[go: up one dir, main page]

CN105976318A - Image super-resolution reconstruction method - Google Patents

Image super-resolution reconstruction method Download PDF

Info

Publication number
CN105976318A
CN105976318A CN201610280837.5A CN201610280837A CN105976318A CN 105976318 A CN105976318 A CN 105976318A CN 201610280837 A CN201610280837 A CN 201610280837A CN 105976318 A CN105976318 A CN 105976318A
Authority
CN
China
Prior art keywords
image
convolutional
layer
resolution
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610280837.5A
Other languages
Chinese (zh)
Inventor
曹雪
王宇桐
禹晶
肖创柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201610280837.5A priority Critical patent/CN105976318A/en
Publication of CN105976318A publication Critical patent/CN105976318A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4053Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种图像超分辨率重建方法,图像处理技术领域;该方法包括以下步骤:提取训练图像库中的低分辨率图像Y;将获得的低分辨率图像进行双立方插值放大,放大到所需尺寸;设计一个含有动态卷积层的卷积神经网络;低分辨率图像Y输入预训练好的卷积神经网络B,得到滤波器SH1和SV1;将低分辨率图像Y和滤波器SV1,SH1输入预训练好的含有动态卷积层的卷积神经网络;重建高分辨率图像X;实验结果表明,本发明提出的算法,不仅在视觉效果上而且在客观评价标准上都取得了比其他三种优秀的算法要显著的效果,展现了优秀的超分辨率重建性能。

The invention discloses an image super-resolution reconstruction method, belonging to the technical field of image processing; the method comprises the following steps: extracting a low-resolution image Y in a training image database; performing bicubic interpolation and enlarging the obtained low-resolution image, and enlarging to the required size; design a convolutional neural network with a dynamic convolutional layer; input the low-resolution image Y into the pre-trained convolutional neural network B to obtain filters SH1 and SV1; combine the low-resolution image Y with the filter SV1, SH1 input pre-trained convolutional neural network containing dynamic convolutional layers; reconstruction of high-resolution image X; experimental results show that the algorithm proposed by the present invention not only achieves visual effects but also objective evaluation criteria The effect is more significant than the other three excellent algorithms, showing excellent super-resolution reconstruction performance.

Description

一种图像超分辨率重建方法A method for image super-resolution reconstruction

技术领域technical field

本发明涉及图像处理技术领域,具体涉及一种图像超分辨率重建方法。The invention relates to the technical field of image processing, in particular to an image super-resolution reconstruction method.

背景技术Background technique

图像超分辨重建是指通过软件算法的方式将已有的低分辨率图像转换成高分辨率图像。它在图像打印,视频监控,医学图像处理,卫星成像,刑侦分析等领域有广泛的应用并涌现了大量优秀的算法,这些算法大致分为三类:基于插值的图像超分辨率算法,基于重构的图像超分辨重建算法,基于学习的图像超分辨重建算法。Image super-resolution reconstruction refers to the conversion of existing low-resolution images into high-resolution images through software algorithms. It is widely used in image printing, video surveillance, medical image processing, satellite imaging, criminal investigation analysis and other fields, and a large number of excellent algorithms have emerged. These algorithms can be roughly divided into three categories: image super-resolution algorithms based on interpolation, weight-based Constructed image super-resolution reconstruction algorithm, image super-resolution reconstruction algorithm based on learning.

近年来,深度学习理论迅速发展,与传统依赖先验知识的特征提取算法不同,深度神经网络可在训练数据驱动下自适应地构建特征描述,具有更高的灵活性和普适性。作为实现深度学习的一项重要技术,卷积神经网络有几十年的发展历史,深度卷积神经网络最近由于其在图像分类中的优秀表现成为一个爆炸性的研究热点,已成功地应用于其他计算机视觉领域。所以也可以利用卷积神经网络对图像进行超分辨率重建,直接以原始图像为输入,在训练数据的驱动下通过自主学习获取特征描述,简化特征模型的同时提高运算效率。利用卷积神经网络对图像进行超分辨率重建,直接学习低分辨率和高分辨率图像之间端到端的映射。In recent years, deep learning theory has developed rapidly. Unlike traditional feature extraction algorithms that rely on prior knowledge, deep neural networks can adaptively construct feature descriptions driven by training data, which has higher flexibility and universality. As an important technology for deep learning, convolutional neural network has a history of decades of development. Recently, deep convolutional neural network has become an explosive research hotspot due to its excellent performance in image classification, and has been successfully applied to other fields. field of computer vision. Therefore, convolutional neural networks can also be used to perform super-resolution reconstruction of images, directly using the original image as input, and under the drive of training data to obtain feature descriptions through autonomous learning, simplifying feature models and improving computing efficiency. Image super-resolution reconstruction using convolutional neural networks directly learns an end-to-end mapping between low-resolution and high-resolution images.

