CN106302729A - Current potential based on Data Fusion Structure and temperature acquisition network transmission system - Google Patents
Current potential based on Data Fusion Structure and temperature acquisition network transmission system Download PDFInfo
- Publication number
- CN106302729A CN106302729A CN201610671706.XA CN201610671706A CN106302729A CN 106302729 A CN106302729 A CN 106302729A CN 201610671706 A CN201610671706 A CN 201610671706A CN 106302729 A CN106302729 A CN 106302729A
- Authority
- CN
- China
- Prior art keywords
- data
- temperature
- fusion structure
- network transmission
- transmission system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004927 fusion Effects 0.000 title claims abstract description 45
- 230000005540 biological transmission Effects 0.000 title claims abstract description 16
- 238000005516 engineering process Methods 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims 1
- 238000012545 processing Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000033772 system development Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/56—Provisioning of proxy services
- H04L67/565—Conversion or adaptation of application format or content
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C19/00—Electric signal transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2852—Metropolitan area networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
基于数据融合结构的电位与温度采集网络传输系统。本发明的目的在于通过对电位和温度采集模块连接的多传感器的测量数据,利用基于卡尔曼滤波的多传感器数据融合算法,对采集的多路数据进行融合,从而获得电位和温度变量的更准确的估计值,进而利用两变量的结合能很好的解决突出点的位置定位问题,同时应用实时数据库和非实时数据库技术存储和传输数据,结合以太网控制电路的作用将经过并行融合结构算法处理后的32路电位值和32路温度值发送到服务器,利用计算机技术对获取到的数据进行一致性解释和描述,从而可以准确的获得待测点的地质环境的变化。
Potential and temperature acquisition network transmission system based on data fusion structure. The purpose of the present invention is to fuse the multi-channel data collected by using the multi-sensor data fusion algorithm based on the Kalman filter to obtain more accurate potential and temperature variables The estimated value, and then use the combination of the two variables to solve the problem of the location of the salient point. At the same time, the real-time database and non-real-time database technology is used to store and transmit data, and the function of the Ethernet control circuit will be processed through a parallel fusion structure algorithm. The final 32-channel potential value and 32-channel temperature value are sent to the server, and computer technology is used to interpret and describe the obtained data consistently, so that the change of the geological environment of the point to be measured can be accurately obtained.
Description
技术领域technical field
本发明涉及数据信号检测及网络通信领域,具体涉及一种基于数据融合结构的电位与温度采集网络传输系统。The invention relates to the fields of data signal detection and network communication, in particular to a potential and temperature acquisition network transmission system based on a data fusion structure.
背景技术Background technique
在全球经济和科技迅速发展的时代,智能感知技术与传感器检测技术也不断的发展进步,在煤矿井下、石油勘探、桥梁大坝等地质环境检测中,准确的传感器信息的获取是非常关键的,如在煤矿井下采掘生产过程中,地下原始应力平衡被打破,围岩失稳现象随之大量产生,构成了煤炭安全生产危害,如桥梁大坝地质数据的检测,一旦发生洪水冲击,大坝是否安全可靠需要传感器采集准确的数据进行分析,能够及时准确的检测到准确的数据进行分析,将会很大程度的减少生产工作中的事故,因此为了预防在各种生产工作的各种突出危害,做到对各种工作过程中地质状态变化的数据实时采集,并且通过对采集数据进行融合算法分析,可靠定位突出点的位置为目的,发明了一种基于数据融合结构的电位与温度采集网络传输系统。In the era of rapid development of global economy and technology, intelligent perception technology and sensor detection technology are also constantly developing and progressing. Accurate sensor information acquisition is very critical in geological environment detection such as coal mines, oil exploration, bridges and dams. For example, in the process of underground mining and production in coal mines, the original stress balance of the underground is broken, and a large number of surrounding rock instability occurs, which constitutes a hazard to coal production safety. Safety and reliability require the sensor to collect accurate data for analysis, and the ability to detect and analyze accurate data in a timely and accurate manner will greatly reduce accidents in production work. Therefore, in order to prevent various prominent hazards in various production work, To achieve real-time collection of data on geological state changes in various working processes, and through the fusion algorithm analysis of the collected data, for the purpose of reliably locating the position of the prominent point, a potential and temperature collection network transmission based on the data fusion structure was invented. system.
