CN105550085A - RDMA (remote direct memory Access) testing method based on GPUDerict - Google Patents
RDMA (remote direct memory Access) testing method based on GPUDerict Download PDFInfo
- Publication number
- CN105550085A CN105550085A CN201510915330.8A CN201510915330A CN105550085A CN 105550085 A CN105550085 A CN 105550085A CN 201510915330 A CN201510915330 A CN 201510915330A CN 105550085 A CN105550085 A CN 105550085A
- Authority
- CN
- China
- Prior art keywords
- gpu
- card
- memory
- cuda
- method based
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/22—Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
- G06F11/2205—Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested
- G06F11/2236—Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested to test CPU or processors
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/20—Handling requests for interconnection or transfer for access to input/output bus
- G06F13/28—Handling requests for interconnection or transfer for access to input/output bus using burst mode transfer, e.g. direct memory access DMA, cycle steal
- G06F13/282—Cycle stealing DMA
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Quality & Reliability (AREA)
- Debugging And Monitoring (AREA)
Abstract
Description
技术领域technical field
本发明涉及GPU服务器测试领域,具体涉及一种基于GPUDerictRDMA测试方法。The invention relates to the field of GPU server testing, in particular to a testing method based on GPUDerictRDMA.
背景技术Background technique
随着IT领域技术的不断发展,传统信息化服务以及日趋强大的云计算服务对服务器的要求越来越高,技术的更新换代时间越来越快,通用处理器CPU无论是在频率、内存带宽、多核乃至制程和指令集上的优化,都遇到了前所未有的困难。但是GPU服务器在异构计算领域打开了一扇门,愈来愈多的超算中心、企业和研究机构正在构建以协处理器为核心的计算资源池,并在异构平台上发展和优化出适配的应用层,客户对GPU服务器的需求越来多大,用以满足日益增长的计算能力需求。With the continuous development of technology in the IT field, traditional information services and increasingly powerful cloud computing services have higher and higher requirements for servers, and the replacement time of technology is getting faster and faster. , multi-core and even process and instruction set optimization have encountered unprecedented difficulties. However, GPU servers have opened a door in the field of heterogeneous computing. More and more supercomputing centers, enterprises and research institutions are building computing resource pools with coprocessors as the core, and developing and optimizing computing resources on heterogeneous platforms. For the adapted application layer, customers have more and more demands on GPU servers to meet the growing demand for computing power.
发明内容Contents of the invention
本发明的技术任务是针对现有技术的不足,提供一种基于GPUDerictRDMA测试方法。本方法既对GPU服务器性能进行了有效测试,又为客户对GPU服务器的性能需求提供了重要性能数据。The technical task of the present invention is to provide a testing method based on GPUDerictRDMA aiming at the deficiencies of the prior art. This method not only effectively tests the performance of the GPU server, but also provides important performance data for the customer's performance requirements on the GPU server.
本发明解决其技术问题所采用的技术方案是:The technical solution adopted by the present invention to solve its technical problems is:
一种基于GPUDerictRDMA测试方法,直接访问GPU内存,避免访问固定(pinned)CUDA主机内存时不必要的系统内存拷贝和CPU的开销,加速了与网络和存储设备之间的通信可以在同一系统中的一个GPU直接访问另一个GPU使用直接的高速DMA传输,增加了P2P的内存访问,真正释放了主机CPU资源,消除主机了CPU中不必要的频繁数据传输,完全不参与输入的RDMA操作;包括HCA卡、GPU卡、GPU必备的NvidiaDriver、NvidiaCUDAtoolkit,及infiniband必备的MLNX_OFED驱动外,以及一个GPU与IB卡通信的nv_peer_mem包。A test method based on GPUDerictRDMA, which directly accesses GPU memory, avoids unnecessary system memory copy and CPU overhead when accessing pinned CUDA host memory, and accelerates communication with network and storage devices in the same system One GPU directly accesses another GPU using direct high-speed DMA transmission, which increases P2P memory access, truly releases the host CPU resources, eliminates unnecessary frequent data transmission in the host CPU, and does not participate in input RDMA operations at all; including HCA card, GPU card, NvidiaDriver, NvidiaCUDAtoolkit necessary for GPU, and MLNX_OFED driver necessary for infiniband, and an nv_peer_mem package for communication between GPU and IB card.
