厦门启尚科技有限公司 A kind of method of Face datection and face alignment
CN108509862A (en) * 2018-03-09 2018-09-07 华南理工大学 Anti- angle and the fast human face recognition for blocking interference
CN108549899A (en) * 2018-03-07 2018-09-18 中国银联股份有限公司 A kind of image-recognizing method and device
CN108596135A (en) * 2018-04-26 2018-09-28 上海诚数信息科技有限公司 Personal identification method and system
CN108960119A (en) * 2018-06-28 2018-12-07 武汉市哈哈便利科技有限公司 A kind of commodity recognizer of the multi-angle video fusion for self-service cabinet
CN109002767A (en) * 2018-06-22 2018-12-14 恒安嘉新(北京)科技股份公司 A kind of face verification method and system based on deep learning
CN109033988A (en) * 2018-06-29 2018-12-18 江苏食品药品职业技术学院 A kind of library's access management system based on recognition of face
CN109190561A (en) * 2018-09-04 2019-01-11 四川长虹电器股份有限公司 Face identification method and system in a kind of video playing
CN109190512A (en) * 2018-08-13 2019-01-11 成都盯盯科技有限公司 Method for detecting human face, device, equipment and storage medium
CN109344289A (en) * 2018-09-21 2019-02-15 北京字节跳动网络技术有限公司 Method and apparatus for generating information
CN109376717A (en) * 2018-12-14 2019-02-22 中科软科技股份有限公司 Personal identification method, device, electronic equipment and the storage medium of face comparison
CN109446985A (en) * 2018-10-28 2019-03-08 贵州师范学院 Multi-angle plants identification method based on vector neural network
CN109543521A (en) * 2018-10-18 2019-03-29 天津大学 The In vivo detection and face identification method that main side view combines
CN109543633A (en) * 2018-11-29 2019-03-29 上海钛米机器人科技有限公司 A kind of face identification method, device, robot and storage medium
CN109561210A (en) * 2018-11-26 2019-04-02 努比亚技术有限公司 A kind of interaction regulation method, equipment and computer readable storage medium
CN109583445A (en) * 2018-11-26 2019-04-05 平安科技(深圳)有限公司 Character image correction processing method, device, equipment and storage medium
CN109598223A (en) * 2018-11-26 2019-04-09 北京洛必达科技有限公司 Method and apparatus based on video acquisition target person
CN109697389A (en) * 2017-10-23 2019-04-30 北京京东尚科信息技术有限公司 Personal identification method and device
CN109711357A (en) * 2018-12-28 2019-05-03 北京旷视科技有限公司 A kind of face identification method and device
CN109784240A (en) * 2018-12-30 2019-05-21 深圳市明日实业有限责任公司 A kind of character recognition method, device and storage device
CN109784243A (en) * 2018-12-29 2019-05-21 网易(杭州)网络有限公司 Identity determines method and device, neural network training method and device, medium
CN109800643A (en) * 2018-12-14 2019-05-24 天津大学 A kind of personal identification method of living body faces multi-angle
CN110084258A (en) * 2018-02-12 2019-08-02 成都视观天下科技有限公司 Face preferred method, equipment and storage medium based on video human face identification
CN110110593A (en) * 2019-03-27 2019-08-09 广州杰赛科技股份有限公司 Face Work attendance method, device, equipment and storage medium based on self study
CN110309362A (en) * 2019-07-05 2019-10-08 深圳中科云海科技有限公司 A kind of video retrieval method and system
WO2019196626A1 (en) * 2018-04-12 2019-10-17 腾讯科技(深圳)有限公司 Media processing method and related apparatus
CN110399811A (en) * 2019-07-08 2019-11-01 厦门市美亚柏科信息股份有限公司 A kind of face identification method, device and storage medium
CN110414437A (en) * 2019-07-30 2019-11-05 上海交通大学 Fusion tampered face detection analysis method and system based on convolutional neural network model
CN110472460A (en) * 2018-05-11 2019-11-19 北京京东尚科信息技术有限公司 Face image processing process and device
CN110580435A (en) * 2018-06-08 2019-12-17 和硕联合科技股份有限公司 Facial recognition system and method for enhancing facial recognition
