CN106018510B - A kind of explosive vapors recognition detection method based on photoelectric respone - Google Patents
A kind of explosive vapors recognition detection method based on photoelectric respone Download PDFInfo
- Publication number
- CN106018510B CN106018510B CN201610344253.XA CN201610344253A CN106018510B CN 106018510 B CN106018510 B CN 106018510B CN 201610344253 A CN201610344253 A CN 201610344253A CN 106018510 B CN106018510 B CN 106018510B
- Authority
- CN
- China
- Prior art keywords
- sensor
- explosive
- sensitive material
- light source
- response
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002360 explosive Substances 0.000 title claims abstract description 128
- 238000001514 detection method Methods 0.000 title abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 105
- 230000004044 response Effects 0.000 claims abstract description 80
- 238000000034 method Methods 0.000 claims abstract description 42
- 230000008859 change Effects 0.000 claims abstract description 36
- 238000000513 principal component analysis Methods 0.000 claims abstract description 16
- 238000004458 analytical method Methods 0.000 claims abstract description 11
- 239000002070 nanowire Substances 0.000 claims description 57
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 44
- 229910021389 graphene Inorganic materials 0.000 claims description 44
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 31
- 229910052710 silicon Inorganic materials 0.000 claims description 31
- 239000010703 silicon Substances 0.000 claims description 31
- AKVPCIASSWRYTN-UHFFFAOYSA-N zinc oxygen(2-) silicon(4+) Chemical compound [Si+4].[O-2].[Zn+2].[O-2].[O-2] AKVPCIASSWRYTN-UHFFFAOYSA-N 0.000 claims description 18
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 17
- 238000003672 processing method Methods 0.000 claims description 15
- 238000003491 array Methods 0.000 claims description 13
- 239000011258 core-shell material Substances 0.000 claims description 13
- 239000010931 gold Substances 0.000 claims description 10
- 229910052737 gold Inorganic materials 0.000 claims description 10
- 239000004408 titanium dioxide Substances 0.000 claims description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 9
- -1 titanium dioxide-modified silicon Chemical class 0.000 claims description 9
- 239000002105 nanoparticle Substances 0.000 claims description 7
- 238000003062 neural network model Methods 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 150000003376 silicon Chemical class 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 claims description 2
- 238000013528 artificial neural network Methods 0.000 abstract description 6
- 238000012567 pattern recognition method Methods 0.000 abstract description 5
- 238000001179 sorption measurement Methods 0.000 abstract description 4
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 39
- 239000000015 trinitrotoluene Substances 0.000 description 38
- TZRXHJWUDPFEEY-UHFFFAOYSA-N Pentaerythritol Tetranitrate Chemical compound [O-][N+](=O)OCC(CO[N+]([O-])=O)(CO[N+]([O-])=O)CO[N+]([O-])=O TZRXHJWUDPFEEY-UHFFFAOYSA-N 0.000 description 35
- 239000000026 Pentaerythritol tetranitrate Substances 0.000 description 35
- 229960004321 pentaerithrityl tetranitrate Drugs 0.000 description 35
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 34
- 239000004202 carbamide Substances 0.000 description 34
- DYSXLQBUUOPLBB-UHFFFAOYSA-N 2,3-dinitrotoluene Chemical compound CC1=CC=CC([N+]([O-])=O)=C1[N+]([O-])=O DYSXLQBUUOPLBB-UHFFFAOYSA-N 0.000 description 32
- SPSSULHKWOKEEL-UHFFFAOYSA-N 2,4,6-trinitrotoluene Chemical compound CC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O SPSSULHKWOKEEL-UHFFFAOYSA-N 0.000 description 32
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 32
- 229920006395 saturated elastomer Polymers 0.000 description 27
- UZGLIIJVICEWHF-UHFFFAOYSA-N octogen Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)CN([N+]([O-])=O)C1 UZGLIIJVICEWHF-UHFFFAOYSA-N 0.000 description 25
- 239000000024 RDX Substances 0.000 description 24
- 239000000843 powder Substances 0.000 description 17
- 239000000028 HMX Substances 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- ZPTVNYMJQHSSEA-UHFFFAOYSA-N 4-nitrotoluene Chemical compound CC1=CC=C([N+]([O-])=O)C=C1 ZPTVNYMJQHSSEA-UHFFFAOYSA-N 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- ZTLXICJMNFREPA-UHFFFAOYSA-N 3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexaoxonane Chemical compound CC1(C)OOC(C)(C)OOC(C)(C)OO1 ZTLXICJMNFREPA-UHFFFAOYSA-N 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 238000010276 construction Methods 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 3
- XTFIVUDBNACUBN-UHFFFAOYSA-N 1,3,5-trinitro-1,3,5-triazinane Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)C1 XTFIVUDBNACUBN-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 238000012847 principal component analysis method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- POCJOGNVFHPZNS-ZJUUUORDSA-N (6S,7R)-2-azaspiro[5.5]undecan-7-ol Chemical compound O[C@@H]1CCCC[C@]11CNCCC1 POCJOGNVFHPZNS-ZJUUUORDSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- BSPUVYFGURDFHE-UHFFFAOYSA-N Nitramine Natural products CC1C(O)CCC2CCCNC12 BSPUVYFGURDFHE-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical group C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- POCJOGNVFHPZNS-UHFFFAOYSA-N isonitramine Natural products OC1CCCCC11CNCCC1 POCJOGNVFHPZNS-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- LPUQAYUQRXPFSQ-DFWYDOINSA-M monosodium L-glutamate Chemical compound [Na+].[O-]C(=O)[C@@H](N)CCC(O)=O LPUQAYUQRXPFSQ-DFWYDOINSA-M 0.000 description 1
- 235000013923 monosodium glutamate Nutrition 0.000 description 1
- 239000004223 monosodium glutamate Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000011540 sensing material Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明涉及一种基于光电响应的爆炸物蒸气识别检测方法,该方法中涉及的装置是由传感器、光源、电源、电流表、信号处理器和报警器组成,使用可周期性开关和改变光强变化的光源,照射具有快速光电响应的单个传感器上,测量爆炸物蒸气在传感器敏感材料表面吸附引起的光电流变化,通过主成分分析、线性判别分析、人工神经网络等模式识别方法进行数据处理,实现传感器阵列对不同种类爆炸物蒸气响应的标准数据库,通过将疑似爆炸物的数据处理结果与数据库比对,最终达到识别检测爆炸物蒸气的目的。该方法利用敏感材料的光电性能,提高检测限的同时简化了传感器阵列结构,利用敏感材料灵敏的气敏响应和快速的光电响应,实现快速识别爆炸物的目的。
The invention relates to a method for identifying and detecting explosive vapor based on photoelectric response. The device involved in the method is composed of a sensor, a light source, a power supply, an ammeter, a signal processor and an alarm. The light source is used to irradiate a single sensor with fast photoelectric response, and the photocurrent change caused by the adsorption of explosive vapor on the surface of the sensor sensitive material is measured, and the data is processed by principal component analysis, linear discriminant analysis, artificial neural network and other pattern recognition methods to realize The standard database of the response of the sensor array to different types of explosive vapors, by comparing the data processing results of suspected explosives with the database, finally achieves the purpose of identifying and detecting explosive vapors. The method utilizes the photoelectric properties of the sensitive material to improve the detection limit while simplifying the structure of the sensor array, and utilizes the sensitive gas-sensitive response and fast photoelectric response of the sensitive material to realize the purpose of quickly identifying explosives.
Description
技术领域technical field
本发明涉及爆炸物检测领域,特别是涉及一种基于光电响应的爆炸物蒸气识别检测方法。具体涉及使用一定波长范围的光照射具有快速光电响应的敏感材料,通过周期性的开关光源和改变光强,测定不同光强下传感器上爆炸物分子吸附引起的光电流变化,采用主成分分析、线性判别分析、人工神经网络等模式识别方法进行数据处理,实现传感器阵列对不同种类爆炸物蒸气响应的标准数据库,比对建立的标准数据库,对疑似痕量爆炸物蒸气进行检测与分类。该方法可在提高检测限的同时简化传感器阵列结构,实现快速识别爆炸物的目的。The invention relates to the field of explosive detection, in particular to a method for identifying and detecting explosive vapor based on photoelectric response. It specifically involves the use of light in a certain wavelength range to irradiate sensitive materials with fast photoelectric response. By periodically switching the light source and changing the light intensity, the photocurrent changes caused by the adsorption of explosive molecules on the sensor under different light intensities are measured. Principal component analysis, Pattern recognition methods such as linear discriminant analysis and artificial neural network are used for data processing to realize the standard database of the response of sensor arrays to different types of explosive vapors, and compare the established standard databases to detect and classify suspected trace explosive vapors. This method can simplify the sensor array structure while improving the detection limit, and realize the purpose of quickly identifying explosives.
背景技术Background technique
恐怖爆炸事件严重危害社会稳定和国家安全,隐藏爆炸物的探测一直是国内外公共安全领域高度关注的难题。制式爆炸物如,三硝基甲苯(TNT)、二硝基甲苯(DNT)、对硝基甲苯(PNT)、苦味酸(PA)、黑索金(RDX)、尿素(Urea)、黑火药(BP)、硝酸铵(AN)、季戊四醇四硝酸酯(PETN)、环四亚甲基四硝胺(HMX)、三过氧化三丙酮和硫,因具有低蒸气压和高爆炸性等特点,成为最常见、使用范围最广的一类爆炸物。非制式炸药种类繁多,成份复杂,原料来源于工业原料、农业化肥和生活用品等,如硝酸铵、尿素、硫等,其检测十分困难。Terrorist bombings seriously endanger social stability and national security. The detection of hidden explosives has always been a problem of great concern in the field of public security at home and abroad. Standard explosives such as trinitrotoluene (TNT), dinitrotoluene (DNT), p-nitrotoluene (PNT), picric acid (PA), RDX, urea (Urea), black powder ( BP), ammonium nitrate (AN), pentaerythritol tetranitrate (PETN), cyclotetramethylenetetranitramine (HMX), triacetone triperoxide and sulfur, because of their low vapor pressure and high explosiveness, they are the most The most common and widely used class of explosives. There are many types of non-standard explosives with complex components. The raw materials come from industrial raw materials, agricultural fertilizers and daily necessities, such as ammonium nitrate, urea, sulfur, etc., and their detection is very difficult.