发明内容Contents of the invention

本发明的目的在于提出一种图像超分辨率重建方法,该方法包括以下步骤:The object of the present invention is to propose a kind of image super-resolution reconstruction method, and this method comprises the following steps:

S1根据图像退化模型,对高分辨率训练图像集中的图像进行模糊和下采样,得到对应的低分辨率训练图像集,将低分辨率图像记为Y;S1 blurs and down-samples the images in the high-resolution training image set according to the image degradation model to obtain the corresponding low-resolution training image set, and records the low-resolution image as Y;

S2将获得的低分辨率图像进行双立方插值放大,放大到所需尺寸;S2 enlarges the obtained low-resolution image by bicubic interpolation and enlarges it to the required size;

S3设计一个含有动态卷积层的卷积神经网络;S3 designs a convolutional neural network with dynamic convolutional layers;

S4低分辨率图像Y输入预训练好的卷积神经网络B,得到滤波器SH1和SV1;S4 Input the low-resolution image Y into the pre-trained convolutional neural network B to obtain filters SH1 and SV1;

S5将低分辨率图像Y和滤波器SV1,SH1输入预训练好的含有动态卷积层的卷积神经网络;S5 inputs the low-resolution image Y and filters SV1, SH1 into a pre-trained convolutional neural network containing a dynamic convolutional layer;

S6重建高分辨率图像X;S6 reconstructs the high-resolution image X;

所述S3,含有动态卷积层的卷积神经网络包括三部分:The S3, a convolutional neural network with a dynamic convolutional layer consists of three parts:

S3.1从低分辨率图像Y提取图像块,每个图像块被表示成高维向量。这些向量包括一组特征映射图,其数目等于向量的维数:S3.1 Extract image patches from the low-resolution image Y, each image patch is represented as a high-dimensional vector. These vectors include a set of feature maps equal in number to the dimensionality of the vectors:

F1(Y)=max(0,W1*Y+B1)F1(Y)=max(0,W1*Y+B1)

W1是权重,B1是偏差,符号*是卷积,W1对应于n1个滤波器,即n1个卷积作用于图像,卷积核的大小为c1×f1×f1,滤波器来自独立的卷积网络B。W1 is the weight, B1 is the bias, the symbol * is convolution, W1 corresponds to n1 filters, that is, n1 convolutions are applied to the image, the size of the convolution kernel is c1×f1×f1, and the filter comes from an independent convolution Network B.

S3.2每个高维向量非线性映射到另一个高维向量。概念上,每个映射向量是一个高分辨率图像块的代表,这些向量包括另一组特征图;S3.2 Each high-dimensional vector is non-linearly mapped to another high-dimensional vector. Conceptually, each mapping vector is a representative of a high-resolution image patch, and these vectors include another set of feature maps;

F2(Y)=max(0,W2*F1(Y)+B2)F2(Y)=max(0,W2*F1(Y)+B2)

W2是权重,B2是偏差,符号*是卷积,W2对应于n2个滤波器,即n2个卷积作用于图像,每个卷积核的大小为n1×f2×f2,滤波器来自独立的卷积网络B。W2 is weight, B2 is bias, symbol * is convolution, W2 corresponds to n2 filters, that is, n2 convolutions are applied to the image, and the size of each convolution kernel is n1×f2×f2, and the filter comes from an independent Convolutional Network B.

S3.3聚合上述高分辨率图像块,产生最终的高分辨率图像;S3.3 aggregate the above-mentioned high-resolution image blocks to generate a final high-resolution image;

F(Y)=W3*F2(Y)+B3F(Y)=W3*F2(Y)+B3

W3是权重,B3是偏差,符号*是卷积,W3对应于n3个滤波器,即n3个卷积作用于图像,卷积核的大小为n2×f3×f3。W3 is the weight, B3 is the deviation, the symbol * is convolution, W3 corresponds to n3 filters, that is, n3 convolutions are applied to the image, and the size of the convolution kernel is n2×f3×f3.

S5包括如下S5 includes the following

S5.1前向传播S5.1 Forward Propagation

为基于样本t的第i次特征图输入,为基于样本t的第j次特征图输出,为卷积核,其计算公式为Assume is the i-th feature map input based on sample t, is the jth feature map output based on sample t, is the convolution kernel, and its calculation formula is

ythe y jj tt == ΣΣ ii kk ii jj tt ** Xx ii tt

与传统卷积层不同的是,含有动态卷积层的卷积神经网络中每个卷积层的卷积核不同。Unlike traditional convolutional layers, convolutional neural networks with dynamic convolutional layers have different convolutional kernels for each convolutional layer.

S5.2后向传播S5.2 Backpropagation

梯度损失函数L相对于 The gradient loss function L relative to

∂∂ LL ∂∂ xx ii tt == ΣΣ jj (( ∂∂ LL ∂∂ ythe y jj tt )) ** ‾‾ (( kk ii jj tt ))

符号*表示零填充卷积。The symbol * means zero-padded convolution.

梯度损失函数L相对于 The gradient loss function L relative to

∂∂ LL ∂∂ kk ii jj tt == (( ∂∂ LL ∂∂ ythe y jj tt )) ** Xx ~~ ii tt

的转置。 for transpose.

S4包括如下S4 includes the following

与传统的卷积层不同,动态卷积层接受两个输入。第一个输入是上一层的特征图,第二个输入是滤波器。特征图来自卷积网络A,滤波器来自独立的卷积网络B。Unlike traditional convolutional layers, dynamic convolutional layers accept two inputs. The first input is the feature map of the previous layer, and the second input is the filter. The feature maps come from ConvNet A, and the filters come from a separate ConvNet B.