CN110609920A (en) * 2019-08-05 2019-12-24 华中科技大学 Method and system for mixed pedestrian search in video surveillance scene
CN110852150A (en) * 2019-09-25 2020-02-28 珠海格力电器股份有限公司 Face verification method, system, equipment and computer readable storage medium
CN110852303A (en) * 2019-11-21 2020-02-28 中科智云科技有限公司 Eating behavior identification method based on OpenPose
CN111079717A (en) * 2020-01-09 2020-04-28 西安理工大学 A face recognition method based on reinforcement learning
CN111126346A (en) * 2020-01-06 2020-05-08 腾讯科技(深圳)有限公司 Face recognition method, training method and device of classification model and storage medium
CN111160068A (en) * 2018-11-07 2020-05-15 杭州海康威视数字技术股份有限公司 Target picture generation method and device and electronic equipment
CN111325156A (en) * 2020-02-24 2020-06-23 北京沃东天骏信息技术有限公司 Face recognition method, device, equipment and storage medium
CN111539911A (en) * 2020-03-23 2020-08-14 中国科学院自动化研究所 Mouth-breathing face recognition method, device and storage medium
CN111540090A (en) * 2020-04-29 2020-08-14 北京市商汤科技开发有限公司 Method and device for controlling unlocking of vehicle door, vehicle, electronic equipment and storage medium
CN111640125A (en) * 2020-05-29 2020-09-08 广西大学 Mask R-CNN-based aerial photograph building detection and segmentation method and device
CN111783507A (en) * 2019-07-24 2020-10-16 北京京东尚科信息技术有限公司 Target search method, apparatus, and computer-readable storage medium
CN111886842A (en) * 2018-03-23 2020-11-03 国际商业机器公司 Remote user authentication using threshold-based matching
CN111968152A (en) * 2020-07-15 2020-11-20 桂林远望智能通信科技有限公司 Dynamic identity recognition method and device
CN112052728A (en) * 2020-07-30 2020-12-08 广州市标准化研究院 Portable portrait recognition anti-cheating device and control method thereof
CN112132057A (en) * 2020-09-24 2020-12-25 天津锋物科技有限公司 Multi-dimensional identity recognition method and system
WO2021000829A1 (en) * 2019-07-03 2021-01-07 平安科技(深圳)有限公司 Multi-dimensional identity information identification method and apparatus, computer device and storage medium
CN112257595A (en) * 2020-10-22 2021-01-22 广州市百果园网络科技有限公司 Video matching method, device, equipment and storage medium
CN112525352A (en) * 2020-11-24 2021-03-19 深圳市高巨创新科技开发有限公司 Infrared temperature measurement compensation method based on face recognition and terminal
CN112560705A (en) * 2020-12-17 2021-03-26 北京捷通华声科技股份有限公司 Face detection method and device and electronic equipment
CN112597886A (en) * 2020-12-22 2021-04-02 成都商汤科技有限公司 Ride fare evasion detection method and device, electronic equipment and storage medium
CN112613480A (en) * 2021-01-04 2021-04-06 上海明略人工智能(集团)有限公司 A face recognition method, system, electronic device and storage medium
CN112712066A (en) * 2021-01-19 2021-04-27 腾讯科技(深圳)有限公司 Image recognition method and device, computer equipment and storage medium
CN112836655A (en) * 2021-02-07 2021-05-25 上海卓繁信息技术股份有限公司 A method, apparatus and electronic device for identifying the identity of the offender
CN113393436A (en) * 2021-06-15 2021-09-14 北京美医医学技术研究院有限公司 Skin detection system based on multi-angle image acquisition
CN113826110A (en) * 2019-03-12 2021-12-21 埃利蒙特公司 Using Mobile Devices to Detect Facial Recognition Spoofing
CN114241459A (en) * 2022-02-24 2022-03-25 深圳壹账通科技服务有限公司 Driver identity verification method and device, computer equipment and storage medium
CN114445951A (en) * 2020-10-30 2022-05-06 许沁沁 Campus intelligent management system and method
CN114596581A (en) * 2022-02-17 2022-06-07 复旦大学 A method for human identity confirmation in a smart unmanned supermarket