由于爆炸物种类繁多,要实现完全专一的检测十分困难。同时,构建对每一种爆炸物均有专一响应的传感器更加困难。因此,在检测中需要引入传感器阵列并通过数据处理进行识别。传感器阵列是一种模拟哺乳动物通过嗅觉和味觉识别物质的检测手段。通过建立一系列的交叉反应的传感器单元,然后记录所有单元对于同一物质的响应行为,采用主成分分析、线性判别分析、神经网络等模式识别方法进行数据处理,可以实现对不同物质的区分。因此,无论是光学传感器还是电学传感器,往往引入传感器阵列实现物质识别。Due to the wide variety of explosives, it is very difficult to achieve a completely specific detection. At the same time, building sensors that respond specifically to each type of explosive is more difficult. Therefore, it is necessary to introduce a sensor array in the detection and identify it through data processing. Sensor arrays are a detection method that mimics the way mammals recognize substances through their senses of smell and taste. By establishing a series of cross-reactive sensor units, and then recording the response behavior of all units to the same substance, and using pattern recognition methods such as principal component analysis, linear discriminant analysis, and neural networks for data processing, different substances can be distinguished. Therefore, whether it is an optical sensor or an electrical sensor, a sensor array is often introduced to realize material identification.
传感器阵列的构建过程需要引入一系列传感器单元。为了保证数据处理过程聚类分类的效果,传感器数量要足够多。这就带来两个问题:一、传感系统结构变得复杂;二、需要较多合成或修饰步骤,构建过程复杂。因此,如何简化传感器阵列结构是一项急需的技术。The construction process of the sensor array needs to introduce a series of sensor units. In order to ensure the effect of clustering and classification in the data processing process, the number of sensors must be sufficient. This brings about two problems: first, the structure of the sensing system becomes complicated; second, more synthesis or modification steps are required, and the construction process is complicated. Therefore, how to simplify the sensor array structure is an urgently needed technology.
当入射光子能量(hv)大于或等于半导体的禁带宽度(Eg)时,价带中的电子会吸收入射光子,由价带跃迁至导带,形成光电流。当气体吸附在材料上时,会显著改变光电流大小。除此之外,光强可以调控传感材料的响应特性。因此,可以利用光强调控光电敏感材料的响应特性,从而简化传感器阵列。When the incident photon energy (hv) is greater than or equal to the forbidden band width (E g ) of the semiconductor, the electrons in the valence band will absorb the incident photons, transition from the valence band to the conduction band, and form a photocurrent. When the gas is adsorbed on the material, it will significantly change the photocurrent magnitude. In addition, the light intensity can tune the response characteristics of the sensing material. Therefore, the response properties of photosensitive materials can be controlled by light intensity, thus simplifying the sensor array.
发明内容Contents of the invention
本发明的目的在于,提供一种基于光电响应的爆炸物蒸气识别检测方法,该方法中涉及的装置是由传感器、光源、电源、电流表、信号处理器和报警器组成,使用可周期性开关和改变光强变化的光源,照射具有快速光电响应的单个传感器上,测量爆炸物蒸气在传感器敏感材料表面吸附引起的光电流变化,通过主成分分析、线性判别分析、神经网络等模式识别方法进行数据处理,得到传感器阵列对不同种类爆炸物蒸气响应的标准数据库,通过将疑似爆炸物的数据处理结果与数据库比对,最终达到识别检测爆炸物蒸气的目的。该方法利用敏感材料的光电性能,通过光源强度变化及周期性开关,造成光电材料对爆炸物的响应大小差异,由单个传感器实现阵列式传感的作用,提高检测限的同时简化了传感器阵列结构,利用敏感材料灵敏的气敏响应和快速的光电响应,实现快速识别爆炸物的目的。The object of the present invention is to provide a method for identifying and detecting explosive vapor based on photoelectric response, the device involved in the method is composed of a sensor, a light source, a power supply, an ammeter, a signal processor and an alarm, using periodic switches and Change the light source with changing light intensity, irradiate a single sensor with fast photoelectric response, measure the photocurrent change caused by the adsorption of explosive vapor on the surface of the sensor sensitive material, and analyze the data through principal component analysis, linear discriminant analysis, neural network and other pattern recognition methods After processing, the standard database of the response of the sensor array to different types of explosive vapors is obtained. By comparing the data processing results of suspected explosives with the database, the purpose of identifying and detecting explosive vapors is finally achieved. This method utilizes the optoelectronic properties of sensitive materials, through light source intensity changes and periodic switching, resulting in differences in the response of optoelectronic materials to explosives, and a single sensor realizes the function of array sensing, which improves the detection limit and simplifies the structure of the sensor array , using the sensitive gas response and fast photoelectric response of sensitive materials to achieve the purpose of quickly identifying explosives.
本发明所述的一种基于光电响应的爆炸物蒸气识别检测方法,该方法中涉及的装置是由传感器、光源、电源、电流表、信号处理器和报警器组成,传感器(1)、光源(2)、电源(3)、电流表(4)与信号处理器(5)串接,信号处理器(5)与报警器(6)连接,使用可周期性开关和改变光强变化的光源(2),照射具有快速光电响应的单个传感器(1)上,传感器(1)上的敏感材料为硅-氧化锌p-n结、硅纳米线/石墨烯肖特基结、二氧化钛/石墨烯肖特基结、硅-氧化锌核壳纳米线阵列/石墨烯肖特基结、硅纳米线/金属肖特基结、硅纳米线阵列、二氧化钛修饰的硅纳米线阵列/石墨烯肖特基结或金纳米颗粒修饰的硅纳米线阵列/石墨烯肖特基结,具体操作按下列步骤进行:A method for identifying and detecting explosive vapor based on photoelectric response according to the present invention, the devices involved in the method are composed of sensors, light sources, power supplies, ammeters, signal processors and alarms, sensors (1), light sources (2 ), the power supply (3), the ammeter (4) are connected in series with the signal processor (5), the signal processor (5) is connected with the alarm (6), and the light source (2) that can be periodically switched and changed light intensity is used , irradiated on a single sensor (1) with fast photoelectric response, the sensitive material on the sensor (1) is silicon-zinc oxide p-n junction, silicon nanowire/graphene Schottky junction, titanium dioxide/graphene Schottky junction, Silicon-ZnO core-shell nanowire arrays/graphene Schottky junctions, silicon nanowires/metal Schottky junctions, silicon nanowire arrays, titanium dioxide-modified silicon nanowire arrays/graphene Schottky junctions, or gold nanoparticles Modified silicon nanowire array/graphene Schottky junction, the specific operation is carried out according to the following steps:
a、在传感器(1)的敏感材料上方装有光源(2),光源(2)为波长范围在200-800nm之间的发光二极管(LED)、Xe灯、Hg灯或激光光源;a. A light source (2) is installed above the sensitive material of the sensor (1), and the light source (2) is a light-emitting diode (LED), Xe lamp, Hg lamp or laser light source with a wavelength range between 200-800nm;
b、将传感器(1)置于空气中,在室温条件下,通过以1ms-2s为间隔周期性的开闭光源(2)并改变光强,其中光强数为3-10个,测得敏感材料在不同光强下的光电流,得到基线电流值;b. Put the sensor (1) in the air, at room temperature, by periodically turning on and off the light source (2) at an interval of 1ms-2s and changing the light intensity, where the number of light intensities is 3-10, measured The photocurrent of the sensitive material under different light intensities to obtain the baseline current value;
c、将传感器(1)分别置于室温下系列已知浓度的不同爆炸物蒸气中,通过以1ms-2s为间隔周期性的开闭光源(2)并改变光强,其中光强数为3-10个,测得敏感材料在不同光强下的光电流,对爆炸物蒸气进行标定,分别计算每种光强下传感器(1)对不同爆炸物蒸气的响应大小,响应大小定义为(I爆炸物-I空气)/I空气,其中I爆炸物为敏感材料在爆炸物蒸气中的光电流大小,I空气为敏感材料在空气中的光电流大小;c. Place the sensor (1) in a series of different explosive vapors with known concentrations at room temperature, and periodically turn on and off the light source (2) at an interval of 1ms-2s and change the light intensity, where the number of light intensities is 3 -10, measure the photocurrent of sensitive material under different light intensities, demarcate explosive vapor, calculate the response size of sensor (1) under every kind of light intensity respectively to different explosive vapor, response size is defined as (I Explosive -I air )/I air , wherein I explosive is the photocurrent size of sensitive material in explosive vapor, and I air is the photocurrent size of sensitive material in air;
d、通过主成分分析、神经网络模型或线性判别式分析的数据处理方法,得到传感器(1)阵列对不同种类爆炸物蒸气响应的标准数据库;d. Obtain a standard database of sensor (1) arrays responding to different types of explosive vapors through principal component analysis, neural network models or linear discriminant analysis data processing methods;
e、将传感器(1)置于待测气氛中,通过以1ms-2s为间隔周期性的开闭光源(2)并改变光强,其中光强数为3-10个,测得敏感材料在不同光强下的光电流,采用与步骤d中相同的数据处理方法处理响应信号,并与步骤d中的数据库比对,得出是否存在爆炸物蒸气、存在何种爆炸物蒸气。e. Place the sensor (1) in the atmosphere to be tested, and change the light intensity by periodically turning on and off the light source (2) at an interval of 1ms-2s, wherein the number of light intensities is 3-10, and the measured sensitivity of the sensitive material is For the photocurrent under different light intensities, use the same data processing method as in step d to process the response signal, and compare it with the database in step d to obtain whether there is explosive vapor and what kind of explosive vapor exists.
步骤a中所述的光源(2)为发光二极管。The light source (2) described in step a is a light emitting diode.
步骤c中的测量信号不止为光电流,还可为光电压、电阻。The measurement signal in step c is not only photocurrent, but also photovoltage and resistance.