卷积网络B结构:Convolutional network B structure:

1)卷积层C1,输入与卷积网络A相同的低分辨率训练数据,通过n1个大小c1×f1×f1的滤波器,输出n1个特征图1) Convolutional layer C1, input the same low-resolution training data as convolutional network A, and output n1 feature maps through n1 filters of size c1×f1×f1

2)最大值-下采样层M1,由C1层产生的n1个特征图,通过步长为2,大小2×2的窗口2) Maximum value-downsampling layer M1, n1 feature maps generated by C1 layer, through a window with a step size of 2 and a size of 2×2

3)卷积层C2,输入n1个特征图,通过n2个大小n1×f1×f1滤波器,输出n2个特征图3) Convolutional layer C2, input n1 feature maps, pass through n2 size n1×f1×f1 filters, output n2 feature maps

4)最大值-下采样层M2,由C2层产生的n2个特征图,通过步长为2,大小2×2的窗口;4) Maximum value-downsampling layer M2, n2 feature maps generated by C2 layer, through a window with a step size of 2 and a size of 2×2;

5)卷积层C3,输入n2个特征图,通过n3个大n2×f1×f1滤波器,输出n3个特征图;5) Convolutional layer C3, input n2 feature maps, and output n3 feature maps through n3 large n2×f1×f1 filters;

6)最大值-下采样层M3,由C3层产生的n3个特征图,通过步长为2,大小2×2的窗口;6) Maximum value-downsampling layer M3, n3 feature maps generated by C3 layer, through a window with a step size of 2 and a size of 2×2;

7)M3的输出通过一个全连接层转换为一个一维行向量H1:1×h1;7) The output of M3 is converted into a one-dimensional row vector H1 through a fully connected layer: 1×h1;

8)M3的输出通过一个全连接层转换为一个一维列向量V1:v1×1;8) The output of M3 is converted into a one-dimensional column vector V1 through a fully connected layer: v1×1;

9)对H1和V1运用Softmax函数,得到向量SH1和SV1;9) Apply the Softmax function to H1 and V1 to obtain vectors SH1 and SV1;

10)滤波器SV1应用于动态卷积层;10) Filter SV1 is applied to the dynamic convolutional layer;

11)滤波器SH1应用于动态卷积层。11) Filter SH1 is applied to the dynamic convolutional layer.

附图说明Description of drawings

图1是本发明含有动态卷积层的卷积神经网络图像超分辨重建算法框架;Fig. 1 is the framework of the convolutional neural network image super-resolution reconstruction algorithm that contains the dynamic convolutional layer of the present invention;

图2是本发明获取动态卷积层滤波器SV1和SH1的卷积神经网络B框架;Fig. 2 is that the present invention obtains the convolutional neural network B frame of dynamic convolution layer filter SV1 and SH1;

图3是使用本发明用放大2倍的图像经过含有动态卷积层的卷积神经网络处理的重建结果和其他三种算法比较;其中,a为原图,b为双三次插值,c为改进的锚点近邻回归算法,d为基于卷积神经网络的超分辨率重建算法,e为本发明。Fig. 3 is a comparison between the reconstructed results of the image enlarged by 2 times and processed by the convolutional neural network containing the dynamic convolution layer and other three algorithms using the present invention; wherein, a is the original image, b is bicubic interpolation, and c is improved The anchor point nearest neighbor regression algorithm, d is the super-resolution reconstruction algorithm based on the convolutional neural network, and e is the present invention.

图4是使用本发明用放大2倍的图像经过含有动态卷积层的卷积神经网络处理的重建结果和其他三种算法比较;其中,a为原图,b为双三次插值,c为改进的锚点近邻回归算法,d为基于卷积神经网络的超分辨率重建算法,e为本发明Fig. 4 is a comparison between the reconstruction result of the image enlarged by 2 times and the convolutional neural network processing with the dynamic convolution layer and other three algorithms using the present invention; wherein, a is the original image, b is the bicubic interpolation, and c is the improvement The anchor point nearest neighbor regression algorithm, d is the super-resolution reconstruction algorithm based on the convolutional neural network, and e is the present invention

具体实施方式detailed description

参照图1,本发明的框架为With reference to Fig. 1, framework of the present invention is

步骤1,输入低分辨率图像Y;Step 1, input low-resolution image Y;

步骤2,利用Matlab软件中的imresize函数将该低分辨率的图像进行2倍的双立方插值放大,得到低分辨率图像Y;Step 2, utilize the imresize function in the Matlab software to carry out 2 times of bicubic interpolation amplification to the low-resolution image to obtain the low-resolution image Y;

步骤3,低分辨率图像Y输入预训练好的卷积网络神经B,得到滤波器SH1和SV1;Step 3, the low-resolution image Y is input into the pre-trained convolutional network neural B to obtain filters SH1 and SV1;

步骤4,将低分辨率图像Y和滤波器SV1输入预训练好的含有动态卷积层的卷积神经网络的第一个动态卷积层;Step 4, input the low-resolution image Y and the filter SV1 into the first dynamic convolutional layer of the pre-trained convolutional neural network containing the dynamic convolutional layer;

步骤5,上一步骤中的输出与滤波器SH1输入含有动态卷积层的卷积神经网络的第二个动态卷积层;Step 5, the output in the previous step and the filter SH1 input the second dynamic convolutional layer of the convolutional neural network containing the dynamic convolutional layer;

步骤6,上一步骤中的输出输入含有动态卷积层的卷积神经网络第三层,得到高分辨率图像;Step 6, the output in the previous step is input into the third layer of the convolutional neural network containing the dynamic convolution layer to obtain a high-resolution image;

步骤7,重建高分辨率图像。Step 7, reconstruct the high-resolution image.

为了验证算法的有效性,在测试库set5和测试库14上,分别与其他三种优秀算法进行比较。图3的四幅图像分别是原图,Bicubic双三次插值算法,A+为改进的锚点近邻回归算法,SRCNN为基于卷积神经网络的超分辨率重建算法,本发明图像超分辨率重建算法。图4的四幅图像分别是原图,Bicubic双三次插值算法,A+为改进的锚点近邻回归算法,SRCNN为基于卷积神经网络的超分辨率重建算法,本发明图像超分辨率重建算法。In order to verify the effectiveness of the algorithm, it is compared with other three excellent algorithms on the test library set5 and test library 14 respectively. The four images in Fig. 3 are original images, Bicubic bicubic interpolation algorithm, A+ is an improved anchor point neighbor regression algorithm, SRCNN is a super-resolution reconstruction algorithm based on a convolutional neural network, and the image super-resolution reconstruction algorithm of the present invention. The four images in Fig. 4 are original images, Bicubic bicubic interpolation algorithm, A+ is an improved anchor point neighbor regression algorithm, SRCNN is a super-resolution reconstruction algorithm based on a convolutional neural network, and the image super-resolution reconstruction algorithm of the present invention.