为了更精准的获取外部传感器感知周围环境提供的必要信息和随着工作环境与工作任务的复杂性,单个传感器已经不能较好的满足系统对鲁棒性的要求,因此多传感器的应用及其数据融合技术在系统开发设计中就不断的被使用与创新。它通过数据关联、相关和组合等方式来获得对被测环境或对象的更加精准的定位,充分利用不同时间和空间传感器的数据资源,采用计算机技术进行分析来获得被测对象的一致性解释与描述,进而实现系统相应的决策,本发明即基于此思想发明了一种基于数据融合结构的电位与温度采集网络传输系统。In order to obtain the necessary information provided by external sensors to perceive the surrounding environment more accurately and with the complexity of the working environment and work tasks, a single sensor can no longer meet the robustness requirements of the system. Therefore, the application of multi-sensors and their data Fusion technology is constantly being used and innovated in system development and design. It obtains a more accurate positioning of the measured environment or object through data association, correlation and combination, etc., makes full use of the data resources of different time and space sensors, and uses computer technology for analysis to obtain consistent interpretation and consistency of the measured object. description, and then realize the corresponding decision-making of the system. Based on this idea, the present invention invents a potential and temperature acquisition network transmission system based on the data fusion structure.
发明内容Contents of the invention
本发明的目的在于通过对电位和温度采集模块连接的多传感器的测量数据,利用基于卡尔曼滤波的多传感器数据融合算法,对采集的多路数据进行融合,从而获得电位和温度变量的更准确的估计值,进而利用两变量的结合就能很好的解决突出点的位置的定位问题。The purpose of the present invention is to use the multi-sensor data fusion algorithm based on Kalman filtering to fuse the multi-channel data collected by the measurement data of the multi-sensors connected to the potential and temperature acquisition modules, thereby obtaining more accurate data of the potential and temperature variables. The estimated value of , and then using the combination of the two variables can well solve the problem of positioning the position of the salient point.
本发明所要解决的技术问题采用以下技术方案来实现:The technical problem to be solved by the present invention adopts the following technical solutions to realize:
一种基于数据融合结构的电位与温度采集网络传输系统外部传感器的构成包括:32路电极传感器、32路温度传感器;内部其他电路包括:信号差分输入电路、信号增益放大电路、温度变送器、低通滤波器电路、以太网控制电路、主控电路、TF存储卡;软件部分包括:数据融合算法技术、数据库技术。A potential and temperature acquisition network transmission system based on data fusion structure. The composition of external sensors includes: 32-way electrode sensors, 32-way temperature sensors; other internal circuits include: signal differential input circuit, signal gain amplifier circuit, temperature transmitter, Low-pass filter circuit, Ethernet control circuit, main control circuit, TF memory card; software part includes: data fusion algorithm technology, database technology.
32路电极传感器、32路温度传感器采用并行融合结构,并行多路传感器传送数据进行融合,并行多路传感器传送数据进行融合是指将32路电位采集数据和32路温度采集数据的传感器输出的数据全部同时输入给数据融合中心,32路电位采集传感器、32路温度采集传感器之间没有影响,接收数据的融合中心对各种类型的数据按适当的方法进行综合处理,最后输出结果传送给内部其他电路,进而传到主控电路。The 32-way electrode sensor and the 32-way temperature sensor adopt a parallel fusion structure, and the parallel multi-way sensor transmits data for fusion, and the parallel multi-way sensor transmits data for fusion, which refers to the sensor output data of 32-way potential acquisition data and 32-way temperature acquisition data All are input to the data fusion center at the same time, there is no influence between the 32-way potential acquisition sensor and the 32-way temperature acquisition sensor, the fusion center that receives the data comprehensively processes various types of data according to an appropriate method, and finally outputs the result to other internal circuit, and then passed to the main control circuit.
软件程序采用卡尔曼滤波算法的基本思想将32路电位采集传感器和32路温度采集传感器数据进行处理,卡尔曼滤波算法的基本思想是用当前量测值与上一时刻的预测估计值的偏差乘以一定的权重来不断修正下一状态的估计。利用电位和温度采集传感器系统的过程模型,来预测其各自的下一状态,将卡尔曼滤波算法应用在32路电位采集传感器和32路温度采集传感器,通过对不同时刻多数据的融合以及对多传感器的融合,其结果提高了电位及温度值得精度,降低了不确定度,获得了电位和温度变量的更准确的估计值,进而利用两变量的结合就能很好的解决突出点的定位点问题。The software program uses the basic idea of the Kalman filter algorithm to process the data of the 32-way potential acquisition sensor and the 32-way temperature acquisition sensor. Constantly revise the estimate of the next state with a certain weight. Use the process model of the potential and temperature acquisition sensor system to predict their respective next states, apply the Kalman filter algorithm to 32 potential acquisition sensors and 32 temperature acquisition sensors, through the fusion of multiple data at different times and multi- The fusion of sensors, as a result, improves the accuracy of potential and temperature values, reduces uncertainty, obtains more accurate estimates of potential and temperature variables, and then uses the combination of the two variables to solve the positioning point of the prominent point. question.