发明所述一种基于光电响应的爆炸物蒸气识别检测方法,该方法中的敏感材料,不局限于硅-氧化锌p-n结、硅纳米线/石墨烯肖特基结、二氧化钛/石墨烯肖特基结、硅-氧化锌核壳纳米线阵列/石墨烯肖特基结、硅纳米线/金属肖特基结、硅纳米线阵列、二氧化钛修饰的硅纳米线阵列/石墨烯肖特基结或金纳米颗粒修饰的硅纳米线阵列/石墨烯肖特基结,凡对爆炸物蒸气具有快速光电响应特性的材料均落在本发明的保护范围;According to the invention, a method for identifying and detecting explosive vapor based on photoelectric response, the sensitive materials in this method are not limited to silicon-zinc oxide p-n junction, silicon nanowire/graphene Schottky junction, titanium dioxide/graphene Schottky junction base junction, Si-ZnO core-shell nanowire array/graphene Schottky junction, silicon nanowire/metal Schottky junction, silicon nanowire array, titanium dioxide modified silicon nanowire array/graphene Schottky junction or Silicon nanowire arrays/graphene Schottky junctions modified by gold nanoparticles, all materials with fast photoelectric response characteristics to explosive vapors fall within the protection scope of the present invention;
本发明所述一种基于光电响应的爆炸物蒸气识别检测方法中的爆炸物检测范围,可根据建立爆炸物数据库的范围调整;The detection range of explosives in the method for identifying and detecting explosives vapor based on photoelectric response according to the present invention can be adjusted according to the range of establishing an explosives database;
本发明所述一种基于光电响应的爆炸物蒸气识别检测方法中的光强个数及光强大小,可根据实际情况调整;The light intensity number and light intensity in the photoelectric response-based explosive vapor identification and detection method of the present invention can be adjusted according to actual conditions;
本发明所述的一种基于光电响应的爆炸物蒸气识别检测方法,该方法与现有技术相比具有下列优点:使用可周期性开关和改变光强变化的光源,照射具有快速光电响应的单个传感器上,测量爆炸物蒸气在传感器敏感材料表面吸附引起的光电流变化,通过主成分分析、线性判别分析、神经网络等模式识别方法进行数据处理,得到传感器阵列对不同爆炸物蒸气响应的标准数据库,通过将疑似爆炸物的数据处理结果与数据库比对,最终达到识别检测爆炸物蒸气的目的。该方法通过光源强度变化及周期性开关,造成光电材料对爆炸物的响应大小差异,由单个传感器实现阵列式传感的作用,提高检测限的同时简化了传感器阵列结构,从而实现识别爆炸物的目的。利用敏感材料灵敏的气敏响应和快速的光电响应,实现快速识别检测爆炸物的目的。该方法弥补了传统传感器阵列结构复杂、构建过程繁琐的缺点,为新型传感阵列的构建提供参考及思路。A method for identifying and detecting explosives vapor based on photoelectric response according to the present invention has the following advantages compared with the prior art: use a light source that can be switched periodically and change light intensity to irradiate a single object with fast photoelectric response On the sensor, measure the photocurrent change caused by the adsorption of explosive vapor on the surface of the sensitive material of the sensor, and process the data through principal component analysis, linear discriminant analysis, neural network and other pattern recognition methods to obtain a standard database of the response of the sensor array to different explosive vapors , by comparing the data processing results of suspected explosives with the database, the purpose of identifying and detecting explosive vapors is finally achieved. In this method, the variation of the light source intensity and the periodic switch cause the difference in the response of the photoelectric material to the explosive, and a single sensor realizes the function of array sensing, which improves the detection limit and simplifies the structure of the sensor array, thereby realizing the identification of explosives. Purpose. Utilize the sensitive gas sensitive response and fast photoelectric response of sensitive materials to achieve the purpose of rapid identification and detection of explosives. This method makes up for the shortcomings of the traditional sensor array's complex structure and cumbersome construction process, and provides reference and ideas for the construction of new sensor arrays.
附图说明Description of drawings
图1为本发明的检测结构示意图;Fig. 1 is the detection structure schematic diagram of the present invention;
图2为本发明以硅-氧化锌核壳纳米线阵列/石墨烯肖特基结为敏感材料,在8种光强光照射下,对室温空气的光电响应曲线;Fig. 2 is the photoelectric response curve of the present invention to air at room temperature under the irradiation of 8 kinds of light intensity with silicon-zinc oxide core-shell nanowire array/graphene Schottky junction as the sensitive material;
图3为本发明以硅-氧化锌核壳纳米线阵列/石墨烯肖特基结为敏感材料,在8种光强光照射下,对TNT室温饱和蒸气的光电响应曲线;Fig. 3 is the photoelectric response curve of TNT room temperature saturated vapor with silicon-zinc oxide core-shell nanowire array/graphene Schottky junction as sensitive material in the present invention under the irradiation of 8 kinds of light intensity;
图4为本发明以硅-氧化锌核壳纳米线阵列/石墨烯肖特基结为敏感材料,在8种光强光照射下,对硝酸铵室温饱和蒸气的光电响应曲线;Fig. 4 is the photoelectric response curve of the present invention to ammonium nitrate room temperature saturated vapor with silicon-zinc oxide core-shell nanowire array/graphene Schottky junction as the sensitive material under the irradiation of 8 kinds of light intensity;
图5为本发明以硅-氧化锌核壳纳米线阵列/石墨烯肖特基结为敏感材料,室温条件对三硝基甲苯(TNT)、二硝基甲苯(DNT)、对硝基甲苯(PNT)、苦味酸(PA)、黑索金(RDX)、硝酸铵、黑火药(BP)和硝铵(AN)8种爆炸物饱和蒸气光电响应大小随光强变化的曲线;Fig. 5 is that the present invention uses silicon-zinc oxide core-shell nanowire array/graphene Schottky junction as sensitive material, room temperature condition p-trinitrotoluene (TNT), dinitrotoluene (DNT), p-nitrotoluene ( PNT), picric acid (PA), RDX, ammonium nitrate, black powder (BP) and ammonium nitrate (AN) 8 kinds of explosives, the curves of photoelectric response of saturated vapor with light intensity;
图6为本发明以硅-氧化锌核壳纳米线阵列/石墨烯肖特基结为敏感材料,采用主成分分析的数据处理方法,三硝基甲苯(TNT)、二硝基甲苯(DNT)、对硝基甲苯(PNT)、苦味酸(PA)、黑索金(RDX)、尿素(Urea)、黑火药(BP)、硝酸铵(AN)8种爆炸物室温饱和蒸气的数据库。Fig. 6 is that the present invention uses silicon-zinc oxide core-shell nanowire array/graphene Schottky junction as sensitive material, adopts the data processing method of principal component analysis, trinitrotoluene (TNT), dinitrotoluene (DNT) , p-nitrotoluene (PNT), picric acid (PA), RDX, urea (Urea), black powder (BP), ammonium nitrate (AN) 8 kinds of room temperature saturated vapor database of explosives.
具体实施方式Detailed ways
以下结合附图和实施例对本发明进行详细说明:The present invention is described in detail below in conjunction with accompanying drawing and embodiment:
实施例1Example 1
本发明所述的一种基于光电响应的爆炸物蒸气识别检测方法,该方法中涉及的装置是由传感器、光源、电源、电流表、信号处理器和报警器组成,传感器1、光源2、电源3、电流表4与信号处理器5串接,信号处理器5与报警器6连接,使用可周期性开关和改变光强变化的光源2,照射具有快速光电响应的单个传感器1上,在传感器1上的敏感材料为硅-氧化锌p-n结、硅纳米线/石墨烯肖特基结、二氧化钛/石墨烯肖特基结、硅-氧化锌核壳纳米线阵列/石墨烯肖特基结、硅纳米线/金属肖特基结、硅纳米线阵列、二氧化钛修饰的硅纳米线阵列/石墨烯肖特基结或金纳米颗粒修饰的硅纳米线阵列/石墨烯肖特基结,具体操作按下列步骤进行:A method for identifying and detecting explosive vapor based on photoelectric response according to the present invention, the devices involved in the method are composed of sensors, light sources, power supplies, ammeters, signal processors and alarms, sensor 1, light source 2, power supply 3 , the ammeter 4 is connected in series with the signal processor 5, the signal processor 5 is connected with the alarm 6, and the light source 2 that can be periodically switched and changed in light intensity is used to irradiate a single sensor 1 with a fast photoelectric response, and on the sensor 1 The sensitive materials are silicon-zinc oxide p-n junction, silicon nanowire/graphene Schottky junction, titanium dioxide/graphene Schottky junction, silicon-zinc oxide core-shell nanowire array/graphene Schottky junction, silicon nanowire Wire/metal Schottky junction, silicon nanowire array, titanium dioxide modified silicon nanowire array/graphene Schottky junction or gold nanoparticle modified silicon nanowire array/graphene Schottky junction, the specific operation is as follows conduct:
a、在传感器1的硅-氧化锌核壳纳米线阵列/石墨烯肖特基结敏感材料上方装有发光二极管(LED)光源2,光源2为波长为468nm的光照射敏感材料;a. A light-emitting diode (LED) light source 2 is installed above the silicon-zinc oxide core-shell nanowire array/graphene Schottky junction sensitive material of the sensor 1, and the light source 2 is a light irradiation sensitive material with a wavelength of 468nm;