CN114973128A (en) * 2022-05-18 2022-08-30 包头钢铁(集团)有限责任公司 Small target identification method and system applied to coke oven inspection scene
CN115359569A (en) * 2022-08-25 2022-11-18 中国工商银行股份有限公司 Gesture recognition method and device
CN115497624A (en) * 2022-09-28 2022-12-20 鄂尔多斯市中心医院(内蒙古自治区超声影像研究所) A method and system for grading placental vascularization index
CN115512408A (en) * 2022-09-20 2022-12-23 中远海运科技股份有限公司 Face recognition method and system under natural monitoring based on deep learning
CN115587208A (en) * 2022-09-15 2023-01-10 杭州海康威视数字技术股份有限公司 A target person retrieval method and device
CN119693987A (en) * 2024-12-11 2025-03-25 安徽理工大学 A coal mine underground safety detection method and system based on face image recognition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120114250A1 (en) * 2010-11-05 2012-05-10 Ricoh Company, Ltd. Method and system for detecting multi-view human face
CN102609695A (en) * 2012-02-14 2012-07-25 上海博物馆 Method and system for recognizing human face from multiple angles
CN102622589A (en) * 2012-03-13 2012-08-01 辉路科技(北京)有限公司 Multispectral face detection method based on graphics processing unit (GPU)
CN103106393A (en) * 2012-12-12 2013-05-15 袁培江 Embedded type face recognition intelligent identity authentication system based on robot platform
CN104182726A (en) * 2014-02-25 2014-12-03 苏凯 Real name authentication system based on face identification
CN105760836A (en) * 2016-02-17 2016-07-13 厦门美图之家科技有限公司 Multi-angle face alignment method based on deep learning and system thereof and photographing terminal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120114250A1 (en) * 2010-11-05 2012-05-10 Ricoh Company, Ltd. Method and system for detecting multi-view human face
CN102467655A (en) * 2010-11-05 2012-05-23 株式会社理光 Multi-angle face detection method and system
CN102609695A (en) * 2012-02-14 2012-07-25 上海博物馆 Method and system for recognizing human face from multiple angles
CN102622589A (en) * 2012-03-13 2012-08-01 辉路科技(北京)有限公司 Multispectral face detection method based on graphics processing unit (GPU)
CN103106393A (en) * 2012-12-12 2013-05-15 袁培江 Embedded type face recognition intelligent identity authentication system based on robot platform
CN104182726A (en) * 2014-02-25 2014-12-03 苏凯 Real name authentication system based on face identification
CN105760836A (en) * 2016-02-17 2016-07-13 厦门美图之家科技有限公司 Multi-angle face alignment method based on deep learning and system thereof and photographing terminal

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SOMPONG VALUVANATHORN ET AL.: "Multi-feature face recognition based on PSO-SVM", 《2012 TENTH INTERNATIONAL CONFERENCE ON ICT AND KNOWLEDGE ENGINEERING》 *
代毅: "视频序列中的人物身份识别研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
郝利刚: "多角度人脸识别的深度学习方法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108073859A (en) * 2016-11-16 2018-05-25 天津市远卓自动化设备制造有限公司 The monitoring device and method of a kind of specific region
CN107145908B (en) * 2017-05-08 2019-09-03 江南大学 A small target detection method based on R-FCN
CN107145908A (en) * 2017-05-08 2017-09-08 江南大学 A small target detection method based on R-FCN
CN107301406A (en) * 2017-07-13 2017-10-27 珠海多智科技有限公司 Fast face angle recognition method based on deep learning
CN107506702B (en) * 2017-08-08 2020-09-11 江西高创保安服务技术有限公司 Multi-angle-based face recognition model training and testing system and method
CN107506702A (en) * 2017-08-08 2017-12-22 江西高创保安服务技术有限公司 Human face recognition model training and test system and method based on multi-angle
CN107563337A (en) * 2017-09-12 2018-01-09 广东欧珀移动通信有限公司 Face recognition method and related products