主控电路包括互联型32位的ARM核心芯片STM32F107、以太网控制电路的核心芯片DP8384C、TF内存卡、PC人机界面,利用数据融合技术将不同传感器传来的数据通过STM32内部的两个12位的模数转换器处理模块直接组合得到一组统一的输出数据,根据不同传感器传来的不同数据形式和不同环境描述,根据不同传感器传来的不同数据形式和不同环境描述,将电极传感器传送的电压模拟量,温度传送的电流模拟量,结合其所处环境的不相同进行融合。其数据融合中心的思想是首先要把这些不同类型的数据转换成相同的形式,然后在进行相关处理,然后将处理后的32路电位采集信号、32路温度采集信和一路电流信号通过网络传输协议TCP/IP协议和太网接口通信电路传送到PC人机界面,同时还可以将数据保存在TF内存卡中备份,有效的保存了历史数据。The main control circuit includes the interconnected 32-bit ARM core chip STM32F107, the core chip DP8384C of the Ethernet control circuit, the TF memory card, and the PC man-machine interface. The data from different sensors is passed through the two 12 internal STM32 by using data fusion technology. 1-bit analog-to-digital converter processing modules are directly combined to obtain a set of unified output data. According to different data forms and different environmental descriptions from different sensors, the electrode sensor is transmitted The voltage analog quantity and the current analog quantity transmitted by temperature are combined with the different environments. The idea of its data fusion center is to first convert these different types of data into the same form, and then perform related processing, and then transfer the processed 32-channel potential acquisition signal, 32-channel temperature acquisition signal and one current signal through the network transmission protocol The TCP/IP protocol and the Ethernet interface communication circuit are transmitted to the PC man-machine interface, and the data can also be saved in the TF memory card for backup, effectively saving the historical data.
以太网控制电路的作用主要是将STM32F107采集到的数据,并且经过并行融合结构算法处理后的32路电位值和32路温度值发送到服务器。以太网控制电路主要采用嵌入式芯片加以太网网卡芯片,以太网网卡芯片采用DP83848C芯片,DP83848C PHY层芯片提供的功能相当于TCP/IP参考模型的物理层,STM32F107自带的MAC层相当于数据链路层,硬件接口采用RMII接口模式,网络控制电路有效的实现了数据的可靠、稳定的传输,保证了数据实时更新的目的。The function of the Ethernet control circuit is mainly to send the data collected by STM32F107 and the 32 potential values and 32 temperature values processed by the parallel fusion structure algorithm to the server. The Ethernet control circuit mainly uses an embedded chip plus an Ethernet network card chip. The Ethernet network card chip uses a DP83848C chip. The function provided by the DP83848C PHY layer chip is equivalent to the physical layer of the TCP/IP reference model. The MAC layer of the STM32F107 is equivalent to the data The link layer and the hardware interface adopt RMII interface mode, and the network control circuit effectively realizes the reliable and stable transmission of data and ensures the purpose of real-time data update.
数据库技术采用实时数据库和非实时数据库两种数据库存储类型,实时数据库提供当前传感器的观测结果能够及时准确的提供给融合中心,供计算使用,即电位、温度实时变化的采集值。非实时数据库存储一些传感器的历史数据以及融合计算的历史信息,即电位、温度实历史采集存储值。数据库存储的信息容量的大小可以通过外部扩展存储单元TF存储卡扩大存储容量。The database technology adopts two types of database storage: real-time database and non-real-time database. The real-time database provides the observation results of current sensors, which can be provided to the fusion center in a timely and accurate manner for calculation, that is, the collected values of potential and temperature real-time changes. The non-real-time database stores the historical data of some sensors and the historical information of fusion calculation, that is, the actual historical collection and storage values of potential and temperature. The size of the information capacity stored in the database can expand the storage capacity through the external expansion storage unit TF memory card.