b、将传感器1置于空气中,在室温条件下,通过2s为间隔周期性的开闭光源2并改变光强,光强分别是1W/m2、2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m,测得硅-氧化锌核壳纳米线阵列/石墨烯肖特基结敏感材料在不同光强下的光电流,得到基线电流值(图2);b. Put the sensor 1 in the air, at room temperature, turn on and off the light source 2 periodically at intervals of 2s and change the light intensity, the light intensity is 1W/m 2 , 2W/m 2 , 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 , measured silicon-zinc oxide core-shell nanowire array/graphene Schottky junction sensitive material under different light intensities Photocurrent to obtain the baseline current value (Fig. 2);
c、将传感器1分别置于室温下系列已知浓度的三硝基甲苯(TNT)、二硝基甲苯(DNT)、对硝基甲苯(PNT)、苦味酸(PA)、黑索金(RDX)、尿素(Urea)、黑火药(BP)、硝酸铵(AN)的饱和蒸气中,通过2s为间隔周期性的开闭光源2并改变光强,光强分别是1W/m2、2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m,测得硅-氧化锌核壳纳米线阵列/石墨烯肖特基结敏感材料在不同光强下的光电流,对爆炸物蒸气进行标定,敏感材料对TNT室温饱和蒸气的光电响应曲线见(图3),敏感材料对室温硝酸铵饱和蒸气的光电响应曲线见(图4);分别计算每种光强下传感器1对不同爆炸物蒸气的响应大小,响应大小定义为(I爆炸物-I空气)/I空气,其中I爆炸物为敏感材料在爆炸物蒸气中的光电流大小,I空气为敏感材料在空气中的光电流大小;室温条件对三硝基甲苯(TNT)、二硝基甲苯(DNT)、对硝基甲苯(PNT)、苦味酸(PA)、黑索金(RDX)、尿素(Urea)、黑火药(BP)和硝酸铵(AN)8种爆炸物饱和蒸气光电响应大小随光强变化的曲线见(图5);c. Place sensor 1 at room temperature in a series of known concentrations of trinitrotoluene (TNT), dinitrotoluene (DNT), p-nitrotoluene (PNT), picric acid (PA), RDX ), urea (Urea), black powder (BP) and ammonium nitrate (AN) saturated vapor, the light source 2 is periodically turned on and off at intervals of 2s and the light intensity is changed, the light intensity is 1W/m 2 , 2W/ m 2 , 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m , measured silicon-zinc oxide core-shell nanowire array/graphene Schottky junction The photoelectric current of the sensitive material under different light intensities is used to calibrate the explosive vapor. The photoelectric response curve of the sensitive material to the TNT room temperature saturated vapor is shown in (Fig. 3), and the photoelectric response curve of the sensitive material to the room temperature ammonium nitrate saturated vapor is shown in (Fig. 4); Calculate the response size of sensor 1 to different explosive vapors under each light intensity respectively, and the response size is defined as (I explosive -I air )/I air , wherein I explosive is the amount of sensitive material in explosive vapor Photocurrent size, Iair is the photocurrent size of sensitive material in air ; room temperature condition p-trinitrotoluene (TNT), dinitrotoluene (DNT), p-nitrotoluene (PNT), picric acid (PA), The curves of photoelectric response of saturated vapor of 8 explosives including RDX, urea, black powder (BP) and ammonium nitrate (AN) as a function of light intensity are shown in Fig. 5;
d、通过主成分分析数据处理方法,得到传感器1阵列对三硝基甲苯(TNT)、二硝基甲苯(DNT)、对硝基甲苯(PNT)、苦味酸(PA)、黑索金(RDX)、尿素(Urea)、黑火药(BP)和硝酸铵(AN)爆炸物蒸气响应的标准数据库(图6);d. Through the principal component analysis data processing method, the sensor 1 array p-trinitrotoluene (TNT), dinitrotoluene (DNT), p-nitrotoluene (PNT), picric acid (PA), RDX ), urea (Urea), black powder (BP) and ammonium nitrate (AN) explosive vapor response standard database (Figure 6);
e、将传感器1置于三硝基甲苯(TNT)室温饱和蒸气中,通过2s为间隔周期性的开闭光源2并改变光强,光强分别是1W/m2、2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m,测得硅-氧化锌核壳纳米线阵列/石墨烯肖特基结敏感材料在不同光强下的光电流,采用主成分分析法处理数据,并比对步骤d中的数据库,发现疑似物与三硝基甲苯(TNT)吻合。e. Put the sensor 1 in the saturated vapor of trinitrotoluene (TNT) at room temperature, turn on and off the light source 2 periodically at intervals of 2s and change the light intensity, the light intensity is 1W/m 2 , 2W/m 2 , 3W respectively /m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m, measured silicon-zinc oxide core-shell nanowire array/graphene Schottky junction sensitive material The photocurrent under the light intensity is processed by principal component analysis, and compared with the database in step d, it is found that the suspected substance is consistent with trinitrotoluene (TNT).
实施例2Example 2
所述方法中涉及的装置与实施例1相同,具体操作按下列步骤进行:The device involved in the method is the same as in Example 1, and the specific operations are carried out in the following steps:
a、在传感器1的硅-氧化锌敏感材料上方装有光源2,光源2波长为468nm的光照射敏感材料;a. A light source 2 is installed above the silicon-zinc oxide sensitive material of the sensor 1, and the light source 2 with a wavelength of 468nm irradiates the sensitive material;
b、将传感器1置于空气中,在室温条件下,通过以1ms为间隔周期性的开闭光源2并改变光强,光强分别是1W/m2、2W/m2、3W/m2、4W/m2、5W/m2、6W/m2,测得硅-氧化锌敏感材料在不同光强下的光电流,得到基线电流值;b. Put the sensor 1 in the air, at room temperature, turn on and off the light source 2 periodically at an interval of 1 ms and change the light intensity, the light intensity is 1W/m 2 , 2W/m 2 , 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , measure the photocurrent of the silicon-zinc oxide sensitive material under different light intensities, and obtain the baseline current value;
c、将传感器1分别置于室温下三硝基甲苯(TNT)、二硝基甲苯(DNT)、苦味酸(PA)、黑索金(RDX)、季戊四醇四硝酸酯(PETN)和环四亚甲基四硝胺(HMX)的饱和蒸气中,通过以1ms为间隔周期性的开闭光源2并改变光强,光强分别是1W/m2、2W/m2、3W/m2、4W/m2、5W/m2、6W/m2,测得硅-氧化锌敏感材料在不同光强下的光电流,对爆炸物蒸气进行标定;结合步骤b,分别计算每种光强下传感器对不同的爆炸物蒸气的响应大小,响应大小定义为(I爆炸物-I空气)/I空气,其中I爆炸物为敏感材料在爆炸物蒸气中的光电流大小,I空气为敏感材料在空气中的光电流大小;c. Place the sensor 1 at room temperature respectively in trinitrotoluene (TNT), dinitrotoluene (DNT), picric acid (PA), RDX, pentaerythritol tetranitrate (PETN) and cyclotetraethylene In the saturated vapor of methyltetranitramine (HMX), by periodically turning on and off the light source 2 at an interval of 1ms and changing the light intensity, the light intensity is 1W/m 2 , 2W/m 2 , 3W/m 2 , 4W /m 2 , 5W/m 2 , 6W/m 2 , measure the photocurrent of the silicon-zinc oxide sensitive material under different light intensities, and calibrate the explosive vapor; combine with step b to calculate the sensor temperature under each light intensity To the response size of different explosive vapors, the response size is defined as (I explosive -I air )/I air , wherein I explosive is the photocurrent size of the sensitive material in the explosive vapor, and I air is the sensitive material in the air The magnitude of the photocurrent in
d、通过主成分分析的数据处理方法,得到传感器1阵列对三硝基甲苯(TNT)、二硝基甲苯(DNT)、苦味酸(PA)、黑索金(RDX)、季戊四醇四硝酸酯(PETN)和环四亚甲基四硝胺(HMX)爆炸物蒸气响应的标准数据库;D, by the data processing method of principal component analysis, obtain sensor 1 array p-trinitrotoluene (TNT), dinitrotoluene (DNT), picric acid (PA), RDX (RDX), pentaerythritol tetranitrate ( PETN) and cyclotetramethylenetetranitramine (HMX) explosives vapor response standard database;
e、将传感器1置于环四亚甲基四硝胺(HMX)室温饱和蒸气中,通过以1ms为间隔周期性的开闭光源2并改变光强,光强分别是1W/m2、2W/m2、3W/m2、4W/m2、5W/m2、6W/m2,测得硅-氧化锌敏感材料在不同光强下的光电流,采用主成分分析法处理数据,并比对步骤d中的数据库,发现疑似物与环四亚甲基四硝胺(HMX)吻合,证明存在环四亚甲基四硝胺(HMX)。e. Place the sensor 1 in the saturated vapor of cyclotetramethylene tetranitramine (HMX) at room temperature, and change the light intensity by periodically turning on and off the light source 2 at an interval of 1ms. The light intensity is 1W/m 2 and 2W respectively. /m 2 , 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , measured the photocurrent of the silicon-zinc oxide sensitive material under different light intensities, processed the data by principal component analysis, and Comparing the database in step d, it is found that the suspected substance is consistent with cyclotetramethylene tetranitramine (HMX), which proves the existence of cyclotetramethylene tetranitramine (HMX).