HCA卡为MellanoxConnectX及以后产品,GPU卡为K20及以后产品。HCA cards are MellanoxConnectX and later products, and GPU cards are K20 and later products.
GPUDirectRDMA测试方法如下:The GPUDirectRDMA test method is as follows:
1、测试工具1. Test tools
a、cuda_6.5.14_linux_64.runa. cuda_6.5.14_linux_64.run
b、nvidia_peer_memory-1.0-0.tar.gzb. nvidia_peer_memory-1.0-0.tar.gz
c、mvapich2-gdr-cuda6.5-gnu-2.1-0.1.a.el6.x86_64.rpmc. mvapich2-gdr-cuda6.5-gnu-2.1-0.1.a.el6.x86_64.rpm
d、MLNX_OFED_LINUX-2.4-1.0.0-rhel6.2-x86_64.isod. MLNX_OFED_LINUX-2.4-1.0.0-rhel6.2-x86_64.iso
2、测试方法2. Test method
a、HCA驱动安装a. HCA driver installation
mount-oro,loopMLNX_OFED_LINUX-2.4-1.0.0-rhel6.2-x86_64.iso/mntmount-oro,loopMLNX_OFED_LINUX-2.4-1.0.0-rhel6.2-x86_64.iso/mnt
cd/mntcd/mnt
./mlnxofedinstall./mlnxofedinstall
b、显卡驱动安装b. Graphics card driver installation
chmod777cuda_6.5.14_linux_64.runchmod 777cuda_6.5.14_linux_64.run
./cuda_6.5.14_linux_64.run--extract=/root/rdma./cuda_6.5.14_linux_64.run --extract=/root/rdma
./NVIDIA-Linux-x86_64-340.29.run./NVIDIA-Linux-x86_64-340.29.run
c、CUDA安装c. CUDA installation
./cuda-linux64-rel-6.5.14-18749181.run./cuda-linux64-rel-6.5.14-18749181.run
d、环境变量设置d. Environment variable settings
vi~/.bashrcvi ~/.bashrc
在最后添加:exportPATH=/usr/local/cuda-6.5/bin:$PATHexportLD_LIBRARY_PATH=/usr/local/cuda-6.5/lib64:$LD_LIBRARY_PATHAdd at the end: exportPATH=/usr/local/cuda-6.5/bin:$PATHexportLD_LIBRARY_PATH=/usr/local/cuda-6.5/lib64:$LD_LIBRARY_PATH
source~/.bashrcsource ~/.bashrc
vi/etc/ld.so.confvi /etc/ld.so.conf
在最后添加:/usr/local/cuda-6.5/lib64Add at the end: /usr/local/cuda-6.5/lib64
LdconfigLdconfig
e、nv_peer_mem安装e. nv_peer_mem installation
tar-zxf../nvidia_peer_memory-1.0-0.tar.gztar-zxf ../nvidia_peer_memory-1.0-0.tar.gz
rpmbuild--rebuildnvidia_peer_memory-1.0-0.src.rpmrpmbuild --rebuild nvidia_peer_memory-1.0-0.src.rpm
rpm-ivh/root/rpmbuild/RPMS/x86_64/nvidia_peer_memory-1.0-0.x86_64.rpmrpm-ivh/root/rpmbuild/RPMS/x86_64/nvidia_peer_memory-1.0-0.x86_64.rpm
/etc/init.d/nv_peer_memstart启动nv_peer_mem服务/etc/init.d/nv_peer_memstart starts nv_peer_mem service
f、mvapich2安装f. mvapich2 installation
rpm-Uvh--nodepsmvapich2-gdr-cuda6.5-gnu-2.1-0.1.a.el6.x86_64.rpmrpm-Uvh--nodepsmvapich2-gdr-cuda6.5-gnu-2.1-0.1.a.el6.x86_64.rpm
g、GPUDirectRDMA带宽测试g. GPUDirectRDMA bandwidth test
/opt/mvapich2/gdr/2.1/cuda6.5/gnu/bin/mpirun_rsh-np2c1c2MV2_USE_CUDA=1MV2_USE_GPUDIRECT=1/opt/mvapich2/gdr/2.1/cuda6.5/gnu/libexec/mvapich2/osu_bw-dcudaDD/opt/mvapich2/gdr/2.1/cuda6.5/gnu/bin/mpirun_rsh-np2c1c2MV2_USE_CUDA=1MV2_USE_GPUDIRECT=1 /opt/mvapich2/gdr/2.1/cuda6.5/gnu/libexec/mvapich2/osu_bw-dcudaDD
h、GPUDirectRDMA延迟测试h. GPUDirectRDMA latency test
/opt/mvapich2/gdr/2.1/cuda6.5/gnu/bin/mpirun_rsh-np2c1c2MV2_USE_CUDA=1MV2_USE_GPUDIRECT=1/opt/mvapich2/gdr/2.1/cuda6.5/gnu/libexec/mvapich2/osu_latency-dcudaDD/opt/mvapich2/gdr/2.1/cuda6.5/gnu/bin/mpirun_rsh-np2c1c2MV2_USE_CUDA=1MV2_USE_GPUDIRECT=1/opt/mvapich2/gdr/2.1/cuda6.5/gnu/libexec/mvapich2/osu_latency-dcudaDD