CN107704812A (en) * 2017-09-18 2018-02-16 维沃移动通信有限公司 A face recognition method and mobile terminal
CN107590474A (en) * 2017-09-21 2018-01-16 广东欧珀移动通信有限公司 Solve lock control method and Related product
CN109697389A (en) * 2017-10-23 2019-04-30 北京京东尚科信息技术有限公司 Personal identification method and device
CN109697389B (en) * 2017-10-23 2021-10-01 北京京东尚科信息技术有限公司 Identity recognition method and device
CN107862270A (en) * 2017-10-31 2018-03-30 深圳云天励飞技术有限公司 Face classification device training method, method for detecting human face and device, electronic equipment
CN108108662A (en) * 2017-11-24 2018-06-01 深圳市华尊科技股份有限公司 Deep neural network identification model and recognition methods
CN108108662B (en) * 2017-11-24 2021-05-25 深圳市华尊科技股份有限公司 Deep neural network recognition model and recognition method
CN108038176A (en) * 2017-12-07 2018-05-15 浙江大华技术股份有限公司 A kind of method for building up, device, electronic equipment and the medium in passerby storehouse
CN108062542B (en) * 2018-01-12 2020-07-28 杭州智诺科技股份有限公司 How to detect occluded faces
CN108062542A (en) * 2018-01-12 2018-05-22 杭州智诺科技股份有限公司 The detection method for the face being blocked
CN108304800A (en) * 2018-01-30 2018-07-20 厦门启尚科技有限公司 A kind of method of Face datection and face alignment
CN110084258A (en) * 2018-02-12 2019-08-02 成都视观天下科技有限公司 Face preferred method, equipment and storage medium based on video human face identification
CN108549899B (en) * 2018-03-07 2022-02-15 中国银联股份有限公司 An image recognition method and device
CN108549899A (en) * 2018-03-07 2018-09-18 中国银联股份有限公司 A kind of image-recognizing method and device
CN108509862A (en) * 2018-03-09 2018-09-07 华南理工大学 Anti- angle and the fast human face recognition for blocking interference
CN108509862B (en) * 2018-03-09 2022-03-25 华南理工大学 A fast face recognition method against angle and occlusion interference
CN111886842A (en) * 2018-03-23 2020-11-03 国际商业机器公司 Remote user authentication using threshold-based matching
US11335127B2 (en) 2018-04-12 2022-05-17 Tencent Technology (Shenzhen) Company Ltd Media processing method, related apparatus, and storage medium
WO2019196626A1 (en) * 2018-04-12 2019-10-17 腾讯科技(深圳)有限公司 Media processing method and related apparatus
CN108596135A (en) * 2018-04-26 2018-09-28 上海诚数信息科技有限公司 Personal identification method and system
CN110472460A (en) * 2018-05-11 2019-11-19 北京京东尚科信息技术有限公司 Face image processing process and device
CN110580435B (en) * 2018-06-08 2023-05-23 和硕联合科技股份有限公司 Face recognition system and enhanced face recognition method
CN110580435A (en) * 2018-06-08 2019-12-17 和硕联合科技股份有限公司 Facial recognition system and method for enhancing facial recognition
CN109002767A (en) * 2018-06-22 2018-12-14 恒安嘉新(北京)科技股份公司 A kind of face verification method and system based on deep learning
CN108960119A (en) * 2018-06-28 2018-12-07 武汉市哈哈便利科技有限公司 A kind of commodity recognizer of the multi-angle video fusion for self-service cabinet
CN108960119B (en) * 2018-06-28 2021-06-08 武汉市哈哈便利科技有限公司 Commodity recognition algorithm for multi-angle video fusion of unmanned sales counter
CN109033988A (en) * 2018-06-29 2018-12-18 江苏食品药品职业技术学院 A kind of library's access management system based on recognition of face
CN109190512A (en) * 2018-08-13 2019-01-11 成都盯盯科技有限公司 Method for detecting human face, device, equipment and storage medium
CN109190561A (en) * 2018-09-04 2019-01-11 四川长虹电器股份有限公司 Face identification method and system in a kind of video playing
CN109190561B (en) * 2018-09-04 2022-03-22 四川长虹电器股份有限公司 Face recognition method and system in video playing
CN109344289B (en) * 2018-09-21 2020-12-11 北京字节跳动网络技术有限公司 Method and apparatus for generating information