附图说明Description of drawings
图1为本发明的整体控制框架图Fig. 1 is overall control frame diagram of the present invention
图2为本发明卡尔曼滤波控制算法框架图Fig. 2 is a frame diagram of the Kalman filter control algorithm of the present invention
具体实施方式detailed description
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示,进一步阐述本发明。In order to make the technical means, creative features, goals and effects achieved by the present invention easy to understand, the present invention will be further described below in conjunction with specific illustrations.
如图1所示一种基于数据融合结构的电位与温度采集网络传输系统外部传感器的构成包括:32路电极传感器(1)、32路温度传感器(2);内部其他电路包括:信号差分输入电路(3)、信号增益放大电路(4)、温度变送器(5)、电压取样(6)、低通滤波器电路(7)、以太网控制电路(8)、主控电路(9)、TF存储卡(10)、32路电位采集电路(11)、32路温度采集电路(12);软件部分包括:数据融合算法技术、数据库技术。As shown in Figure 1, the external sensor of a potential and temperature acquisition network transmission system based on data fusion structure includes: 32-way electrode sensor (1), 32-way temperature sensor (2); other internal circuits include: signal differential input circuit (3), signal gain amplifier circuit (4), temperature transmitter (5), voltage sampling (6), low-pass filter circuit (7), Ethernet control circuit (8), main control circuit (9), TF memory card (10), 32-channel potential acquisition circuit (11), 32-channel temperature acquisition circuit (12); the software part includes: data fusion algorithm technology, database technology.
32路电极传感器(1)、32路温度传感器(2)采用并行融合结构,并行多路传感器传送数据进行融合,并行多路传感器传送数据进行融合是指将32路电位采集数据和32路温度采集数据的传感器输出的数据都同时输入给数据融合中心,并且32路电极传感器(1)、32路温度传感器(2)之间没有影响,接收数据的融合中心对各种类型的数据按适当的方法进行综合处理,最后输出结果传送给内部电路,进而传到主控电路。The 32-channel electrode sensor (1) and the 32-channel temperature sensor (2) adopt a parallel fusion structure, and the parallel multi-channel sensor transmits data for fusion, and the parallel multi-channel sensor transmits data for fusion. The data output by the data sensor is input to the data fusion center at the same time, and there is no influence between the 32-way electrode sensor (1) and the 32-way temperature sensor (2). Carry out comprehensive processing, and finally output the result to the internal circuit, and then to the main control circuit.
如图2所示一种基于数据融合结构的电位与温度采集网络传输系统,软件程序采用卡尔曼滤波算法的基本思想将32路电极传感器(1)、32路温度传感器(2)采集的数据进行处理;卡尔曼滤波算法的基本思想是用当前量测值与上一时刻的预测估计值的偏差乘以一定的权重来不断修正下一状态的估计。利用电位和温度采集传感器系统的过程模型,来预测其各自的下一状态,将卡尔曼滤波算法应用在32路电极传感器(1)和32路温度传感器(2),通过对不同时刻多数据的融合以及对多传感器的融合,提高了电位与温度采集值,使其结果精度得到了保证,降低了不确定度,获得了电位和温度这两个变量更准确的估计值,进而利用这两个变量的结合能很好的解决突出点的位置定位的问题。As shown in Figure 2, a potential and temperature acquisition network transmission system based on data fusion structure, the software program uses the basic idea of Kalman filter algorithm to process the data collected by 32 electrode sensors (1) and 32 temperature sensors (2). Processing; the basic idea of the Kalman filter algorithm is to multiply the deviation between the current measured value and the predicted estimated value of the previous moment by a certain weight to continuously correct the estimate of the next state. Using the process model of the potential and temperature acquisition sensor system to predict their respective next states, the Kalman filter algorithm is applied to the 32-way electrode sensor (1) and the 32-way temperature sensor (2), through multiple data at different times The fusion and the fusion of multiple sensors have improved the potential and temperature acquisition values, guaranteed the accuracy of the results, reduced the uncertainty, obtained more accurate estimates of the two variables of potential and temperature, and then used these two The combination of variables can well solve the problem of positioning the salient points.
主控电路包括互联型的32位ARM核心芯片STM32F107(9)、以太网控制电路(8)的核心芯片DP8384C、TF存储卡(10)、PC人机界面(13),利用数据融合技术将不同传感器传来的数据,通过STM32F107(9)内部的两个12位的模数转换器处理模块,将采集到的两种变量值直接组合得到一组统一的输出数据;根据不同传感器传来的不同数据形式和不同环境描述,将电极传感器传送的电压模拟量,温度传送的电流模拟量,结合其所处环境的不相同进行融合。其数据融合中心的思想是首先要把这些不同类型的数据转换成相同的形式,然后在进行相关处理,进而将处理后的32路电位采集信号、32路温度采集信号两组变量作为一个坐标点,即坐标特征数据,通过网络传输协议TCP/IP协议和太网接口控制电路(8)传送到PC人机界面(13),同时还可以将数据保存在TF存储卡(10)中备份,有效的保存了历史数据。The main control circuit includes the interconnected 32-bit ARM core chip STM32F107 (9), the core chip DP8384C of the Ethernet control circuit (8), the TF memory card (10), and the PC man-machine interface (13). The data transmitted by the sensor, through two 12-bit analog-to-digital converter processing modules inside the STM32F107(9), directly combines the collected two variable values to obtain a set of unified output data; The data form and the description of different environments combine the voltage analog quantity transmitted by the electrode sensor and the current analog quantity transmitted by the temperature with the different environments in which they are located. The idea of its data fusion center is to first convert these different types of data into the same form, and then perform related processing, and then use the processed 32-channel potential acquisition signal and 32-channel temperature acquisition signal as a coordinate point. , that is, the coordinate feature data, is transmitted to the PC man-machine interface (13) through the network transmission protocol TCP/IP protocol and the Ethernet interface control circuit (8), and the data can also be stored in the TF memory card (10) for backup, effectively The historical data is saved.
以太网控制电路(8)的作用主要是将STM32F107(9)采集到的数据,并且经过并行融合结构算法处理后的32路电位值和32路温度值发送到服务器。以太网控制电路(8)主要采用嵌入式芯片加以太网网卡芯片,以太网网卡芯片采用DP83848C芯片,DP83848C PHY层芯片提供的功能相当于TCP/IP参考模型的物理层,STM32F107(9)自带的MAC层相当于数据链路层,硬件接口采用RMII接口模式,网络控制电路有效的实现了数据的可靠、稳定的传输,保证了数据实时更新的目的。The function of the Ethernet control circuit (8) is mainly to send the data collected by the STM32F107 (9) and the 32 potential values and 32 temperature values processed by the parallel fusion structure algorithm to the server. The Ethernet control circuit (8) mainly uses an embedded chip plus an Ethernet network card chip. The Ethernet network card chip uses a DP83848C chip. The function provided by the DP83848C PHY layer chip is equivalent to the physical layer of the TCP/IP reference model. STM32F107 (9) comes with The MAC layer is equivalent to the data link layer, the hardware interface adopts the RMII interface mode, and the network control circuit effectively realizes the reliable and stable transmission of data and ensures the purpose of real-time data update.
数据库技术采用了实时数据库和非实时数据库两种数据库存储类型,实时数据库提供当前传感器的观测结果能够及时准确的提供给融合中心,供计算使用,即电位、温度实时变化的采集值。非实时数据库存储一些传感器的历史数据以及融合计算的历史信息,即电位、温度实历史采集存储值。数据库存储的信息容量可以通过外部扩展存储单元TF存储卡(10)扩大存储容量。The database technology adopts two database storage types: real-time database and non-real-time database. The real-time database provides the observation results of the current sensor and can be provided to the fusion center in a timely and accurate manner for calculation, that is, the collected values of potential and temperature real-time changes. The non-real-time database stores the historical data of some sensors and the historical information of fusion calculation, that is, the actual historical collection and storage values of potential and temperature. The information capacity stored in the database can expand the storage capacity through the external expansion storage unit TF memory card (10).
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The basic principles and main features of the present invention and the advantages of the present invention have been shown and described above. Those skilled in the industry should understand that the present invention is not limited by the above-mentioned embodiments. What are described in the above-mentioned embodiments and the description only illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will also have Variations and improvements all fall within the scope of the claimed invention. The protection scope of the present invention is defined by the appended claims and their equivalents.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610671706.XA CN106302729A (en) | 2016-08-15 | 2016-08-15 | Current potential based on Data Fusion Structure and temperature acquisition network transmission system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610671706.XA CN106302729A (en) | 2016-08-15 | 2016-08-15 | Current potential based on Data Fusion Structure and temperature acquisition network transmission system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN106302729A true CN106302729A (en) | 2017-01-04 |
Family
ID=57671603
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610671706.XA Pending CN106302729A (en) | 2016-08-15 | 2016-08-15 | Current potential based on Data Fusion Structure and temperature acquisition network transmission system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106302729A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| NL2024502B1 (en) * | 2019-11-29 | 2020-11-19 | Univ Anhui Sci & Technology | Potential and temperature acquisition network transmission system based on data fusion structure |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102316496A (en) * | 2011-09-07 | 2012-01-11 | 上海交通大学 | Data merging method based on Kalman filtering in wireless sensor network |
| CN103118439A (en) * | 2013-01-18 | 2013-05-22 | 中国科学院上海微系统与信息技术研究所 | Data fusion method based on sensor network node universal middleware |
| CN103914056A (en) * | 2014-04-25 | 2014-07-09 | 安徽福讯信息技术有限公司 | Multiple information fusion facility agriculture production process monitoring device |
| US20150244675A1 (en) * | 2008-06-20 | 2015-08-27 | Arrayent, Inc. | Wireless Internet Product System |
| CN205403855U (en) * | 2016-03-11 | 2016-07-27 | 安徽理工大学 | Current potential and temperature acquisition system |
-
2016
- 2016-08-15 CN CN201610671706.XA patent/CN106302729A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150244675A1 (en) * | 2008-06-20 | 2015-08-27 | Arrayent, Inc. | Wireless Internet Product System |
| CN102316496A (en) * | 2011-09-07 | 2012-01-11 | 上海交通大学 | Data merging method based on Kalman filtering in wireless sensor network |
| CN103118439A (en) * | 2013-01-18 | 2013-05-22 | 中国科学院上海微系统与信息技术研究所 | Data fusion method based on sensor network node universal middleware |
| CN103914056A (en) * | 2014-04-25 | 2014-07-09 | 安徽福讯信息技术有限公司 | Multiple information fusion facility agriculture production process monitoring device |
| CN205403855U (en) * | 2016-03-11 | 2016-07-27 | 安徽理工大学 | Current potential and temperature acquisition system |
Non-Patent Citations (2)
| Title |
|---|
| 王祁,聂伟,张兆礼: "数据融合与智能传感系统", 《传感器技术》 * |
| 靳造造: "多传感信息融合技术在矿井突水中的应用", 《技术与市场》 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| NL2024502B1 (en) * | 2019-11-29 | 2020-11-19 | Univ Anhui Sci & Technology | Potential and temperature acquisition network transmission system based on data fusion structure |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111536967A (en) | A tracking method of multi-sensor fusion greenhouse inspection robot based on EKF | |
| CN104468035B (en) | A kind of distribution POS data reliability transmission system and method | |
| CN114088091A (en) | Multi-sensor-based underground mine pose fusion method and system | |
| CN115805593B (en) | Force sensor installation information determining method, device, equipment and medium | |
| CN115480239B (en) | A method, device, equipment and medium for determining measuring point coordinates | |
| CN104197935A (en) | Indoor localization method based on mobile intelligent terminal | |
| CN106302729A (en) | Current potential based on Data Fusion Structure and temperature acquisition network transmission system | |
| CN205482909U (en) | Serial -type dysarthrasis monitoring devices | |
| CN104655149A (en) | Test system of inertial navigation system | |
| CN205175416U (en) | Mobile robot positioning system based on laser and inertia measuring unit | |
| CN108051003A (en) | A kind of personnel's pose monitoring method and system | |
| Kommuri et al. | Development of real time environment monitoring system using with MSP430 | |
| NL2024502B1 (en) | Potential and temperature acquisition network transmission system based on data fusion structure | |
| CN204465579U (en) | A kind of Intelligent wireless router | |
| CN111780757A (en) | Positioning method and device, electronic equipment, vehicle-end equipment, autonomous vehicle | |
| CN117387608A (en) | A parameter optimization method for the zero-speed correction algorithm of underground main navigation in mines | |
| CN104268431B (en) | Multi-gradient field fusion based south-north water diversion high-fill section leakage detection method | |
| CN207894403U (en) | A kind of inclination angle test system | |
| CN202838661U (en) | Wireless sensing communication system for monitoring energy consumption | |
| CN116892939A (en) | Track determination method and device, electronic equipment and storage medium | |
| Hlophe et al. | Implementation of an autonomous underground localization system | |
| CN111693019B (en) | Attitude sensing device and data fusion and attitude calculation method | |
| Che et al. | Research on Abnormal Monitoring of Sensor Data of Stadiums Based on Internet of Things Technology | |
| CN204041050U (en) | A kind of driller parameters monitoring device | |
| Zhang et al. | Design of mobile monitoring system for tower crane in assembly construction based on internet of things technology |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170104 |