本发明的一种基于GPUDerictRDMA测试方法与现有技术相比,所产生的有益效果是,本发明直接访问GPU内存,避免访问固定(pinned)CUDA主机内存时不必要的系统内存拷贝和CPU的开销,加速了与网络和存储设备之间的通信可以在同一系统中的一个GPU直接访问另一个GPU使用直接的高速DMA传输,增加了P2P的内存访问,真正释放了主机CPU资源,消除主机了CPU中不必要的频繁数据传输,完全不参与输入的RDMA操作。A kind of test method based on GPUDerictRDMA of the present invention compares with prior art, the beneficial effect produced is that the present invention directly accesses GPU memory, avoids unnecessary system memory copy and CPU overhead when accessing fixed (pinned) CUDA host memory , speeding up the communication with the network and storage devices. One GPU in the same system can directly access another GPU using direct high-speed DMA transfer, which increases P2P memory access, truly releases the host CPU resources, and eliminates the host CPU. Unnecessarily frequent data transfers in the middle, do not participate in the incoming RDMA operation at all.
GPUDirectRDMA测试方法既对GPU服务器性能进行了有效测试,又为客户对GPU服务器的性能需求提供了重要性能数据。该测试方法操作简单,自动化程度高,实用性较强,能够节省人力,有效确保了服务器性能的稳定性,是验证GPU服务器产品质量非常有效的方法。The GPUDirectRDMA test method not only effectively tests the performance of GPU servers, but also provides important performance data for customers' performance requirements for GPU servers. The test method is simple to operate, has a high degree of automation, strong practicability, can save manpower, effectively ensures the stability of server performance, and is a very effective method for verifying the quality of GPU server products.
附图说明Description of drawings
图1是基于GPUDerictRDMA测试方法示意图。Figure 1 is a schematic diagram of the test method based on GPUDerictRDMA.
具体实施方式detailed description
下面结合附图对本发明的一种基于GPUDerictRDMA测试方法作以下详细地说明。A test method based on GPUDerictRDMA of the present invention will be described in detail below in conjunction with the accompanying drawings.
一种基于GPUDerictRDMA测试方法,直接访问GPU内存,避免访问固定(pinned)CUDA主机内存时不必要的系统内存拷贝和CPU的开销,加速了与网络和存储设备之间的通信可以在同一系统中的一个GPU直接访问另一个GPU使用直接的高速DMA传输,增加了P2P的内存访问,真正释放了主机CPU资源,消除主机了CPU中不必要的频繁数据传输,完全不参与输入的RDMA操作;包括HCA卡、GPU卡、GPU必备的NvidiaDriver、NvidiaCUDAtoolkit,及infiniband必备的MLNX_OFED驱动外,以及一个GPU与IB卡通信的nv_peer_mem包。A test method based on GPUDerictRDMA, which directly accesses GPU memory, avoids unnecessary system memory copy and CPU overhead when accessing pinned CUDA host memory, and accelerates communication with network and storage devices in the same system One GPU directly accesses another GPU using direct high-speed DMA transmission, which increases P2P memory access, truly releases the host CPU resources, eliminates unnecessary frequent data transmission in the host CPU, and does not participate in input RDMA operations at all; including HCA card, GPU card, NvidiaDriver, NvidiaCUDAtoolkit necessary for GPU, and MLNX_OFED driver necessary for infiniband, and an nv_peer_mem package for communication between GPU and IB card.