CN109344289A (en) * 2018-09-21 2019-02-15 北京字节跳动网络技术有限公司 Method and apparatus for generating information
CN109543521A (en) * 2018-10-18 2019-03-29 天津大学 The In vivo detection and face identification method that main side view combines
CN109446985A (en) * 2018-10-28 2019-03-08 贵州师范学院 Multi-angle plants identification method based on vector neural network
CN109446985B (en) * 2018-10-28 2021-06-04 贵州师范学院 Multi-angle plant identification method based on vector neural network
CN111160068B (en) * 2018-11-07 2024-01-26 杭州海康威视数字技术股份有限公司 Target image generation method, device and electronic equipment
CN111160068A (en) * 2018-11-07 2020-05-15 杭州海康威视数字技术股份有限公司 Target picture generation method and device and electronic equipment
CN109598223A (en) * 2018-11-26 2019-04-09 北京洛必达科技有限公司 Method and apparatus based on video acquisition target person
CN109561210A (en) * 2018-11-26 2019-04-02 努比亚技术有限公司 A kind of interaction regulation method, equipment and computer readable storage medium
CN109583445A (en) * 2018-11-26 2019-04-05 平安科技(深圳)有限公司 Character image correction processing method, device, equipment and storage medium
CN109543633A (en) * 2018-11-29 2019-03-29 上海钛米机器人科技有限公司 A kind of face identification method, device, robot and storage medium
CN109800643A (en) * 2018-12-14 2019-05-24 天津大学 A kind of personal identification method of living body faces multi-angle
CN109376717A (en) * 2018-12-14 2019-02-22 中科软科技股份有限公司 Personal identification method, device, electronic equipment and the storage medium of face comparison
CN109800643B (en) * 2018-12-14 2023-03-31 天津大学 Identity recognition method for living human face in multiple angles
CN109711357A (en) * 2018-12-28 2019-05-03 北京旷视科技有限公司 A kind of face identification method and device
CN109784243A (en) * 2018-12-29 2019-05-21 网易(杭州)网络有限公司 Identity determines method and device, neural network training method and device, medium
CN109784243B (en) * 2018-12-29 2021-07-09 网易(杭州)网络有限公司 Identity determination method and device, neural network training method and device, and medium
CN109784240A (en) * 2018-12-30 2019-05-21 深圳市明日实业有限责任公司 A kind of character recognition method, device and storage device
CN109784240B (en) * 2018-12-30 2023-08-22 深圳市明日实业有限责任公司 Character recognition method, device and storage device
CN113826110A (en) * 2019-03-12 2021-12-21 埃利蒙特公司 Using Mobile Devices to Detect Facial Recognition Spoofing
CN110110593A (en) * 2019-03-27 2019-08-09 广州杰赛科技股份有限公司 Face Work attendance method, device, equipment and storage medium based on self study
WO2021000829A1 (en) * 2019-07-03 2021-01-07 平安科技(深圳)有限公司 Multi-dimensional identity information identification method and apparatus, computer device and storage medium
CN110309362A (en) * 2019-07-05 2019-10-08 深圳中科云海科技有限公司 A kind of video retrieval method and system
CN110399811A (en) * 2019-07-08 2019-11-01 厦门市美亚柏科信息股份有限公司 A kind of face identification method, device and storage medium
CN111783507A (en) * 2019-07-24 2020-10-16 北京京东尚科信息技术有限公司 Target search method, apparatus, and computer-readable storage medium
CN111783507B (en) * 2019-07-24 2024-12-03 北京京东尚科信息技术有限公司 Target search method, device and computer readable storage medium
CN110414437A (en) * 2019-07-30 2019-11-05 上海交通大学 Fusion tampered face detection analysis method and system based on convolutional neural network model
CN110609920A (en) * 2019-08-05 2019-12-24 华中科技大学 Method and system for mixed pedestrian search in video surveillance scene
CN110609920B (en) * 2019-08-05 2022-03-18 华中科技大学 Pedestrian hybrid search method and system in video monitoring scene
CN110852150A (en) * 2019-09-25 2020-02-28 珠海格力电器股份有限公司 Face verification method, system, equipment and computer readable storage medium