表1为图3重建结果的结构相似性(SSIM)和峰值信噪比(PSNR)比较。Table 1 compares the structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) of the reconstruction results in Fig. 3.

表1Table 1

表2为图4重建结果的结构相似性(SSIM)和峰值信噪比(PSNR)比较。Table 2 compares the structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) of the reconstruction results in Fig. 4.

表2Table 2

实验结果表明,本发明提出的算法,不仅在视觉效果上而且在客观评价标准上都取得了比其他三种优秀的算法要显著的效果,展现了优秀的超分辨率重建性能。Experimental results show that the algorithm proposed by the present invention achieves better results than the other three excellent algorithms not only in terms of visual effects but also in terms of objective evaluation criteria, and exhibits excellent super-resolution reconstruction performance.

Claims (4)

1.一种图像超分辨率重建方法,其特征在于:该方法包括以下步骤,1. A method for image super-resolution reconstruction, characterized in that: the method comprises the following steps, S1提取训练图像库中的低分辨率图像Y;S1 extracts the low-resolution image Y in the training image library; S2将获得的低分辨率图像进行双立方插值放大,放大到所需尺寸;S2 enlarges the obtained low-resolution image by bicubic interpolation and enlarges it to the required size; S3设计一个含有动态卷积层的卷积神经网络;S3 designs a convolutional neural network with dynamic convolutional layers; S4低分辨率图像Y输入预训练好的卷积神经网络B,得到滤波器SH1和SV1;S4 Input the low-resolution image Y into the pre-trained convolutional neural network B to obtain filters SH1 and SV1; S5将低分辨率图像Y和滤波器SV1,SH1输入预训练好的含有动态卷积层的卷积神经网络;S5 inputs the low-resolution image Y and filters SV1, SH1 into a pre-trained convolutional neural network containing a dynamic convolutional layer; S6重建高分辨率图像X。S6 reconstructs the high-resolution image X. 2.根据权利要求1所述的一种图像超分辨率重建方法,其特征在于:所述S3,含有动态卷积层的卷积神经网络包括三部分:2. A kind of image super-resolution reconstruction method according to claim 1, is characterized in that: described S3, the convolutional neural network that contains dynamic convolutional layer comprises three parts: S3.1从低分辨率图像Y提取图像块,每个图像块被表示成高维向量;这些向量包括一组特征映射图,其数目等于向量的维数:S3.1 Extract image blocks from the low-resolution image Y, each image block is represented as a high-dimensional vector; these vectors include a set of feature maps, the number of which is equal to the dimension of the vector: F1(Y)=max(0,W1*Y+B1)F1(Y)=max(0,W1*Y+B1) W1是权重,B1是偏差,符号*是卷积,W1对应于n1个滤波器,即n1个卷积作用于图像,每个卷积核的大小为c1×f1×f1,n1个滤波器来自独立的卷积网络B;W1 is weight, B1 is bias, symbol * is convolution, W1 corresponds to n1 filters, that is, n1 convolutions are applied to the image, and the size of each convolution kernel is c1×f1×f1, and n1 filters come from Independent convolutional network B; S3.2每个高维向量非线性映射到另一个高维向量;概念上,每个映射向量是一个高分辨率图像块的代表,这些向量包括另一组特征图;S3.2 Each high-dimensional vector is non-linearly mapped to another high-dimensional vector; conceptually, each mapped vector is a representative of a high-resolution image patch, and these vectors include another set of feature maps; F2(Y)=max(0,W2*F1(Y)+B2)F2(Y)=max(0,W2*F1(Y)+B2) W2是权重,B2是偏差,符号*是卷积,W2对应于n2个滤波器,即n2个卷积作用于图像,每个卷积核的大小为n1×f2×f2,n2个滤波器来自独立的卷积网络B;W2 is weight, B2 is bias, symbol * is convolution, W2 corresponds to n2 filters, that is, n2 convolutions are applied to the image, and the size of each convolution kernel is n1×f2×f2, and n2 filters come from Independent convolutional network B; S3.3聚合上述高分辨率图像块,产生最终的高分辨率图像;S3.3 aggregate the above-mentioned high-resolution image blocks to generate a final high-resolution image; F(Y)=W3*F2(Y)+B3F(Y)=W3*F2(Y)+B3 W3是权重,B3是偏差,符号*是卷积,W3对应于n3个滤波器即n3个卷积作用于图像,每个卷积核的大小为n2×f3×f3。W3 is the weight, B3 is the deviation, the symbol * is convolution, W3 corresponds to n3 filters, that is, n3 convolutions are applied to the image, and the size of each convolution kernel is n2×f3×f3. 3.