HCA卡为MellanoxConnectX及以后产品,GPU卡为K20及以后产品。HCA cards are MellanoxConnectX and later products, and GPU cards are K20 and later products.
GPUDirectRDMA测试方法如下:The GPUDirectRDMA test method is as follows:
3、测试工具3. Test tools
h、cuda_6.5.14_linux_64.runh. cuda_6.5.14_linux_64.run
i、nvidia_peer_memory-1.0-0.tar.gzi. nvidia_peer_memory-1.0-0.tar.gz
j、mvapich2-gdr-cuda6.5-gnu-2.1-0.1.a.el6.x86_64.rpmj. mvapich2-gdr-cuda6.5-gnu-2.1-0.1.a.el6.x86_64.rpm
k、MLNX_OFED_LINUX-2.4-1.0.0-rhel6.2-x86_64.isok. MLNX_OFED_LINUX-2.4-1.0.0-rhel6.2-x86_64.iso
4、测试方法4. Test method
b、HCA驱动安装b. HCA driver installation
mount-oro,loopMLNX_OFED_LINUX-2.4-1.0.0-rhel6.2-x86_64.iso/mntmount-oro,loopMLNX_OFED_LINUX-2.4-1.0.0-rhel6.2-x86_64.iso/mnt
cd/mntcd/mnt
./mlnxofedinstall./mlnxofedinstall
b、显卡驱动安装b. Graphics card driver installation
chmod777cuda_6.5.14_linux_64.runchmod 777cuda_6.5.14_linux_64.run
./cuda_6.5.14_linux_64.run--extract=/root/rdma./cuda_6.5.14_linux_64.run --extract=/root/rdma
./NVIDIA-Linux-x86_64-340.29.run./NVIDIA-Linux-x86_64-340.29.run
c、CUDA安装c. CUDA installation
./cuda-linux64-rel-6.5.14-18749181.run./cuda-linux64-rel-6.5.14-18749181.run
d、环境变量设置d. Environment variable settings
vi~/.bashrcvi ~/.bashrc
在最后添加:exportPATH=/usr/local/cuda-6.5/bin:$PATHexportLD_LIBRARY_PATH=/usr/local/cuda-6.5/lib64:$LD_LIBRARY_PATHAdd at the end: exportPATH=/usr/local/cuda-6.5/bin:$PATHexportLD_LIBRARY_PATH=/usr/local/cuda-6.5/lib64:$LD_LIBRARY_PATH
source~/.bashrcsource ~/.bashrc
vi/etc/ld.so.confvi /etc/ld.so.conf
在最后添加:/usr/local/cuda-6.5/lib64Add at the end: /usr/local/cuda-6.5/lib64
LdconfigLdconfig
l、nv_peer_mem安装l. nv_peer_mem installation
tar-zxf../nvidia_peer_memory-1.0-0.tar.gztar-zxf ../nvidia_peer_memory-1.0-0.tar.gz
rpmbuild--rebuildnvidia_peer_memory-1.0-0.src.rpmrpmbuild --rebuild nvidia_peer_memory-1.0-0.src.rpm
rpm-ivh/root/rpmbuild/RPMS/x86_64/nvidia_peer_memory-1.0-0.x86_64.rpmrpm-ivh/root/rpmbuild/RPMS/x86_64/nvidia_peer_memory-1.0-0.x86_64.rpm
/etc/init.d/nv_peer_memstart启动nv_peer_mem服务/etc/init.d/nv_peer_memstart starts nv_peer_mem service
m、mvapich2安装m, mvapich2 installation
rpm-Uvh--nodepsmvapich2-gdr-cuda6.5-gnu-2.1-0.1.a.el6.x86_64.rpmrpm-Uvh--nodepsmvapich2-gdr-cuda6.5-gnu-2.1-0.1.a.el6.x86_64.rpm
n、GPUDirectRDMA带宽测试n. GPUDirectRDMA bandwidth test
/opt/mvapich2/gdr/2.1/cuda6.5/gnu/bin/mpirun_rsh-np2c1c2MV2_USE_CUDA=1MV2_USE_GPUDIRECT=1/opt/mvapich2/gdr/2.1/cuda6.5/gnu/libexec/mvapich2/osu_bw-dcudaDD/opt/mvapich2/gdr/2.1/cuda6.5/gnu/bin/mpirun_rsh-np2c1c2MV2_USE_CUDA=1MV2_USE_GPUDIRECT=1 /opt/mvapich2/gdr/2.1/cuda6.5/gnu/libexec/mvapich2/osu_bw-dcudaDD
h、GPUDirectRDMA延迟测试h. GPUDirectRDMA latency test
/opt/mvapich2/gdr/2.1/cuda6.5/gnu/bin/mpirun_rsh-np2c1c2MV2_USE_CUDA=1MV2_USE_GPUDIRECT=1/opt/mvapich2/gdr/2.1/cuda6.5/gnu/libexec/mvapich2/osu_latency-dcudaDD/opt/mvapich2/gdr/2.1/cuda6.5/gnu/bin/mpirun_rsh-np2c1c2MV2_USE_CUDA=1MV2_USE_GPUDIRECT=1/opt/mvapich2/gdr/2.1/cuda6.5/gnu/libexec/mvapich2/osu_latency-dcudaDD