CN110852303A (en) * 2019-11-21 2020-02-28 中科智云科技有限公司 Eating behavior identification method based on OpenPose
CN111126346A (en) * 2020-01-06 2020-05-08 腾讯科技(深圳)有限公司 Face recognition method, training method and device of classification model and storage medium
CN111079717B (en) * 2020-01-09 2022-02-22 西安理工大学 Face recognition method based on reinforcement learning
CN111079717A (en) * 2020-01-09 2020-04-28 西安理工大学 A face recognition method based on reinforcement learning
CN111325156A (en) * 2020-02-24 2020-06-23 北京沃东天骏信息技术有限公司 Face recognition method, device, equipment and storage medium
CN111325156B (en) * 2020-02-24 2023-08-11 北京沃东天骏信息技术有限公司 Face recognition method, device, equipment and storage medium
CN111539911A (en) * 2020-03-23 2020-08-14 中国科学院自动化研究所 Mouth-breathing face recognition method, device and storage medium
CN111540090A (en) * 2020-04-29 2020-08-14 北京市商汤科技开发有限公司 Method and device for controlling unlocking of vehicle door, vehicle, electronic equipment and storage medium
CN111640125B (en) * 2020-05-29 2022-11-18 广西大学 Aerial photography graph building detection and segmentation method and device based on Mask R-CNN
CN111640125A (en) * 2020-05-29 2020-09-08 广西大学 Mask R-CNN-based aerial photograph building detection and segmentation method and device
CN111968152B (en) * 2020-07-15 2023-10-17 桂林远望智能通信科技有限公司 A dynamic identity recognition method and device
CN111968152A (en) * 2020-07-15 2020-11-20 桂林远望智能通信科技有限公司 Dynamic identity recognition method and device
CN112052728B (en) * 2020-07-30 2024-04-02 广州市标准化研究院 Portable portrait identification anti-deception device and control method thereof
CN112052728A (en) * 2020-07-30 2020-12-08 广州市标准化研究院 Portable portrait recognition anti-cheating device and control method thereof
CN112132057A (en) * 2020-09-24 2020-12-25 天津锋物科技有限公司 Multi-dimensional identity recognition method and system
CN112257595A (en) * 2020-10-22 2021-01-22 广州市百果园网络科技有限公司 Video matching method, device, equipment and storage medium
CN114445951A (en) * 2020-10-30 2022-05-06 许沁沁 Campus intelligent management system and method
CN112525352A (en) * 2020-11-24 2021-03-19 深圳市高巨创新科技开发有限公司 Infrared temperature measurement compensation method based on face recognition and terminal
CN112560705A (en) * 2020-12-17 2021-03-26 北京捷通华声科技股份有限公司 Face detection method and device and electronic equipment
CN112597886A (en) * 2020-12-22 2021-04-02 成都商汤科技有限公司 Ride fare evasion detection method and device, electronic equipment and storage medium
CN112613480A (en) * 2021-01-04 2021-04-06 上海明略人工智能(集团)有限公司 A face recognition method, system, electronic device and storage medium
CN112712066A (en) * 2021-01-19 2021-04-27 腾讯科技(深圳)有限公司 Image recognition method and device, computer equipment and storage medium
CN112836655B (en) * 2021-02-07 2024-05-28 上海卓繁信息技术股份有限公司 Method and device for identifying identity of illegal actor and electronic equipment
CN112836655A (en) * 2021-02-07 2021-05-25 上海卓繁信息技术股份有限公司 A method, apparatus and electronic device for identifying the identity of the offender
CN113393436A (en) * 2021-06-15 2021-09-14 北京美医医学技术研究院有限公司 Skin detection system based on multi-angle image acquisition
CN114596581A (en) * 2022-02-17 2022-06-07 复旦大学 A method for human identity confirmation in a smart unmanned supermarket
CN114241459A (en) * 2022-02-24 2022-03-25 深圳壹账通科技服务有限公司 Driver identity verification method and device, computer equipment and storage medium
CN114973128A (en) * 2022-05-18 2022-08-30 包头钢铁(集团)有限责任公司 Small target identification method and system applied to coke oven inspection scene