根据权利要求1所述的一种图像超分辨率重建方法,其特征在于:S5包括如下,3. A kind of image super-resolution reconstruction method according to claim 1, is characterized in that: S5 comprises as follows, S5.1前向传播S5.1 Forward Propagation 为基于样本t的第i次特征图输入,为基于样本t的第j次特征图输出,为卷积核,其计算公式为Assume is the i-th feature map input based on sample t, is the jth feature map output based on sample t, is the convolution kernel, and its calculation formula is ythe y jj tt == ΣΣ ii kk ii jj tt ** Xx ii tt 与传统卷积层不同的是,含有动态卷积层的卷积神经网络中每个卷积层的卷积核不同;Different from the traditional convolutional layer, the convolutional kernel of each convolutional layer in the convolutional neural network with dynamic convolutional layer is different; S5.2后向传播S5.2 Backpropagation 梯度损失函数L相对于 The gradient loss function L relative to ∂∂ LL ∂∂ xx ii tt == ΣΣ jj (( ∂∂ LL ∂∂ ythe y jj tt )) ** ‾‾ (( kk ii jj tt )) 符号*表示零填充卷积;The symbol * means zero padding convolution; 梯度损失函数L相对于 The gradient loss function L relative to ∂∂ LL ∂∂ kk ii jj tt == (( ∂∂ LL ∂∂ ythe y jj tt )) ** Xx ii tt ~~ 的转置。 for transpose. 4.根据权利要求1所述的一种图像超分辨率重建方法,其特征在于:S4包括如下,与传统的卷积层不同,动态卷积层接受两个输入;第一个输入是上一层的特征图,第二个输入是滤波器;特征图来自卷积网络A,滤波器来自独立的卷积网络B;4. A kind of image super-resolution reconstruction method according to claim 1, is characterized in that: S4 comprises as follows, is different with traditional convolution layer, and dynamic convolution layer accepts two inputs; The first input is last The feature map of the layer, the second input is the filter; the feature map comes from the convolutional network A, and the filter comes from the independent convolutional network B; 卷积网络B结构:Convolutional network B structure: 1)卷积层C1,输入与卷积网络A相同的低分辨率训练数据与卷积网络A相同,通过n1个大小c1×f1×f1的滤波器,输出n1个特征图1) Convolutional layer C1, input the same low-resolution training data as convolutional network A and convolutional network A, output n1 feature maps through n1 filters of size c1×f1×f1 2)最大值-下采样层M1,由C1层产生的n1特征图,通过步长为2,大小2×2的窗口2) Maximum value - downsampling layer M1, n1 feature map generated by C1 layer, through a window with a step size of 2 and a size of 2×2 3)卷积层C2,输入n1特征图,通过n2个大小c2×f2×f2的滤波器,输出n2个特征图3) Convolutional layer C2, input n1 feature map, pass n2 filters of size c2×f2×f2, and output n2 feature maps 4)最大值-下采样层M2,由C2层产生的n2特征图,通过步长为2,大小2×2的窗口;4) Maximum value-downsampling layer M2, the n2 feature map generated by the C2 layer, through a window with a step size of 2 and a size of 2×2; 5)卷积层C3,输入n2特征图,通过n3个大小c3×f3×f3的滤波器,输出n3个特征图;5) Convolutional layer C3, input n2 feature maps, and output n3 feature maps through n3 filters of size c3×f3×f3; 6)最大值-下采样层M3,由C3层产生的n3特征图,通过步长为2,大小2×2的窗口;6) Maximum value-downsampling layer M3, the n3 feature map generated by the C3 layer, through a window with a step size of 2 and a size of 2×2; 7)M3的输出通过一个全连接层转换为一个一维行向量H1:1×h1;7) The output of M3 is converted into a one-dimensional row vector H1 through a fully connected layer: 1×h1; 8)M3的输出通过一个全连接层转换为一个一维列向量V1:v1×1;8) The output of M3 is converted into a one-dimensional column vector V1 through a fully connected layer: v1×1; 9)对H1和V1运用Softmax函数,得到向量SH1和SV1;9) Apply the Softmax function to H1 and V1 to obtain vectors SH1 and SV1; 10)滤波器SV1应用于动态卷积层;10) Filter SV1 is applied to the dynamic convolutional layer; 11)滤波器SH1应用于动态卷积层。11) Filter SH1 is applied to the dynamic convolutional layer.
CN201610280837.5A 2016-04-28 2016-04-28 Image super-resolution reconstruction method Pending CN105976318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610280837.5A CN105976318A (en) 2016-04-28 2016-04-28 Image super-resolution reconstruction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610280837.5A CN105976318A (en) 2016-04-28 2016-04-28 Image super-resolution reconstruction method

Publications (1)

Publication Number Publication Date
CN105976318A true CN105976318A (en) 2016-09-28

Family

ID=56993373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610280837.5A Pending CN105976318A (en) 2016-04-28 2016-04-28 Image super-resolution reconstruction method

Country Status (1)

Country Link
CN (1) CN105976318A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106485661A (en) * 2016-11-15 2017-03-08 杭州当虹科技有限公司 A kind of high-quality image magnification method
CN106530256A (en) * 2016-11-18 2017-03-22 四川长虹电器股份有限公司 Improved-deep-learning-based intelligent camera image blind super-resolution system
CN106558021A (en) * 2016-11-21 2017-04-05 重庆大学 Video enhancement method based on super-resolution technique
CN106930770A (en) * 2017-02-06 2017-07-07 西安科技大学 Shield machine shield gap method of estimation based on convolutional neural networks
CN106952229A (en) * 2017-03-15 2017-07-14 桂林电子科技大学 Image super-resolution reconstruction method based on improved convolutional network with data augmentation
CN106991648A (en) * 2017-04-10 2017-07-28 中国石油大学(华东) A kind of image super-resolution rebuilding method based on wavelet transformation and convolutional neural networks
CN107220934A (en) * 2017-05-15 2017-09-29 北京小米移动软件有限公司 Image rebuilding method and device
CN107369189A (en) * 2017-07-21 2017-11-21 成都信息工程大学 The medical image super resolution ratio reconstruction method of feature based loss
CN107464217A (en) * 2017-08-16 2017-12-12 清华-伯克利深圳学院筹备办公室 A kind of image processing method and device
CN107689036A (en) * 2017-09-01 2018-02-13 深圳市唯特视科技有限公司 A kind of Real-time image enhancement method based on the bilateral study of depth
CN107977930A (en) * 2017-12-09 2018-05-01 北京花开影视制作有限公司 A kind of image super-resolution method and its system
CN108074215A (en) * 2016-11-09 2018-05-25 京东方科技集团股份有限公司 Image raising frequency system and its training method and image raising frequency method
CN108090871A (en) * 2017-12-15 2018-05-29 厦门大学 A kind of more contrast MR image reconstruction methods based on convolutional neural networks
CN108109109A (en) * 2017-12-22 2018-06-01 浙江大华技术股份有限公司 A kind of super-resolution image reconstruction method, device, medium and computing device
CN108259994A (en) * 2018-01-15 2018-07-06 复旦大学 A kind of method for improving video spatial resolution
CN108564552A (en) * 2018-04-28 2018-09-21 深圳市商汤科技有限公司 The method and device of image deblurring
CN108615222A (en) * 2018-04-17 2018-10-02 中国矿业大学 A kind of depth convolutional network image super-resolution system based on multipair multi-connection
CN108665509A (en) * 2018-05-10 2018-10-16 广东工业大学 A kind of ultra-resolution ratio reconstructing method, device, equipment and readable storage medium storing program for executing
CN108810319A (en) * 2017-04-26 2018-11-13 富士通株式会社 Image processing apparatus and image processing method
WO2018214671A1 (en) * 2017-05-26 2018-11-29 杭州海康威视数字技术股份有限公司 Image distortion correction method and device and electronic device
CN108960084A (en) * 2018-06-19 2018-12-07 清华大学深圳研究生院 Target tracking method, system, readable storage medium storing program for executing and electronic equipment
CN109064394A (en) * 2018-06-11 2018-12-21 西安电子科技大学 A kind of image super-resolution rebuilding method based on convolutional neural networks
CN109242771A (en) * 2018-08-16 2019-01-18 广州视源电子科技股份有限公司 Super-resolution image reconstruction method and device, computer-readable storage medium and computer equipment
CN109272447A (en) * 2018-08-03 2019-01-25 天津大学 A depth map super-resolution method
CN110136057A (en) * 2018-02-08 2019-08-16 杭州海康威视数字技术股份有限公司 A kind of image super-resolution rebuilding method, device and electronic equipment
CN110322400A (en) * 2018-03-30 2019-10-11 京东方科技集团股份有限公司 Image processing method and device, image processing system and its training method
CN110494892A (en) * 2017-05-31 2019-11-22 三星电子株式会社 Method and device for processing multi-channel feature map images
US10489943B2 (en) 2018-02-28 2019-11-26 General Electric Company System and method for sparse image reconstruction
CN110599403A (en) * 2019-09-09 2019-12-20 合肥工业大学 Image super-resolution reconstruction method with good high-frequency visual effect
CN110619603A (en) * 2019-08-29 2019-12-27 浙江师范大学 Single image super-resolution method for optimizing sparse coefficient
CN110675324A (en) * 2018-07-02 2020-01-10 上海寰声智能科技有限公司 4K ultra-high definition image sharpening processing method
CN110785709A (en) * 2017-06-30 2020-02-11 科磊股份有限公司 Generating high resolution images from low resolution images for semiconductor applications
US10805634B2 (en) 2017-05-17 2020-10-13 Samsung Electronics Co., Ltd Super-resolution processing method for moving image and image processing apparatus therefor
CN111861881A (en) * 2020-06-09 2020-10-30 复旦大学 An Image Super-Resolution Reconstruction Algorithm Based on CNN Interpolation
CN112184568A (en) * 2020-09-04 2021-01-05 北京爱芯科技有限公司 Image processing method and device, electronic equipment and readable storage medium
CN113240583A (en) * 2021-04-13 2021-08-10 浙江大学 Image super-resolution method based on convolution kernel prediction
CN114071188A (en) * 2020-08-04 2022-02-18 中国电信股份有限公司 Method, apparatus and computer readable storage medium for processing video data
US11449751B2 (en) 2018-09-30 2022-09-20 Boe Technology Group Co., Ltd. Training method for generative adversarial network, image processing method, device and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105069825A (en) * 2015-08-14 2015-11-18 厦门大学 Image super resolution reconstruction method based on deep belief network
US20150363634A1 (en) * 2014-06-17 2015-12-17 Beijing Kuangshi Technology Co.,Ltd. Face Hallucination Using Convolutional Neural Networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150363634A1 (en) * 2014-06-17 2015-12-17 Beijing Kuangshi Technology Co.,Ltd. Face Hallucination Using Convolutional Neural Networks
CN105069825A (en) * 2015-08-14 2015-11-18 厦门大学 Image super resolution reconstruction method based on deep belief network

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ARMIN KAPPELER等: "Video super-resolution with convolutional neural networks", 《IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING》 *
CHAO DONG等: "Image Super-Resolution Using Deep Convolutional Networks", 《IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE》 *
CHAO DONG等: "Learning a deep convolutional network for image super-resolution", 《ECCV 2014:COMPUTER VISION》 *
SERGEY ZAGORUYKO等: "Learning to compare image patches via convolutional neural networks", 《2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION》 *
刘娜等: "基于多层卷积神经网络学习的单帧图像超分辨率重建方法", 《中国科技论文》 *
胡传平等: "基于深度学习的图像超分辨率算法研究", 《铁道警察学院学报》 *