随着传统信息化服务以及日趋强大的云计算服务对服务器的要求越来越高,客户对GPU服务器的需求日益增加,GPUDirectRDMA测试方法既对GPU服务器性能进行了有效测试,又为客户对GPU服务器的性能需求提供了重要性能数据。该测试方法操作简单,自动化程度高,实用性较强,能够节省人力,有效确保了服务器性能的稳定性,是验证GPU服务器产品质量非常有效的方法。As traditional information services and increasingly powerful cloud computing services have higher and higher requirements for servers, customers' demand for GPU servers is increasing. The GPUDirectRDMA test method not only effectively tests the performance of GPU servers, but also provides customers with GPU The performance requirements provide important performance data. The test method is simple to operate, has a high degree of automation, strong practicability, can save manpower, effectively ensures the stability of server performance, and is a very effective method for verifying the quality of GPU server products.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510915330.8A CN105550085A (en) | 2015-12-10 | 2015-12-10 | RDMA (remote direct memory Access) testing method based on GPUDerict |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510915330.8A CN105550085A (en) | 2015-12-10 | 2015-12-10 | RDMA (remote direct memory Access) testing method based on GPUDerict |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN105550085A true CN105550085A (en) | 2016-05-04 |
Family
ID=55829281
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510915330.8A Pending CN105550085A (en) | 2015-12-10 | 2015-12-10 | RDMA (remote direct memory Access) testing method based on GPUDerict |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN105550085A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109062929A (en) * | 2018-06-11 | 2018-12-21 | 上海交通大学 | A kind of query task communication means and system |
| CN112162890A (en) * | 2020-09-24 | 2021-01-01 | 深圳市航顺芯片技术研发有限公司 | DMA pressure test method and device of MCU and storage medium |
| CN113395359A (en) * | 2021-08-17 | 2021-09-14 | 苏州浪潮智能科技有限公司 | File currency cluster data transmission method and system based on remote direct memory access |
| CN119127624A (en) * | 2024-11-14 | 2024-12-13 | 之江实验室 | Automated testing system and method for direct communication between heterogeneous GPUs |
| CN119718676A (en) * | 2025-02-25 | 2025-03-28 | 山东大学 | Heterogeneous GPU system and data transmission method |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100161939A1 (en) * | 2005-04-19 | 2010-06-24 | Stmicroelectronics S.R.L. | Parallel processing method and system, for instance for supporting embedded cluster platforms, computer program product therefor |
| CN103345382A (en) * | 2013-07-15 | 2013-10-09 | 郑州师范学院 | CPU+GPU group nuclear supercomputer system and SIFT feature matching parallel computing method |
-
2015
- 2015-12-10 CN CN201510915330.8A patent/CN105550085A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100161939A1 (en) * | 2005-04-19 | 2010-06-24 | Stmicroelectronics S.R.L. | Parallel processing method and system, for instance for supporting embedded cluster platforms, computer program product therefor |
| CN103345382A (en) * | 2013-07-15 | 2013-10-09 | 郑州师范学院 | CPU+GPU group nuclear supercomputer system and SIFT feature matching parallel computing method |
Non-Patent Citations (2)
| Title |
|---|
| KHALED HAMIDOUCHE ETAL.: "Exploiting GPUDirect RDMA in Designing High Performance OpenSHMEM for NVIDIA GPU Clusters", 《IEEE》 * |
| SREERAM POTLURI ETAL.: "Efficient Inter-node MPI Communication using GPUDirect RDMA for InfiniBand Clusters with NVIDIA GPUs", 《IEEE》 * |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109062929A (en) * | 2018-06-11 | 2018-12-21 | 上海交通大学 | A kind of query task communication means and system |
| CN109062929B (en) * | 2018-06-11 | 2020-11-06 | 上海交通大学 | A query task communication method and system |
| CN112162890A (en) * | 2020-09-24 | 2021-01-01 | 深圳市航顺芯片技术研发有限公司 | DMA pressure test method and device of MCU and storage medium |
| CN112162890B (en) * | 2020-09-24 | 2021-09-21 | 深圳市航顺芯片技术研发有限公司 | DMA pressure test method and device of MCU and storage medium |
| CN113395359A (en) * | 2021-08-17 | 2021-09-14 | 苏州浪潮智能科技有限公司 | File currency cluster data transmission method and system based on remote direct memory access |
| CN119127624A (en) * | 2024-11-14 | 2024-12-13 | 之江实验室 | Automated testing system and method for direct communication between heterogeneous GPUs |
| CN119127624B (en) * | 2024-11-14 | 2025-03-14 | 之江实验室 | Automated testing system and method for direct communication between heterogeneous GPUs |
| CN119718676A (en) * | 2025-02-25 | 2025-03-28 | 山东大学 | Heterogeneous GPU system and data transmission method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Kim et al. | NBA (network balancing act) a high-performance packet processing framework for heterogeneous processors | |
| US10067741B1 (en) | Systems and methods for I/O device logging | |
| CN105550085A (en) | RDMA (remote direct memory Access) testing method based on GPUDerict | |
| US20150317177A1 (en) | Systems and methods for supporting migration of virtual machines accessing remote storage devices over network via nvme controllers | |
| US20180300109A1 (en) | Preserving dynamic trace purity | |
| US9357035B2 (en) | Optimizing network communications | |
| CN107967180B (en) | Based on resource overall situation affinity network optimized approach and system under NUMA virtualized environment | |
| US10915368B2 (en) | Data processing | |
| US10873630B2 (en) | Server architecture having dedicated compute resources for processing infrastructure-related workloads | |
| CN108021429A (en) | A kind of virutal machine memory and network interface card resource affinity computational methods based on NUMA architecture | |
| He et al. | Dxpu: Large-scale disaggregated gpu pools in the datacenter | |
| CN104125165A (en) | Job scheduling system and method based on heterogeneous cluster | |
| Liu et al. | A performance comparison of http servers in a 10g/40g network | |
| Singh et al. | Appliedmicro x-gene2 | |
| Balman et al. | Experiences with 100gbps network applications | |
| CN105868000A (en) | Method for parallelly processing data in extensible manner for network I/O (input/output) virtualization | |
| US20130013666A1 (en) | Monitoring data access requests to optimize data transfer | |
| Tang et al. | Accelerating redis with RDMA over infiniband | |
| Doddavula et al. | Cloud computing solution patterns: Infrastructural solutions | |
| Kim et al. | A Hadoop-based multimedia transcoding system for processing social media in the PaaS platform of SMCCSE | |
| Kopeć | Evaluating Methods of Transferring Large Datasets | |
| CN106200413B (en) | Electro-magnetic transient Real-time Communications method and apparatus based on Aurora agreement | |
| US11301359B2 (en) | Remote debugging parallel regions in stream computing applications | |
| CN108509155A (en) | A kind of method and apparatus of remote access disk | |
| CN102185896A (en) | Cloud service-oriented device and method for sensing remote file request |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160504 |