实施例3Example 3
所述方法中涉及的装置与实施例1相同,具体操作按下列步骤进行:The device involved in the method is the same as in Example 1, and the specific operations are carried out in the following steps:
a、在传感器1的二氧化钛修饰的硅纳米线阵列/石墨烯肖特基结敏感材料上方装有激光光源2,光源2波长为532nm的光照射敏感材料;a. A laser light source 2 is installed above the titanium dioxide-modified silicon nanowire array/graphene Schottky junction sensitive material of the sensor 1, and the light source 2 has a wavelength of 532nm to irradiate the sensitive material;
b、将传感器1置于空气中,在室温条件下,通过以100ms为间隔周期性的开闭光源2并改变光强,光强分别是1W/m2、2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2、9W/m2、10W/m2,测得二氧化钛修饰的硅纳米线阵列/石墨烯肖特基结敏感材料在不同光强下的光电流,得到基线电流值;b. Put the sensor 1 in the air, at room temperature, turn on and off the light source 2 periodically at an interval of 100ms and change the light intensity, the light intensity is 1W/m 2 , 2W/m 2 , 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 , 9W/m 2 , 10W/m 2 , measured on titanium dioxide-modified silicon nanowire arrays/graphene Schott The photocurrent of the base junction sensitive material under different light intensities is obtained to obtain the baseline current value;
c、将传感器1分别置于室温下黑火药(BP)、二硝基甲苯(DNT)、苦味酸(PA)、黑索金(RDX)和三过氧化三丙酮饱和蒸气中,通过以100ms为间隔周期性的开闭光源2并改变光强,光强分别是1W/m2、2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2、9W/m2、10W/m2,测得二氧化钛修饰的硅纳米线阵列/石墨烯肖特基结敏感材料在不同光强下的光电流,对爆炸物蒸气进行标定;结合步骤b,分别计算每种光强下传感器对不同的爆炸物蒸气的响应大小,响应大小定义为(I爆炸物-I空气)/I空气,其中I爆炸物为敏感材料在爆炸物蒸气中的光电流大小,I空气为敏感材料在空气中的光电流大小;c. Place the sensor 1 in the saturated vapor of black powder (BP), dinitrotoluene (DNT), picric acid (PA), RDX and triacetone triperoxide respectively at room temperature. Periodically turn on and off the light source 2 and change the light intensity, the light intensity is 1W/m 2 , 2W/m 2 , 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 , 9W/m 2 , 10W/m 2 , measure the photocurrent of titanium dioxide modified silicon nanowire array/graphene Schottky junction sensitive material under different light intensities, and calibrate the explosive vapor ; In conjunction with step b, calculate the response size of the sensor to different explosive vapors under each kind of light intensity respectively, and the response size is defined as (I explosive -I air )/I air , wherein I explosive is sensitive material in explosive vapor The photocurrent size in, I air is the photocurrent size of sensitive material in air;
d、通过线性判别分析的数据处理方法,得到传感器1阵列对黑火药(BP)、二硝基甲苯(DNT)、苦味酸(PA)、黑索金(RDX)和三过氧化三丙酮爆炸物蒸气响应的标准数据库;d. Through the data processing method of linear discriminant analysis, the sensor 1 array is obtained for black powder (BP), dinitrotoluene (DNT), picric acid (PA), RDX and triacetone triperoxide explosives A standard database of vapor responses;
e、将传感器1置于三过氧化三丙酮室温饱和蒸气中,通过以100ms为间隔周期性的开闭光源2并改变光强,光强分别是1W/m2、2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2、9W/m2、10W/m2,测得二氧化钛修饰的硅纳米线阵列/石墨烯肖特基结敏感材料在不同光强下的光电流,采用线性判别分析法处理数据,并比对步骤d中的数据库,发现疑似物与三过氧化三丙酮吻合,证明存在三过氧化三丙酮。e. Place the sensor 1 in the saturated vapor of triacetone triperoxide at room temperature, and change the light intensity by periodically turning on and off the light source 2 at an interval of 100ms. The light intensity is 1W/m 2 , 2W/m 2 , 3W/ m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 , 9W/m 2 , 10W/m 2 , measured on titanium dioxide-modified silicon nanowire arrays/graphene The photocurrent of the Schottky junction sensitive material under different light intensities is processed by linear discriminant analysis method, and compared with the database in step d, it is found that the suspected substance is consistent with triperoxytriacetone, which proves the existence of triacetone triperoxide .
实施例4Example 4
所述方法中涉及的装置与实施例1相同,具体操作按下列步骤进行:The device involved in the method is the same as in Example 1, and the specific operations are carried out in the following steps:
a、在传感器1的硅纳米线阵列/石墨烯肖特基结敏感材料上方装有LED灯光源2,光源2波长为367nm的光照射敏感材料;a. An LED light source 2 is installed above the silicon nanowire array/graphene Schottky junction sensitive material of the sensor 1, and the light source 2 with a wavelength of 367nm irradiates the sensitive material;
b、将传感器1置于空气中,在室温条件下,通过以500ms为间隔周期性的开闭光源2并改变光强,光强分别是2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2,测得硅纳米线阵列/石墨烯肖特基结敏感材料在不同光强下的光电流,得到基线电流值;b. Put the sensor 1 in the air, at room temperature, turn on and off the light source 2 periodically at an interval of 500ms and change the light intensity, the light intensity is 2W/m 2 , 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 , measure the photocurrent of the silicon nanowire array/graphene Schottky junction sensitive material under different light intensities, and obtain the baseline current value;
c、将传感器1分别置于室温下三硝基甲苯(TNT)、二硝基甲苯(DNT)、苦味酸(PA)、黑火药(BP)和三过氧化三丙酮饱和蒸气中,通过以500ms为间隔周期性的开闭光源2并改变光强,光强分别是2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2,测得硅纳米线阵列/石墨烯肖特基结敏感材料在不同光强下的光电流,对爆炸物蒸气进行标定;结合步骤b,分别计算每种光强下传感器对不同的爆炸物蒸气的响应大小,响应大小定义为(I爆炸物-I空气)/I空气,其中I爆炸物为敏感材料在爆炸物蒸气中的光电流大小,I空气为敏感材料在空气中的光电流大小;c. Place the sensor 1 in the saturated vapor of trinitrotoluene (TNT), dinitrotoluene (DNT), picric acid (PA), black powder (BP) and triacetone triperoxide respectively at room temperature, and pass through it for 500ms To periodically turn on and off the light source 2 and change the light intensity, the light intensity is 2W/m 2 , 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 m 2 , measure the photocurrent of the silicon nanowire array/graphene Schottky junction sensitive material under different light intensities, and calibrate the explosive vapor; combined with step b, calculate the sensor’s response to different explosions under each light intensity The response size of material vapor, response size is defined as (I explosive -I air )/I air , and wherein I explosive is the photocurrent size of sensitive material in explosive vapor, and I air is the photocurrent of sensitive material in air size;
d、通过神经网络模型的数据处理方法,得到传感器1阵列对三硝基甲苯(TNT)、二硝基甲苯(DNT)、苦味酸(PA)、黑火药(BP)和三过氧化三丙酮爆炸物蒸气响应的标准数据库;d. Through the data processing method of the neural network model, the explosion of trinitrotoluene (TNT), dinitrotoluene (DNT), picric acid (PA), black powder (BP) and triacetone triperoxide in sensor 1 array is obtained Standard database for vapor response of substances;
e、将传感器1置于黑火药(BP)室温饱和蒸气中,通过以500ms为间隔周期性的开闭光源2并改变光强,光强分别是2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2,测得硅纳米线阵列/石墨烯肖特基结敏感材料在不同光强下的光电流,采用神经网络模型处理数据,并比对步骤d中的数据库,发现疑似物与黑火药(BP)吻合,证明存在黑火药(BP)。e. Place the sensor 1 in the saturated vapor of black powder (BP) at room temperature, and change the light intensity by periodically turning on and off the light source 2 at an interval of 500ms. The light intensity is 2W/m 2 , 3W/m 2 , 4W/ m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 , measured the photocurrent of silicon nanowire array/graphene Schottky junction sensitive material under different light intensities, using neural network The model processes the data and compares it with the database in step d, and finds that the suspected substance matches the black powder (BP), which proves the existence of black powder (BP).
实施例5Example 5
所述方法中涉及的装置与实施例1相同,具体操作按下列步骤进行:The device involved in the method is the same as in Example 1, and the specific operations are carried out in the following steps:
a、在传感器1的金纳米粒子修饰的硅纳米线/石墨烯肖特基结敏感材料上方装有LED灯光源2,光源2波长为300nm的光照射敏感材料;a. An LED light source 2 is installed above the gold nanoparticle-modified silicon nanowire/graphene Schottky junction sensitive material of the sensor 1, and the light source 2 has a wavelength of 300nm to irradiate the sensitive material;
b、将传感器1置于空气中,在室温条件下,通过以1s为间隔周期性的开闭光源2并改变光强,光强分别是4W/m2、5W/m2、6W/m2,测得金纳米粒子修饰的硅纳米线/石墨烯肖特基结敏感材料在不同光强下的光电流,得到基线电流值;b. Put the sensor 1 in the air, at room temperature, turn on and off the light source 2 periodically at intervals of 1s and change the light intensity, the light intensity is 4W/m 2 , 5W/m 2 , 6W/m 2 , measured the photocurrent of the silicon nanowire/graphene Schottky junction sensitive material modified by gold nanoparticles under different light intensities, and obtained the baseline current value;
c、将传感器1分别置于室温下黑索金(RDX)、尿素(Urea)、硝酸铵(AN)和季戊四醇四硝酸酯(PETN)的饱和蒸气中,通过以1s为间隔周期性的开闭光源2并改变光强,光强分别是4W/m2、5W/m2、6W/m2,测得金纳米粒子修饰的硅纳米线/石墨烯肖特基结敏感材料在不同光强下的光电流,对爆炸物蒸气进行标定;结合步骤b,分别计算每种光强下传感器对不同的爆炸物蒸气的响应大小,响应大小定义为(I爆炸物-I空气)/I空气,其中I爆炸物为敏感材料在爆炸物蒸气中的光电流大小,I空气为敏感材料在空气中的光电流大小;c. Place the sensor 1 in the saturated vapor of RDX, urea, ammonium nitrate (AN) and pentaerythritol tetranitrate (PETN) at room temperature, and open and close periodically at intervals of 1s Light source 2 and change the light intensity, the light intensity is 4W/m 2 , 5W/m 2 , 6W/m 2 respectively. It is measured that the gold nanoparticle modified silicon nanowire/graphene Schottky junction sensitive material The photocurrent of the explosive vapor is calibrated; in conjunction with step b, calculate the response size of the sensor to different explosive vapors under each light intensity respectively, and the response size is defined as (I explosive -I air )/I air , where I explosive is the photocurrent size of the sensitive material in the explosive vapor, and I air is the photocurrent size of the sensitive material in the air;
d、通过神经网络模型的数据处理方法,得到传感器1阵列对黑索金(RDX)、尿素(Urea)、硝酸铵(AN)和季戊四醇四硝酸酯(PETN)爆炸物蒸气响应的标准数据库;d, through the data processing method of the neural network model, obtain the standard database of sensor 1 array to RDX, urea (Urea), ammonium nitrate (AN) and pentaerythritol tetranitrate (PETN) explosive vapor response;
e、将传感器1置于尿素室温饱和蒸气中,通过以1s为间隔周期性的开闭光源2并改变光强,光强分别是4W/m2、5W/m2、6W/m2,测得金纳米粒子修饰的硅纳米线/石墨烯肖特基结敏感材料在不同光强下的光电流,采用神经网络模型处理数据,并比对步骤d中的数据库,发现疑似物与尿素吻合,证明存在尿素。e. Put the sensor 1 in the saturated vapor of urea at room temperature, turn on and off the light source 2 periodically at intervals of 1s and change the light intensity. The light intensity is 4W/m 2 , 5W/m 2 , and 6W/m 2 respectively. Obtain the photocurrent of the silicon nanowire/graphene Schottky junction sensitive material modified by gold nanoparticles under different light intensities, use the neural network model to process the data, and compare the database in step d, and find that the suspected substance is consistent with urea, Prove the presence of urea.