CN115359569A (en) * 2022-08-25 2022-11-18 中国工商银行股份有限公司 Gesture recognition method and device
CN115587208A (en) * 2022-09-15 2023-01-10 杭州海康威视数字技术股份有限公司 A target person retrieval method and device
CN115512408A (en) * 2022-09-20 2022-12-23 中远海运科技股份有限公司 Face recognition method and system under natural monitoring based on deep learning
CN115497624A (en) * 2022-09-28 2022-12-20 鄂尔多斯市中心医院(内蒙古自治区超声影像研究所) A method and system for grading placental vascularization index
CN119693987A (en) * 2024-12-11 2025-03-25 安徽理工大学 A coal mine underground safety detection method and system based on face image recognition
CN119693987B (en) * 2024-12-11 2025-11-14 安徽理工大学 A method and system for underground safety detection in coal mines based on facial image recognition

Also Published As

Publication number Publication date
CN106503687B (en) 2019-04-05

Similar Documents

Publication Publication Date Title
CN106503687A (en) The monitor video system for identifying figures of fusion face multi-angle feature and its method
Zulfiqar et al. Deep face recognition for biometric authentication
Zhan et al. Face detection using representation learning
CN107330397B (en) A Pedestrian Re-identification Method Based on Large-Interval Relative Distance Metric Learning
Reid et al. Soft biometrics for surveillance: an overview
Chen et al. Fast human detection using a novel boosted cascading structure with meta stages
Han et al. Face recognition with contrastive convolution
CN113205002B (en) Low-definition face recognition method, device, equipment and medium for unlimited video monitoring
CN103279768B (en) A kind of video face identification method based on incremental learning face piecemeal visual characteristic
CN108537181A (en) A kind of gait recognition method based on the study of big spacing depth measure
Xia et al. Face occlusion detection using deep convolutional neural networks
Arya et al. Automatic Face Recognition and Detection Using OpenCV, Haar Cascade and Recognizer at Different Angle of Face
CN110555386A (en) Face recognition identity authentication method based on dynamic Bayes
CN108647621A (en) A kind of video analysis processing system and method based on recognition of face
Wang et al. An intelligent recognition framework of access control system with anti-spoofing function
Bukht et al. A novel framework for human action recognition based on features fusion and decision tree
Chen et al. A multi-scale fusion convolutional neural network for face detection
Sukkar et al. A Real-time Face Recognition Based on MobileNetV2 Model
Bashier et al. Face detection based on graph structure and neural networks
Lei et al. Learning discriminant face descriptor for face recognition
Jaison et al. A review on facial emotion recognition and classification analysis with deep learning
Suma et al. Dense feature based face recognition from surveillance video using convolutional neural network
Ristiana et al. A Comparative Study of Thermal Face Recognition Based on Haar Wavelet Transform (HWT) and Histogram of Gradient (HoG)
Li et al. Boosting Constrained Mutual Subspace Method for Robust Image-Set Based Object Recognition.
Ye et al. Cascaded convolutional neural network for eye detection under complex scenarios

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220602

Address after: 266000 room 504, floor 5, building a, Shinan Software Park, No. 288, Ningxia road, Shinan District, Qingdao, Shandong Province

Patentee after: Shandong Xinfa Technology Co.,Ltd.

Address before: Tunxi road in Baohe District of Hefei city of Anhui Province, No. 193 230009

Patentee before: Hefei University of Technology