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108074215B (en) * 2016-11-09 2020-04-14 京东方科技集团股份有限公司 Image upscaling system, training method thereof, and image upscaling method
CN108074215A (en) * 2016-11-09 2018-05-25 京东方科技集团股份有限公司 Image raising frequency system and its training method and image raising frequency method
CN106485661A (en) * 2016-11-15 2017-03-08 杭州当虹科技有限公司 A kind of high-quality image magnification method
CN106530256A (en) * 2016-11-18 2017-03-22 四川长虹电器股份有限公司 Improved-deep-learning-based intelligent camera image blind super-resolution system
CN106558021A (en) * 2016-11-21 2017-04-05 重庆大学 Video enhancement method based on super-resolution technique
CN106558021B (en) * 2016-11-21 2020-03-31 重庆大学 Video enhancement method based on super-resolution technology
CN106930770A (en) * 2017-02-06 2017-07-07 西安科技大学 Shield machine shield gap method of estimation based on convolutional neural networks
CN106952229A (en) * 2017-03-15 2017-07-14 桂林电子科技大学 Image super-resolution reconstruction method based on improved convolutional network with data augmentation
CN106991648B (en) * 2017-04-10 2024-01-02 中国石油大学(华东) Image super-resolution reconstruction method based on wavelet transformation and convolutional neural network
CN106991648A (en) * 2017-04-10 2017-07-28 中国石油大学(华东) A kind of image super-resolution rebuilding method based on wavelet transformation and convolutional neural networks
CN108810319A (en) * 2017-04-26 2018-11-13 富士通株式会社 Image processing apparatus and image processing method
CN107220934B (en) * 2017-05-15 2021-03-30 北京小米移动软件有限公司 Image reconstruction method and device
CN107220934A (en) * 2017-05-15 2017-09-29 北京小米移动软件有限公司 Image rebuilding method and device
US10805634B2 (en) 2017-05-17 2020-10-13 Samsung Electronics Co., Ltd Super-resolution processing method for moving image and image processing apparatus therefor
US11250546B2 (en) 2017-05-26 2022-02-15 Hangzhou Hikvision Digital Technology Co., Ltd. Image distortion correction method and device and electronic device
CN108932697B (en) * 2017-05-26 2020-01-17 杭州海康威视数字技术股份有限公司 Distortion method, device and electronic device for distorted image
WO2018214671A1 (en) * 2017-05-26 2018-11-29 杭州海康威视数字技术股份有限公司 Image distortion correction method and device and electronic device
CN108932697A (en) * 2017-05-26 2018-12-04 杭州海康威视数字技术股份有限公司 A kind of distorted image removes distortion methods, device and electronic equipment
CN110494892A (en) * 2017-05-31 2019-11-22 三星电子株式会社 Method and device for processing multi-channel feature map images
CN110494892B (en) * 2017-05-31 2023-10-03 三星电子株式会社 Method and device for processing multi-channel feature map images
CN110785709A (en) * 2017-06-30 2020-02-11 科磊股份有限公司 Generating high resolution images from low resolution images for semiconductor applications
CN110785709B (en) * 2017-06-30 2022-07-15 科磊股份有限公司 Generate high-resolution images from low-resolution images for semiconductor applications
CN107369189A (en) * 2017-07-21 2017-11-21 成都信息工程大学 The medical image super resolution ratio reconstruction method of feature based loss
CN107464217B (en) * 2017-08-16 2020-12-29 清华-伯克利深圳学院筹备办公室 An image processing method and device
CN107464217A (en) * 2017-08-16 2017-12-12 清华-伯克利深圳学院筹备办公室 A kind of image processing method and device
CN107689036A (en) * 2017-09-01 2018-02-13 深圳市唯特视科技有限公司 A kind of Real-time image enhancement method based on the bilateral study of depth
CN107977930A (en) * 2017-12-09 2018-05-01 北京花开影视制作有限公司 A kind of image super-resolution method and its system
CN108090871A (en) * 2017-12-15 2018-05-29 厦门大学 A kind of more contrast MR image reconstruction methods based on convolutional neural networks
CN108090871B (en) * 2017-12-15 2020-05-08 厦门大学 Multi-contrast magnetic resonance image reconstruction method based on convolutional neural network
CN108109109A (en) * 2017-12-22 2018-06-01 浙江大华技术股份有限公司 A kind of super-resolution image reconstruction method, device, medium and computing device
CN108109109B (en) * 2017-12-22 2021-11-16 浙江大华技术股份有限公司 Super-resolution image reconstruction method, device, medium and computing equipment
CN108259994A (en) * 2018-01-15 2018-07-06 复旦大学 A kind of method for improving video spatial resolution
CN110136057A (en) * 2018-02-08 2019-08-16 杭州海康威视数字技术股份有限公司 A kind of image super-resolution rebuilding method, device and electronic equipment
CN110136057B (en) * 2018-02-08 2023-06-09 杭州海康威视数字技术股份有限公司 Image super-resolution reconstruction method, device and electronic equipment
US10489943B2 (en) 2018-02-28 2019-11-26 General Electric Company System and method for sparse image reconstruction
CN110322400A (en) * 2018-03-30 2019-10-11 京东方科技集团股份有限公司 Image processing method and device, image processing system and its training method
CN110322400B (en) * 2018-03-30 2021-04-27 京东方科技集团股份有限公司 Image processing method and device, image processing system and training method thereof
US11189013B2 (en) 2018-03-30 2021-11-30 Boe Technology Group Co., Ltd. Image processing apparatus, image processing method thereof, image processing system, and training method thereof
CN108615222A (en) * 2018-04-17 2018-10-02 中国矿业大学 A kind of depth convolutional network image super-resolution system based on multipair multi-connection
CN108564552A (en) * 2018-04-28 2018-09-21 深圳市商汤科技有限公司 The method and device of image deblurring
CN108665509A (en) * 2018-05-10 2018-10-16 广东工业大学 A kind of ultra-resolution ratio reconstructing method, device, equipment and readable storage medium storing program for executing
CN109064394A (en) * 2018-06-11 2018-12-21 西安电子科技大学 A kind of image super-resolution rebuilding method based on convolutional neural networks
CN109064394B (en) * 2018-06-11 2023-07-18 西安电子科技大学 An image super-resolution reconstruction method based on convolutional neural network
CN108960084A (en) * 2018-06-19 2018-12-07 清华大学深圳研究生院 Target tracking method, system, readable storage medium storing program for executing and electronic equipment
CN110675324B (en) * 2018-07-02 2023-10-10 上海寰声智能科技有限公司 4K ultra-high definition image sharpening processing method
CN110675324A (en) * 2018-07-02 2020-01-10 上海寰声智能科技有限公司 4K ultra-high definition image sharpening processing method
CN109272447A (en) * 2018-08-03 2019-01-25 天津大学 A depth map super-resolution method
CN109242771A (en) * 2018-08-16 2019-01-18 广州视源电子科技股份有限公司 Super-resolution image reconstruction method and device, computer-readable storage medium and computer equipment
CN109242771B (en) * 2018-08-16 2023-04-28 广州视源电子科技股份有限公司 A super-resolution image reconstruction method and device, computer readable storage medium and computer equipment
US11449751B2 (en) 2018-09-30 2022-09-20 Boe Technology Group Co., Ltd. Training method for generative adversarial network, image processing method, device and storage medium
CN110619603B (en) * 2019-08-29 2023-11-10 浙江师范大学 A single image super-resolution method that optimizes sparse coefficients
CN110619603A (en) * 2019-08-29 2019-12-27 浙江师范大学 Single image super-resolution method for optimizing sparse coefficient
CN110599403B (en) * 2019-09-09 2022-10-25 合肥工业大学 Image super-resolution reconstruction method with good high-frequency visual effect
CN110599403A (en) * 2019-09-09 2019-12-20 合肥工业大学 Image super-resolution reconstruction method with good high-frequency visual effect
CN111861881A (en) * 2020-06-09 2020-10-30 复旦大学 An Image Super-Resolution Reconstruction Algorithm Based on CNN Interpolation
CN114071188A (en) * 2020-08-04 2022-02-18 中国电信股份有限公司 Method, apparatus and computer readable storage medium for processing video data
CN112184568A (en) * 2020-09-04 2021-01-05 北京爱芯科技有限公司 Image processing method and device, electronic equipment and readable storage medium
CN112184568B (en) * 2020-09-04 2025-01-28 北京爱芯科技有限公司 Image processing method, device, electronic device and readable storage medium
CN113240583A (en) * 2021-04-13 2021-08-10 浙江大学 Image super-resolution method based on convolution kernel prediction