实施例6Example 6
所述方法中涉及的装置与实施例1相同,具体操作按下列步骤进行:The device involved in the method is the same as in Example 1, and the specific operations are carried out in the following steps:
a、在传感器1的二氧化钛/石墨烯肖特基结敏感材料上方装有Hg灯光源2,在光路中添加光栅、滤波片、透镜、反射镜,光源2波长为500nm的光照射敏感材料;a. A Hg lamp light source 2 is installed above the titanium dioxide/graphene Schottky junction sensitive material of the sensor 1, and gratings, filters, lenses, and reflectors are added in the optical path, and the light source 2 has a wavelength of 500nm to irradiate the sensitive material;
b、将传感器1置于空气中,在室温条件下,通过以1.5s为间隔周期性的开闭光源2并改变光强,光强分别是2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2、9W/m2、10W/m2,测得二氧化钛/石墨烯肖特基结敏感材料在不同光强下的光电流,得到基线电流值;b. Put the sensor 1 in the air, at room temperature, turn on and off the light source 2 periodically at intervals of 1.5s and change the light intensity, the light intensity is 2W/m 2 , 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 , 9W/m 2 , 10W/m 2 Photocurrent, get the baseline current value;
c、将传感器1分别置于室温下三硝基甲苯(TNT)、黑索金(RDX)、尿素(Urea)、硝酸铵(AN)、季戊四醇四硝酸酯(PETN)和环四亚甲基四硝胺(HMX)、硫的饱和蒸气中,通过以1.5s为间隔周期性的开闭光源2并改变光强,光强分别是2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2、9W/m2、10W/m2,测得二氧化钛/石墨烯肖特基结敏感材料在不同光强下的光电流,对爆炸物蒸气进行标定;结合步骤b,分别计算每种光强下传感器对不同的爆炸物蒸气的响应大小,响应大小定义为(I爆炸物-I空气)/I空气,其中I爆炸物为敏感材料在爆炸物蒸气中的光电流大小,I空气为敏感材料在空气中的光电流大小;c. Place the sensor 1 at room temperature respectively in trinitrotoluene (TNT), RDX, urea (Urea), ammonium nitrate (AN), pentaerythritol tetranitrate (PETN) and cyclotetramethylene tetranitrate In the saturated vapor of nitramine (HMX) and sulfur, by periodically turning on and off the light source 2 at an interval of 1.5s and changing the light intensity, the light intensity is 2W/m 2 , 3W/m 2 , 4W/m 2 , 5W /m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 , 9W/m 2 , 10W/m 2 , measured the photocurrent of titanium dioxide/graphene Schottky junction sensitive material under different light intensities, The explosive vapor is calibrated; in conjunction with step b, calculate the response size of the sensor to different explosive vapors under each light intensity respectively, and the response size is defined as (I explosive -I air )/I air , where the I explosive is The photocurrent size of sensitive material in explosive vapor, Iair is the photocurrent size of sensitive material in air ;
d、通过主成分分析的数据处理方法,得到传感器阵列对三硝基甲苯(TNT)、黑索金(RDX)、尿素(Urea)、硝酸铵(AN)、季戊四醇四硝酸酯(PETN)和环四亚甲基四硝胺(HMX)、硫爆炸物蒸气响应的标准数据库;d. Through the data processing method of principal component analysis, the sensor array is obtained for trinitrotoluene (TNT), RDX, urea (Urea), ammonium nitrate (AN), pentaerythritol tetranitrate (PETN) and ring Standard database for vapor response of tetramethylenetetranitramine (HMX), sulfur explosives;
e、将传感器1置于硫室温饱和蒸气中,通过以1.5s为间隔周期性的开闭光源2并改变光强,光强分别是2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2、9W/m2、10W/m2,测得二氧化钛/石墨烯肖特基结敏感材料在不同光强下的光电流,采用主成分分析法处理数据,并比对步骤d中的数据库,发现疑似物与硫吻合,证明存在硫。e. Place the sensor 1 in the saturated vapor of sulfur at room temperature, and change the light intensity by periodically turning on and off the light source 2 at an interval of 1.5s. The light intensity is 2W/m 2 , 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 , 9W/m 2 , 10W/m 2 , measured the photocurrent of titanium dioxide/graphene Schottky junction sensitive material under different light intensities , using the principal component analysis method to process the data, and comparing the database in step d, it is found that the suspected substance is consistent with sulfur, which proves the presence of sulfur.
实施例7Example 7
所述方法中涉及的装置与实施例1相同,具体操作按下列步骤进行:The device involved in the method is the same as in Example 1, and the specific operations are carried out in the following steps:
a、在传感器1的硅纳米线阵列敏感材料上方装有激光光源2,光源2波长为350nm的光照射敏感材料;a. A laser light source 2 is installed above the silicon nanowire array sensitive material of the sensor 1, and the light source 2 has a wavelength of 350nm to irradiate the sensitive material;
b、将传感器1置于空气中,在室温条件下,通过以2s为间隔周期性的开闭光源2并改变光强,光强分别是3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2,测得硅纳米线阵列敏感材料在不同光强下的光电流,得到基线电流值;b. Put the sensor 1 in the air, at room temperature, turn on and off the light source 2 periodically at intervals of 2s and change the light intensity, the light intensity is 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 , measure the photocurrent of the silicon nanowire array sensitive material under different light intensities, and obtain the baseline current value;
c、将传感器1分别置于室温下尿素(Urea)、硝酸铵(AN)和季戊四醇四硝酸酯(PETN)的饱和蒸气中,通过以2s为间隔周期性的开闭光源2并改变光强,光强分别是3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2,测得硅纳米线阵列敏感材料在不同光强下的光电流,对爆炸物蒸气进行标定;结合步骤b,分别计算每种光强下传感器对不同的爆炸物蒸气的响应大小,响应大小定义为(I爆炸物-I空气)/I空气,其中I爆炸物为敏感材料在爆炸物蒸气中的光电流大小,I空气为敏感材料在空气中的光电流大小;c. Place the sensor 1 respectively in the saturated vapor of urea (Urea), ammonium nitrate (AN) and pentaerythritol tetranitrate (PETN) at room temperature, by periodically turning on and off the light source 2 at intervals of 2s and changing the light intensity, The light intensities are 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , and 8W/m 2 , and the photocurrents of silicon nanowire array sensitive materials under different light intensities were measured. , the explosive vapor is calibrated; combined with step b, calculate the response size of the sensor to different explosive vapors under each light intensity, and the response size is defined as (I explosive -I air )/I air , where I explosive is the photocurrent size of the sensitive material in the explosive vapor, and I air is the photocurrent size of the sensitive material in the air;
d、通过主成分分析的数据处理方法,得到传感器1阵列对尿素(Urea)、硝酸铵(AN)和季戊四醇四硝酸酯(PETN)爆炸物蒸气响应的标准数据库;d, through the data processing method of principal component analysis, obtain the standard database of sensor 1 array to urea (Urea), ammonium nitrate (AN) and pentaerythritol tetranitrate (PETN) explosive vapor response;
e、将传感器1置于季戊四醇四硝酸酯(PETN)室温饱和蒸气中,通过以2s为间隔周期性的开闭光源2并改变光强,光强分别是3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2,测得硅纳米线阵列敏感材料在不同光强下的光电流,采用主成分分析法处理数据,并比对步骤d中的数据库,发现疑似物与季戊四醇四硝酸酯(PETN)吻合,证明存在季戊四醇四硝酸酯(PETN)。e. Place the sensor 1 in the saturated vapor of pentaerythritol tetranitrate (PETN) at room temperature, and change the light intensity by periodically switching on and off the light source 2 at an interval of 2s. The light intensity is 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 , measure the photocurrent of the silicon nanowire array sensitive material under different light intensities, process the data by principal component analysis, and compare step d In the database, it was found that the suspected substance matched with pentaerythritol tetranitrate (PETN), which proved the existence of pentaerythritol tetranitrate (PETN).
实施例8Example 8
所述方法中涉及的装置与实施例1相同,具体操作按下列步骤进行:The device involved in the method is the same as in Example 1, and the specific operations are carried out in the following steps:
a、在传感器1的硅纳米线阵列敏感材料上方装有Xe灯光源2,在光路中添加光栅、滤波片、透镜、反射镜,光源2波长为500nm的光照射敏感材料;a. An Xe light source 2 is installed above the sensitive material of the silicon nanowire array of the sensor 1, gratings, filters, lenses, and reflectors are added in the optical path, and the light source 2 has a wavelength of 500nm to irradiate the sensitive material;
b、将传感器1置于空气中,在室温条件下,通过以2s为间隔周期性的开闭光源2并改变光强,光强分别是3W/m2、4W/m2、5W/m2、6W/m2、7W/m2,测得硅纳米线阵列敏感材料在不同光强下的光电流,得到基线电流值;b. Put the sensor 1 in the air, at room temperature, turn on and off the light source 2 periodically at intervals of 2s and change the light intensity, the light intensity is 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , measure the photocurrent of the silicon nanowire array sensitive material under different light intensities, and obtain the baseline current value;
c、将传感器1分别置于室温下黑索金(RDX)、硝酸铵(AN)、季戊四醇四硝酸酯(PETN)环四亚甲基四硝胺(HMX)和尿素的饱和蒸气中,通过以2s为间隔周期性的开闭光源2并改变光强,光强分别是3W/m2、4W/m2、5W/m2、6W/m2、7W/m2,测得硅纳米线阵列敏感材料在不同光强下的光电流,对爆炸物蒸气进行标定;结合步骤b,分别计算每种光强下传感器对不同的爆炸物蒸气的响应大小,响应大小定义为(I爆炸物-I空气)/I空气,其中I爆炸物为敏感材料在爆炸物蒸气中的光电流大小,I空气为敏感材料在空气中的光电流大小;c. Place the sensor 1 in the saturated vapor of RDX, ammonium nitrate (AN), pentaerythritol tetranitrate (PETN), cyclotetramethylenetetranitramine (HMX) and urea respectively at room temperature. 2s is to periodically turn on and off the light source 2 and change the light intensity. The light intensity is 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , and 7W/m 2 . The measured silicon nanowire array The photocurrent of the sensitive material under different light intensities is used to calibrate the explosive vapor; in conjunction with step b, calculate the response size of the sensor to different explosive vapors under each light intensity respectively, and the response size is defined as (I explosive -I Air )/I air , wherein I explosive is the photocurrent size of sensitive material in explosive vapor, and I air is the photocurrent size of sensitive material in air;
d、通过线性判别分析的数据处理方法,得到传感器1阵列对硝铵、RDX、HMX、PETN、尿素爆炸物蒸气响应的标准数据库;d. Through the data processing method of linear discriminant analysis, the standard database of sensor 1 array's response to ammonium nitrate, RDX, HMX, PETN, urea explosive vapor is obtained;
e、将传感器1置于黑索金(RDX)室温饱和蒸气中,通过以2s为间隔周期性的开闭光源2并改变光强,光强分别是3W/m2、4W/m2、5W/m2、6W/m2、7W/m2,测得硅纳米线阵列敏感材料在不同光强下的光电流,采用线性判别分析法处理数据,并比对步骤d中的数据库,发现疑似物与黑索金(RDX)吻合,证明存在黑索金(RDX)。e. Place the sensor 1 in RDX saturated vapor at room temperature, and change the light intensity by periodically turning on and off the light source 2 at an interval of 2s. The light intensity is 3W/m 2 , 4W/m 2 , and 5W respectively. /m 2 , 6W/m 2 , 7W/m 2 , measured the photocurrent of silicon nanowire array sensitive material under different light intensities, processed the data with linear discriminant analysis method, and compared the database in step d, found that suspected The object is consistent with RDX, which proves the existence of RDX.
实施例9Example 9
所述方法中涉及的装置与实施例1相同,具体操作按下列步骤进行:The device involved in the method is the same as in Example 1, and the specific operations are carried out in the following steps:
a、在传感器1的硅纳米线/金肖特基结敏感材料上方装有LED灯光源2,在光路中添加光栅、滤波片、透镜、反射镜,光源2波长为200nm的光照射敏感材料;a. An LED light source 2 is installed above the silicon nanowire/gold Schottky junction sensitive material of the sensor 1, and gratings, filters, lenses, and reflectors are added in the optical path, and the light source 2 has a wavelength of 200nm to irradiate the sensitive material;
b、将传感器1置于空气中,在室温条件下,通过以50ms为间隔周期性的开闭光源2并改变光强,光强分别是1W/m2、2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2、9W/m2、10W/m2,测得硅纳米线/金肖特基结敏感材料在不同光强下的光电流,得到基线电流值;b. Put the sensor 1 in the air, at room temperature, turn on and off the light source 2 periodically at an interval of 50ms and change the light intensity, the light intensity is 1W/m 2 , 2W/m 2 , 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 , 9W/m 2 , 10W/m 2 Photocurrent under different light intensities to obtain the baseline current value;
c、将传感器1分别置于室温下三硝基甲苯(TNT)、二硝基甲苯(DNT)、苦味酸(PA)、黑索金(RDX)、尿素(Urea)、黑火药(BP)、硝酸铵(AN)、季戊四醇四硝酸酯(PETN)、环四亚甲基四硝胺(HMX)和三过氧化三丙酮的饱和蒸气中,通过以50ms为间隔周期性的开闭光源2并改变光强,光强分别是1W/m2、2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2、9W/m2、10W/m2,测得硅纳米线/金肖特基结敏感材料在不同光强下的光电流,对爆炸物蒸气进行标定;结合步骤b,分别计算每种光强下传感器对不同的爆炸物蒸气的响应大小,响应大小定义为(I爆炸物-I空气)/I空气,其中I爆炸物为敏感材料在爆炸物蒸气中的光电流大小,I空气为敏感材料在空气中的光电流大小;c. Place sensor 1 at room temperature respectively in trinitrotoluene (TNT), dinitrotoluene (DNT), picric acid (PA), RDX, urea (Urea), black powder (BP), In the saturated vapor of ammonium nitrate (AN), pentaerythritol tetranitrate (PETN), cyclotetramethylenetetranitramine (HMX) and triacetone triperoxide, by periodically turning on and off the light source 2 at intervals of 50 ms and changing Light intensity, the light intensity is 1W/m 2 , 2W/m 2 , 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 , 9W/m 2 2. 10W/m 2 , measure the photocurrent of the silicon nanowire/gold Schottky junction sensitive material under different light intensities, and calibrate the explosive vapor; combined with step b, calculate the sensor’s response to different light intensities. The response size of the explosive vapor, the response size is defined as (I explosive -I air )/I air , wherein I explosive is the photocurrent size of sensitive material in explosive vapor, and I air is the photocurrent of sensitive material in air Photocurrent size;
d、通过主成分分析的数据处理方法,得到传感器1阵列对三硝基甲苯(TNT)、二硝基甲苯(DNT)、苦味酸(PA)、黑索金(RDX)、尿素(Urea)、黑火药(BP)、硝酸铵(AN)、季戊四醇四硝酸酯(PETN)、环四亚甲基四硝胺(HMX)和三过氧化三丙酮爆炸物蒸气响应的标准数据库;d. Through the data processing method of principal component analysis, the sensor 1 array p-trinitrotoluene (TNT), dinitrotoluene (DNT), picric acid (PA), RDX, urea (Urea), A standard database of explosive vapor responses for black powder (BP), ammonium nitrate (AN), pentaerythritol tetranitrate (PETN), cyclotetramethylene tetranitramine (HMX) and triacetone triperoxide;
e、将传感器1置于氯化钠室温饱和蒸气中,通过以50ms为间隔周期性的开闭光源2并改变光强,光强分别是1W/m2、2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2、9W/m2、10W/m2,测得硅纳米线/金肖特基结敏感材料在不同光强下的光电流,采用主成分分析法处理数据,并比对步骤d中的数据库,发现疑似物与标准库中的爆炸物不吻合,证明不存在爆炸物。e. Place the sensor 1 in the saturated vapor of sodium chloride at room temperature, and change the light intensity by periodically turning on and off the light source 2 at an interval of 50ms. The light intensity is 1W/m 2 , 2W/m 2 , and 3W/m 2 . , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 , 9W/m 2 , 10W/m 2 The photocurrent under different light intensities is processed by the principal component analysis method, and compared with the database in step d, it is found that the suspected substance does not match the explosive substance in the standard library, which proves that there is no explosive substance.
实施例10Example 10
所述方法中涉及的装置与实施例1相同,具体操作按下列步骤进行:The device involved in the method is the same as in Example 1, and the specific operations are carried out in the following steps:
a、在传感器1的硅纳米线/银肖特基结敏感材料上方装有LED灯光源2,在光路中添加光栅、滤波片、透镜、反射镜,光源2波长为800nm的光照射敏感材料;a. An LED light source 2 is installed above the silicon nanowire/silver Schottky junction sensitive material of the sensor 1, and gratings, filters, lenses, and reflectors are added in the optical path, and the light source 2 has a wavelength of 800nm to irradiate the sensitive material;
b、将传感器1置于空气中,在室温条件下,通过以800ms为间隔周期性的开闭光源2并改变光强,光强分别是1W/m2、2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2、9W/m2、10W/m2,测得硅纳米线/银肖特基结敏感材料在不同光强下的光电流,得到基线电流值;b. Put the sensor 1 in the air, at room temperature, turn on and off the light source 2 periodically at an interval of 800ms and change the light intensity, the light intensity is 1W/m 2 , 2W/m 2 , 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 , 9W/m 2 , 10W/m 2 Photocurrent under different light intensities to obtain the baseline current value;
c、将传感器1分别置于室温下三硝基甲苯(TNT)、二硝基甲苯(DNT)、苦味酸(PA)、黑索金(RDX)、尿素(Urea)、黑火药(BP)、硝酸铵(AN)、季戊四醇四硝酸酯(PETN)、环四亚甲基四硝胺(HMX)和三过氧化三丙酮的饱和蒸气中,通过以800ms为间隔周期性的开闭光源并改变光强,光强分别是1W/m2、2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2、9W/m2、10W/m2,测得硅纳米线/银肖特基结敏感材料在不同光强下的光电流,对爆炸物蒸气进行标定;结合步骤b,分别计算每种光强下传感器对不同的爆炸物蒸气的响应大小,响应大小定义为(I爆炸物-I空气)/I空气,其中I爆炸物为敏感材料在爆炸物蒸气中的光电流大小,I空气为敏感材料在空气中的光电流大小;c. Place sensor 1 at room temperature respectively in trinitrotoluene (TNT), dinitrotoluene (DNT), picric acid (PA), RDX, urea (Urea), black powder (BP), In the saturated vapor of ammonium nitrate (AN), pentaerythritol tetranitrate (PETN), cyclotetramethylenetetranitramine (HMX) and triacetone triperoxide, by periodically turning on and off the light source at an interval of 800ms and changing the light Intensity, the light intensity is 1W/m 2 , 2W/m 2 , 3W/m 2 , 4W/m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 , 9W/m 2 , 10W/m 2 , measure the photocurrent of the silicon nanowire/silver Schottky junction sensitive material under different light intensities, and calibrate the explosive vapor; combined with step b, calculate the sensor’s response to different light intensities The response size of explosive vapor, response size is defined as (I explosive -I air )/I air , and wherein I explosive is the photocurrent size of sensitive material in explosive vapor, and I air is the light of sensitive material in air Current size;
d、通过神经网络模型的数据处理方法,得到传感器1阵列对三硝基甲苯(TNT)、二硝基甲苯(DNT)、苦味酸(PA)、黑索金(RDX)、尿素(Urea)、黑火药(BP)、硝酸铵(AN)、季戊四醇四硝酸酯(PETN)、环四亚甲基四硝胺(HMX)和三过氧化三丙酮爆炸物蒸气响应的标准数据库;d. Through the data processing method of the neural network model, the sensor 1 array p-trinitrotoluene (TNT), dinitrotoluene (DNT), picric acid (PA), RDX, urea (Urea), A standard database of explosive vapor responses for black powder (BP), ammonium nitrate (AN), pentaerythritol tetranitrate (PETN), cyclotetramethylene tetranitramine (HMX) and triacetone triperoxide;
e、将传感器1置于味精室温饱和蒸气中,通过以800ms为间隔周期性的开闭光源2并改变光强,光强分别是1W/m2、2W/m2、3W/m2、4W/m2、5W/m2、6W/m2、7W/m2、8W/m2、9W/m2、10W/m2,测得硅纳米线/银肖特基结敏感材料在不同光强下的光电流,采用神经网络模型处理数据,并比对步骤d中的数据库,发现疑似物与标准库中的爆炸物不吻合,证明不存在爆炸物。e. Put the sensor 1 in the saturated vapor of monosodium glutamate at room temperature, turn on and off the light source 2 periodically at an interval of 800ms and change the light intensity, the light intensity is 1W/m 2 , 2W/m 2 , 3W/m 2 , 4W /m 2 , 5W/m 2 , 6W/m 2 , 7W/m 2 , 8W/m 2 , 9W/m 2 , 10W/m 2 Under the strong photocurrent, the neural network model is used to process the data, and compared with the database in step d, it is found that the suspected object does not match the explosive in the standard library, which proves that there is no explosive.