Similar Documents

Publication Publication Date Title
CN105976318A (en) Image super-resolution reconstruction method
Li et al. On efficient transformer-based image pre-training for low-level vision
CN109903228B (en) Image super-resolution reconstruction method based on convolutional neural network
CN111768342B (en) A face super-resolution method based on attention mechanism and multi-level feedback supervision
CN109523470B (en) Depth image super-resolution reconstruction method and system
CN112819910B (en) Hyperspectral image reconstruction method based on double-ghost attention machine mechanism network
CN113902622B (en) Spectral super-resolution method based on deep prior joint attention
CN114119444B (en) A multi-source remote sensing image fusion method based on deep neural network
CN111127374B (en) A Pan-sharpening Method Based on Multi-scale Dense Networks
CN110415199B (en) Multispectral remote sensing image fusion method and device based on residual learning
WO2021018163A1 (en) Neural network search method and apparatus
CN112116065A (en) RGB image spectrum reconstruction method, system, storage medium and application
CN109685819A (en) A kind of three-dimensional medical image segmentation method based on feature enhancing
WO2018039904A1 (en) Block sparse compressive sensing based infrared image reconstruction method and system thereof
CN110490799B (en) Super-resolution method of hyperspectral remote sensing image based on self-fusion convolutional neural network
CN113688783B (en) Face feature extraction method, low-resolution face recognition method and equipment
CN115620108A (en) Multimodal Medical Image Fusion Method Based on Spatial Attention and Reversible Neural Network
CN112149662A (en) A Multimodal Fusion Saliency Detection Method Based on Dilated Convolution Blocks
CN118505506A (en) Super-resolution reconstruction method, device and medium for low-resolution hyperspectral image
CN111986092A (en) Image super-resolution reconstruction method and system based on dual networks
Huang et al. RCST: Residual context sharing transformer cascade to approximate Taylor expansion for remote sensing image denoising
CN104408697B (en) Image Super-resolution Reconstruction method based on genetic algorithm and canonical prior model
CN119027314A (en) Hyperspectral image super-resolution reconstruction method based on dual-branch network
CN113191947B (en) Image super-resolution method and system
CN118298234A (en) Hyperspectral image classification method based on spectrum-space attention mechanism and residual error network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160928

RJ01 Rejection of invention patent application after publication