本发明所述实施例,对于本技术领域的普通技术人员,在不脱离本发明原理的情况下可以对本发明进行若干修改,如包括使用光栅、滤波片、透镜(组)等光学元件对光线的光成分和光路进行处理,增加爆炸物种类获得标准数据库以检测本实施例中未包含的爆炸物,增加光强个数,改变光强强度,更换光电敏感材料,使用其它光源,采集电阻、电压变化信号。In the embodiments of the present invention, for those of ordinary skill in the art, some modifications can be made to the present invention without departing from the principle of the present invention, such as including the use of optical elements such as gratings, filters, lenses (groups) to detect light Process the optical components and optical paths, increase the types of explosives to obtain a standard database to detect explosives not included in this embodiment, increase the number of light intensities, change the intensity of light intensity, replace photoelectric sensitive materials, use other light sources, and collect resistance and voltage change signal.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610344253.XA CN106018510B (en) | 2016-05-23 | 2016-05-23 | A kind of explosive vapors recognition detection method based on photoelectric respone |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610344253.XA CN106018510B (en) | 2016-05-23 | 2016-05-23 | A kind of explosive vapors recognition detection method based on photoelectric respone |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106018510A CN106018510A (en) | 2016-10-12 |
| CN106018510B true CN106018510B (en) | 2018-10-12 |
Family
ID=57096497
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610344253.XA Active CN106018510B (en) | 2016-05-23 | 2016-05-23 | A kind of explosive vapors recognition detection method based on photoelectric respone |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106018510B (en) |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111750987A (en) * | 2019-03-27 | 2020-10-09 | 中国科学院物理研究所 | High sensitivity light intensity fluctuation detector based on Schottky junction |
| US20210010935A1 (en) * | 2019-07-08 | 2021-01-14 | Lightsense Technology, Inc. | Detection systems and method for multi-chemical substance detection using ultraviolet fluorescence, specular reflectance, and artificial intelligence |
| CN111044574B (en) * | 2019-12-02 | 2022-03-04 | 东南大学 | Ultra-sensitive plastic bomb detection sensor |
| CN111721709B (en) * | 2020-01-22 | 2021-08-17 | 中国科学院上海微系统与信息技术研究所 | A method and device for improving the signal-to-noise ratio of a silicon nanowire sensor using light modulation |
| CN111721708B (en) * | 2020-01-22 | 2021-06-22 | 中国科学院上海微系统与信息技术研究所 | A device and method for adjusting the sensitivity of a silicon nanowire sensor using light |
| CN111721710B (en) * | 2020-01-22 | 2021-08-27 | 中国科学院上海微系统与信息技术研究所 | Method for calibrating silicon nanowire sensor by light |
| CN111257316A (en) * | 2020-02-11 | 2020-06-09 | 军事科学院系统工程研究院卫勤保障技术研究所 | A portable nanometer detector |
| CN111830087A (en) * | 2020-07-21 | 2020-10-27 | 艾感科技(广东)有限公司 | Method and device for preparing gas sensor array by regulating light and temperature |
| US12292376B2 (en) | 2021-05-28 | 2025-05-06 | Lightsense Technology, Inc. | Miniature multispectral detection system having multiple spectrometers for enhanced photodetection spectroscopy for detection of pathogens, biomarkers, or any compound |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5600130A (en) * | 1994-06-17 | 1997-02-04 | The Regents Of The University Of Colorado | Two-dimensional optoelectronic array module |
| CN101562208A (en) * | 2009-06-02 | 2009-10-21 | 吉林大学 | Back incident-type TiO* UV detector and preparation method thereof |
| CN103477447A (en) * | 2011-04-01 | 2013-12-25 | 沙特基础创新塑料Ip私人有限责任公司 | Optoelectronic devices and coatings therefore, and methods for making and using the same |
| CN105390909A (en) * | 2015-11-04 | 2016-03-09 | 上海无线电设备研究所 | Terahertz source based on intrinsic semiconductor layer with micro-nano structure and preparation method |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070040181A1 (en) * | 2002-12-27 | 2007-02-22 | General Electric Company | Crystalline composition, wafer, and semi-conductor structure |
-
2016
- 2016-05-23 CN CN201610344253.XA patent/CN106018510B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5600130A (en) * | 1994-06-17 | 1997-02-04 | The Regents Of The University Of Colorado | Two-dimensional optoelectronic array module |
| CN101562208A (en) * | 2009-06-02 | 2009-10-21 | 吉林大学 | Back incident-type TiO* UV detector and preparation method thereof |
| CN103477447A (en) * | 2011-04-01 | 2013-12-25 | 沙特基础创新塑料Ip私人有限责任公司 | Optoelectronic devices and coatings therefore, and methods for making and using the same |
| CN105390909A (en) * | 2015-11-04 | 2016-03-09 | 上海无线电设备研究所 | Terahertz source based on intrinsic semiconductor layer with micro-nano structure and preparation method |
Non-Patent Citations (2)
| Title |
|---|
| A High-Performance Nitro-Explosives Schottky Sensor Boosted by Interface Modulation;Zheng Yang, et al.;《Adcanved Functional Materials》;20150515;第25卷;4039-4048 * |
| Transition-Metal-Doped p-Type ZnO Nanoparticle-Based Sensory Array for Instant Discrimination of Explosive Vapors;Jiang Qu, et al.;《small》;20160113;第12卷(第10期);1369-1377 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106018510A (en) | 2016-10-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106018510B (en) | A kind of explosive vapors recognition detection method based on photoelectric respone | |
| To et al. | Recent developments in the field of explosive trace detection | |
| Yuan et al. | Fluorescent carbon dots for glyphosate determination based on fluorescence resonance energy transfer and logic gate operation | |
| Julian et al. | Intelligent mobile electronic nose system comprising a hybrid polymer-functionalized quartz crystal microbalance sensor array | |
| Panes-Ruiz et al. | Toward highly sensitive and energy efficient ammonia gas detection with modified single-walled carbon nanotubes at room temperature | |
| Yang et al. | Emerging and future possible strategies for enhancing 1D inorganic nanomaterials‐based electrical sensors towards explosives vapors detection | |
| Hakonen et al. | Hand-held femtogram detection of hazardous picric acid with hydrophobic Ag nanopillar SERS substrates and mechanism of elasto-capillarity | |
| Tu et al. | Amine-capped ZnS− Mn2+ nanocrystals for fluorescence detection of trace TNT explosive | |
| Attallah et al. | An electronic nose for identifying multiple combustible/harmful gases and their concentration levels via artificial intelligence | |
| Ren et al. | Fluorescent detection of chlorpyrifos using Mn (II)-doped ZnS quantum dots coated with a molecularly imprinted polymer | |
| Lefferts et al. | Vapour sensing of explosive materials | |
| Schödel et al. | Rate of carotenoid triplet formation in solubilized light-harvesting complex II (LHCII) from spinach | |
| Nallon et al. | Discrimination enhancement with transient feature analysis of a graphene chemical sensor | |
| Yang et al. | Dual-emission carbon dots for ratiometric fluorescence sensing of thiabendazole in fruits | |
| CN112341582B (en) | Covalent organic framework fluorescent test paper for detecting palladium ions in water and preparation method thereof | |
| Illahi et al. | Electronic Nose Technology and Application: A Review | |
| Han et al. | Robust fluorescent self-assembly system for sensing of phosgene, thionyl chloride, and oxalyl chloride | |
| Aznar-Gadea et al. | Luminescent CdSe quantum dot arrays for rapid sensing of explosive taggants | |
| Chowdhury et al. | TSMC-Net: Deep-Learning Multigas Classification Using THz Absorption Spectra | |
| Guo et al. | Dual improvement in sensitivity and humidity tolerance of a NO2 sensor based on 3-aminopropyltriethoxysilane self-assembled monolayer-functionalized SnSe2 for explosive photolysis gas detection | |
| Dhanekar | Smart and intelligent E‐nose for sensitive and selective chemical sensing applications | |
| Hussain et al. | A deep learning approach for classification and measurement of hazardous gases using multi-sensor data fusion | |
| CN103389326B (en) | Cadmium sulfide/zinc oxide nuclear shell nanowire nitrogen dioxide sensing material and preparation method thereof | |
| Kroutil et al. | A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification | |
| Chen et al. | Non-Destructive Pest Detection: Innovations and Challenges in Sensing Airborne Semiochemicals |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |